1
|
Jiang S, Zu C, Wang B, Zhong Y. Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo. Vaccines (Basel) 2025; 13:94. [PMID: 39852873 PMCID: PMC11768954 DOI: 10.3390/vaccines13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Inefficient cellular uptake is a significant limitation to the efficacy of DNA vaccines. In this study, we introduce S-Cr9T, a stearyl-modified cell-penetrating peptide (CPP) designed to enhance DNA vaccine delivery by forming stable complexes with plasmid DNA, thereby protecting it from degradation and promoting efficient intracellular uptake. METHODS AND RESULTS In vitro studies showed that S-Cr9T significantly improved plasmid stability and transfection efficiency, with optimal performance at an N/P ratio of 0.25. High-content imaging revealed that the S-Cr9T-plasmid complex stably adhered to the cell membrane, leading to enhanced plasmid uptake and transfection. In vivo, S-Cr9T significantly increased antigen expression and triggered a robust immune response, including a threefold increase in IFN-γ secretion and several hundred-fold increases in antibody levels compared to control groups. CONCLUSIONS These findings underscore the potential of S-Cr9T to enhance DNA vaccine efficacy, offering a promising platform for advanced gene therapy and vaccination strategies.
Collapse
Affiliation(s)
- Sheng Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
| | - Cheng Zu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiwei Zhong
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Wang Y, Cao Y, Ji X, Li T, Xue L, Li C, Jia R, Ding H. The Novel Peptide AEDPPE Alleviates Trophoblast Cell Dysfunction Associated With Preeclampsia by Regulating the NF-κB Signaling Pathway. Front Cardiovasc Med 2022; 8:738378. [PMID: 34977169 PMCID: PMC8719592 DOI: 10.3389/fcvm.2021.738378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Preeclampsia (PE) is a serious risk to the health of pregnant women and fetuses during pregnancy, and there is no effective treatment for this condition. Although many reports have confirmed the therapeutic effects of peptides in diseases, the role of peptides in PE remains poorly understood. Methods: A differentially expressed peptide in PE (AEDPPE) is derived from heat-shock protein beta-1 (HSPB1), amino acids 100 to 109 (DVNHFAPDEL), which we identified in a previous study. We synthesized AEDPPE and investigated its effect on HTR-8/SVneo cell function using a Cell Counting Kit-8, flow cytometric assay, and Transwell and wound-healing assays. Quantitative reverse transcription-PCR and ELISA were used to determine cytokine expression. Pull-down assay, mass spectrometry, Western blot analysis, and immunofluorescence were used to explore the potential targets and signaling pathways regulated by AEDPPE. Finally, we assessed the effect of AEDPPE in the lipopolysaccharide (LPS)-induced PE-like rat model. Results: AEDPPE significantly promoted the migration and invasion of HTR-8/SVneo cells, and it decreased the expression of interleukins 1 beta (IL-1β), interleukin 6 (IL-6), and interleukin 8 (IL-8). These functions performed by AEDPPE remained evident after injury to HTR-8/SVneo cells with tumor necrosis factor-alpha (TNF-α), and AEDPPE reversed the elevated sFlt-1/PlGF ratio induced by TNF-α. AEDPPE may exert these biological effects by binding to heat-shock protein 90β (HSP 90β) and, thus, affect the NF-κB signaling pathway. In an LPS-induced PE-like rat model, AEDPPE significantly improved PE symptoms and fetal rat outcomes. Conclusion: Our study showed that AEDPPE enhanced trophoblast migration and invasion and reduced inflammatory cytokine expression, and we hypothesized that these actions involved the NF-κB signaling pathway. The use of AEDPPE may thus develop into a novel modality in the treatment of PE.
Collapse
Affiliation(s)
- Yixiao Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Cao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaohong Ji
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ting Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lu Xue
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chanjuan Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ruizhe Jia
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hongjuan Ding
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
3
|
Hayashi MAF, Campeiro JD, Porta LC, Szychowski B, Alves WA, Oliveira EB, Kerkis I, Daniel MC, Karpel RL. Crotamine Cell-Penetrating Nanocarriers: Cancer-Targeting and Potential Biotechnological and/or Medical Applications. Methods Mol Biol 2020; 2118:61-89. [PMID: 32152971 DOI: 10.1007/978-1-0716-0319-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Crotamine is a basic, 42-residue polypeptide from snake venom that has been shown to possess cell-penetrating properties. Here we describe the preparation, purification, biochemical and biophysical analysis of venom-derived, recombinant, chemically synthesized, and fluorescent-labeled crotamine. We also describe the formation and characterization of crotamine-DNA and crotamine-RNA nanoparticles; and the delivery of these nanoparticles into cells and animals. Crotamine forms nanoparticles with a variety of DNA and RNA molecules, and crotamine-plasmid DNA nanoparticles are selectively delivered into actively proliferating cells in culture or in living organisms such as mice, Plasmodium, and worms. As such, these nanoparticles could form the basis for a nucleic acid drug-delivery system. We also describe here the design and characterization of crotamine-functionalized gold nanoparticles, and the delivery of these nanoparticles into cells. We also evaluated the viability of using the combination of crotamine with silica nanoparticles in animal models, aiming to provide slow delivery, and to decrease the crotamine doses needed for the biological effects. In addition, the efficacy of administering crotamine orally was also demonstrated.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| | - Joana Darc Campeiro
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucas Carvalho Porta
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Brian Szychowski
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Wendel Andrade Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Irina Kerkis
- Laboratory of Genetics, Butantan Institute, São Paulo, Brazil
| | - Marie-Christine Daniel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Richard L Karpel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| |
Collapse
|
4
|
Ur Rahman A, Khan S, Khan M. Transport of trans-activator of transcription (TAT) peptide in tumour tissue model: evaluation of factors affecting the transport of TAT evidenced by flow cytometry. ACTA ACUST UNITED AC 2019; 72:519-530. [PMID: 31868235 DOI: 10.1111/jphp.13221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/29/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Trans-activator of transcription (TAT), a cell penetrating peptide, has been explored to overcome resistance to penetration and transport inside the cell, therefore, suggested to be used as drug delivery vector into drug-resistant tumours. The generosity of this study was to evaluate modifiable factors (concentration, temperature, incubation time and spheroid age) on the penetration of TAT. METHODS Multicellular tumour spheroids (MCTS) used as tumour tissue models to mimic some characteristics with in-vivo tumors. Cell monolayer and 3-, 5-, 7-day-old MCTS were incubated with TAT and effects of modifiable factors were determined quantitatively through flow cytometry, based on TAT-positive cell count (%) and mean fluorescence intensity. KEY FINDINGS Enhancing TAT concentration (1, 5 and 25 µm), transport significantly increased (ANOVA, P < 0.0001) in cell monolayer and spheroids. However, rising temperature from 7 to 37°C (t, P > 0.05) and increasing incubation time; 20 min, 1 h and 3 h; (ANOVA, P > 0.05) were statistically non-significant. Moreover, TAT penetration declines as spheroids get older (ANOVA, P < 0.01). CONCLUSION While exploiting MCTS as tumour tissue model, older spheroids could be preferred to target penetration-resistant cells and mimic the in-vivo microenvironment.
Collapse
Affiliation(s)
- Aziz Ur Rahman
- Manchester Pharmacy School, The University of Manchester, Manchester, UK.,Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Munasib Khan
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
5
|
Gómez Rave LJ, Muñoz Bravo AX, Sierra Castrillo J, Román Marín LM, Corredor Pereira C. Scorpion Venom: New Promise in the Treatment of Cancer. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n2.71512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is a public health problem due to its high worldwide morbimortality. Current treatment protocols do not guarantee complete remission, which has prompted to search for new and more effective antitumoral compounds. Several substances exhibiting cytostatic and cytotoxic effects over cancer cells might contribute to the treatment of this pathology. Some studies indicate the presence of such substances in scorpion venom. In this review, we report characteristics of the principal scorpion venom components found in recent literature and their potential activity against tumor cells. There are different toxin groups present in the venom, and it seems that their mode of actions involves ionic channel blocking, disruption of the cell membrane integrity and damage to internal cell organelles. These properties make good prospects for studies on drugs and adjuvants in cancer treatment.
Collapse
|
6
|
Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner. Biophys Chem 2015; 207:40-50. [DOI: 10.1016/j.bpc.2015.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022]
|
7
|
Billaud M, Chiu YH, Lohman AW, Parpaite T, Butcher JT, Mutchler SM, DeLalio LJ, Artamonov MV, Sandilos JK, Best AK, Somlyo AV, Thompson RJ, Le TH, Ravichandran KS, Bayliss DA, Isakson BE. A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells. Sci Signal 2015; 8:ra17. [PMID: 25690012 DOI: 10.1126/scisignal.2005824] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both purinergic signaling through nucleotides such as ATP (adenosine 5'-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by α1AR signaling. Collectively, these data describe a specific link between noradrenergic and purinergic signaling in blood pressure homeostasis.
Collapse
Affiliation(s)
- Marie Billaud
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Alexander W Lohman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thibaud Parpaite
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stephanie M Mutchler
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mykhaylo V Artamonov
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joanna K Sandilos
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Angela K Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Avril V Somlyo
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Thu H Le
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA. Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA. Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
8
|
Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon 2015; 93:125-35. [PMID: 25432067 PMCID: PMC7130864 DOI: 10.1016/j.toxicon.2014.11.233] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/25/2014] [Indexed: 10/25/2022]
Abstract
Scorpions are well known for their dangerous stings that can result in severe consequences for human beings, including death. Neurotoxins present in their venoms are responsible for their toxicity. Due to their medical relevance, toxins have been the driving force in the scorpion natural compounds research field. On the other hand, for thousands of years, scorpions and their venoms have been applied in traditional medicine, mainly in Asia and Africa. With the remarkable growth in the number of characterized scorpion venom components, several drug candidates have been found with the potential to tackle many of the emerging global medical threats. Scorpions have become a valuable source of biologically active molecules, from novel antibiotics to potential anticancer therapeutics. Other venom components have drawn attention as useful scaffolds for the development of drugs. This review summarizes the most promising candidates for drug development that have been isolated from scorpion venoms.
Collapse
Affiliation(s)
- Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Avenida Universidad 2001, Cuernavaca 62210, Mexico
| | - Georgina B Gurrola
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Avenida Universidad 2001, Cuernavaca 62210, Mexico
| | - Elisabeth Ferroni Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Avenida Universidad 2001, Cuernavaca 62210, Mexico.
| |
Collapse
|
9
|
Pipkorn R, Braun K, Wiessler M, Waldeck W, Schrenk HH, Koch M, Semmler W, Komljenovic D. A peptide & peptide nucleic acid synthesis technology for transporter molecules and theranostics--the SPPS. Int J Med Sci 2014; 11:697-706. [PMID: 24843319 PMCID: PMC4025169 DOI: 10.7150/ijms.8168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/25/2014] [Indexed: 11/20/2022] Open
Abstract
Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here.
Collapse
Affiliation(s)
- Ruediger Pipkorn
- 1. German Cancer Research Center, Dept. of Translational Immunology, INF 410, D-69120 Heidelberg, Germany
| | - Klaus Braun
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Manfred Wiessler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Waldemar Waldeck
- 3. German Cancer Research Center, Division of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Hans-Hermann Schrenk
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Mario Koch
- 1. German Cancer Research Center, Dept. of Translational Immunology, INF 410, D-69120 Heidelberg, Germany
| | - Wolfhard Semmler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Dorde Komljenovic
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
IMESCH PATRICK, SCHEINER DAVID, SZABO EMESE, FINK DANIEL, FEDIER ANDRÉ. Conjugates of cytochrome c and antennapedia peptide activate apoptosis and inhibit proliferation of HeLa cancer cells. Exp Ther Med 2013; 6:786-790. [PMID: 24137266 PMCID: PMC3786851 DOI: 10.3892/etm.2013.1205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/24/2013] [Indexed: 11/26/2022] Open
Abstract
Polycationic cell-penetrating peptides (CPPs) deliver macromolecules into cells without losing the functional properties of the cargoed macromolecule. The aim of this study was to determine whether exogenous cytochrome c is delivered to HeLa cervical carcinoma cells by the CPP antennapedia (Antp) and activates apoptosis. HeLa cervical carcinoma cells were treated with conjugated Antp-SMCC-cytochrome c (cytochrome c chemically conjugated to Antp) or with non-conjugated Antp and cytochrome c. Sensitivity to the treatments was determined by the clonogenic assay (proliferation) and by immunoblot analysis (apoptosis activation). We report that conjugated Antp-SMCC-cytochrome c activated apoptosis in HeLa cells as demonstrated by poly (ADP-ribose) polymerase 1 (PARP-1) cleavage and inhibited their proliferation. The Antp-SMCC-cytochrome c-induced apoptosis was inhibited by z-VAD-fmk, a pan-caspase inhibitor peptide. Unconjugated Antp or cytochrome c demonstrated no inhibitory effect on survival and proliferation. Our results suggest that chemical coupling of cytochrome c to CPPs may present a possible strategy for delivering cytochrome c into cells and for activating apoptosis.
Collapse
Affiliation(s)
- PATRICK IMESCH
- Correspondence to: Dr Patrick Imesch, Department of Gynecology, University Hospital Zurich, 10 Frauenklinikstrasse, Zurich CH-8091, Switzerland, E-mail:
| | | | - EMESE SZABO
- Department of Gynecology, University Hospital Zurich, Zurich CH-8091, Switzerland
| | - DANIEL FINK
- Department of Gynecology, University Hospital Zurich, Zurich CH-8091, Switzerland
| | - ANDRÉ FEDIER
- Department of Gynecology, University Hospital Zurich, Zurich CH-8091, Switzerland
| |
Collapse
|
11
|
Sharma R, Shivpuri S, Anand A, Kulshreshtha A, Ganguli M. Insight into the role of physicochemical parameters in a novel series of amphipathic peptides for efficient DNA delivery. Mol Pharm 2013; 10:2588-600. [PMID: 23725377 DOI: 10.1021/mp400032q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Amphipathic peptides constitute a class of molecules with the potential to develop as efficient and safer alternatives to viral and other nonviral vectors for intracellular delivery of therapeutics. These peptides can be useful for nucleic acid delivery and hence promise to have pharmaceutical application, particularly in gene therapy. In order to design novel amphipathic peptides and improve their efficiency of therapeutic cargo delivery, one needs to understand the role of the physicochemical properties of the peptide. There are very few reports in the literature where the physicochemical properties of the peptide have been correlated with efficiency of plasmid DNA delivery. In the present work we hunted out a naturally occurring amphipathic peptide termed Mgpe-1 (derived from HUMAN Protein phosphatase 1E) as a possible novel DNA delivery agent. We systematically altered the physicochemical parameters of this peptide to further enhance its DNA delivery efficiency. We changed its amphipathicity (from secondary to primary), the total charge (from +6 to +9), hydrophobicity, and the amino acid composition (lysine and serines to arginine; substitution of tryptophan) and studied which of these alterations affect DNA delivery efficiency. Our results showed that although Mgpe-1 exhibited very strong cellular uptake, its plasmid DNA delivery efficiency was poor. The presence of nine arginines improved the DNA delivery efficiency, and the effect was observed in both the primary and the secondary amphipathic variants. We further observed that the presence of tryptophan was important but not essential and the effect of its removal was stronger in the case of the secondary amphipathic peptide. However, increase in total hydrophobicity of the peptide led to a fall in transfection efficiency in the primary amphipathic peptide whereas the secondary amphipathic peptide having the same chemical composition was almost unaffected by this change. The primary amphipathic peptides with high positive charge and low hydrophobicity formed colloidally stable polyplexes with DNA and avoided a major impediment in DNA delivery, namely, the aggregation of polyplexes and cytotoxicity. The secondary amphipathic variants by virtue of the positional arrangement of the amino acids led to formation of polyplexes with partly hydrophilic surfaces which prevented aggregation and controlled particle size irrespective of the hydrophobicity. Two variants in the series Mgpe-3 and Mgpe-4 having nine positive charges with less hydrophobicity showed high transfection efficiency in multiple cell lines along with serum stability and much less cytotoxicity and promise to be novel and efficient DNA delivery vectors.
Collapse
Affiliation(s)
- Rajpal Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
12
|
Alhakamy NA, Berkland CJ. Polyarginine molecular weight determines transfection efficiency of calcium condensed complexes. Mol Pharm 2013; 10:1940-8. [PMID: 23534410 PMCID: PMC4207646 DOI: 10.1021/mp3007117] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell penetrating peptides (CPPs) have been extensively studied in polyelectrolyte complexes as a means to enhance the transfection efficiency of plasmid DNA (pDNA). Increasing the molecular weight of CPPs often enhances gene expression but poses a risk of increased cytotoxicity and immunogenicity compared to low molecular weight CCPs. Conversely, low molecular weight CPPs typically have low transfection efficiency due to large complex size. Complexes made using low molecular weight CPPs were found to be condensed to a small size by adding calcium. In this study, complexes of low molecular weight polyarginine and pDNA were condensed with calcium. These complexes showed high transfection efficiency and low cytotoxicity in A549 carcinomic human alveolar basal epithelial cells. The relationships between transfection efficiency and polyarginine size (5, 7, 9, or 11 amino acids), polyarginine/pDNA charge ratios, and calcium concentrations were studied. Polyarginine 7 was significantly more effective than other polyarginines under most formulation conditions, suggesting a link between cell penetration ability and transfection efficiency.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
| | - Cory J. Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS, USA 66047
| |
Collapse
|
13
|
Chen PC, Hayashi MAF, Oliveira EB, Karpel RL. DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier. PLoS One 2012; 7:e48913. [PMID: 23145017 PMCID: PMC3493588 DOI: 10.1371/journal.pone.0048913] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/08/2012] [Indexed: 01/17/2023] Open
Abstract
Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss) or (ds) double stranded molecules. The affinities of the protein for ss- vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of ∼3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells.
Collapse
Affiliation(s)
- Pei-Chun Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Mirian A. F. Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Eduardo Brandt Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Richard L. Karpel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nat Commun 2012; 3:788. [PMID: 22510693 PMCID: PMC3337985 DOI: 10.1038/ncomms1773] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/05/2012] [Indexed: 12/29/2022] Open
Abstract
Phage display screening allows the study of functional protein–protein interactions at the cell surface, but investigating intracellular organelles remains a challenge. Here we introduce internalizing-phage libraries to identify clones that enter mammalian cells through a receptor-independent mechanism and target-specific organelles as a tool to select ligand peptides and identify their intracellular receptors. We demonstrate that penetratin, an antennapedia-derived peptide, can be displayed on the phage envelope and mediate receptor-independent uptake of internalizing phage into cells. We also show that an internalizing-phage construct displaying an established mitochondria-specific localization signal targets mitochondria, and that an internalizing-phage random peptide library selects for peptide motifs that localize to different intracellular compartments. As a proof-of-concept, we demonstrate that one such peptide, if chemically fused to penetratin, is internalized receptor-independently, localizes to mitochondria, and promotes cell death. This combinatorial platform technology has potential applications in cell biology and drug development. Phage display screening can unravel protein–protein interactions, but its application has been mainly restricted to the cell surface. Here, a phage-based reagent is introduced that allows the targeting of combinatorial peptides to cell organelles, providing a tool for the discovery of intracellular ligand-receptors.
Collapse
|
15
|
Li GH, Li W, Mumper RJ, Nath A. Molecular mechanisms in the dramatic enhancement of HIV-1 Tat transduction by cationic liposomes. FASEB J 2012; 26:2824-34. [PMID: 22447980 DOI: 10.1096/fj.11-203315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) protein possesses a unique membrane-transduction property. Interestingly, Tat transduction could be dramatically increased 1000-fold based on LTR-transactivation assay when complexed with cationic liposomes (lipo-Tat), compared with Tat alone. Therefore, underlining mechanisms were explored further. Microscopy and flow cytometry showed that this effect was associated with enhanced membrane binding, large particle formation (1-2 μm) and increased intracellular uptake of Tat fluorescent proteins. Using pharmacological assays and immune colocalizations, it was found that lipid raft-dependent endocytosis and macropinocytosis were major pathways involved in lipo-Tat uptake, and actin-filaments played a major role in intracellular trafficking of lipo-Tat to the nucleus. Furthermore, we found that the Tat hydrophobic domain (aa 36-47) mediated formation of two positively charged molecules into lipo-Tat complexes via hydrophobic bonds, based on LTR-transactivation inhibition assay. Thus, the hydrophobic domain may play an important role in Tat protein uptake and be useful for intracellular delivery of biomacromolecules if coupled together with Tat basic peptide, a cell-penetrating peptide.
Collapse
Affiliation(s)
- Guan-Han Li
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
16
|
Zhang X, Zhang X, Wang F. Intracellular transduction and potential of Tat PTD and its analogs: from basic drug delivery mechanism to application. Expert Opin Drug Deliv 2012; 9:457-72. [DOI: 10.1517/17425247.2012.663351] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Rahmat D, Khan MI, Shahnaz G, Sakloetsakun D, Perera G, Bernkop-Schnürch A. Synergistic effects of conjugating cell penetrating peptides and thiomers on non-viral transfection efficiency. Biomaterials 2012; 33:2321-6. [DOI: 10.1016/j.biomaterials.2011.11.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
|
18
|
Hayashi MAF, Oliveira EB, Kerkis I, Karpel RL. Crotamine: a novel cell-penetrating polypeptide nanocarrier with potential anti-cancer and biotechnological applications. Methods Mol Biol 2012; 906:337-352. [PMID: 22791447 DOI: 10.1007/978-1-61779-953-2_28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Crotamine is a basic, 42-residue polypeptide derived from snake venom that has been shown to possess cell-penetrating properties. Crotamine forms nanoparticles with a variety of DNA and RNA molecules, and crotamine-plasmid DNA nanoparticles are selectively delivered into actively proliferating cells in culture or in mice. As such, these nanoparticles could form the basis for a nucleic acid drug-delivery system. Here we describe the preparation, purification, and biochemical and biophysical analysis of venom-derived, recombinant, chemically synthesized, and fluorescent-labeled crotamine; the formation and characterization of crotamine-DNA and -RNA nanoparticles; and the delivery of these nanoparticles into cells and animals.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
19
|
Joshi T, Gasser G, Martin LL, Spiccia L. Specific uptake and interactions of peptide nucleic acid derivatives with biomimetic membranes. RSC Adv 2012. [DOI: 10.1039/c2ra20462b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Dejardin T, de la Fuente J, del Pino P, Furlani EP, Mullin M, Smith CA, Berry CC. Influence of both a static magnetic field and penetratin on magnetic nanoparticle delivery into fibroblasts. Nanomedicine (Lond) 2011; 6:1719-31. [DOI: 10.2217/nnm.11.65] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: With regards to nanoparticles, all biomedical applications require cellular uptake, which to date remains a hurdle to further progress. This study aims to compare both the attractive force of a static magnetic field and the cell penetrating capability of penetratin; two techniques currently employed to enhance cell uptake. Materials & Methods: Fluorescent magnetic nanoparticles were functionalized with penetratin and cells were challenged with or without the particles in the presence/absence of a static magnetic field (350 mT). Following analysis of the magnetic field applied, cellular uptake and behavior was assessed in terms of fluorescence microscopy, clathrin and caveolin levels, scanning electron microscopy and transmission electron microscopy. Results: Modeling of the field applied demonstrated varying field patterns across the cell culture area, reflected by higher particle uptake at higher field strengths. Both penetratin and the magnetic field increased cell uptake with penetratin proving more efficient. Interestingly, the magnetic field stimulated clathrin-mediated endocytosis and subsequent particle uptake. Original submitted: 18th January 2011; Revised submitted: 27th April 2011
Collapse
Affiliation(s)
- Theophile Dejardin
- Center for Cell Engineering, Joseph Black Building, Glasgow University, G12 8QQ, UK
| | | | - Pablo del Pino
- Laboratory of Glyconanotechnology, Universidad de Saragossa, Spain
| | - Edward P Furlani
- Institute for Lasers, Photonics & Biophotonics, State University of New York, Buffalo, NY 14260, USA
| | - Margaret Mullin
- Center for Cell Engineering, Joseph Black Building, Glasgow University, G12 8QQ, UK
| | - C-A Smith
- Center for Cell Engineering, Joseph Black Building, Glasgow University, G12 8QQ, UK
| | | |
Collapse
|
21
|
Boll A, Jatho A, Czudnochowski N, Geyer M, Steinem C. Mechanistic insights into the translocation of full length HIV-1 Tat across lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2685-93. [PMID: 21819963 DOI: 10.1016/j.bbamem.2011.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/19/2011] [Accepted: 07/20/2011] [Indexed: 11/28/2022]
Abstract
The mechanism of how full length Tat (aa 1-86) crosses artificial lipid membranes was elucidated by means of fluorescence spectroscopy and fluorescence microscopy. It was shown that full length Tat (aa 1-86) neither forms pores in large unilamellar vesicles (LUVs) nor in giant unilamellar vesicles (GUVs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In contrast, an N-terminally truncated Tat protein (aa 35-86) that lacks the structurally defined proline- and cysteine-rich region as well as the highly conserved tryptophan residue at position 11 generates pores in artificial POPC-membranes, through which a water-soluble dye up to a size of 10kDa can pass. By means of fluorescence microscopy, the transfer of fluorescently labeled full length Tat across POPC-bilayers was unambiguously visualized with a concomitant accumulation of the protein in the membrane interface. However, if the dye was attached to the protein, also pore formation was induced. The size of the pores was, however smaller than the protein size, i.e. the labeled protein with a mass of 11.6kDa passed the membrane, while a fluorescent dye with a mass of 10kDa was excluded from the vesicles' interior. The results demonstrate that pore formation is not the prime mechanism by which full length Tat crosses a membrane.
Collapse
Affiliation(s)
- Annegret Boll
- Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, Göttingen, Germany
| | | | | | | | | |
Collapse
|
22
|
Ratto F, Matteini P, Centi S, Rossi F, Pini R. Gold nanorods as new nanochromophores for photothermal therapies. JOURNAL OF BIOPHOTONICS 2011; 4:64-73. [PMID: 20196029 DOI: 10.1002/jbio.201000002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 05/28/2023]
Abstract
Results and perspectives on the biomedical exploitation of gold nanorods with plasmon resonances in the near infrared window are reported. The authors describe experimental studies of laser-activated nanoparticles in the direct welding of connective tissues, which may become a valuable technology in biomedicine. In particular, colloidal gold nanorods excited by diode laser radiation at 810 nm were used to mediate functional photothermal effects and weld eye's lens capsules and arteries. The preparation of biopolymeric matrices including gold nanorods is also described, as well as preliminary tests for their application in the closure of wounds in vessels and tendons. Finally, the use of these nanoparticles for future applications in the diagnosis, imaging and therapy of cancer is discussed.
Collapse
Affiliation(s)
- Fulvio Ratto
- Istituto di Fisica Applicata Nello Carrara, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10 Sesto Fiorentino 50019, Italy
| | | | | | | | | |
Collapse
|
23
|
Spotlight on Human LL-37, an Immunomodulatory Peptide with Promising Cell-Penetrating Properties. Pharmaceuticals (Basel) 2010. [PMCID: PMC4034075 DOI: 10.3390/ph3113435] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cationic antimicrobial peptides are major components of innate immunity and help control the initial steps of the infectious process. They are expressed not only by immunocytes, but also by epithelial cells. They share an amphipathic secondary structure with a polar cationic site, which explains their tropism for prokaryote membranes and their hydrophobic site contributing to the destructuration of these membranes. LL-37 is the only cationic antimicrobial peptide derived from human cathelicidin. LL-37 can also cross the plasma membrane of eukaryotic cells, probably through special domains of this membrane called lipid rafts. This transfer could be beneficial in the context of vaccination: the activation of intracellular toll-like receptors by a complex formed between CpG oligonucleotides and LL-37 could conceivably play a major role in the building of a cellular immunity involving NK cells.
Collapse
|
24
|
Kersemans V, Cornelissen B. Targeting the Tumour: Cell Penetrating Peptides for Molecular Imaging and Radiotherapy. Pharmaceuticals (Basel) 2010; 3:600-620. [PMID: 27713270 PMCID: PMC4033971 DOI: 10.3390/ph3030600] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 02/02/2010] [Accepted: 03/10/2010] [Indexed: 11/16/2022] Open
Abstract
Over the last couple of years, the number of original papers and reviews discussing various applications of cell penetrating peptides (CPPs) has grown exponentially. This is not remarkable since CPPs are capable of transporting the most varying cargo across cell membranes which is one of the biggest problems in drug delivery and targeted therapy. In this review, we focus on the use of CPPs and related peptides for delivery of imaging contrast agents and radionuclides to cells and tissues with the ultimate goal of in vivo molecular imaging and molecular radiotherapy of intracellular and even intranuclear targets.
Collapse
Affiliation(s)
- Veerle Kersemans
- Gray Institute for Radiation Oncology and Biology, University of Oxford/Old Road Campus Research Building, Off Roosevelt Drive, Churchill Hospital, Oxford OX3 7DQ, UK.
| | - Bart Cornelissen
- Gray Institute for Radiation Oncology and Biology, University of Oxford/Old Road Campus Research Building, Off Roosevelt Drive, Churchill Hospital, Oxford OX3 7DQ, UK.
| |
Collapse
|
25
|
Mishra R, Su W, Pohmann R, Pfeuffer J, Sauer MG, Ugurbil K, Engelmann J. Cell-penetrating peptides and peptide nucleic acid-coupled MRI contrast agents: evaluation of cellular delivery and target binding. Bioconjug Chem 2009; 20:1860-8. [PMID: 19788302 DOI: 10.1021/bc9000454] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular imaging of cells and cellular processes can be achieved by tagging intracellular targets such as receptors, enzymes, or mRNA. Seeking to visualize the presence of specific mRNAs by magnetic resonance (MR) imaging, we coupled peptide nucleic acids (PNA) with gadolinium-based MR contrast agents using cell-penetrating peptides for intracellular delivery. Antisense to mRNA of DsRed2 protein was used as proof of principle. The conjugates were produced by continuous solid-phase synthesis followed by chelation with gadolinium. Their cellular uptake was confirmed by fluorescence microscopy and spectroscopy as well as by MR imaging of labeled cells. The cell-penetrating peptide D-Tat(57-49) was selected over two other derivatives of HIV-1 Tat peptide, based on its superior intracellular delivery of the gadolinium-based contrast agents. Further improved delivery of conjugates was achieved upon coupling peptide nucleic acids (antisense to mRNA of DsRed2 protein and nonsense with no natural counterpart). Significant enhancement in MR contrast was obtained in cells labeled with concentrations as low as 2.5 μM of these agents. Specific binding of the targeting PNA containing conjugate to its complementary oligonucleotide sequence was proven by in vitro cell-free assay. In contrast, a lack of specific enrichment was observed in transgenic cells containing the target due to nonspecific vesicular entrapment of contrast agents. Preliminary biodistribution studies showed conjugate-related fluorescence in several organs, especially the liver and bladder, indicating high mobility of the agent in spite of its high molecular weight. No conjugate related toxicity was observed. These results are encouraging, as they warrant further molecular optimization and consecutive specificity studies in vivo of this new generation of contrast agents.
Collapse
Affiliation(s)
- Ritu Mishra
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Spemannstrasse 41, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Delanote V, Vanloo B, Catillon M, Friederich E, Vandekerckhove J, Gettemans J. An alpaca single-domain antibody blocks filopodia formation by obstructing L-plastin-mediated F-actin bundling. FASEB J 2009; 24:105-18. [PMID: 19726756 DOI: 10.1096/fj.09-134304] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
L-plastin, a conserved modular F-actin bundling protein, is ectopically expressed in tumor cells and contributes to cell malignancy and invasion. The underlying molecular mechanisms involved remain unclear, in part, because specific inhibitors of L-plastin are lacking. We used recombinant alpaca-derived L-plastin single-domain antibodies (nanobodies) as effector of L-plastin function in cells.
Collapse
Affiliation(s)
- Veerle Delanote
- Department of Medical Protein Research, Flanders Institute for Biotechnology, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
27
|
Rapoport M, Lorberboum-Galski H. TAT-based drug delivery system--new directions in protein delivery for new hopes? Expert Opin Drug Deliv 2009; 6:453-63. [PMID: 19413454 DOI: 10.1517/17425240902887029] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There has been great progress in the use of TAT-based drug delivery systems for the delivery of different macromolecules into cells in vitro and in vivo, thus circumventing the bioavailability barrier that is a problem for so many drugs. There are many advantages to using this system, such as the ability to deliver these cargoes into all types of cells in culture and into all organs in vivo. This system can even deliver cargoes into the brain across the blood-brain barrier. In addition, the ability to target specific intracellular sub-localizations such as the nuclei, the mitochondria and lysosomes further expands the possibilities of this drug delivery system to the development of sub-cellular organelle-targeted therapy. The therapeutic applications seem almost unlimited, and the use of the TAT-based delivery system has extended from proteins to a large variety of cargoes such as oligonucleotides, imaging agents, low molecular mass drugs, nanoparticles, micelles and liposomes. In this review the most recent advances in the use of the TAT-based drug delivery system will be described, mainly discussing TAT-mediated protein delivery and the use of the TAT system for enzyme replacement therapy.
Collapse
Affiliation(s)
- Matan Rapoport
- Faculty of Medicine Hebrew University, Department of Cellular Biochemistry and Human Genetics, Jerusalem, Israel
| | | |
Collapse
|
28
|
Aroui S, Ram N, Appaix F, Ronjat M, Kenani A, Pirollet F, De Waard M. Maurocalcine as a non toxic drug carrier overcomes doxorubicin resistance in the cancer cell line MDA-MB 231. Pharm Res 2008; 26:836-45. [PMID: 19083085 DOI: 10.1007/s11095-008-9782-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 11/04/2008] [Indexed: 11/27/2022]
Abstract
PURPOSE The aim of this study is to overcome tumour cell resistance that generally develops after administration of commonly used anti-cancer drugs, such as doxorubicin. METHODS Recently, cell penetrating peptides have been used for their ability to deliver non-permeant compounds into cells. One such cell penetrating peptide, maurocalcine, has been isolated from the venom of a Tunisian scorpion. Herein, we report the effects of doxorubicin covalently coupled to an analogue of maurocalcine on drug-sensitive or drug-resistant cell lines MCF7 and MDA-MB 231. RESULTS We demonstrated the in vitro anti-tumoral efficacy of the doxorubicin maurocalcine conjugate. On a doxorubicin-sensitive cancer cell line, the maurocalcine-conjugated form appears slightly less efficient than doxorubicin itself. On the contrary, on a doxorubicin-resistant cancer cell line, doxorubicin coupling allows to overcome the drug resistance. This strategy can be generalized to other cell penetrating peptides since Tat and penetratin show similar effects. CONCLUSION We conclude that coupling anti-tumoral drugs to cell penetrating peptides represent a valuable strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Sonia Aroui
- INSERM, U836, Calcium Channels, Functions and Pathologies, BP 170, Grenoble Cedex 9, 38042, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Structural insights into the cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nat Struct Mol Biol 2008; 15:1287-92. [PMID: 19029897 DOI: 10.1038/nsmb.1513] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/14/2008] [Indexed: 11/08/2022]
Abstract
The replication of many retroviruses is mediated by a transcriptional activator protein, Tat, which activates RNA polymerase II at the level of transcription elongation. Tat interacts with Cyclin T1 of the positive transcription-elongation factor P-TEFb to recruit the transactivation-response TAR RNA, which acts as a promoter element in the transcribed 5' end of the viral long terminal repeat. Here we present the structure of the cyclin box domain of Cyclin T1 in complex with the Tat protein from the equine infectious anemia virus and its corresponding TAR RNA. The basic RNA-recognition motif of Tat adopts a helical structure whose flanking regions interact with a cyclin T-specific loop in the first cyclin box repeat. Together, both proteins coordinate the stem-loop structure of TAR. Our findings show that Tat binds to a surface on Cyclin T1 similar to where recognition motifs from substrate and inhibitor peptides were previously found to interact within Cdk-cyclin pairs.
Collapse
|
30
|
Juliano R, Alam MR, Dixit V, Kang H. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 2008; 36:4158-71. [PMID: 18558618 PMCID: PMC2475625 DOI: 10.1093/nar/gkn342] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The potential use of antisense and siRNA oligonucleotides as therapeutic agents has elicited a great deal of interest. However, a major issue for oligonucleotide-based therapeutics involves effective intracellular delivery of the active molecules. In this Survey and Summary, we review recent reports on delivery strategies, including conjugates of oligonucleotides with various ligands, as well as use of nanocarrier approaches. These are discussed in the context of intracellular trafficking pathways and issues regarding in vivo biodistribution of molecules and nanoparticles. Molecular-sized chemical conjugates and supramolecular nanocarriers each display advantages and disadvantages in terms of effective and nontoxic delivery. Thus, choice of an optimal delivery modality will likely depend on the therapeutic context.
Collapse
Affiliation(s)
- Rudy Juliano
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
31
|
Hodoniczky J, Sims CG, Best WM, Bentel JM, Wilce JA. The intracellular and nuclear-targeted delivery of an antiandrogen drug by carrier peptides. Biopolymers 2008; 90:595-603. [DOI: 10.1002/bip.20986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 2008; 52:1713-20. [PMID: 18332165 DOI: 10.1128/aac.01342-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a time of dramatically increasing resistance of microbes to all kinds of antibiotics, natural antimicrobial peptides and synthetic analogs thereof have emerged as compounds with potentially significant therapeutical applications against human pathogens. Only very few of these peptide antibiotics have been tested against protozoan pathogens that are a major cause of morbidity and mortality in large parts of the world. Here, we studied the effect of NK-2, a peptide representing the cationic core region of the lymphocytic effector protein NK-lysin, on the malaria parasite Plasmodium falciparum. Whereas noninfected red blood cells were hardly affected, human erythrocytes infected with the parasite were rapidly permeabilized by NK-2 in the micromolar range. Loss of plasma membrane asymmetry and concomitant exposure of phosphatidylserine upon infection appears to be the molecular basis for the observed target preference of NK-2, as can be demonstrated by annexin V binding. The peptide also affects the viability of the intracellular parasite, as evidenced by the drop in DNA content of cultured parasites. Accumulated evidence derived from permeabilization assays using parasites and liposomes as targets and from fluorescence microscopy of infected erythrocytes treated with fluorescently labeled NK-2 indicates that the positively charged peptide electrostatically interacts with the altered and negatively charged plasma membrane of the infected host cell and traverses this membrane as well as the parasitophorous vacuole membrane to reach its final target, the intracellular parasite. The apparent affinity for foreign membranes that resulted in the death of a eukaryotic parasite residing in human host cells makes NK-2 a promising template for novel anti-infectives.
Collapse
|
33
|
Jones AT. Gateways and tools for drug delivery: endocytic pathways and the cellular dynamics of cell penetrating peptides. Int J Pharm 2007; 354:34-8. [PMID: 18068916 DOI: 10.1016/j.ijpharm.2007.10.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/19/2007] [Accepted: 10/30/2007] [Indexed: 01/22/2023]
Abstract
A major goal in drug delivery is to be able to design a macromolecular entity that utilises an endocytic pathway to deliver a bioactive payload into a malfunctioning cell. However, the effectiveness of this approach may be constrained by insufficient information regarding the fate of the delivery vector within the confines of the endo-lysosomal network. Successful drug delivery through this mechanism is therefore dependent on an equal high level of understanding of the specific endocytic pathways that are inherent in the target cell and the traffic and fate of the macromolecule within endocytic organelles. Cell penetrating peptides (CPPs) are promising candidate vectors for delivering macromolecules, however, there is little consensus regarding their exact mechanism of uptake. This review highlights the numerous endocytic pathways and sorting mechanisms that may deliver CPPs to a number of cellular destinations. Our use of non-adherent leukaemia cell lines to study the cellular dynamics of CPPs HIV-TAT and octaarginine is also discussed.
Collapse
Affiliation(s)
- Arwyn T Jones
- Welsh School of Pharmacy, Redwood Building, Cardiff University, Cardiff CF10 3XF, United Kingdom.
| |
Collapse
|