1
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
2
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
3
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
4
|
Rajendran KV, Neelakanta G, Sultana H. Sphingomyelinases in a journey to combat arthropod-borne pathogen transmission. FEBS Lett 2021; 595:1622-1638. [PMID: 33960414 DOI: 10.1002/1873-3468.14103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Ixodes scapularis ticks feed on humans and other vertebrate hosts and transmit several pathogens of public health concern. Tick saliva is a complex mixture of bioactive proteins, lipids and immunomodulators, such as I. scapularis sphingomyelinase (IsSMase)-like protein, an ortholog of dermonecrotoxin SMase D found in the venom of Loxosceles spp. of spiders. IsSMase modulates the host immune response towards Th2, which suppresses Th1-mediated cytokines to facilitate pathogen transmission. Arboviruses utilize exosomes for their transmission from tick to the vertebrate host, and exosomes derived from tick saliva/salivary glands suppress C-X-C motif chemokine ligand 12 and interleukin-8 immune response(s) in human skin to delay wound healing and repair processes. IsSMase affects also viral replication and exosome biogenesis, thereby inhibiting tick-to-vertebrate host transmission of pathogenic exosomes. In this review, we elaborate on exosomes and their biogenesis as potential candidates for developing novel control measure(s) to combat tick-borne diseases. Such targets could help with the development of an efficient anti-tick vaccine for preventing the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Kundave V Rajendran
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.,Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
5
|
Dawson G. Isolation of Lipid Rafts (Detergent-Resistant Microdomains) and Comparison to Extracellular Vesicles (Exosomes). Methods Mol Biol 2021; 2187:99-112. [PMID: 32770503 DOI: 10.1007/978-1-0716-0814-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid rafts (LRs) represent cellular microdomains enriched in sphingolipids and cholesterol which may fuse to form platforms in which signaling molecules can be organized and regulated (Simons and Ikonen, Nature 387:569-572, 1997; Pike, Biochem J 378:281-292, 2004; Grassme et al., J Immunol 168: 300-307, 2002; Cheng et al., J Exp Med 190:1549-1550, 1999; Kilkus et al., J Neurosci Res 72(1) 62-75, 2003). In a proposed Model 1 (Cheng et al., J Exp Med 190:1549-1550, 1999) the LR has a well-ordered central core composed mainly of cholesterol and sphingolipids that is surrounded by a zone of decreasing lipid order. Detergents such as Triton X-100 can solubilize the core (and a significant amount of phosphoglyceride), but the LRs will be insoluble at 4 °C and be enriched in a well-characterized set of biomarkers. Model 2 proposes that the LRs are homogeneous, but there is selectivity in the lipids (and proteins) extracted by the 1% Triton X-100. Model 3 proposes LRs with distinct lipid compositions are highly structured and can be destroyed by binding molecules such as beta-methylcyclodextrin or filipin. These may be Caveolin in some cell types but not in brain. Since it is unlikely that two LR preparations will be exactly the same this review will concentrate on LRs defined as "small (50 nm) membranous particles which are insoluble in 1% Triton X-100 at 4 °C and have a low buoyant density (Simons and Ikonen, Nature 387:569-572, 1997; Pike, Biochem J 378:281-292, 2004; Grassme et al., J Immunol 168: 300-307, 2002; Cheng et al., J Exp Med 190:1549-1550, 1999; Kilkus et al., J Neurosci Res 72(1):62-75, 2003; Testai et al., J Neurochem 89:636-644, 2004). We will present a generic method for isolating LRs for both lipidomic, proteomic, and cellular signaling analysis [1-6].
Collapse
Affiliation(s)
- Glyn Dawson
- Biological Sciences Division, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Skryabin GO, Komelkov AV, Savelyeva EE, Tchevkina EM. Lipid Rafts in Exosome Biogenesis. BIOCHEMISTRY (MOSCOW) 2020; 85:177-191. [PMID: 32093594 DOI: 10.1134/s0006297920020054] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exosomes (secreted extracellular vesicles formed in the intracellular vesicular transport system) play a crucial role in distant cell-cell communication. Exosomes transfer active forms of various biomolecules; the molecular composition of the exosomal cargo is a result of targeted selection and depends on the type of producer cells. The mechanisms underlying exosome formation and cargo selection are poorly understood. It is believed that there are several pathways for exosome biogenesis, although the questions about their independence and simultaneous coexistence in the cell still remain open. The least studied topic is the recently discovered mechanism of exosome formation associated with lipid rafts, or membrane lipid microdomains. Here, we present modern concepts and basic hypotheses on the mechanisms of exosome biogenesis and secretion and summarize current data on the involvement of lipid rafts and their constituent molecules in these processes. Special attention is paid to the analysis of possible role in the exosome formation of raft-forming proteins of the SPFH family, components of planar rafts, and caveolin, the main component of caveolae.
Collapse
Affiliation(s)
- G O Skryabin
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - A V Komelkov
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| | - E E Savelyeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - E M Tchevkina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
7
|
Moerke C, Jaco I, Dewitz C, Müller T, Jacobsen AV, Gautheron J, Fritsch J, Schmitz J, Bräsen JH, Günther C, Murphy JM, Kunzendorf U, Meier P, Krautwald S. The anticonvulsive Phenhydan ® suppresses extrinsic cell death. Cell Death Differ 2019; 26:1631-1645. [PMID: 30442947 PMCID: PMC6748113 DOI: 10.1038/s41418-018-0232-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/27/2022] Open
Abstract
Different forms of regulated cell death-like apoptosis and necroptosis contribute to the pathophysiology of clinical conditions including ischemia-reperfusion injury, myocardial infarction, sepsis, and multiple sclerosis. In particular, the kinase activity of the receptor-interacting serine/threonine protein kinase 1 (RIPK1) is crucial for cell fate in inflammation and cell death. However, despite its involvement in pathological conditions, no pharmacologic inhibitor of RIPK1-mediated cell death is currently in clinical use. Herein, we screened a collection of clinical compounds to assess their ability to modulate RIPK1-mediated cell death. Our small-scale screen identified the anti-epilepsy drug Phenhydan® as a potent inhibitor of death receptor-induced necroptosis and apoptosis. Accordingly, Phenhydan® blocked activation of necrosome formation/activation as well as death receptor-induced NF-κB signaling by influencing the membrane function of cells, such as lipid raft formation, thus exerting an inhibitory effect on pathophysiologic cell death processes. By targeting death receptor signaling, the already FDA-approved Phenhydan® may provide new therapeutic strategies for inflammation-driven diseases caused by aberrant cell death.
Collapse
Affiliation(s)
- Caroline Moerke
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Isabel Jaco
- Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Christin Dewitz
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Tammo Müller
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Annette V Jacobsen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jérémie Gautheron
- Université Pierre et Marie Curie, UMR_S 938, Inserm, 75012, Paris, France
| | - Jürgen Fritsch
- Institute for Clinical Microbiology and Hygiene, University of Regensburg, 93053, Regensburg, Germany
| | - Jessica Schmitz
- Department of Pathology, University of Hannover, 30625, Hannover, Germany
| | - Jan Hinrich Bräsen
- Department of Pathology, University of Hannover, 30625, Hannover, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University, 91052, Erlangen, Germany
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Pascal Meier
- Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany.
| |
Collapse
|
8
|
Pollet H, Conrard L, Cloos AS, Tyteca D. Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding? Biomolecules 2018; 8:E94. [PMID: 30223513 PMCID: PMC6164003 DOI: 10.3390/biom8030094] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.
Collapse
Affiliation(s)
- Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Louise Conrard
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Anne-Sophie Cloos
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
9
|
Caveolae-mediated effects of TNF-α on human skeletal muscle cells. Exp Cell Res 2018; 370:623-631. [PMID: 30031131 DOI: 10.1016/j.yexcr.2018.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
Chronic diseases are characterized by the production of pro-inflammatory cytokines such than TNF-α and are frequently correlated with muscle wasting conditions. Among the pleiotropic effects of TNF-α within the cell, its binding to TNFR1 receptor has been shown to activate sphingomyelinases leading to the production of ceramides. Sphingomyelinases and TNF receptor have been localized within caveolae which are specialized RAFT enriched in cholesterol and sphingolipids. Because of their inverted omega shape, maintained by the oligomerization of specialized proteins, caveolins and cavins, caveolae serve as membrane reservoir therefore providing mechanical protection to plasma membranes. Although sphingolipids metabolites, caveolins and TNF-α/TNFR1 have been shown to independently interfere with muscle physiology, no data have clearly demonstrated their concerted action on muscle cell regeneration. In this context, our study aimed at studying the molecular mechanisms induced by TNF-α at the level of caveolae in LHCN-M2 human muscle satellite cells. Here we showed that TNF-α-induced production of ROS and nSMase activation requires caveolin. More strikingly, we have demonstrated that TNF-α induces the formation of additional caveolae at the plasma membrane of myoblasts. Furthermore, TNF-α prevents myoblast fusion suggesting that inflammation could modulate caveolae organization/function and satellite cell function.
Collapse
|
10
|
Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018; 59:1325-1340. [PMID: 29853528 DOI: 10.1194/jlr.r083915] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells.
Collapse
Affiliation(s)
- Claudia Verderio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas, 20089 Rozzano, Italy
| | - Martina Gabrielli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy
| | - Paola Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Italy
| |
Collapse
|
11
|
Camaré C, Augé N, Pucelle M, Saint-Lebes B, Grazide MH, Nègre-Salvayre A, Salvayre R. The neutral sphingomyelinase-2 is involved in angiogenic signaling triggered by oxidized LDL. Free Radic Biol Med 2016; 93:204-16. [PMID: 26855418 DOI: 10.1016/j.freeradbiomed.2016.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 12/31/2022]
Abstract
Capillaries of the external part of the normal arterial wall constitute the vasa vasorum network. In atherosclerotic lesions, neovascularization occurs in areas of intimal hyperplasia where it may promote plaque expansion, and intraplaque hemorrhage. Oxidized LDL that are present in atherosclerotic areas activate various angiogenic signaling pathways, including reactive oxygen species and the sphingosine kinase/sphingosine-1-phosphate pathway. We aimed to investigate whether oxidized LDL-induced angiogenesis requires neutral sphingomyelinase-2 activation and the neutral sphingomyelinase-2/sphingosine kinase-1 pathway. The role of neutral sphingomyelinase-2 in angiogenic signaling was investigated in Human Microvascular Endothelial Cells (HMEC-1) forming capillary tube on Matrigel and in vivo in the Matrigel plug assay in C57BL/6 mice and in the chicken chorioallantoic membrane model. Low concentration of human oxidized LDL elicits HMEC-1 capillary tube formation and neutral sphingomyelinase-2 activation, which were blocked by neutral sphingomyelinase-2 inhibitors, GW4869 and specific siRNA. This angiogenic effect was mimicked by low concentration of C6-Ceramide and was inhibited by sphingosine kinase-1 inhibitors. Upstream of neutral sphingomyelinase-2, oxidized LDL-induced activation required LOX-1, reactive oxygen species generation by NADPH oxidase and p38-MAPK activation. Inhibition of sphingosine kinase-1 blocked the angiogenic response and triggered HMEC-1 apoptosis. Low concentration of oxidized LDL was angiogenic in vivo, both in the Matrigel plug assay in mice and in the chorioallantoic membrane model, and was blocked by GW4869. In conclusion, low oxLDL concentration triggers sprouting angiogenesis that involves ROS-induced activation of the neutral sphingomyelinase-2/sphingosine kinase-1 pathway, and is effectively inhibited by GW4869.
Collapse
Affiliation(s)
- Caroline Camaré
- Inserm UMR-1048, CHU Rangueil, BP 84225, 31432 Toulouse Cedex 4, France; University of Toulouse, Faculty of Medicine, Biochemistry Department, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| | - Nathalie Augé
- Inserm UMR-1048, CHU Rangueil, BP 84225, 31432 Toulouse Cedex 4, France
| | - Mélanie Pucelle
- Inserm UMR-1048, CHU Rangueil, BP 84225, 31432 Toulouse Cedex 4, France
| | - Bertrand Saint-Lebes
- Inserm UMR-1048, CHU Rangueil, BP 84225, 31432 Toulouse Cedex 4, France; University of Toulouse, Faculty of Medicine, Biochemistry Department, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| | - Marie-Hélène Grazide
- University of Toulouse, Faculty of Medicine, Biochemistry Department, Toulouse, France
| | | | - Robert Salvayre
- Inserm UMR-1048, CHU Rangueil, BP 84225, 31432 Toulouse Cedex 4, France; University of Toulouse, Faculty of Medicine, Biochemistry Department, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France.
| |
Collapse
|
12
|
Ogiso H, Taniguchi M, Okazaki T. Analysis of lipid-composition changes in plasma membrane microdomains. J Lipid Res 2015; 56:1594-605. [PMID: 26116739 DOI: 10.1194/jlr.m059972] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/20/2022] Open
Abstract
Sphingolipids accumulate in plasma membrane microdomain sites, such as caveolae or lipid rafts. Such microdomains are considered to be important nexuses for signal transduction, although changes in the microdomain lipid components brought about by signaling are poorly understood. Here, we applied a cationic colloidal silica bead method to analyze plasma membrane lipids from monolayer cells cultured in a 10 cm dish. The detergent-resistant fraction from the silica bead-coated membrane was analyzed by LC-MS/MS to evaluate the microdomain lipids. This method revealed that glycosphingolipids composed the microdomains as a substitute for sphingomyelin (SM) in mouse embryonic fibroblasts (tMEFs) from an SM synthase 1/2 double KO (DKO) mouse. The rate of formation of the detergent-resistant region was unchanged compared with that of WT-tMEFs. C2-ceramide (Cer) stimulation caused greater elevations in diacylglycerol and phosphatidic acid levels than in Cer levels within the microdomains of WT-tMEFs. We also found that lipid changes in the microdomains of SM-deficient DKO-tMEFs caused by serum stimulation occurred in the same manner as that of WT-tMEFs. This practical method for analyzing membrane lipids will facilitate future comprehensive analyses of membrane microdomain-associated responses.
Collapse
Affiliation(s)
- Hideo Ogiso
- Department of Hematology/Immunology Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Makoto Taniguchi
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Toshiro Okazaki
- Department of Hematology/Immunology Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
13
|
Faulstich M, Hagen F, Avota E, Kozjak-Pavlovic V, Winkler AC, Xian Y, Schneider-Schaulies S, Rudel T. Neutral sphingomyelinase 2 is a key factor for PorB-dependent invasion of Neisseria gonorrhoeae. Cell Microbiol 2014; 17:241-53. [PMID: 25224994 DOI: 10.1111/cmi.12361] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022]
Abstract
Disseminated gonococcal infection (DGI) is a rare but serious complication caused by the spread of Neisseria gonorrhoeae in the human host. Gonococci associated with DGI mainly express the outer membrane protein PorBIA that binds to the scavenger receptor expressed on endothelial cells (SREC-I) and mediates bacterial uptake. We recently demonstrated that this interaction relies on intact membrane rafts that acquire SREC-I upon attachment of gonococci and initiates the signalling cascade that finally leads to the uptake of gonococci in epithelial cells. In this study, we analysed the role of sphingomyelinases and their breakdown product ceramide. Gonococcal infection induced increased levels of ceramide that was enriched at bacterial attachment sites. Interestingly, neutral but not acid sphingomyelinase was mandatory for PorBIA -mediated invasion into host cells. Neutral sphingomyelinase was required to recruit the PI3 kinase to caveolin and thereby activates the PI3 kinase-dependent downstream signalling leading to bacterial uptake. Thus, this study elucidates the initial signalling processes of bacterial invasion during DGI and demonstrates a novel role for neutral sphingomyelinase in the course of bacterial infections.
Collapse
Affiliation(s)
- Michaela Faulstich
- Department of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Qin H, Bollag WB. The caveolin-1 scaffolding domain peptide decreases phosphatidylglycerol levels and inhibits calcium-induced differentiation in mouse keratinocytes. PLoS One 2013; 8:e80946. [PMID: 24236206 PMCID: PMC3827482 DOI: 10.1371/journal.pone.0080946] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
Phospholipase D2 (PLD2) has been found localized in low-density caveolin-rich membrane microdomains. Our previous study suggested that PLD2 and aquaporin 3 (AQP3) interact in these domains to inhibit keratinocyte proliferation and promote differentiation by cooperating to produce phosphatidylglycerol. To examine the effect of membrane microdomain localization on the PLD2/AQP3 signaling module and keratinocyte proliferation and differentiation, we treated mouse keratinocytes with 3 µM cell-permeable caveolin-1 scaffolding domain peptide or a negative control peptide and stimulated cell differentiation using a moderately elevated extracellular calcium concentration (125 uM) to maximally promote differentiation and phosphatidylglycerol production. Cell proliferation, differentiation, total PLD activity, phosphatidylglycerol levels, and AQP3 activity were monitored. The caveolin-1 scaffolding domain peptide itself had no effect on phosphatidylglycerol levels or keratinocyte proliferation or differentiation but prevented the changes induced by a moderately elevated calcium concentration, whereas a negative control did not. The caveolin-1 scaffolding domain peptide had little effect on total PLD activity or glycerol uptake (AQP3 activity). We conclude that the caveolin-1 scaffolding domain peptide disrupts the functional association between AQP3 and PLD2 and prevents both the inhibited proliferation and the stimulated differentiation in response to elevated extracellular calcium levels. The interaction of caveolin-1 and PLD2 is indirect (i.e., lipid mediated); together with the proliferation-promoting effects of caveolin-1 knockout on epidermal keratinocytes, we propose that the caveolin-1 scaffolding domain pepetide exerts a dominant-negative effect on caveolin-1 to alter lipid rafts in these cells.
Collapse
Affiliation(s)
- Haixia Qin
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
| | - Wendy B. Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
- Department of Medicine (Dermatology), Medical College of Georgia at Georgia Regents University, Augusta, Georgia, United States of America
- Departments of Orthopaedic Surgery, Oral Biology and Cell Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Cinq-Frais C, Coatrieux C, Grazide MH, Hannun YA, Nègre-Salvayre A, Salvayre R, Augé N. A signaling cascade mediated by ceramide, src and PDGFRβ coordinates the activation of the redox-sensitive neutral sphingomyelinase-2 and sphingosine kinase-1. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1344-56. [PMID: 23651497 DOI: 10.1016/j.bbalip.2013.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 01/14/2023]
Abstract
Stress-inducing agents, including oxidative stress, generate the sphingolipid mediators ceramide (Cer) and sphingosine-1-phosphate (S1P) that are involved in stress-induced cellular responses. The two redox-sensitive neutral sphingomyelinase-2 (nSMase2) and sphingosine kinase-1 (SK1) participate in transducing stress signaling to ceramide and S1P, respectively; however, whether these key enzymes are coordinately regulated is not known. We investigated whether a signaling link coordinates nSMase2 and SK1 activation by H2O2. In mesenchymal cells, H2O2 elicits a dose-dependent biphasic effect, mitogenic at low concentration (5μM), and anti-proliferative and toxic at high concentration (100μM). Low H2O2 concentration triggered activation of nSMase2 and SK1 through a nSMase2/Cer-dependent signaling pathway that acted upstream of activation of SK1. Further results implicated src and the trans-activation of PDGFRβ, as supported by the blocking effect of specific siRNAs, pharmacological inhibitors, and genetically deficient cells for nSMase2, src and SK1. The H2O2-induced src/PDGFRβ/SK1 signaling cascade was impaired in nSMase2-deficient fro/fro cells and was rescued by exogenous C2Cer that activated src/PDGFRβ/SK1. Thus, the results define a nSMase2/SK1 signaling pathway implicated in the mitogenic response to low oxidative stress. On the other hand, high oxidative stress induced inhibition of SK1. The results also showed that the toxicity of high H2O2 concentration was comparable in control and nSMase2-deficient cells. Taken together the results identify a tightly coordinated nSMase2/SK1 pathway that mediates the mitogenic effects of H2O2 and may sense the degree of oxidative stress.
Collapse
|
16
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
17
|
Chemical–Physical Changes in Cell Membrane Microdomains of Breast Cancer Cells After Omega-3 PUFA Incorporation. Cell Biochem Biophys 2012; 64:45-59. [DOI: 10.1007/s12013-012-9365-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Kunzmann S, Collins JJP, Yang Y, Uhlig S, Kallapur SG, Speer CP, Jobe AH, Kramer BW. Antenatal inflammation reduces expression of caveolin-1 and influences multiple signaling pathways in preterm fetal lungs. Am J Respir Cell Mol Biol 2011; 45:969-76. [PMID: 21562314 DOI: 10.1165/rcmb.2010-0519oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), associated with chorioamnionitis, results from the simultaneous effects of disrupted lung development, lung injury, and repair superimposed on the developing lung. Caveolins (Cavs) are implicated as major modulators of lung injury and remodeling by multiple signaling pathways, although Cavs have been minimally studied in the injured developing lung. We hypothesized that chorioamnionitis-associated antenatal lung inflammation would decrease the expression of Cav-1 in preterm fetal lungs. We tested whether changes occurred in the transcription factors Smad2/3, Smad1/5, Stat3, and Stat1, and we also studied the activation of acid-sphingomyelinase (a-SMase) with the generation of ceramide, along with changes in the expression of heme oxygenase-1 (HO-1) as indicators of possible Cav-1-mediated effects. Fetal sheep were exposed to 10 mg of intra-amniotic endotoxin or saline for 2, 7, or 2 + 7 days before preterm delivery at 124 days of gestation. The expression of Cav-1 and HO-1 and the phosphorylation of Smad and Stat were evaluated by real-time PCR, Western blotting, and/or immunohistochemistry. The activity of a-SMase and the concentrations of ceramide were measured. Intra-amniotic endotoxin decreased Cav-1 mRNA and protein expression in the lungs, with a maximum reduction of Cav-1 mRNA to 50% ± 7% of the control value (P < 0.05), and of Cav-1 protein expression to 20% ± 5% of the control value (P < 0.05). Decreased concentrations of Cav-1 were associated with the elevated phosphorylation of Smad2/3, Stat3, and Stat1, but not of Smad1/5. The expression of HO-1, a-SMase activity, and ceramide increased. Antenatal inflammation decreased the expression of Cav-1 in the preterm fetal lung. The decreased expression of Cav-1 was associated with the activation of the Smad2/3, Stat, and a-SMase/ceramide pathways, and with the increased expression of HO-1. The decreased concentrations of Cav-1 and changes in other signaling pathways may contribute to BPD.
Collapse
Affiliation(s)
- Steffen Kunzmann
- University Children's Hospital, University of Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu BX, Clarke CJ, Matmati N, Montefusco D, Bartke N, Hannun YA. Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference. J Biol Chem 2011; 286:22362-71. [PMID: 21550973 DOI: 10.1074/jbc.m110.156471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sphingolipids such as ceramide are recognized as vital regulators of many biological processes. Neutral sphingomyelinase 2 (nSMase2) is one of the key enzymes regulating ceramide production. It was previously shown that the enzymatic activity of nSMase2 was dependent on anionic phospholipids (APLs). In this study, the structural requirements for APL-selective binding of nSMase2 were determined and characterized. Using lipid-protein overlay assays, nSMase2 interacted specifically and directly with several APLs, including phosphatidylserine and phosphatidic acid. Lipid-protein binding studies of deletion mutants identified two discrete APL binding domains in the N terminus of nSMase2. Further, mutagenesis experiments pinpointed the core sequences and major cationic amino acids in the domains that are necessary for the cooperative activation of nSMase2 by APLs. The first domain included the first amino-terminal hydrophobic segment and Arg-33, which were essential for nSMase2 to interact with APLs. The second binding domain was comprised of the second hydrophobic segment and Arg-92 and Arg-93. Moreover, mutation of one or both domains decreased APL binding and APL-dependent catalytic activity of nSMase2. Further, mutation of both domains in nSMase2 reduced its plasma membrane localization. Finally, these binding domains are also important for the capability of nSMase2 to rescue the defects of yeast lacking the nSMase homologue, ISC1. In conclusion, these data have identified the APL binding domains of nSMase2 for the first time. The analysis of interactions between nSMase2 and APLs will contribute to our understanding of signaling pathways mediated by sphingolipid metabolites.
Collapse
Affiliation(s)
- Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
20
|
Haughey NJ, Tovar-y-Romo LB, Bandaru VVR. Roles for biological membranes in regulating human immunodeficiency virus replication and progress in the development of HIV therapeutics that target lipid metabolism. J Neuroimmune Pharmacol 2011; 6:284-95. [PMID: 21445582 DOI: 10.1007/s11481-011-9274-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/08/2011] [Indexed: 01/14/2023]
Abstract
Infection by the human immunodeficiency virus (HIV) involves a number of important interactions with lipid components in host membranes that regulate binding, fusion, internalization, and viral assembly. Available data suggests that HIV actively modifies the sphingolipid content of cellular membranes to create focal environments that are favorable for infection. In this review, we summarize the roles that membrane lipids play in HIV infection and discuss the current status of therapeutics that attempt to modify biological membranes to inhibit HIV.
Collapse
Affiliation(s)
- Norman J Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Meyer 6-109, 600N. Wolfe Street, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
21
|
Camino-López S, Badimon L, González A, Canals D, Peña E, Llorente-Cortés V. Aggregated low density lipoprotein induces tissue factor by inhibiting sphingomyelinase activity in human vascular smooth muscle cells. J Thromb Haemost 2009; 7:2137-46. [PMID: 19817993 DOI: 10.1111/j.1538-7836.2009.03638.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Our previous results demonstrated that aggregated low density lipoprotein (agLDL) induces tissue factor (TF) expression and activation through Rho A translocation in human vascular smooth muscle cells (VSMC). We also previously demonstrated that membrane sphingomyelin (SM) content is higher in agLDL-exposed VSMC than in control cells. The main enzymes regulating cellular SM content are the family of sphingomyelinases (Smases) that hydrolize SM to phosphorylcholine and ceramide (CER). OBJECTIVES We wished to investigate whether agLDL has the ability to modulate acidic- (A-) and neutral (N-) Smase activity and whether or not this effect is related to the upregulatory effect of agLDL on Rho A translocation and TF activation in human VSMC. METHODS AND RESULTS By measuring generated [(14)C]-phosphorylcholine, we found that agLDL significantly decreased A-Smase and specially N-Smase activity. Pharmacological Smase inhibitors increased Rho A and TF. Specific loss-of-function of A-Smase or N-Smase 1 (N1-Smase) by siRNA treatment (500 nmol L(-1), 12 hours) dramatically increased membrane Rho A protein levels (5- and 3-fold, respectively). Concomitantly, TF protein expression and TF procoagulant activity were also increased. Inhibition of A-Smase or N-Smase activity by agLDL, siRNA-anti A- or N1-Smase or pharmacological treatment significantly increased the SM content of vascular cells. The inhibition of SM synthesis by fumonisin B(1) (FB(1)) prevented the upregulatory effect of agLDL on TF. CONCLUSIONS These results demonstrate that inhibition of both A- and N1-Smase might explain the upregulatory effect of agLDL on TF activation, and suggest that this effect is related, at least in part, to membrane SM enrichment.
Collapse
Affiliation(s)
- S Camino-López
- Cardiovascular Research Center of Barcelona, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona
| | | | | | | | | | | |
Collapse
|
22
|
Milhas D, Clarke CJ, Hannun YA. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett 2009; 584:1887-94. [PMID: 19857494 DOI: 10.1016/j.febslet.2009.10.058] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 12/24/2022]
Abstract
The plasma membrane (PM) is a major resource for production of bioactive lipids and contains a large proportion of the cellular sphingomyelin (SM) content. Consequently, the regulation of SM levels at the PM by enzymes such as sphingomyelinase (SMase) and SM synthase 2 (SMS2) can have profound effects - both on biophysical properties of the membrane, but also on cellular signaling. Over the past 20 years, there has been considerable research into the physiological and cellular functions associated with regulation of SM levels, notably with regards to the production of ceramide. In this review, we will summarize this research with particular focus on the SMases and SMS2. We will outline what biological functions are associated with SM metabolism/production at the PM, and discuss what we believe are major challenges that need to be addressed in future studies.
Collapse
Affiliation(s)
- Delphine Milhas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
23
|
Treede I, Braun A, Jeliaskova P, Giese T, Füllekrug J, Griffiths G, Stremmel W, Ehehalt R. TNF-alpha-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol 2009; 9:53. [PMID: 19594939 PMCID: PMC2714528 DOI: 10.1186/1471-230x-9-53] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 07/13/2009] [Indexed: 12/16/2022] Open
Abstract
Background Phosphatidylcholine (PC) is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT)-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs). Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC induces a prolonged inhibition of TNF-α-induced pro-inflammatory signalling. This inhibition may be caused by a shift of the TNF-α receptors at the surface to lipid rafts. Our results may offer a potential molecular explanation for the positive role of PC seen in clinical studies for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Irina Treede
- Department of Gastroenterology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tardy C, Sabourdy F, Garcia V, Jalanko A, Therville N, Levade T, Andrieu-Abadie N. Palmitoyl protein thioesterase 1 modulates tumor necrosis factor alpha-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1250-8. [PMID: 19345705 DOI: 10.1016/j.bbamcr.2009.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 11/22/2022]
Abstract
Induction of apoptosis by TNF has recently been shown to implicate proteases from lysosomal origin, the cathepsins. Here, we investigated the role in apoptosis of palmitoyl protein thioesterase 1 (PPT1), another lysosomal enzyme that depalmitoylates proteins. We show that transformed fibroblasts derived from patients with the infantile form of neuronal ceroid lipofuscinosis (INCL), a neurodegenerative disease due to deficient activity of PPT1, are partially resistant to TNF-induced cell death (57-75% cell viability vs. 15-30% for control fibroblasts). TNF-initiated proteolytic cleavage of caspase-8, Bid and caspase-3, as well as cytochrome c release was strongly attenuated in INCL fibroblasts as compared to control cells. Noteworthy, activation of p42/p44 mitogen-activated protein kinase and of transcription factor NF-kappaB by TNF, and induction of cell death by staurosporine or chemotherapeutic drugs in INCL cells were unaffected by PPT1 deficiency. Resistance to TNF-induced apoptosis was also observed in embryonic fibroblasts derived from Ppt1/Cln1-deficient mice but not from mice with a targeted deletion of Cln3 or Cln5. Finally, reconstitution of PPT1 activity in mutant cells was accompanied by resensitization to TNF-induced caspase activation and toxicity. These observations emphasize for the first time the role of PPT1 and, likely, protein depalmitoylation in the regulation of TNF-induced apoptosis.
Collapse
|
25
|
Staneva G, Momchilova A, Wolf C, Quinn PJ, Koumanov K. Membrane microdomains: Role of ceramides in the maintenance of their structure and functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:666-75. [DOI: 10.1016/j.bbamem.2008.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/13/2008] [Accepted: 10/29/2008] [Indexed: 12/12/2022]
|
26
|
Dai S, Jiang L, Wang G, Zhou X, Wei X, Cheng H, Wu Z, Wei D. HSP70 interacts with TRAF2 and differentially regulates TNFalpha signalling in human colon cancer cells. J Cell Mol Med 2009; 14:710-25. [PMID: 19243468 PMCID: PMC3823468 DOI: 10.1111/j.1582-4934.2009.00716.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Members of tumour necrosis factor (TNF) family usually trigger both survival and apoptotic signals in various cell types. Heat shock proteins (HSPs) are conserved proteins implicated in protection of cells from stress stimuli. However, the mechanisms of HSPs in TNFα-induced signalling pathway have not been fully elucidated. We report here that HSP70 over-expression in human colon cancer cells can inhibit TNFα-induced NFκB activation but promote TNFα-induced activation of c-Jun N-terminal kinase (JNK) through interaction with TNF receptor (TNFR)-associated factor 2 (TRAF2). We provide evidence that HSP70 over-expression can sequester TRAF2 in detergent-soluble fractions possibly through interacting with TRAF2, leading to reduced recruitment of receptor-interacting protein (RIP1) and IκBα kinase (IKK) signalosome to the TNFR1–TRADD complex and inhibited NFκB activation after TNFα stimuli. In addition, we found that HSP70–TRAF2 interaction can promote TNFα-induced JNK activation. Therefore, our study suggests that HSP70 may differentially regulate TNFα-induced activation of NFκB and JNK through interaction with TRAF2, contributing to the pro-apoptotic roles of HSP70 in TNFα-induced apoptosis of human colon cancer cells.
Collapse
Affiliation(s)
- Shengming Dai
- Department of Lab Science, The Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sonnino S, Prinetti A. Sphingolipids and membrane environments for caveolin. FEBS Lett 2009; 583:597-606. [DOI: 10.1016/j.febslet.2009.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 01/22/2023]
|
28
|
Staneva G, Chachaty C, Wolf C, Koumanov K, Quinn PJ. The role of sphingomyelin in regulating phase coexistence in complex lipid model membranes: competition between ceramide and cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2727-39. [PMID: 18722999 DOI: 10.1016/j.bbamem.2008.07.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/14/2008] [Accepted: 07/28/2008] [Indexed: 11/27/2022]
Abstract
The structure, thermotropic phase behavior, dynamic motion and order parameters of bilayer dispersions of egg phosphatidylcholine, egg sphingomyelin, egg ceramide and cholesterol have been determined. The coexistence of gel, liquid-ordered and liquid-disordered structure has been determined by peak fitting analysis of synchrotron X-ray powder patterns. Order parameters and extent of distribution of 16-doxyl-stearic acid spin probe between ordered and disordered environments has been estimated by ESR spectral simulation methods. The presence of ceramide in proportions up to 20 mol% in phosphatidylcholine is characterized by gel-fluid phase coexistence at temperatures up to 46 degrees C depending on the amount of ceramide. Cholesterol tends to destabilize the ceramide-rich domains formed in phosphatidylcholine while sphingomyelin, by formation of stable complexes with ceramide, tends to stabilize these domains. The stability of sphingomyelin-ceramide complexes is evident from the persistence of highly ordered structure probed by ESR spectroscopy and appearance of a sharp wide-angle X-ray reflection at temperatures higher than the gel-fluid transition of ceramide alone in egg phosphatidylcholine bilayers. The competition between ceramide and cholesterol for interaction with sphingomyelin is discussed in terms of control of lipid-mediated signaling pathways by sphingomyelinase and phospholipase A2.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
29
|
Inhibition of Bufo arenarum oocyte maturation induced by cholesterol depletion by methyl-β-cyclodextrin. Role of low-density caveolae-like membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1398-406. [DOI: 10.1016/j.bbamem.2008.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 03/04/2008] [Accepted: 03/10/2008] [Indexed: 12/11/2022]
|
30
|
Goetz JG, Lajoie P, Wiseman SM, Nabi IR. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev 2008; 27:715-35. [DOI: 10.1007/s10555-008-9160-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Prinetti A, Prioni S, Loberto N, Aureli M, Chigorno V, Sonnino S. Regulation of tumor phenotypes by caveolin-1 and sphingolipid-controlled membrane signaling complexes. Biochim Biophys Acta Gen Subj 2007; 1780:585-96. [PMID: 17889439 DOI: 10.1016/j.bbagen.2007.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/26/2007] [Accepted: 08/02/2007] [Indexed: 12/11/2022]
Abstract
Aberrant (glyco)sphingolipid expression deeply affects several properties of tumor cells that are involved in tumor progression and metastasis formation: cell adhesion (to the extracellular matrix or to the endothelium of blood vessels), motility, recognition and invasion of host tissues. In particular, (glyco)sphingolipids might contribute to the modulation of integrin-dependent interactions of tumor cells (determining their adhesion, motility and invasiveness) with the extracellular matrix as well as with host cells present in the stromal compartment of the tumor. A model based on solid experimental evidence has been proposed: (glyco)sphingolipids at the cell surface interact with plasma membrane receptors (e.g., integrin receptors and growth factor receptors) and adapter molecules (including tetraspanins) forming signaling complexes that are able to influence the activity of signal transduction molecules oriented at the cytosolic surface of the plasma membrane (mainly the Src kinases pathway members). The function of these signaling complexes appears to be strictly dependent on their (glyco)sphingolipid composition, and likely on specific sphingolipid-protein interactions. From this point of view, particularly intriguing is the connection between (glyco)sphingolipids and caveolin-1, a membrane protein that plays multiple roles as a suppressor of tumor growth and metastasis in ovarian, breast and colon human carcinomas.
Collapse
Affiliation(s)
- Alessandro Prinetti
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090 Segrate, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Wu P, Qi B, Zhu H, Zheng Y, Li F, Chen J. Suppression of staurosporine-mediated apoptosis in Hs578T breast cells through inhibition of neutral-sphingomyelinase by caveolin-1. Cancer Lett 2007; 256:64-72. [PMID: 17618736 DOI: 10.1016/j.canlet.2007.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/27/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Caveolin-1, a 21-24kDa integral membrane protein, is a principal structural component of caveolae in vivo. To investigate the roles of caveolin-1, we established stable transfectants in Hs578T breast adenocarcinoma cells that had up- and down-regulated caveolin-1 expression. In the paper, we demonstrated that caveolin-1 overexpression in Hs578T cells significantly reduced staurosporine-induced apoptosis and the levels of caveolin-1 expression positively correlated with the number of colonies and colony size in soft agar. Our findings indicate for the first time in Hs578T cells that caveolin-1 might play a pivotal role in regulating apoptosis as a suppressor rather than a facilitator through inhibition of neutral-sphingomyelinase, decrease of ceramide, furthermore, activation of Akt signaling pathway.
Collapse
Affiliation(s)
- Ping Wu
- Center for Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
33
|
Sphingolipid Metabolism in Systemic Inflammation. Intensive Care Med 2007. [PMCID: PMC7121826 DOI: 10.1007/978-0-387-49518-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inflammatory response - induced and regulated by a variety of mediators such as cytokines, prostaglandins, and reactive oxygen species (ROS) - is the localized host’s response of the tissue to injury, irritation, or infection. In a very similar and stereotyped sequence, the mediators are thought to induce an acute phase response orchestrated by an array of substances produced locally or near the source or origin of the inflammatory response. Despite its basically protective function, the response can become inappropriate in intensity or duration damaging host tissues or interfering with normal metabolism. Thus, inflammation is the cause and/or consequence of a diversity of diseases and plays a major role in the development of remote organ failure. Better knowledge of the underlying mechanisms of these processes is, therefore, a fundamental pre-requisite fostering the molecular understanding of novel therapeutic targets or diagnostic variables.
Collapse
|
34
|
Sphingolipid Metabolism in Systemic Inflammation. YEARBOOK OF INTENSIVE CARE AND EMERGENCY MEDICINE 2007. [PMCID: PMC7123806 DOI: 10.1007/978-3-540-49433-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inflammatory response — induced and regulated by a variety of mediators such as cytokines, prostaglandins, and reactive oxygen species (ROS) — is the localized host’s response of the tissue to injury, irritation, or infection. In a very similar and stereotyped sequence, the mediators are thought to induce an acute phase response orchestrated by an array of substances produced locally or near the source or origin of the inflammatory response. Despite its basically protective function, the response can become inappropriate in intensity or duration damaging host tissues or interfering with normal metabolism. Thus, inflammation is the cause and/or consequence of a diversity of diseases and plays a major role in the development of remote organ failure. Better knowledge of the underlying mechanisms of these processes is, therefore, a fundamental pre-requisite fostering the molecular understanding of novel therapeutic targets or diagnostic variables.
Collapse
|
35
|
Clarke CJ, Hannun YA. Neutral sphingomyelinases and nSMase2: Bridging the gaps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1893-901. [PMID: 16938269 DOI: 10.1016/j.bbamem.2006.06.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/30/2022]
Abstract
There is strong evidence indicating a role for ceramide as a second messenger in processes such as apoptosis, cell growth and differentiation, and cellular responses to stress. Ceramide formation from the hydrolysis of sphingomyelin is considered to be a major pathway of stress-induced ceramide production with magnesium-dependent neutral sphingomyelinase (N-SMase) identified as a prime candidate in this pathway. The recent cloning of a mammalian N-SMase-nSMase2- and generation of nSMase2 knockout/mutant mice have now provided vital tools with which to further study the regulation and roles of this enzyme in both a physiological and pathological context. In the present review, we summarize current knowledge on N-SMase relating this to what is known about nSMase2. We also discuss the future areas of nSMase2 research important for molecular understanding of this enzyme and its physiological roles.
Collapse
Affiliation(s)
- Christopher J Clarke
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
36
|
Hunter I, Nixon GF. Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J Biol Chem 2006; 281:34705-15. [PMID: 16982613 PMCID: PMC2653078 DOI: 10.1074/jbc.m605738200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-alpha-induced activation of RhoA, mediated by TNF receptor 1 (TNFR1), is a prerequisite step in a pathway that leads to increased 20-kDa light chain of myosin (MLC20) phosphorylation and airway smooth muscle contraction. In this study, we have investigated the proximal events in TNF-alpha-induced RhoA activation. TNFR1 is localized to both lipid raft and nonraft regions of the plasma membrane in primary human airway smooth muscle cells. TNF-alpha engagement of TNFR1 recruited the adaptor proteins TRADD, TRAF-2, and RIP into lipid rafts and activated RhoA, NF-kappaB, and MAPK pathways. Depletion of cholesterol from rafts with methyl-beta-cyclodextrin caused a redistribution of TNFR1 to nonraft plasma membrane and prevented ligand-induced RhoA activation. By contrast, TNF-alpha-induced activation of NF-kappaB and MAPKs was unaffected by methyl-beta-cyclodextrin indicating that, in airway smooth muscle cells, activation of these pathways occurred independently of lipid rafts. Targeted knockdown of caveolin-1 completely abrogated TNF-alpha-induced RhoA activation, identifying this raft-resident protein as a positive regulator of the activation process. The signaling adaptors TRADD and RIP were also found to be necessary for ligand-induced RhoA activation. Taken together, our results suggest that in airway smooth muscle cells, spatial compartmentalization of TNFR1 provides a mechanism for generating distinct signaling outcomes in response to ligand engagement and define a mechanistic role for lipid rafts and caveolin-1 in TNF-alpha-induced activation of RhoA.
Collapse
Affiliation(s)
- Irene Hunter
- School of Medical Sciences, University of Aberdeen, IMS Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | | |
Collapse
|
37
|
Abstract
Considerable progress has been made recently in our understanding of the role of ceramide in the induction of apoptotic cell death. Ceramide is produced by cancer cells in response to exposure to radiation and most chemotherapeutics and is an intracellular second messenger that activates enzymes, leading to apoptosis. Because of its central role in apoptosis, pharmacologic manipulation of intracellular ceramide levels should result in attenuation or enhancement of drug resistance. This may be achieved through direct application of sphingolipids or by the inhibition/activation of the enzymes that either produce or use ceramide. In addition, attention should be given to the subcellular location of ceramide generation, because this has been shown to affect the biological activity of sphingolipids. This review summarizes the sphingolipid biosynthetic pathway, as it relates to the identification of important targets for drug discovery, and the development of novel agents capable of enhancing chemotherapy.
Collapse
Affiliation(s)
- David E Modrak
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, 520 Belleville Avenue, Belleville, NJ 07109, USA.
| | | | | |
Collapse
|
38
|
Martin S, Phillips DC, Szekely-Szucs K, Elghazi L, Desmots F, Houghton JA. Cyclooxygenase-2 inhibition sensitizes human colon carcinoma cells to TRAIL-induced apoptosis through clustering of DR5 and concentrating death-inducing signaling complex components into ceramide-enriched caveolae. Cancer Res 2006; 65:11447-58. [PMID: 16357153 DOI: 10.1158/0008-5472.can-05-1494] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclooxygenase-2 (COX-2) is up-regulated in human colon carcinomas, and its inhibition is associated with a reduction in tumorigenesis and a promotion of apoptosis. However, the mechanisms responsible for the antitumor effects of COX-2 inhibitors and how COX-2 modulates apoptotic signaling have not been clearly defined. We have shown that COX-2 inhibition sensitizes human colon carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by inducing clustering of the TRAIL receptor DR5 at the cell surface and the redistribution of the death-inducing signaling complex components (DR5, FADD, and procaspase-8) into cholesterol-rich and ceramide-rich domains known as caveolae. This process requires the accumulation of arachidonic acid and sequential activation of acid sphingomyelinase for the generation of ceramide within the plasma membrane outer leaflet. The current study highlights a novel mechanism to circumvent colorectal carcinoma cell resistance to TRAIL-mediated apoptosis using COX-2 inhibitors to manipulate the lipid metabolism within the plasma membrane.
Collapse
Affiliation(s)
- Sophie Martin
- Division of Molecular Therapeutics, Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
39
|
Pozo D, Valés-Gómez M, Mavaddat N, Williamson SC, Chisholm SE, Reyburn H. CD161 (human NKR-P1A) signaling in NK cells involves the activation of acid sphingomyelinase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:2397-406. [PMID: 16455998 DOI: 10.4049/jimmunol.176.4.2397] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK and NKT cells play a major role in both innate immunity and in influencing the development of adaptive immune responses. CD161 (human NKR-P1A), a protein encoded in the NK gene complex, is a major phenotypic marker of both these cell types and is thought to be involved in the regulation of NK and NKT cell function. However, the mechanisms of action and signaling pathways of CD161 are poorly understood. To identify molecules able to interact with the cytoplasmic tail of human CD161 (NKR-P1A), we have conducted a yeast two-hybrid screen and identified acid sphingomyelinase as a novel intracellular signaling pathway linked to CD161. mAb-mediated cross-linking of CD161, in both transfectants and primary human NK cells, triggers the activation of acid, but not neutral sphingomyelinase. The sphingomyelinases represent the catabolic pathway for N-acyl-sphingosine (ceramide) generation, an emerging second messenger with key roles in the induction of apoptosis, proliferation, and differentiation. These data therefore define a novel signal transduction pathway for the CD161 (NKR-P1A) receptor and provide fresh insights into NK and NKT cell biology.
Collapse
Affiliation(s)
- David Pozo
- Immunology Division, Department of Pathology, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
40
|
Garcia-Marcos M, Pérez-Andrés E, Tandel S, Fontanils U, Kumps A, Kabré E, Gómez-Muñoz A, Marino A, Dehaye JP, Pochet S. Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland. J Lipid Res 2006; 47:705-14. [PMID: 16415476 DOI: 10.1194/jlr.m500408-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The plasma membrane of cells from rat submandibular glands was isolated and extensively sonicated. The homogenate was centrifuged at high speed in a discontinuous sucrose gradient. Light fractions contained vesicles analogous to rafts: they were rich in cholesterol, they contained GM1 and caveolin-1, and P2X7 receptors were detected in these fractions. The location of the P2X7 receptors in rafts was abolished when cellular cholesterol was removed by methyl-beta-cyclodextrin (MCD). ATP activated neutral sphingomyelinase (N-SMase), which provoked a decrease of the cellular content of sphingomyelin and an increase of ceramide levels in these cells and in the rafts. Treatment with MCD and filipin (but not with alpha-cyclodextrin) abolished the increase of the intracellular concentration of calcium ([Ca2+]i) in response to epinephrine but not to ATP. MCD and filipin also inhibited the activation by ATP of phospholipase A2 (PLA2). Inhibition of N-SMase with glutathione or GW4869 prevented the activation of PLA2 by P2X7 agonists without affecting [Ca2+]i levels. We conclude that P2X7 receptors are present in both raft and nonraft compartments of plasma membranes; the receptors forming a nonselective cation channel are located in the nonraft fraction. P2X7 receptors in the rafts are coupled to the activation of N-SMase, which increases the content of ceramides in rafts. This may contribute to the activation of PLA2 in response to P2X7 receptor occupancy.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad del Pais Vasco, 48080 Bilbao, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Diaz O, Mébarek-Azzam S, Benzaria A, Dubois M, Lagarde M, Némoz G, Prigent AF. Disruption of Lipid Rafts Stimulates Phospholipase D Activity in Human Lymphocytes: Implication in the Regulation of Immune Function. THE JOURNAL OF IMMUNOLOGY 2005; 175:8077-86. [PMID: 16339545 DOI: 10.4049/jimmunol.175.12.8077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence suggests that phospholipase D (PLD) can be regulated through its association/dissociation to lipid rafts. We show here that modifying lipid rafts either by cholesterol depletion using methyl-beta-cyclodextrin and filipin or by conversion of sphingomyelin to ceramide with exogenous bacterial sphingomyelinase (bSMase) markedly activated the PLD of human PBMC. bSMase was the most potent PLD activator, giving maximal 6- to 7-fold increase in PLD activity. Triton X-100-treated lysates prepared from control PBMC and from bSMase-treated cells were fractionated by centrifugation on sucrose density gradient. We observed that bSMase treatment of the cells induced a larger ceramide increase in raft than in nonraft membranes and displaced both the Src kinase Lck and PLD1 out of the raft fractions. In addition, the three raft-modifying agents markedly inhibited the lymphoproliferative response to mitogenic lectin. To examine further the potential role of PLD activation in the control of lymphocyte responses, we transiently overexpressed either of the PLD1 and PLD2 isoforms in Jurkat cells and analyzed the phorbol ester plus ionomycin-induced expression of IL-2 mRNA, which is one of the early responses of lymphocyte to activation. We observed a 43% decrease of IL-2 mRNA level in Jurkat cells overexpressing PLD1 as compared with mock- or PLD2-transfected cells, which indicates that elevated PLD1, but not PLD2, activity impairs lymphocyte activation. Altogether, the present results support the hypothesis that PLD1 is activated by exclusion from lipid rafts and that this activation conveys antiproliferative signals in lymphoid cells.
Collapse
Affiliation(s)
- Olivier Diaz
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 585/Institut National des Sciences Appliquées-LYON, Physiopathologie des Lipides et Membranes, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Soloviev A, Schwarz EM, Darowish M, O'Keefe RJ. Sphingomyelinase mediates macrophage activation by titanium particles independent of phagocytosis: a role for free radicals, NFkappaB, and TNFalpha. J Orthop Res 2005; 23:1258-65. [PMID: 15949909 DOI: 10.1016/j.orthres.2005.03.019.1100230604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/17/2005] [Accepted: 03/29/2005] [Indexed: 02/04/2023]
Abstract
The manner in which wear debris initiates intracellular signaling and macrophage activation remains poorly understood. While particle phagocytosis has been implicated in this process, recent studies have shown that phagocytosis is not required for macrophage activation. We examined the hypothesis that titanium particles stimulate macrophages through membrane associated signaling events involving free radicals, sphingomyelinase, NFkappaB, and TNFalpha. Titanium particles stimulated peroxidation of linoleic acid, producing malondialdehyde, while neither lipopolysaccharide nor PBS pre-incubated with particles did, suggesting that the increased peroxidation is related to the presence of the particles themselves. Furthermore, particles stimulated sphingomyelin metabolism in a neutral sphingomyelinase (NSmase) containing cell free system; this effect was inhibited by glutathione, indicating that NSmase activation was due to titanium induced free radicals. Titanium particles also stimulated NSmase activity in cultures of ANA-1 murine macrophages. Addition of purified NSmase to ANA-1 cell cultures stimulated NFkappaB binding, increased transcriptional activity in cells transfected with NFkappaB responsive promoters, and induced TNFalpha expression. These effects were also inhibited by addition of glutathione. Similarly, glutathione inhibited the ability of titanium particles to induce NFkappaB signaling and TNFalpha expression in ANA-1 cells. The findings demonstrate that titanium particles generate free radicals and induce plasma membrane peroxidation and NSmase activation. NSmase, in turn, hydrolyzes sphingomyelin, with activation of the NFkappaB signaling pathway and induction of responsive genes, including TNFalpha. This study demonstrates a mechanism for phagocytosis-independent macrophage activation and defines the sphingomyelin cycle as a potential therapeutic target for the prevention of wear debris induced osteolysis.
Collapse
Affiliation(s)
- Alexander Soloviev
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
43
|
Goswami R, Singh D, Phillips G, Kilkus J, Dawson G. Ceramide regulation of the tumor suppressor phosphatase PTEN in rafts isolated from neurotumor cell lines. J Neurosci Res 2005; 81:541-50. [PMID: 15968641 DOI: 10.1002/jnr.20550] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The neutral sphingolipid ceramide has been implicated in the apoptotic death of cells by a number of different mechanisms, including activation of protein kinase B (Akt) phosphatase. Here we present evidence that ceramide recruits the tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10) into membrane microdomains (rafts), where it could act to reduce the levels of polyphosphoinositides necessary for the activation of Akt. A PTEN construct with a red-fluorescent protein (RFP) tag was overexpressed in both a human cell line derived from oligodendroglioma (HOG) and a rat pheochromocytoma cell line (PC12) by means of an inducible promoter system (Tet-Off). Induction of PTEN by removal of doxycycline enhanced both capsase-3 and cell death with staurosporine, wortmannin, or C2-ceramide, whereas antisense PTEN had the reverse effect. Overexpression of PTEN also increased acid sphingomyelinase (ASMase) activity. PTEN normally has a generalized (cytosolic/membrane) distribution, but treatment with C2-ceramide translocated a fraction of the PTEN to the plasma membrane, showing a plasma membrane distribution similar to that observed for a prenylated green-fluorescent (GFP) construct. PTEN was then shown to translocate to the detergent-resistant membrane microdomain fraction (raft) of the plasma membrane. The colocalization of sphingomyelinases, ceramide, polyphosphoinositides, and PTEN in the raft fraction further suggests that the association of these lipids is critical for regulating cell death.
Collapse
Affiliation(s)
- R Goswami
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
44
|
Lotocki G, Alonso OF, Dietrich WD, Keane RW. Tumor necrosis factor receptor 1 and its signaling intermediates are recruited to lipid rafts in the traumatized brain. J Neurosci 2005; 24:11010-6. [PMID: 15590916 PMCID: PMC6730274 DOI: 10.1523/jneurosci.3823-04.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The tumor necrosis factor (TNF) ligand-receptor system plays an essential role in apoptosis that contributes to secondary damage after traumatic brain injury (TBI). TNF also stimulates inflammation by activation of gene transcription through the IkappaB kinase (IKK)/NF-kappaB and JNK (c-Jun N-terminal protein kinase)/AP-1 signaling cascades. The mechanism by which TNF signals between cell death and survival and the role of receptor localization in the activation of downstream signaling events are not fully understood. Here, TNF receptor 1 (TNFR1) signaling complexes in lipid rafts were investigated in the cerebral cortex of adult male Sprague Dawley rats subjected to moderate (1.8-2.2 atmospheres) fluid-percussion TBI and naive controls. In the normal rat cortex, a portion of TNFR1 was present in lipid raft microdomains, where it associated with the adaptor proteins TRADD (TNF receptor-associated death domain), TNF receptor-associated factor-2 (TRAF-2), the Ser/Thr kinase RIP (receptor-interacting protein), TRAF1, and cIAP-1 (cellular inhibitor of apoptosis protein-1), forming a survival signaling complex. Moderate TBI resulted in rapid recruitment of TNFR1, but not TNFR2 or Fas, to lipid rafts and induced alterations in the composition of signaling intermediates. TNFR1 and TRAF1 were polyubiquitinated in lipid rafts after TBI. Subsequently, the signaling complex contained activated caspase-8, thus initiating apoptosis. In addition, TBI caused a transient activation of NF-kappaB, but receptor signaling interacting proteins IKKalpha and IKKbeta were not detected in raft-containing fractions. Thus, redistribution of TNFR1 in lipid rafts and nonraft regions of the plasma membrane may regulate the diversity of signaling responses initiated by these receptors in the normal brain and after TBI.
Collapse
Affiliation(s)
- George Lotocki
- Departmentof Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
45
|
Cerny J, Feng Y, Yu A, Miyake K, Borgonovo B, Klumperman J, Meldolesi J, McNeil PL, Kirchhausen T. The small chemical vacuolin-1 inhibits Ca(2+)-dependent lysosomal exocytosis but not cell resealing. EMBO Rep 2005; 5:883-8. [PMID: 15332114 PMCID: PMC1299144 DOI: 10.1038/sj.embor.7400243] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/09/2004] [Accepted: 07/29/2004] [Indexed: 11/08/2022] Open
Abstract
Resealing after wounding, the process of repair following plasma membrane damage, requires exocytosis. Vacuolins are molecules that induce rapid formation of large, swollen structures derived from endosomes and lysosomes by homotypic fusion combined with uncontrolled fusion of the inner and limiting membranes of these organelles. Vacuolin-1, the most potent compound, blocks the Ca(2+)-dependent exocytosis of lysosomes induced by ionomycin or plasma membrane wounding, without affecting the process of resealing. In contrast, other cell structures and membrane trafficking functions including exocytosis of enlargeosomes are unaffected. Because cells heal normally in the presence of vacuolin-1, we suggest that lysosomes are dispensable for resealing.
Collapse
Affiliation(s)
- Jan Cerny
- Department of Cell Biology and The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Physiology of Animals and Developmental Biology, Charles University, Prague 2, Czech Republic
| | - Yan Feng
- Institute of Chemistry and Cell Biology, ICCB, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anan Yu
- Department of Cell Biology and The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katsuya Miyake
- Department of Cellular Biology and Anatomy and Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Barbara Borgonovo
- Department of Neuroscience, DIBIT, Vitasalute San Raffaele University and San Raffaele Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Judith Klumperman
- Department of Cell Biology, University Medical Centre and Institute for Biomembranes, Heidelberglaan 100, 3584 Utrecht, The Netherlands
| | - Jacopo Meldolesi
- Department of Neuroscience, DIBIT, Vitasalute San Raffaele University and San Raffaele Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Paul L McNeil
- Department of Cellular Biology and Anatomy and Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Tomas Kirchhausen
- Department of Cell Biology and The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts 02115, USA
- Institute of Chemistry and Cell Biology, ICCB, Harvard Medical School, Boston, Massachusetts 02115, USA
- Tel: +1 617 278 3140; Fax: +1 617 278 3131; E-mail:
| |
Collapse
|
46
|
Modrak DE, Cardillo TM, Newsome GA, Goldenberg DM, Gold DV. Synergistic interaction between sphingomyelin and gemcitabine potentiates ceramide-mediated apoptosis in pancreatic cancer. Cancer Res 2005; 64:8405-10. [PMID: 15548711 DOI: 10.1158/0008-5472.can-04-2988] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have examined the mechanism by which sphingomyelin (SM) enhances chemotherapy in human pancreatic cancer cells, focusing on the correlation between ceramide metabolism and apoptosis. Dose response curves for gemcitabine in the absence or presence of 0.2 mg/mL SM provided IC(50) values of 78.3 +/- 13.7 and 13.0 +/- 3.0 nmol/L, respectively. The cytotoxic effect of the combined treatment was synergistic (combination index = 0.36). Using annexin-V staining, the percentage of apoptotic cells was 3.6 +/- 2.6% for the untreated cells, 6.5 +/- 3.8% for the 0.2 mg/mL SM-treated cells, and 19.9 +/- 12.9% for the 100 nmol/L gemcitabine-treated cells, but increased significantly to 42.1 +/- 12.7% with the combined treatment (P < 0.001, compared with gemcitabine-treated group). The percentage of cells losing mitochondrial membrane potential followed a similar trend. The ceramide content of untreated and gemcitabine-treated cells was not significantly different (0.46 +/- 0.29 and 0.59 +/- 0.34 pmol ceramide/nmole PO(4)). However, when 0.2 mg/mL SM was added, ceramide levels were 1.09 +/- 0.42 and 1.58 +/- 0.55 pmol ceramide/nmol PO(4), for the SM alone and SM with gemcitabine-treated cells, respectively (P = 0.038). Acidic SMase was activated by exposure to gemcitabine but not SM, whereas the activities of neutral SMase and glycosylceramide synthase did not change with either gemcitabine or SM. The data are consistent with gemcitabine-induced activation of acidic SMase and indicate that the addition of SM can yield increased production of ceramide, mitochondrial depolarization, apoptosis, and cell death. Because SM by itself is relatively nontoxic, addition of this lipid to agents that induce apoptosis may prove useful to enhance apoptosis and increase cytotoxicity in cancer cells.
Collapse
Affiliation(s)
- David E Modrak
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Belleville, New Jersey 07109, USA.
| | | | | | | | | |
Collapse
|
47
|
Goswami R, Ahmed M, Kilkus J, Han T, Dawson SA, Dawson G. Differential regulation of ceramide in lipid-rich microdomains (rafts): Antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2. J Neurosci Res 2005; 81:208-17. [PMID: 15929065 DOI: 10.1002/jnr.20549] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell differentiation and myelination involve a fine balance between stasis and programmed cell death, yet the genes that regulate this have not been clearly defined. We therefore studied two key gene products involved in oligodendrocyte plasma membrane lipid metabolism and their antagonistic role in ceramide-mediated cell death signaling. Overexpression of palmitoyl:protein thioesterase (PPT1; verified by Western blot of the V5-tagged protein and increased enzyme activity) resulted in decreased ceramide in the detergent-resistant microdomain (DRM, or raft) relative to cholesterol and sphingomyelin (SM). This PPT1 overexpression also resulted in protection against cell death induced by either staurosporine or C(2)-ceramide. In contrast, overexpression of neutral sphingomyelinase 2 (NSMase2; verified by Western blot of the FLAG-tagged protein and increased enzyme activity) resulted in increased membrane NSMase and increased ceramide in rafts relative to cholesterol and SM. The difference in SM and ceramide turnover was quantitated by [(3)H]palmitate pulse-chase labeling. Furthermore, when NBD-SM was added to cells, it was hydrolyzed by NSMase-transfected cells at more than twofold the rate in untransfected cells. NSMase2 overexpression enhanced cell death induced by staurosporine or C(2)-ceramide, in contrast to the protective effect of PPT1 overexpression. The presence of a fraction of both PPT1 and NSMase2 in rafts together with their substrates (palmitoylated proteins and SM, respectively) suggests a mechanism for dynamic palmitoylation/depalmitoylation of certain proteins in controlling cell death via NSMase activation.
Collapse
Affiliation(s)
- R Goswami
- Departments of Pediatrics, Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
48
|
Wu M, Harvey KA, Ruzmetov N, Welch ZR, Sech L, Jackson K, Stillwell W, Zaloga GP, Siddiqui RA. Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer 2005; 117:340-8. [PMID: 15900589 DOI: 10.1002/ijc.21238] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The effect of fish oils and their active omega-3 fatty acid constituents, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), were investigated on breast cancer growth. In in vivo experiments, mice were fed diets that were rich in either omega-3 (fish oil) or omega-6 (corn oil) fatty acids. Three weeks after implantation of MDA-MB-231 breast cancer cells, the tumor volume and weight were significantly lower (p < 0.05) for mice fed the omega-3 diets compared to those fed the omega-6 diets. Dietary fish oil also caused a 40% (p < 0.05) increase in neutral sphingomyelinase (N-SMYase) activity in the tumors. The tumor tissues from fish oil-fed animals expressed elevated p21 (waf1/cip1) mRNA, whereas tumor tissues from corn oil-fed animals exhibited undetectable levels of p21 expression. In in vitro experiments, at concentrations as low as 25 muM, DHA and EPA inhibited the growth of cultured MDA-MB-231 cells in a dose-dependent manner by 20-25% (p < 0.05). N-SMYase activity was also increased by 30-40% (p < 0.05) in the DHA- or EPA-treated cells in which an increase in ceramide formation was observed. DHA and EPA were both observed to enhance membrane bleb formation and also to induce the expression of p21. Omega-3 fatty acids-induced bleb formation and p21 expression were inhibited by the N-SMYase inhibitor GW4869, which also inhibited apoptosis by approximately 40% (p < 0.05). The results suggest that inhibition of breast cancer growth in nude mice by dietary fish oil and inhibition of breast cancer cell growth in culture by treatment with DHA and EPA is mediated by activation of N-SMYase.
Collapse
Affiliation(s)
- Min Wu
- Cellular Biochemistry Laboratory, Methodist Research Institute, Clarian Health Partners, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 2004; 82:27-44. [PMID: 15052326 DOI: 10.1139/o03-091] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ceramide, an emerging bioactive lipid and second messenger, is mainly generated by hydrolysis of sphingomyelin through the action of sphingomyelinases. At least two sphingomyelinases, neutral and acid sphingomyelinases, are activated in response to many extracellular stimuli. Despite extensive studies, the precise cellular function of each of these sphingomyelinases in sphingomyelin turnover and in the regulation of ceramide-mediated responses is not well understood. Therefore, it is essential to elucidate the factors and mechanisms that control the activation of acid and neutral sphingomyelinases to understand their the roles in cell regulation. This review will focus on the molecular mechanisms that regulate these enzymes in vivo and in vitro, especially the roles of oxidants (glutathione, peroxide, nitric oxide), proteins (saposin, caveolin 1, caspases), and lipids (diacylglycerol, arachidonic acid, and ceramide).
Collapse
Affiliation(s)
- Norma Marchesini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
50
|
Gajate C, Del Canto-Jañez E, Acuña AU, Amat-Guerri F, Geijo E, Santos-Beneit AM, Veldman RJ, Mollinedo F. Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. ACTA ACUST UNITED AC 2004; 200:353-65. [PMID: 15289504 PMCID: PMC2211978 DOI: 10.1084/jem.20040213] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have discovered a new and specific cell-killing mechanism mediated by the selective uptake of the antitumor drug 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3, Edelfosine) into lipid rafts of tumor cells, followed by its coaggregation with Fas death receptor (also known as APO-1 or CD95) and recruitment of apoptotic molecules into Fas-enriched rafts. Drug sensitivity was dependent on drug uptake and Fas expression, regardless of the presence of other major death receptors, such as tumor necrosis factor (TNF) receptor 1 or TNF-related apoptosis-inducing ligand R2/DR5 in the target cell. Drug microinjection experiments in Fas-deficient and Fas-transfected cells unable to incorporate exogenous ET-18-OCH3 demonstrated that Fas was intracellularly activated. Partial deletion of the Fas intracellular domain prevented apoptosis. Unlike normal lymphocytes, leukemic T cells incorporated ET-18-OCH3 into rafts coaggregating with Fas and underwent apoptosis. Fas-associated death domain protein, procaspase-8, procaspase-10, c-Jun amino-terminal kinase, and Bid were recruited into rafts, linking Fas and mitochondrial signaling routes. Clustering of rafts was necessary but not sufficient for ET-18-OCH3–mediated cell death, with Fas being required as the apoptosis trigger. ET-18-OCH3–mediated apoptosis did not require sphingomyelinase activation. Normal cells, including human and rat hepatocytes, did not incorporate ET-18-OCH3 and were spared. This mechanism represents the first selective activation of Fas in tumor cells. Our data set a framework for the development of more targeted therapies leading to intracellular Fas activation and recruitment of downstream signaling molecules into Fas-enriched rafts.
Collapse
Affiliation(s)
- Consuelo Gajate
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|