1
|
Lu S, Dong Z. Targeting PCNA/AR interaction inhibits AR-mediated signaling in castration resistant prostate cancer cells. Oncotarget 2025; 16:383-395. [PMID: 40391771 DOI: 10.18632/oncotarget.28722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
We previously showed that proliferating cell nuclear antigen (PCNA) interacts with androgen receptor (AR) through a PIP-box (PIP-box4) at the N-terminus of AR and regulates AR activity. In this study, we further investigated PCNA/AR interaction. We identified a second PIP-box (PIP-box592) in the DNA binding domain of AR and found that dihydrotestosterone enhances the binding of full-length AR (AR-FL) but not a constitutively active variant (AR-V7) to PCNA. Treatment with R9-AR-PIP, a PIP-box4-mimicking small peptide, inhibits the PCNA/AR interaction, AR occupancy at the androgen response element (ARE) in PSA and p21 genes, and expression of AR target genes, and induces cytotoxicity in AR-positive castration-resistant prostate cancer (CRPC) cells. R9-AR-PIP also significantly inhibits transcriptional activity of AR-FL upon dihydrotestosterone stimulation and the constitutive activity of AR-V7. Moreover, R9-AR-PIP and PCNA-I1S, a small molecule PCNA inhibitor, inhibit the ARE occupancy by AR-FL and AR-Vs in CCNA2 gene that encodes cyclin A2 and cyclin A2 expression. Finally, we found that cyclin A2 is overexpressed in all CRPC cells examined, suggesting that it may contribute to the development of CRPC. These data indicate that targeting PCNA/AR interaction inhibits both AR-FL- and AR-Vs-mediated signaling and implicates it could be a novel therapeutic strategy against CRPC.
Collapse
Affiliation(s)
- Shan Lu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongyun Dong
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Wang T, Wang Z. Targeting the "Undruggable": Small-Molecule Inhibitors of Proliferating Cell Nuclear Antigen (PCNA) in the Spotlight in Cancer Therapy. J Med Chem 2025; 68:2058-2088. [PMID: 39904718 DOI: 10.1021/acs.jmedchem.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
PCNA plays multiple roles in cancer development, including cell proliferation regulation, DNA repair, replication, and serving as a widely used biomarker and therapeutic target. Despite its significant role in oncology, PCNA has historically been considered "undruggable" due to the absence of known endogenous small molecule modulators and identifiable ligand binding sites. Unlike other protein-protein interfaces, PCNA lacks explicit binding grooves, featuring a relatively small and shallow surface pocket, which hinders the discovery of traditional small molecule targets. Recent breakthroughs have introduced promising PCNA-targeting candidates, with ATX-101 and AOH1996 entering phase I clinical trials for cancer therapy, garnering academic and industry interest. These achievements provide new evidence for PCNA as a drug target. This article provides insight and perspective on the application of small-molecule PCNA inhibitors in cancer treatment, covering PCNA function, its relationship with cancer, structural modification of small molecule inhibitors, and discovery strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- Jiangxi Provincial Key Laboratory of TCM Female Reproductive Health and Related Diseases Research and Transformation, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
| |
Collapse
|
3
|
Joshi G, Yadav UP, Rafiq Z, Grewal P, Kumar M, Singh T, Jha V, Sharma P, Eriksson LA, Srinivas L, Dahibhate NL, Srivastava P, Bhutani P, Mishra UK, Sharon A, Banerjee UC, Sharma N, Chatterjee J, Tikoo K, Singh S, Kumar R. Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents. J Med Chem 2025; 68:2849-2868. [PMID: 39808731 DOI: 10.1021/acs.jmedchem.4c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential. Our findings revealed that the compound 5c significantly produced anticancer effects in vitro and in vivo by reducing the tumor growth and its size in the A549 cell-induced lung cancer xenograft model through multiple mechanisms, primarily by multi-inhibition of hTopoI/II and HDACs, especially HDAC1 via atypical binding. The present paper discusses detailed mechanistic biological investigations, structure-activity effects supported by computational docking studies, and DMPK studies and provides future scope for lead optimization and modification.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Umesh Prasad Yadav
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Zahid Rafiq
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Preeti Grewal
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Tashvinder Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Vibhu Jha
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
| | | | | | | | | | - Uttam Kumar Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| |
Collapse
|
4
|
Lu S, Lamba M, Wang J, Dong Z. Targeting proliferating cell nuclear antigen enhances ionizing radiation-induced cytotoxicity in prostate cancer cells. Prostate 2024; 84:1456-1467. [PMID: 39219052 DOI: 10.1002/pros.24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Proliferating cell nuclear antigen (PCNA) is essential for DNA replication and repair, cell growth, and survival. PCNA also enhances androgen receptor (AR) signaling in prostate cancer (PC) cells. We identified a PCNA interaction protein (PIP) box at the N-terminal domain of AR and developed a small peptide PCNA inhibitor R9-AR-PIP containing AR PIP-box. We also identified a series of small molecule PCNA inhibitors (PCNA-Is) that bind directly to PCNA and interrupt PCNA functions. The present study investigated the effects of the PCNA inhibitors on the sensitivity of PC cells to X-ray radiation. METHODS The effects of targeting PCNA on radio sensitivity of PC cells were investigated in four lines of castration-resistant PC (CRPC) cells with different AR expression statuses. The cells were treated with the PCNA inhibitors and X-ray radiation alone or in combination. The effects of the treatment on expression of AR target genes, DNA damage response, DNA damage, homologous recombination repair (HRR), and cytotoxicity were evaluated. RESULTS We found that the androgen response element (ARE) occupancy of the DNA damage response gene PARP1 by AR is significantly attenuated by PCNA-I1S or R9-AR-PIP combined with X-ray radiation, while X-ray radiation alone does not enhance the ARE occupancy. PCNA-I1S or R9-AR-PIP alone significantly inhibits occupancy of the AR-occupied regions (AROR) in PRKDC and XRCC2 genes. R9-AR-PIP and PCNA-I1S inhibit expression of AR-Vs target gene cyclin A2 and show the additive effects with radiation in AR-positive CRPC cells. Targeting PCNA by PCNA-I1S and R9-AR-PIP downregulates expression of DNA damage response genes EXO1, Rad54L, Rad51, and/or PARP1 and shows the additive effects with radiation as compared with their respective controls in AR-positive CRPC LNCaP-AI, 22Rv1, and R1-D567 cells, but not in AR-negative PC-3 cells. R9-AR-PIP and PCNA-I1S elevate the levels of phospho-DNA-PKcs(S2056) and γH2AX, indicating DNA damage in response to radiation in AR-positive cells. The HRR is significantly attenuated by PCNA inhibitors PCNA-I1S, R9-AR-PIP, and T2AA in all four CRPC cells examined, and inhibited by Enzalutamide (Enz) only in 22RV1 cells. The cytotoxicity induced by X-ray radiation in androgen-dependent LNCaP cells is enhanced by Enz and a lower concentration of R9-AR-PIP in the colony formation assay. R9-AR-PIP at higher concentration reduces the colony formation and has an additive effect with X-ray radiation in all AR expressing cells, regardless of AR-FL and AR-Vs, but does not significantly alter the colony formation in AR-negative PC-3 cells. PCNA-I1S attenuates colony formation and has an additive effect with ionizing radiation in all four CRPC cells, regardless of AR expression status. CONCLUSION These data provide a strong rationale for the therapy studies using PCNA-I1S or R9-AR-PIP in combination with X-ray radiation against CRPC tumors in preclinical models.
Collapse
Affiliation(s)
- Shan Lu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael Lamba
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jiang Wang
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zhongyun Dong
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
La Y, Li Z, Ma X, Bao P, Chu M, Guo X, Liang C, Yan P. Age-dependent changes in the expression and localization of LYZL4, LYZL6 and PCNA during testicular development in the Ashidan yak. Anim Biotechnol 2024; 35:2344213. [PMID: 38669244 DOI: 10.1080/10495398.2024.2344213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Lysozyme like 4 (LYZL4), lysozyme like 6 (LYZL6) and proliferating cell nuclear antigen (PCNA) are implicated in the regulation of testicular function, but there was no research reported available on the expression patterns of LYZL4, LYZL6 and PCNA genes at different developmental stages of yak testes. In this study, we used the qRT-PCR, western blotting and immunohistochemistry estimated the LYZL4, LYZL6 and PCNA gene expression and protein lo-calization at different developmental stages of yak testes. The qPCR results showed that the mRNA expression of LYZL4, LYZL6 and PCNA genes significantly increased with age in the testes of yaks. Western blot results showed that the protein abundance of LYZL4, LYZL6 and PCNA in yak testes was significantly higher after puberty than before puberty. Furthermore, the results of immunohistochemistry indicated that LYZL4, LYZL6 and PCNA may be involved in the regulation of spermatogonia proliferation and Leydig cell function in immature testis. In adult yak testes, LYZL4, LYZL6 and PCNA may involve in the development of round spermatids and primary spermatocytes during testicular development. Our results indicated that LYZL4, LYZL6 and PCNA may be involved in the development of Sertoli cells, Leydig cells and gonocytes in yak testes.
Collapse
Affiliation(s)
- Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Zhongbang Li
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| |
Collapse
|
6
|
Wang D, Chu WK, Yam JCS, Pang CP, Leung YC, Shum ASW, Chan SO. GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation. Cancer Metab 2024; 12:31. [PMID: 39462426 PMCID: PMC11515237 DOI: 10.1186/s40170-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Arginine deprivation was previously shown to inhibit retinoblastoma cell proliferation and induce cell death in vitro. However, the mechanisms by which retinoblastoma cells respond to arginine deprivation remain to be elucidated. METHODS The human-derived retinoblastoma cell lines Y79 and WERI-Rb-1 were subjected to arginine depletion, and the effects on inhibiting cell growth and survival were evaluated. This study investigated potential mechanisms, including autophagy, cell cycle arrest and apoptosis. Moreover, the roles of the general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways in these processes were examined. RESULTS We demonstrated that arginine deprivation effectively inhibited the growth of retinoblastoma cells in vitro. This treatment caused an increase in the autophagic response. Additionally, prolonged arginine deprivation induced G2 cell cycle arrest and was accompanied by an increase in early apoptotic cells. Importantly, arginine depletion also induced the activation of GCN2 and the inhibition of mTOR signaling. We also discovered that the activation of SLC7A11 was regulated by GCN2 upon arginine deprivation. Knockdown of SLC7A11 rendered retinoblastoma cells partially resistant to arginine deprivation. Furthermore, we found that knockdown of GCN2 led to a decrease in the autophagic response in WERI-Rb-1 cells and arrested more cells in S phase, which was accompanied by fewer apoptotic cells. Moreover, knockdown of GCN2 induced the constant expression of ATF4 and the phosphorylation of 70S6K and 4E-BP1 regardless of arginine deprivation. CONCLUSIONS Collectively, our findings suggest that the GCN2‒SLC7A11 axis regulates cell growth and survival upon arginine deprivation through coordinating autophagy, cell cycle arrest, and apoptosis in retinoblastoma cells. This work paves the way for the development of a novel treatment for retinoblastoma.
Collapse
Affiliation(s)
- Dan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Cheuk Sing Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Alisa Sau Wun Shum
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Jin C, Zhao R, Hu W, Wu X, Zhou L, Shan L, Wu H. Topical hADSCs-HA Gel Promotes Skin Regeneration and Angiogenesis in Pressure Ulcers by Paracrine Activating PPARβ/δ Pathway. Drug Des Devel Ther 2024; 18:4799-4824. [PMID: 39478872 PMCID: PMC11523932 DOI: 10.2147/dddt.s474628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Background Pressure ulcer is common in the bedridden elderly with high mortality and lack of effective treatment. In this study, human-adipose-derived-stem-cells-hyaluronic acid gel (hADSCs-HA gel) was developed and applied topically to treat pressure ulcers, of which efficacy and paracrine mechanisms were investigated through in vivo and in vitro experiments. Methods Pressure ulcers were established on the backs of C57BL/6 mice and treated topically with hADSCs-HA gel, hADSCs, hyaluronic acid, and normal saline respectively. The rate of wound closure was observed continuously during the following 14 days and the wound samples were obtained for Western blot, histopathology, immunohistochemistry, and proteomic analysis. Human dermal fibroblasts (HDFs) and human venous endothelial cells (HUVECs) under normal or hypoxic conditions were treated with conditioned medium of human ADSCs (ADSC-CM), then CCK-8, scratch test, tube formation, and Western blot were conducted to evaluate the paracrine effects of hADSCs and to explore the underlying mechanism. Results The in vivo data demonstrated that hADSCs-HA gel significantly accelerated the healing of pressure ulcers by enhancing collagen expression, angiogenesis, and skin proliferation. The in vitro data revealed that hADSCs strengthened the proliferation and wound healing capabilities of HDFs and HUVECs, meanwhile promoted collagen secretion and tube formation through paracrine mode. ADSC-CM was also proved to exert protective effects on hypoxic HDFs and HUVECs. Besides, the results of proteomic analysis and Western blot elucidated that lipid metabolism and PPARβ/δ pathway mediated the healing effect of hADSCs-HA gel on pressure ulcers. Conclusion Our research showed that topical application of hADSCs-HA gel played an important role in dermal regeneration and angiogenesis. Therefore, hADSCs-HA gel exhibited the potential as a novel stem-cell-based therapeutic strategy of treating pressure ulcers in clinical practices.
Collapse
Affiliation(s)
- Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| | - Ruolin Zhao
- Yichen Biotechnology Co., Ltd, Hangzhou, Zhejiang, 311200, People’s Republic of China
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Weihang Hu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, People’s Republic of China
| | - Xiaolong Wu
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Letian Shan
- Fuyang Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311403, People’s Republic of China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, People’s Republic of China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, People’s Republic of China
| |
Collapse
|
8
|
Jakopovic B, Horvatić A, Baranasic J, Car I, Oršolić N, Jakopovich I, Sedić M, Kraljević Pavelić S. Proteomic study of medicinal mushroom extracts reveals antitumor mechanisms in an advanced colon cancer animal model via ribosomal biogenesis, translation, and metabolic pathways. Front Pharmacol 2024; 15:1475102. [PMID: 39494346 PMCID: PMC11528127 DOI: 10.3389/fphar.2024.1475102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Colorectal cancer ranks as the third most common cancer in both men and women, with approximately 35% of cases being stage IV metastatic at diagnosis. Even with treatment advancements, the survival rates for these patients remain suboptimal. There is a significant focus on developing multi-targeted therapies due to the common issue of drug resistance in standard and targeted cancer treatments. Medicinal mushrooms, both as single compounds and as complex extracts, have undergone extensive research. Numerous types of mushrooms have been shown to be safe, effective inhibitors of cancer pathways and strong enhancers of the immune system. Methods In this study, we performed both qualitative and quantitative proteomic analyses using tandem mass tags (TMT) on CT26 wild type (CT26. WT) colon cancer tissues from Balb/c mice, which were treated with a special blend of medicinal mushroom extracts, either alone or in combination with the chemotherapy drug 5-fluorouracil. Results The results showed a notable increase in survival rates and indicated that medicinal mushroom preparation Agarikon Plus, both alone and combined with 5-fluorouracil or another medicinal mushroom preparation Agarikon.1, impedes multiple key processes in colorectal cancer progression. The analysis of differentially expressed proteins in treated groups was done by use of bioinformatics tools and a decrease in ribosomal biogenesis (e.g., RPS3) and translation processes (e.g., RPL14) as well as an increase in unfolded protein response (e.g., DNAJC3), lipid metabolism (e.g., ACOT7), and the tricarboxylic acid cycle (e.g., FH) were observed. Conclusion The treatment induced various alterations of known biomarkers and protein clusters critical to the progression and prognosis of colorectal cancer, laying a promising foundation for further translational research on this treatment modality.
Collapse
Affiliation(s)
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Jurica Baranasic
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Iris Car
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | |
Collapse
|
9
|
Liu J, Yi C, Gong D, Zhao Q, Xie H, Zhao S, Yu H, Lv J, Bian E, Tian D. Construction of a 5-Gene super-enhancer-related signature for osteosarcoma prognosis and the regulatory role of TNFRSF11B in osteosarcoma. Transl Oncol 2024; 47:102047. [PMID: 38972174 PMCID: PMC11283062 DOI: 10.1016/j.tranon.2024.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/16/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024] Open
Abstract
Osteosarcoma, one of the most common primary malignancies in children and adolescents, has the primary characteristics of a poor prognosis and high rate of metastasis. This study used super-enhancer-related genes derived from two different cell lines to construct five novel super-enhancer-related gene prognostic models for patients with osteosarcoma. The training and testing datasets were used to confirm the prognostic models of the five super-enhancer-related genes, which resulted in an impartial predictive element for osteosarcoma. The immunotherapy and prediction of the response to anticancer drugs have shown that the risk signature of the five super-enhancer-related genes positively correlate with chemosensitivity. Furthermore, functional analysis of the risk signature genes revealed a significant relationship between gene groups and the malignant characteristics of tumours. TNF Receptor Superfamily Member 11b (TNFRSF11B) was selected for functional verification. Silencing of TNFRSF11B suppressed the proliferation, migration, and invasion of osteosarcoma cells in vitro and suppressed osteosarcoma growth in vivo. Moreover, transcriptome sequencing was performed on MG-63 cells to study the regulatory mechanism of TNFRSF11B in osteosarcoma cells, and it was discovered that TNFRSF11B is involved in the development of osteosarcoma via the phosphoinositide 3-kinase signalling pathway. Following the identification of TNFRSF11B as a key gene, we selected an inhibitor that specifically targeted this gene and performed molecular docking simulations. In addition, risedronic acid inhibited osteosarcoma growth at both cellular and molecular levels. In conclusion, the super-enhancer-related gene signature is a viable therapeutic tool for osteosarcoma prognosis and treatment.
Collapse
Affiliation(s)
- Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Chengfeng Yi
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Deliang Gong
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Qingzhong Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Shibing Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Hang Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Jianwei Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China.
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, PR China, 230601; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, PR China.
| |
Collapse
|
10
|
Wu X, Fu M, Ge C, Zhou H, Huang H, Zhong M, Zhang M, Xu H, Zhu G, Hua W, Lv K, Yang H. m 6A-Mediated Upregulation of lncRNA CHASERR Promotes the Progression of Glioma by Modulating the miR-6893-3p/TRIM14 Axis. Mol Neurobiol 2024; 61:5418-5440. [PMID: 38193984 DOI: 10.1007/s12035-023-03911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are dysregulated in glioma. However, the functional roles of lncRNAs in glioma remain largely unknown. In this study, we utilized the TCGA (the Cancer Genome Atlas database) and GEPIA2 (Gene Expression Profiling Interactive Analysis 2) databases and observed the overexpression of lncRNA CHASERR in glioma tissues. We subsequently investigated this phenomenon in glioma cell lines. The effects of lncRNA CHASERR on glioma proliferation, migration, and invasion were analyzed using in vitro and in vivo experiments. Additionally, the regulatory mechanisms among PTEN/p-Akt/mTOR and Wnt/β-catenin, lncRNA CHASERR, Micro-RNA-6893-3p(miR-6893-3p), and tripartite motif containing14 (TRIM14) were investigated via bioinformatics analyses, quantitative real-time PCR (qRT-PCR), western blot (WB), RNA immunoprecipitation (RIP), dual luciferase reporter assay, fluorescence in situ hybridization (FISH), and RNA sequencing assays. RIP and RT-qRCR were used to analyze the regulatory effect of N6-methyladenosine(m6A) on the aberrantly expressed lncRNA CHASERR. High lncRNA CHASERR expression was observed in glioma tissues and was associated with unfavorable prognosis in glioma patients. Further functional assays showed that lncRNA CHASERR regulates glioma growth and metastasis in vitro and in vivo. Mechanistically, lncRNA CHASERR sponged miR-6893-3p to upregulate TRIM14 expression, thereby facilitating glioma progression. Additionally, the activation of PTEN/p-Akt/mTOR and Wnt/β-catenin pathways by lncRNA CHASERR, miR-6893-3p, and TRIM14 was found to regulate glioma progression. Moreover, the upregulation of lncRNA CHASERR was observed in response to N6-methyladenosine modification, which was facilitated by METTL3/YTHDF1-mediated RNA transcripts. This study elucidates the m6A/lncRNACHASERR/miR-6893-3p/TRIM14 pathway that contributes to glioma progression and underscores the potential of lncRNA CHASERR as a novel prognostic indicator and therapeutic target for glioma.
Collapse
Affiliation(s)
- Xingwei Wu
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chang Ge
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hanyu Zhou
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Haoyu Huang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Min Zhong
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Mengying Zhang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, 310000, Zhejiang, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Kun Lv
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-Coding RNA Basic Research and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, China.
- Central Laboratory, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- College of Life Sciences, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241001, Anhui, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China.
| |
Collapse
|
11
|
Kanev PB, Varhoshkova S, Georgieva I, Lukarska M, Kirova D, Danovski G, Stoynov S, Aleksandrov R. A unified mechanism for PARP inhibitor-induced PARP1 chromatin retention at DNA damage sites in living cells. Cell Rep 2024; 43:114234. [PMID: 38758646 DOI: 10.1016/j.celrep.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) not only suppress PARP1 catalytic activity but also prolong its association to damaged chromatin. Here, through live-cell imaging, we quantify the alterations in PARP1 dynamics and activity elicited by seven PARPis over a wide range of concentrations to deliver a unified mechanism of PARPi-induced PARP1 chromatin retention. We find that gross PARP1 retention at DNA damage sites is jointly governed by catalytic inhibition and allosteric trapping, albeit in a strictly independent manner-catalytic inhibition causes multiple unproductive binding-dissociation cycles of PARP1, while allosteric trapping prolongs the lesion-bound state of PARP1 to greatly increase overall retention. Importantly, stronger PARP1 retention produces greater temporal shifts in downstream DNA repair events and superior cytotoxicity, highlighting PARP1 retention, a complex but precisely quantifiable characteristic of PARPis, as a valuable biomarker for PARPi efficacy. Our approach can be promptly repurposed for interrogating the properties of DNA-repair-targeting compounds beyond PARPis.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Sylvia Varhoshkova
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Irina Georgieva
- Transmembrane Signaling Laboratory, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Maria Lukarska
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dilyana Kirova
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Georgi Danovski
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria.
| |
Collapse
|
12
|
Zhang Q, Liu Y, Ren L, Li J, Lin W, Lou L, Wang M, Li C, Jiang Y. Proteomic analysis of DEN and CCl 4-induced hepatocellular carcinoma mouse model. Sci Rep 2024; 14:8013. [PMID: 38580754 PMCID: PMC10997670 DOI: 10.1038/s41598-024-58587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Yuhui Liu
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Liangliang Ren
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Junqing Li
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Weiran Lin
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Lijuan Lou
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Minghan Wang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Chaoying Li
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Ying Jiang
- State Key Laboratory of Medicle Proteomics, Beijing Institute of Lifeomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China.
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Hardebeck S, Jácobo Goebbels N, Michalski C, Schreiber S, Jose J. Identification of a potent PCNA-p15-interaction inhibitor by autodisplay-based peptide library screening. Microb Biotechnol 2024; 17:e14471. [PMID: 38646975 PMCID: PMC11033925 DOI: 10.1111/1751-7915.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential factor for DNA metabolism. The influence of PCNA on DNA replication and repair, combined with the high expression rate of PCNA in various tumours renders PCNA a promising target for cancer therapy. In this context, an autodisplay-based screening method was developed to identify peptidic PCNA interaction inhibitors. A 12-mer randomized peptide library consisting of 2.54 × 106 colony-forming units was constructed and displayed at the surface of Escherichia coli BL21 (DE3) cells by autodisplay. Cells exhibiting an enhanced binding to fluorescent mScarlet-I-PCNA were enriched in four sorting rounds by flow cytometry. This led to the discovery of five peptide variants with affinity to mScarlet-I-PCNA. Among these, P3 (TCPLRWITHDHP) exhibited the highest binding signal. Subsequent flow cytometric analysis revealed a dissociation constant of 0.62 μM for PCNA-P3 interaction. Furthermore, the inhibition of PCNA interactions was investigated using p15, a PIP-box containing protein involved in DNA replication and repair. P3 inhibited the PCNA-p1551-70 interaction with a half maximal inhibitory activity of 16.2 μM, characterizing P3 as a potent inhibitor of the PCNA-p15 interaction.
Collapse
Affiliation(s)
- Sarah Hardebeck
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| | | | - Caroline Michalski
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| | - Sebastian Schreiber
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| | - Joachim Jose
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| |
Collapse
|
14
|
Lu JC, Wu LL, Sun YN, Huang XY, Gao C, Guo XJ, Zeng HY, Qu XD, Chen Y, Wu D, Pei YZ, Meng XL, Zheng YM, Liang C, Zhang PF, Cai JB, Ding ZB, Yang GH, Ren N, Huang C, Wang XY, Gao Q, Sun QM, Shi YH, Qiu SJ, Ke AW, Shi GM, Zhou J, Sun YD, Fan J. Macro CD5L + deteriorates CD8 +T cells exhaustion and impairs combination of Gemcitabine-Oxaliplatin-Lenvatinib-anti-PD1 therapy in intrahepatic cholangiocarcinoma. Nat Commun 2024; 15:621. [PMID: 38245530 PMCID: PMC10799889 DOI: 10.1038/s41467-024-44795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Intratumoral immune status influences tumor therapeutic response, but it remains largely unclear how the status determines therapies for patients with intrahepatic cholangiocarcinoma. Here, we examine the single-cell transcriptional and TCR profiles of 18 tumor tissues pre- and post- therapy of gemcitabine plus oxaliplatin, in combination with lenvatinib and anti-PD1 antibody for intrahepatic cholangiocarcinoma. We find that high CD8 GZMB+ and CD8 proliferating proportions and a low Macro CD5L+ proportion predict good response to the therapy. In patients with a poor response, the CD8 GZMB+ and CD8 proliferating proportions are increased, but the CD8 GZMK+ proportion is decreased after the therapy. Transition of CD8 proliferating and CD8 GZMB+ to CD8 GZMK+ facilitates good response to the therapy, while Macro CD5L+-CD8 GZMB+ crosstalk impairs the response by increasing CTLA4 in CD8 GZMB+. Anti-CTLA4 antibody reverses resistance of the therapy in intrahepatic cholangiocarcinoma. Our data provide a resource for predicting response of the combination therapy and highlight the importance of CD8+T-cell status conversion and exhaustion induced by Macro CD5L+ in influencing the response, suggesting future avenues for cancer treatment optimization.
Collapse
Affiliation(s)
- Jia-Cheng Lu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Lei-Lei Wu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi-Ning Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Yong Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chao Gao
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiao-Jun Guo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xu-Dong Qu
- Department of Intervention Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Chen
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Dong Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan-Zi Pei
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Xian-Long Meng
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Chen Liang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Peng-Fei Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiao-Ying Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qi-Man Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ai-Wu Ke
- Liver cancer Institute, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, 200032, Shanghai, China.
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Liver cancer Institute, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China.
| | - Yi-Di Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Liver cancer Institute, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of China, Shanghai, 200032, China.
| |
Collapse
|
15
|
Actis M, Fujii N, Mackey ZB. A phenotypic screen with Trypanosoma brucei for discovering small molecules that target the SLiM-binding pocket of proliferating cell nuclear antigen orthologs. Chem Biol Drug Des 2024; 103:e14361. [PMID: 37767622 DOI: 10.1111/cbdd.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a homo-trimeric protein complex that clamps around DNA to tether DNA polymerases to the template during replication and serves as a hub for many other interacting proteins. It regulates DNA metabolic processes and other vital cellar functions through the binding of proteins having short linear motifs (SLiMs) like the PIP-box (PCNA-interacting protein-box) or the APIM (AlkB homolog 2 PCNA-interacting motif) in the hydrophobic pocket where SLiMs bind. However, overproducing TbPCNA or human PCNA (hPCNA) in the pathogenic protist Trypanosoma brucei triggers a dominant-negative phenotype of arrested proliferation. The mechanism for arresting T. brucei proliferation requires the overproduced PCNA orthologs to have functional intact SLiM-binding pocket. Sight-directed mutagenesis studies showed that T. brucei overproducing PCNA variants with disrupted SLiM-binding pockets grew normally. We hypothesized that chemically disrupting the SLiM-binding pocket would restore proliferation in T. brucei, overproducing PCNA orthologs. Testing this hypothesis is the proof-of-concept for a T. brucei-based PCNA screening assay. The assay design is to discover bioactive small molecules that restore proliferation in T. brucei strains that overproduce PCNA orthologs, likely by disrupting interactions in the SLiM-binding pocket. The pilot screen for this assay discovered two hit compounds that linked to predetermined PCNA targets. Compound #1, a known hPCNA inhibitor, had selective bioactivity to hPCNA overproduced in T. brucei, validating the assay. Compound #6 had promiscuous bioactivity for hPCNA and TbPCNA but is the first compound discovered with bioactivity for inhibiting TbPCNA.
Collapse
Affiliation(s)
- Marisa Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zachary B Mackey
- Biochemistry Department, Fralin Life Science Institute Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
16
|
Vandborg B, Holroyd DL, Pukala T, Bruning JB. Production of recombinant human proliferating cellular nuclear antigen (PCNA) for structural and biophysical characterization. Protein Expr Purif 2023; 212:106353. [PMID: 37597793 DOI: 10.1016/j.pep.2023.106353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Human proliferating cell nuclear antigen (hPCNA) is a DNA replication processivity factor, which acts as a docking platform, allowing proteins to have access to the replication fork and increasing the affinity of DNA interacting proteins, making it critical for cell survival. The trimer forms a ring-shaped oligomer allowing DNA to pass through the middle and interacting proteins to dock on the outside of the ring. Without this structural formation, there is a loss of DNA replication and repair in the cell. Due to the location of subunit-subunit termini, the addition of a purification tag can hamper crystallography and biophysical experiments, as the trimer complex folding can be impeded. To avoid these complications, a tag-less, step-wise purification was implemented, which resulted in 17.6 mg from 2 L culture of pure hPCNA with a 260 nm/280 nm value of 0.43. The produced crystal structure reveals a correctly formed oligomer. The clear depletion of the tracer binding and probe protein interaction in a fluorescence polarisation competition-based assay demonstrates the purification method produces a protein structure with a functional binding site. This purification method presents a reliable and simple method for producing hPCNA for biophysical characterisation.
Collapse
Affiliation(s)
- B Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - D L Holroyd
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - T Pukala
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - J B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
17
|
Otçu S, Deveci E, Özgökçe Ç, Gürsoy GT, Tuncer MC. Protective effect of nebivolol on rat ovary exposed to deltamethrin toxicity. Acta Cir Bras 2023; 38:e385423. [PMID: 37878988 PMCID: PMC10629476 DOI: 10.1590/acb385423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE We aimed to investigate the antioxidant activity of nebivolol against possible damage to the ovarian tissue due to the application of deltamethrin as a toxic agent, by evaluating histopathological proliferating cell nuclear antigen (PCNA) and tumor necrosis factor-alpha (TNF-α) signal molecules immunohistochemically. METHODS The animals were divided into three groups as control, deltamethrin and deltamethrin + nebivolol groups. Vaginal smears were taken after the animals were mated and detected on the first day of pregnancy. After the sixth day, deltamethrin (0.5 mL of 30 mg/kg BW undiluted ULV), and 2 mL of sterile nebivolol solution were administered intraperitoneally every day for 6-21 periods. After routine histopathological follow-up, the ovarian tissue was stained with hematoxylin and eosin stain. RESULTS Control group showed normal histology of ovarium. In deltamethrin group, hyperplasic cells, degenerative follicles, pyknotic nuclei, inflammation and hemorrhagic areas were observed. Nebivolol treatment restored these pathologies. Deltamethrin treatment increased TNF-α and PCNA reaction. However, nebivolol decreased the expression. CONCLUSIONS It was thought that deltamethrin toxicity adversely affected follicle development by inducing degeneration and apoptotic process in preantral and antra follicle cells, and nebivolol administration might reduce inflammation and slow down the apoptotic signal in the nuclear phase and regulate reorganization.
Collapse
Affiliation(s)
- Serap Otçu
- Health Sciences University – Diyarbakır Gazi Yaşargil, Training and Research Hospital – Department of Obstetrics and Gynecology – Diyarbakır – Turkey
| | - Engin Deveci
- Dicle University – Medical School – Department of Histology and Embryology – Diyarbakır – Turkey
| | - Çağdaş Özgökçe
- Zeynep Kamil Hospital – Department of Obstetrics and Gynecology – Perinatology Department – Istanbul – Turkey
| | - Görkem Tutal Gürsoy
- Healt Ministry of Türkiye Republic – Ankara Bilkent City Hospital – Department of Neurology – Ankara –Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Medical School – Department of Anatomy – Diyarbakır – Turkey
| |
Collapse
|
18
|
Brzozowa-Zasada M, Piecuch A, Michalski M, Stęplewska K, Matysiak N, Kucharzewski M. Immunohistochemical Expression of Upregulated Gene 4 Protein Expression (URG4/URGCP) and Its Association with 5-Year Survival in Patients with Colon Adenocarcinoma. J Clin Med 2023; 12:5477. [PMID: 37685545 PMCID: PMC10488385 DOI: 10.3390/jcm12175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
(1) Background: Colorectal cancer (CRC) is the third most common cancer in terms of incidence and mortality. Approximately 90% of all colorectal cancer cases are adenocarcinomas, originating from epithelial cells of the colorectal mucosa. Upregulated gene 4 (URG4) is an oncogene involved in cancer development. The aim of the study was to assess the immunohistochemical expression of URG4 protein expression in Polish patients with colon adenocarcinoma who were not treated with any therapy before radical surgery. (2) Methods: The study used colon tissue samples taken from people with a confirmed diagnosis of colorectal adenocarcinoma after a thorough histopathological examination. The associations between the immunohistochemical expression of URG4 and clinical parameters were analyzed by the Chi2 test or Chi2Yatesa test. The study conducted an analysis of the correlation between the expression of URG4 and the five-year survival rate of patients through the application of the Kaplan-Meier analysis and the log-rank statistical test. The intracellular localization of URG4 was identified through the utilization of transmission electron microscopy (TEM) methodology. (3) Results: In univariate Cox regression analyses, immuno-histochemical expression of URG4, grade of histological differentiation, depth of invasion, angioinvasion, PCNA expression, stage of disease and lymph node involvement were found to be significant prognostic factors. Within our patient cohort, it was observed that the degree of tumour differentiation and URG4 expression were found to be distinct prognostic factors in regard to the 5-year survival rates of those with colon adenocarcinoma. (4) Conclusions: High immunohistochemical expression of URG4 correlates with poor prognosis in patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Katarzyna Stęplewska
- Department of Pathology, Institute of Medical Sciences, University of Opole, 45-052 Opole, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Marek Kucharzewski
- Faculty of Health Sciences, Jan Dlugosz University of Czestochowa, 42-200 Czestochowa, Poland
| |
Collapse
|
19
|
Horsfall AJ, Chav T, Pederick JL, Kikhtyak Z, Vandborg BC, Kowalczyk W, Scanlon DB, Tilley WD, Hickey TE, Abell AD, Bruning JB. Designing Fluorescent Nuclear Permeable Peptidomimetics to Target Proliferating Cell Nuclear Antigen. J Med Chem 2023; 66:10354-10363. [PMID: 37489955 DOI: 10.1021/acs.jmedchem.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Human proliferating cell nuclear antigen (PCNA) is a critical mediator of DNA replication and repair, acting as a docking platform for replication proteins. Disrupting these interactions with a peptidomimetic agent presents as a promising avenue to limit proliferation of cancerous cells. Here, a p21-derived peptide was employed as a starting scaffold to design a modular peptidomimetic that interacts with PCNA and is cellular and nuclear permeable. Ultimately, a peptidomimetic was produced which met these criteria, consisting of a fluorescein tag and SV40 nuclear localization signal conjugated to the N-terminus of a p21 macrocycle derivative. Attachment of the fluorescein tag was found to directly affect cellular uptake of the peptidomimetic, with fluorescein being requisite for nuclear permeability. This work provides an important step forward in the development of PCNA targeting peptidomimetics for use as anti-cancer agents or as cancer diagnostics.
Collapse
Affiliation(s)
- Aimee J Horsfall
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Theresa Chav
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Jordan L Pederick
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bethiney C Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Denis B Scanlon
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
20
|
Hardebeck S, Schreiber S, Adick A, Langer K, Jose J. A FRET-Based Assay for the Identification of PCNA Inhibitors. Int J Mol Sci 2023; 24:11858. [PMID: 37511614 PMCID: PMC10380293 DOI: 10.3390/ijms241411858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is the key regulator of human DNA metabolism. One important interaction partner is p15, involved in DNA replication and repair. Targeting the PCNA-p15 interaction is a promising therapeutic strategy against cancer. Here, a Förster resonance energy transfer (FRET)-based assay for the analysis of the PCNA-p15 interaction was developed. Next to the application as screening tool for the identification and characterization of PCNA-p15 interaction inhibitors, the assay is also suitable for the investigation of mutation-induced changes in their affinity. This is particularly useful for analyzing disease associated PCNA or p15 variants at the molecular level. Recently, the PCNA variant C148S has been associated with Ataxia-telangiectasia-like disorder type 2 (ATLD2). ATLD2 is a neurodegenerative disease based on defects in DNA repair due to an impaired PCNA. Incubation time dependent FRET measurements indicated no effect on PCNAC148S-p15 affinity, but on PCNA stability. The impaired stability and increased aggregation behavior of PCNAC148S was confirmed by intrinsic tryptophan fluorescence, differential scanning fluorimetry (DSF) and asymmetrical flow field-flow fractionation (AF4) measurements. The analysis of the disease associated PCNA variant demonstrated the versatility of the interaction assay as developed.
Collapse
Affiliation(s)
- Sarah Hardebeck
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Sebastian Schreiber
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| | - Annika Adick
- University of Münster, Institute for Pharmaceutical Technology and Biopharmacy, Pharmacampus, 48149 Münster, Germany
| | - Klaus Langer
- University of Münster, Institute for Pharmaceutical Technology and Biopharmacy, Pharmacampus, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany
| |
Collapse
|
21
|
Othman MS, Aboelnaga SM, Habotta OA, Moneim AEA, Hussein MM. The Potential Therapeutic Role of Green-Synthesized Selenium Nanoparticles Using Carvacrol in Human Breast Cancer MCF-7 Cells. APPLIED SCIENCES 2023; 13:7039. [DOI: 10.3390/app13127039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The disadvantages and side effects of currently available breast cancer (BC) therapies have compelled researchers to seek new therapeutic strategies. This study was designed to investigate the effect of selenium nanoparticles biosynthesized with carvacrol (SeNPs-CV) on breast cancer (MCF-7) cell lines and to explore possible underlying pathways. Flow cytometry, MTT assays, and various biochemical techniques were used to evaluate the anti-proliferative effects of SeNPs-CV on MCF-7 cells. Cytotoxicity assays showed that treatment with SeNPs-CV could effectively reduce MCF-7 cell proliferation and viability in a dose-dependent manner. However, SeNPs-CV had no cytotoxic effect against Vero cells. Furthermore, SeNPs-CV showed better anticancer activity than metal nanoparticles of selenium evidenced by the lower IC50 obtained in MCF-7 cells (8.3 µg/mL versus 41.6 µg/mL, respectively). Treatment with SeNPs-CV directly targeted Bcl-2, Bax, and caspase-3, leading to the mitochondrial leakage of cytochrome C and subsequent activation of the apoptotic cascade in MCF-7 cells. In addition, MCF-7 cells treated with SeNPs-CV exhibited elevated levels of oxidative stress, as indicated by noticeable rises in 8-OHDG, ROS, NO, and LPO, paralleled by significant exhaustion in GSH levels and antioxidant enzymes activity. In addition, the administration of SeNPs-CV induced the inflammatory mediator IL-1β and downregulated the expression of cell-proliferating nuclear antigen (PCNA) in MCF-7 cells, which plays a critical role in apoptosis. Therefore, the ability of SeNPs-CV to fight BC may be due to its ability to induce oxidative stress, inflammation, and apoptosis in tumor cells. These findings demonstrate the therapeutic potential of Se nanoparticles conjugated with CV, which may provide a novel approach for combination chemotherapy in BC.
Collapse
Affiliation(s)
- Mohamed S. Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza 12566, Egypt
| | - Shimaa M. Aboelnaga
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Manal M. Hussein
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
22
|
Bao X, Li W, Jia R, Meng D, Zhang H, Xia L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol Rep 2023:10.1007/s43440-023-00494-0. [PMID: 37202657 PMCID: PMC10374777 DOI: 10.1007/s43440-023-00494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Cancer is a significant disease that poses a major threat to human health. The main therapeutic methods for cancer include traditional surgery, radiotherapy, chemotherapy, and new therapeutic methods such as targeted therapy and immunotherapy, which have been developed rapidly in recent years. Recently, the tumor antitumor effects of the active ingredients of natural plants have attracted extensive attention. Ferulic acid (FA), (3-methoxy-4-hydroxyl cinnamic), with the molecular formula is C10H10O4, is a phenolic organic compound found in ferulic, angelica, jujube kernel, and other Chinese medicinal plants but is also, abundant in rice bran, wheat bran, and other food raw materials. FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity, as it can inhibit the occurrence and development of various malignant tumors, such as liver cancer, lung cancer, colon cancer, and breast cancer. FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS). FA can also interfere with the cell cycle of cancer cells, arrest most cancer cells in G0/G1 phase, and exert an antitumor effect by inducing autophagy; inhibiting cell migration, invasion, and angiogenesis; and synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions. FA acts on a series of intracellular and extracellular targets and is involved in the regulation of tumor cell signaling pathways, including the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), and tumor protein 53 (P53) pathways and other signaling pathways. In addition, FA derivatives and nanoliposomes, as platforms for drug delivery, have an important regulatory effect on tumor resistance. This paper reviews the effects and mechanisms of antitumor therapies to provide new theoretical support and insight for clinical antitumor therapy.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Li
- Department of Obstetrics and Gynecology, Linyi Third People's Hospital, Linyi, People's Republic of China
| | - Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
23
|
Follicular Atresia, Cell Proliferation, and Anti-Mullerian Hormone in Two Neotropical Primates (Aotus nancymae and Sapajus macrocephalus). Animals (Basel) 2023; 13:ani13061051. [PMID: 36978591 PMCID: PMC10044352 DOI: 10.3390/ani13061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 03/17/2023] Open
Abstract
This study evaluated the follicular atresia, cell proliferation, and anti-Mullerian hormone action in Aotus nancymae and Sapajus macrocephalus during three sexual phases (follicular, luteal, and gestational). Follicular quantification and immunolocalization of Caspase-3 protein, B-cell lymphoma 2 (BCL-2), proliferating cell nuclear antigen (PCNA), and anti-Mullerian hormone (AMH) were performed. A significant difference in the quantification between preantral and antral follicles, with a progressive decrease in the antrals, was identified. Protein and hormonal markers varied significantly between follicle cell types (A. nancymae p = 0.001; S. macrocephalus, p = 0.002). Immunostaining in the preantral and antral follicles was present in all sexual phases; for Caspase-3, in granulosa cells, oocytes, and stroma; for BCL-2, in granulosa cells, oocytes, and theca; and for PCNA and AMH, in oocytes and granulosa cells. The immunostaining for Caspase-3 was more expressive in the preantral follicles (follicular phase, p < 0.05), while that for BCL-2 and PCNA was more expressive in the antral follicles of the follicular phase. The AMH was more expressive in the primary and antral follicles of nonpregnant females, in both the follicular and luteal phases. Our results contribute to understanding the ovarian follicular selection, recruitment, and degeneration of these species.
Collapse
|
24
|
NKp44-Derived Peptide Used in Combination Stimulates Antineoplastic Efficacy of Targeted Therapeutic Drugs. Int J Mol Sci 2022; 23:ijms232214054. [PMID: 36430528 PMCID: PMC9692391 DOI: 10.3390/ijms232214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer cells in the tumor microenvironment facilitate immune evasion that leads to failure of conventional chemotherapies, despite provisionally decided on the genetic diagnosis of patients in a clinical setup. The current study follows three lung cancer patients who underwent "personalized" chemotherapeutic intervention. Patient-derived xenografts (PDXs) were subjected to tumor microarray and treatment screening with chemotherapies, either individually or in combination with the peptide R11-NLS-pep8; this peptide targets both membrane-associated and nuclear PCNA. Ex vivo, employing PDX-derived explants, it was found that combination with R11-NLS-pep8 stimulated antineoplastic effect of chemotherapies that were, although predicted based on the patient's genetic mutation, inactive on their own. Furthermore, treatment in vivo of PDX-bearing mice showed an exactly similar trend in the result, corroborating the finding to be translated into clinical setup.
Collapse
|
25
|
Neferine inhibits the growth of human osteosarcoma cells through activating P38/JNK and suppressing Wnt/β-catenin signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Gene Expression and DNA Methylation in Human Papillomavirus Positive and Negative Head and Neck Squamous Cell Carcinomas. Int J Mol Sci 2022; 23:ijms231810967. [PMID: 36142875 PMCID: PMC9504918 DOI: 10.3390/ijms231810967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk human papillomaviruses (HPV) are important agents, responsible for a large percentage of the 745,000 cases of head and neck squamous cell carcinomas (HNSCC), which were identified worldwide in 2020. In addition to being virally induced, tobacco and heavy alcohol consumption are believed to cause DNA damage contributing to the high number of HNSCC cases. Gene expression and DNA methylation differ between HNSCC based on HPV status. We used publicly available gene expression and DNA methylation profiles from the Cancer Genome Atlas and compared HPV positive and HPV negative HNSCC groups. We used differential gene expression analysis, differential methylation analysis, and a combination of these two analyses to identify the differences. Differential expression analysis identified 1854 differentially expressed genes, including PCNA, TNFRSF14, TRAF1, TRAF2, BCL2, and BIRC3. SYCP2 was identified as one of the top deregulated genes in the differential methylation analysis and in the combined differential expression and methylation analyses. Additionally, pathway and ontology analyses identified the extracellular matrix and receptor interaction pathway as the most altered between HPV negative and HPV positive HNSCC groups. Combining gene expression and DNA methylation can help in elucidating the genes involved in HPV positive HNSCC tumorigenesis, such as SYCP2 and TAF7L.
Collapse
|
27
|
Sulimenko V, Dráberová E, Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front Cell Dev Biol 2022; 10:880761. [PMID: 36158181 PMCID: PMC9503634 DOI: 10.3389/fcell.2022.880761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.
Collapse
Affiliation(s)
| | | | - Pavel Dráber
- *Correspondence: Vadym Sulimenko, ; Pavel Dráber,
| |
Collapse
|
28
|
Marín‐Tovar Y, Serrano‐Posada H, Díaz‐Vilchis A, Rudiño‐Piñera E. PCNA from
Thermococcus gammatolerans
: A protein involved in chromosomal
DNA
metabolism intrinsically resistant at high levels of ionizing radiation. Proteins 2022; 90:1684-1698. [DOI: 10.1002/prot.26346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yerli Marín‐Tovar
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| | - Hugo Serrano‐Posada
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ Universidad de Colima Colima Mexico
| | - Adelaida Díaz‐Vilchis
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| | - Enrique Rudiño‐Piñera
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México (UNAM) Cuernavaca Mexico
| |
Collapse
|
29
|
Wang YJ, Li QM, Zha XQ, Luo JP. Intervention and potential mechanism of non-starch polysaccharides from natural resources on ulcerative colitis: A review. Int J Biol Macromol 2022; 210:545-564. [PMID: 35513106 DOI: 10.1016/j.ijbiomac.2022.04.208] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology that affects the colon and rectum. It has evolved into a global burden due to the high incidence in developed countries and the highly-increased incidence in developing countries. Non-starch polysaccharides (NSPs) from natural resources, as a type of functional carbohydrates, have a significant therapeutic effect on UC because of their good anti-inflammatory and immunomodulatory activities. Based on the etiology and pathogenesis of UC, this review summarizes the intervention effects and mechanisms of NSPs in the prevention and treatment of UC. The results showed that NSPs can improve UC by protecting the intestinal mucosal barrier, regulating the immune response of the intestinal mucosa, and remodeling the intestinal flora and metabolites. These contents provide theoretical basis for the application of polysaccharides in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Yu-Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
30
|
Supplementation with High or Low Iron Reduces Colitis Severity in an AOM/DSS Mouse Model. Nutrients 2022; 14:nu14102033. [PMID: 35631174 PMCID: PMC9147005 DOI: 10.3390/nu14102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
The relationship between colitis-associated colorectal cancer (CAC) and the dysregulation of iron metabolism has been implicated. However, studies on the influence of dietary iron deficiency on the incidence of CAC are limited. This study investigated the effects of dietary iron deficiency and dietary non-heme iron on CAC development in an azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model. The four-week-old mice were divided into the following groups: iron control (IC; 35 ppm iron/kg) + normal (NOR), IC + AOM/DSS, iron deficient (ID; <5 ppm iron/kg diet) + AOM/DSS, and iron overload (IOL; approximately 2000 ppm iron/kg) + AOM/DSS. The mice were fed the respective diets for 13 weeks, and the AOM/DSS model was established at week five. FTH1 expression increased in the mice’s colons in the IC + AOM/DSS group compared with that observed in the ID and IOL + AOM/DSS groups. The reduced number of colonic tumors in the ID + AOM/DSS and IOL + AOM/DSS groups was accompanied by the downregulated expression of cell proliferation regulators (PCNA, cyclin D1, and c-Myc). Iron overload inhibited the increase in the expression of NF-κB and its downstream inflammatory cytokines (IL-6, TNFα, iNOS, COX2, and IL-1β), likely due to the elevated expression of antioxidant genes (SOD1, TXN, GPX1, GPX4, CAT, HMOX1, and NQO1). ID + AOM/DSS may hinder tumor development in the AOM/DSS model by inhibiting the PI3K/AKT pathway by increasing the expression of Ndrg1. Our study suggests that ID and IOL diets suppress AOM/DSS-induced tumors and that long-term iron deficiency or overload may negate CAC progression.
Collapse
|
31
|
Bhardwaj VK, Purohit R. A lesson for the maestro of the replication fork: Targeting the protein-binding interface of proliferating cell nuclear antigen for anticancer therapy. J Cell Biochem 2022; 123:1091-1102. [PMID: 35486518 DOI: 10.1002/jcb.30265] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
The proliferating cell nuclear antigen (PCNA) has emerged as a promising candidate for the development of novel cancer therapeutics. PCNA is a nononcogenic mediator of DNA replication that regulates a diverse range of cellular functions and pathways through a comprehensive list of protein-protein interactions. The hydrophobic binding pocket on PCNA offers an opportunity for the development of inhibitors to target various types of cancers and modulate protein-protein interactions. In the present study, we explored the binding modes and affinity of molecule I1 (standard molecule) with the previously suggested dimer interface pocket and the hydrophobic pocket present on the frontal side of the PCNA monomer. We also identified potential lead molecules from the library of in-house synthesized 3-methylenisoindolin-1-one based molecules to inhibit the protein-protein interactions of PCNA. Our results were based on robust computational methods, including molecular docking, conventional, steered, and umbrella sampling molecular dynamics simulations. Our results suggested that the standard inhibitor I1 interacts with the hydrophobic pocket of PCNA with a higher affinity than the previously suggested binding site. Also, the proposed molecules showed better or comparable binding free energies as calculated by the Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach and further validated by enhanced umbrella sampling simulations. In vitro and in vivo methods could test the computationally suggested molecules for advancement in the drug discovery pipeline.
Collapse
Affiliation(s)
- Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Division of Biotechnology, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Division of Biotechnology, CSIR-IHBT, Palampur, Himachal Pradesh, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
32
|
Iraqi M, Edri A, Greenshpan Y, Goldstein O, Ofir N, Bolel P, Abu Ahmad M, Zektser M, Campbell KS, Rouvio O, Gazit R, Porgador A. Blocking the PCNA/NKp44 Checkpoint to Stimulate NK Cell Responses to Multiple Myeloma. Int J Mol Sci 2022; 23:4717. [PMID: 35563109 PMCID: PMC9105815 DOI: 10.3390/ijms23094717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Multiple Myeloma (MM) is a devastating malignancy that evades immune destruction using multiple mechanisms. The NKp44 receptor interacts with PCNA (Proliferating Cell Nuclear Antigen) and may inhibit NK cells' functions. Here we studied in vitro the expression and function of PCNA on MM cells. First, we show that PCNA is present on the cell membrane of five out of six MM cell lines, using novel anti-PCNA mAb developed to recognize membrane-associated PCNA. Next, we stained primary bone marrow (BM) mononuclear cells from MM patients and showed significant staining of membrane-associated PCNA in the fraction of CD38+CD138+ BM cells that contain the MM cells. Importantly, blocking of the membrane PCNA on MM cells enhanced the activity of NK cells, including IFN-γ-secretion and degranulation. Our results highlight the possible blocking of the NKp44-PCNA immune checkpoint by the mAb 14-25-9 antibody to enhance NK cell responses against MM, providing a novel treatment option.
Collapse
Affiliation(s)
- Muhammed Iraqi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Oron Goldstein
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Noa Ofir
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Priyanka Bolel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Muhammad Abu Ahmad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
| | - Miri Zektser
- Internal Medicine A and Multiple Myeloma Clinic, Soroka Medical Center, Beer Sheva 8489501, Israel; (M.Z.); (O.R.)
| | - Kerry S. Campbell
- Blood Cell Development and Host Defense Program, Research Institute at Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Ory Rouvio
- Internal Medicine A and Multiple Myeloma Clinic, Soroka Medical Center, Beer Sheva 8489501, Israel; (M.Z.); (O.R.)
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (M.I.); (A.E.); (Y.G.); (O.G.); (N.O.); (P.B.); (M.A.A.); (R.G.)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
33
|
Alqalshy EM, Ibrahim AM, Abdel-Hafiz AAS, Kamal KAER, Alazzazi MA, Omar MR, Abdel-Wahab AS, Mohammed SS. Effect of docosahexaenoic acid as a chemopreventive agent on experimentally induced hamster buccal pouch carcinogenesis. Cancer Treat Res Commun 2022; 31:100558. [PMID: 35443225 DOI: 10.1016/j.ctarc.2022.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE The current study was directed to investigate the effectiveness of docosahexaenoic acid (DHA) as a chemopreventive agent on experimentally induced hamster buccal pouch (HBP) carcinogenesis. MATERIAL AND METHODS In this study we used 40 Syrian male hamsters, five weeks old, were divided into 4 groups (GI, GII, GIII, and GIV) of 10 animals in each as follows, GI: Topical application of liquid paraffin alone (thrice a week for 14 weeks), GII: Topical application of 7, 12 dimethyl benz[a]anthracene (DMBA) alone (0.5% in liquid paraffin, thrice a week for 14 weeks), GIII: Topical application of DMBA (0.5% in liquid paraffin, thrice a week for 14 weeks) + Oral administration of DHA (125 mg/kg b.w. in 1 ml distilled water by oral gavage, thrice a week for 14 weeks on alternative days of DMBA application), GIV: Oral administration of DHA alone (125 mg/kg b.w. in 1 ml distilled water by oral gavage, thrice a week for 14 weeks). RESULTS Gross observations and histopathological findings revealed that, in GI: normal stratified squamous epithelium, in GII: well and moderately differentiated squamous cell carcinoma (SCC), in GIII: variable results ranges from hyperkeratosis, hyperkeratosis and focal hyperplasia, mild dysplasia, and well differentiated SCC with superficial invasion of tumor cells not extended to deeper areas, while in GIV: normal similar to GI. Immunohistochemical results indicated that oral DHA treatment to DMBA treated hamsters restored the normal expression of bcl-2. CONCLUSION Our results indicated that DHA has the potential to be a dietary chemopreventive agent due to its capacity to improve carcinogen detoxification and to block/suppress the initiation and promotion stages of experimentally produced HBP carcinogenesis.
Collapse
Affiliation(s)
| | - Amr Mohamed Ibrahim
- Faculty of Dental Medicine (Boys-Cairo), AL- Azhar University, Basic Dental Sciences Department, Faculty of Dentistry, Deraya University, New Miya, Minya, Egypt.
| | | | | | - Magdy Alabasiry Alazzazi
- Faculty of Dental Medicine (Boys-Cairo), AL- Azhar University, Egypt; Oral Biology, College of Dentistry, The Islamic University, Najaf, Iraq
| | | | | | | |
Collapse
|
34
|
Govoni M, Rossi V, Di Stefano G, Manerba M. Lactate Upregulates the Expression of DNA Repair Genes, Causing Intrinsic Resistance of Cancer Cells to Cisplatin. Pathol Oncol Res 2022; 27:1609951. [PMID: 34987311 PMCID: PMC8720744 DOI: 10.3389/pore.2021.1609951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
Intrinsic or acquired drug resistance is one of the major problems compromising the success of antineoplastic treatments. Several evidences correlated some therapeutic failures with changes in cell metabolic asset and in line with these findings, hindering the glycolytic metabolism of cancer cells via lactate dehydrogenase (LDH) inhibition was found to overcome the resistance to chemotherapeutic agents. Lactate, the product of LDH reaction, was shown to be involved in epigenetic regulation of gene expression. The experiments described in this paper were aimed at highlighting a possible direct effect of lactate in modifying the response of cancer cells to a chemotherapeutic treatment. To discriminate between the effects potentially caused by glycolytic metabolism from those directly referable to lactate, we selected cancer cell lines able to grow in glucose deprived conditions and evaluated the impact of lactate on the cellular response to cisplatin-induced DNA damage. In lactate-exposed cells we observed a reduced efficacy of cisplatin, which was associated with reduced signatures of DNA damage, enhanced DNA recombination competence and increased expression of a panel of genes involved in DNA repair. The identified genes take part in mismatch and nucleotide excision repair pathways, which were found to contribute in restoring the cisplatin-induced DNA damage. The obtained results suggest that this metabolite could play a role in reducing the efficacy of antineoplastic treatments.
Collapse
Affiliation(s)
- Marzia Govoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Valentina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marcella Manerba
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Manning RJ, Tschurtschenthaler M, Sabitzer S, Witte A. Manipulation of viral protein production using the PCNA of halovirus фCh1 via alternative start codon usage. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
36
|
Razmienė B, Řezníčková E, Dambrauskienė V, Ostruszka R, Kubala M, Žukauskaitė A, Kryštof V, Šačkus A, Arbačiauskienė E. Synthesis and Antiproliferative Activity of 2,4,6,7-Tetrasubstituted-2 H-pyrazolo[4,3- c]pyridines. Molecules 2021; 26:6747. [PMID: 34771163 PMCID: PMC8588486 DOI: 10.3390/molecules26216747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
A library of 2,4,6,7-tetrasubstituted-2H-pyrazolo[4,3-c]pyridines was prepared from easily accessible 1-phenyl-3-(2-phenylethynyl)-1H-pyrazole-4-carbaldehyde via an iodine-mediated electrophilic cyclization of intermediate 4-(azidomethyl)-1-phenyl-3-(phenylethynyl)-1H-pyrazoles to 7-iodo-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridines followed by Suzuki cross-couplings with various boronic acids and alkylation reactions. The compounds were evaluated for their antiproliferative activity against K562, MV4-11, and MCF-7 cancer cell lines. The most potent compounds displayed low micromolar GI50 values. 4-(2,6-Diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol proved to be the most active, induced poly(ADP-ribose) polymerase 1 (PARP-1) cleavage, activated the initiator enzyme of apoptotic cascade caspase 9, induced a fragmentation of microtubule-associated protein 1-light chain 3 (LC3), and reduced the expression levels of proliferating cell nuclear antigen (PCNA). The obtained results suggest a complex action of 4-(2,6-diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol that combines antiproliferative effects with the induction of cell death. Moreover, investigations of the fluorescence properties of the final compounds revealed 7-(4-methoxyphenyl)-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridine as the most potent pH indicator that enables both fluorescence intensity-based and ratiometric pH sensing.
Collapse
Affiliation(s)
- Beatričė Razmienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.R.); (V.D.); (A.Š.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Eva Řezníčková
- Department of Experimental Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (E.Ř.); (V.K.)
| | - Vaida Dambrauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.R.); (V.D.); (A.Š.)
| | - Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University, 17. Listopadu 12, CZ-77146 Olomouc, Czech Republic; (R.O.); (M.K.)
| | - Martin Kubala
- Department of Experimental Physics, Faculty of Science, Palacký University, 17. Listopadu 12, CZ-77146 Olomouc, Czech Republic; (R.O.); (M.K.)
| | - Asta Žukauskaitė
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (E.Ř.); (V.K.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, CZ-77900 Olomouc, Czech Republic
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.R.); (V.D.); (A.Š.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.R.); (V.D.); (A.Š.)
| |
Collapse
|
37
|
Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 2021; 10:cells10112908. [PMID: 34831131 PMCID: PMC8616177 DOI: 10.3390/cells10112908] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Peptides are increasingly being developed for use as therapeutics to treat many ailments, including cancer. Therapeutic peptides have the advantages of target specificity and low toxicity. The anticancer effects of a peptide can be the direct result of the peptide binding its intended target, or the peptide may be conjugated to a chemotherapy drug or radionuclide and used to target the agent to cancer cells. Peptides can be targeted to proteins on the cell surface, where the peptide–protein interaction can initiate internalization of the complex, or the peptide can be designed to directly cross the cell membrane. Peptides can induce cell death by numerous mechanisms including membrane disruption and subsequent necrosis, apoptosis, tumor angiogenesis inhibition, immune regulation, disruption of cell signaling pathways, cell cycle regulation, DNA repair pathways, or cell death pathways. Although using peptides as therapeutics has many advantages, peptides have the disadvantage of being easily degraded by proteases once administered and, depending on the mode of administration, often have difficulty being adsorbed into the blood stream. In this review, we discuss strategies recently developed to overcome these obstacles of peptide delivery and bioavailability. In addition, we present many examples of peptides developed to fight cancer.
Collapse
|
38
|
Xu Y, Chen X, Pan S, Wang ZW, Zhu X. TM7SF2 regulates cell proliferation and apoptosis by activation of C-Raf/ERK pathway in cervical cancer. Cell Death Discov 2021; 7:299. [PMID: 34667152 PMCID: PMC8526692 DOI: 10.1038/s41420-021-00689-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Transmembrane 7 superfamily member 2 (TM7SF2) coding an enzyme involved in cholesterol metabolism has been found to be differentially expressed in kinds of tissues. Nevertheless, the role of TM7SF2 in the regulation of growth and progression among various cancers is unclear. In this study, the immunohistochemistry (IHC) assay, real-time RT-PCR and western blotting analysis were used to determine the TM7SF2 expression in cervical cancer tissues. Next, we used multiple methods to determine the ability of cell proliferation, migration, invasion, apoptosis, and cell cycle in cervical cancer cells after TM7SF2 modulation, such as CCK8 assay, colony formation assay, Transwell assay, wound healing assay, and flow cytometry. Our results revealed that upregulation of TM7SF2 facilitated cell proliferation and metastasis, suppressed cell apoptosis and prevented G0/G1 phase arrests in C33A and SiHa cells. Consistently, the opposite effects were observed after TM7SF2 knockout in cervical cancer cells. Further, we found that TM7SF2 participated in promoting tumorigenesis and progression via activation of C-Raf/ERK pathway in cervical cancer, which can be partly reversed by Raf inhibitor LY3009120. Moreover, TM7SF2 overexpression contributed to enhancement of xenograft tumor growth in vivo. Our findings indicated that TM7SF2 plays a vital role in tumor promotion by involving in C-Raf/ERK activation. Therefore, TM7SF2 could serve as a therapeutic target in future cervical cancer treatment.
Collapse
Affiliation(s)
- Yichi Xu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xin Chen
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shuya Pan
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhi-Wei Wang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
39
|
Horsfall AJ, Vandborg BA, Kikhtyak Z, Scanlon DB, Tilley WD, Hickey TE, Bruning JB, Abell AD. A cell permeable bimane-constrained PCNA-interacting peptide. RSC Chem Biol 2021; 2:1499-1508. [PMID: 34704055 PMCID: PMC8496261 DOI: 10.1039/d1cb00113b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
The human sliding clamp protein known as proliferating cell nuclear antigen (PCNA) orchestrates DNA-replication and -repair and as such is an ideal therapeutic target for proliferative diseases, including cancer. Peptides derived from the human p21 protein bind PCNA with high affinity via a 310-helical binding conformation and are known to shut down DNA-replication. Here, we present studies on short analogues of p21 peptides (143-151) conformationally constrained with a covalent linker between i, i + 4 separated cysteine residues at positions 145 and 149 to access peptidomimetics that target PCNA. The resulting macrocycles bind PCNA with K D values ranging from 570 nM to 3.86 μM, with the bimane-constrained peptide 7 proving the most potent. Subsequent X-ray crystallography and computational modelling studies of the macrocyclic peptides bound to PCNA indicated only the high-affinity peptide 7 adopted the classical 310-helical binding conformation. This suggests the 310-helical conformation is critical to high affinity PCNA binding, however NMR secondary shift analysis of peptide 7 revealed this secondary structure was not well-defined in solution. Peptide 7 is cell permeable and localised to the cell cytosol of breast cancer cells (MDA-MB-468), revealed by confocal microscopy showing blue fluorescence of the bimane linker. The inherent fluorescence of the bimane moiety present in peptide 7 allowed it to be directly imaged in the cell uptake assay, without attachment of an auxiliary fluorescent tag. This highlights a significant benefit of using a bimane constraint to access conformationally constrained macrocyclic peptides. This study identifies a small peptidomimetic that binds PCNA with higher affinity than previous reported p21 macrocycles, and is cell permeable, providing a significant advance toward development of a PCNA inhibitor for therapeutic applications.
Collapse
Affiliation(s)
- Aimee J Horsfall
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Physical Sciences, The University of Adelaide Adelaide South Australia 5005 Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP) Australia
| | - Beth A Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Biological Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide Adelaide South Australia 5005 Australia
| | - Denis B Scanlon
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Physical Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide Adelaide South Australia 5005 Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide Adelaide South Australia 5005 Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Biological Sciences, The University of Adelaide Adelaide South Australia 5005 Australia
| | - Andrew D Abell
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide Adelaide South Australia 5005 Australia .,School of Physical Sciences, The University of Adelaide Adelaide South Australia 5005 Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP) Australia
| |
Collapse
|
40
|
Kumar Bhardwaj V, Purohit R. Taming the ringmaster of the genome (PCNA): Phytomolecules for anticancer therapy against a potential non-oncogenic target. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Abd Eldaim MA, Tousson E, Soliman MM, El Sayed IET, Abdel Aleem AAH, Elsharkawy HN. Grape seed extract ameliorated Ehrlich solid tumor-induced hepatic tissue and DNA damage with reduction of PCNA and P53 protein expression in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44226-44238. [PMID: 33851294 DOI: 10.1007/s11356-021-13904-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the ameliorative potential of grape seed extract (GSE) against Ehrlich solid tumor (EST)-induced hepatic tissue alterations in mice. The control group was infused with physiological saline. The second group received GSE (50 mg/kg day by day orally) for 2 weeks. The third group was subcutaneously injected with 2.5 million of EST cells. The fourth group was injected with EST cells and treated with GSE extract simultaneously. The fifth group was injected with EST cells and kept for 2 weeks until the appearance of a solid tumor, then treated with GSE for 2 weeks. The phytochemical analysis of GSE revealed the presence of total phenols (17.442 mg GAE/g) and total flavonoid (6.687 mg CE/g) with antioxidant activity of 81.506 mg TE/g DPPH. The Ehrlich solid tumor significantly raised the activities of ALT, AST, and ALP; the level of alpha fetoprotein (AFP) in serum; and the protein expressions of hepatic proliferating cell nuclear antigen (PCNA) and tumor suppressor protein (P53), as well as induced DNA damage and pathological alterations in liver tissue. However, it significantly reduced serum albumin and total protein levels. In contrast, the co- or post-treatment of EST-bearing mice with GSE reduced the activities of ALT, AST, and ALP; the level AFP in serum; and hepatic P53 and PCNA protein expressions. In addition, it reduced EST-induced hepatic DNA damage and pathological alterations, while it increased serum albumin and total protein levels. This study suggested that GSE is a potent hepatoprotective agent and both co- and post-treatment of EST-bearing mice with GSE almost had the same effects.
Collapse
Affiliation(s)
- Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt.
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | | | | | | |
Collapse
|
42
|
The γ-tubulin meshwork assists in the recruitment of PCNA to chromatin in mammalian cells. Commun Biol 2021; 4:767. [PMID: 34158617 PMCID: PMC8219688 DOI: 10.1038/s42003-021-02280-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Changes in the location of γ-tubulin ensure cell survival and preserve genome integrity. We investigated whether the nuclear accumulation of γ-tubulin facilitates the transport of proliferating cell nuclear antigen (PCNA) between the cytosolic and the nuclear compartment in mammalian cells. We found that the γ-tubulin meshwork assists in the recruitment of PCNA to chromatin. Also, decreased levels of γ-tubulin reduce the nuclear pool of PCNA. In addition, the γ-tubulin C terminus encodes a PCNA-interacting peptide (PIP) motif, and a γ-tubulin–PIP-mutant affects the nuclear accumulation of PCNA. In a cell-free system, PCNA and γ-tubulin formed a complex. In tumors, there is a significant positive correlation between TUBG1 and PCNA expression. Thus, we report a novel mechanism that constitutes the basis for tumor growth by which the γ-tubulin meshwork maintains indefinite proliferation by acting as an opportune scaffold for the transport of PCNA from the cytosol to the chromatin. Corvaisier et al discover that γ-tubulin and replication protein PCNA forms a complex and that this facilitates recruitment of PCNA to chromatin both during cell division and during the DSB repair response. They identify a PCNA binding motif in γ-tubulin, which when mutated affects replication fork progression, providing insights into the role of the nuclear γ-tubulin meshwork.
Collapse
|
43
|
Calunduloside E inhibits HepG2 cell proliferation and migration via p38/JNK-HMGB1 signalling axis. J Pharmacol Sci 2021; 147:18-26. [PMID: 34294368 DOI: 10.1016/j.jphs.2021.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
High-mobility group box 1 (HMGB1), a highly conserved chromosome protein, is considered as a potential therapeutic target and novel biomarker because of its regulation in the proliferation and metastasis of Hepatocellular carcinoma (HCC). Calenduloside E (CE), a natural active product, has been reported to anti-cancer effect. However, the role and underlying molecular mechanism of CE in HCC is still unclear. The purpose of this study is to investigate the effects of CE on the proliferation and migration of HCC, and then explore the possible underlying molecular mechanism. HepG2 cells were treated with CE or transfected with HMGB1 shRNA plasmids, EdU and colony formation assays were used to detect cell proliferation ability. Wound healing and transwell assays were used to determine the role of CE in cell migration. The expression of Cyclins, PCNA, MMPs, HMGB1, N-cadherin, E-cadherin and phosphorylation of p38, ERK and JNK were all detected using Western blotting. Our results showed that CE inhibited HepG2 cells proliferation and migration in a dose dependent manner; reduced the expression levels of Cycins, PCNA, HMGB1, MMPs and N-cadherin; up-regulated E-cadherin expression; enhanced the phosphorylation of p38 and JNK signalling pathways. Blocking the activation of p38 and JNK obviously reversed CE-mediated inhibitory effects on HepG2 cell proliferation and migration; reversed CE-induced down-regulation of Cyclins, PCNA, MMPs, N-cadherin and HMGB1, as well as E-cadherin up-regulation. In conclusion, our study suggested that CE reduces the expression levels of Cyclins, MMPs and epithelial-mesenchymal transformation (EMT) through p38/JNK-HMGB1 signaling axis and then inhibits HepG2 cells proliferation and migration in HepG2 cells. This study provides a new perspective for the anti-tumour molecular mechanism of CE in HCC.
Collapse
|
44
|
Lu S, Dong Z. Proliferating cell nuclear antigen directly interacts with androgen receptor and enhances androgen receptor‑mediated signaling. Int J Oncol 2021; 59:41. [PMID: 33982774 DOI: 10.3892/ijo.2021.5221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Androgen receptor (AR) and/or its constitutively active splicing variants (AR‑Vs), such as AR‑V7 and ARv567es, is required for prostate cancer cell growth and survival, and cancer progression. Proliferating cell nuclear antigen (PCNA) is preferentially overexpressed in all cancers and executes its functions through interaction with numerous partner proteins. The aim of the present study was to investigate the potential role of PCNA in the regulation of AR activity. An identical consensus sequence of the PCNA‑interacting protein‑box (PIP‑box) was identified at the N‑terminus of human, mouse and rat AR proteins. It was found that PCNA complexes with the full‑length AR (AR‑FL) and AR‑V7, which can be attenuated by the small molecule PIP‑box inhibitor, T2AA. PCNA also complexes with ARv567es and recombinant AR protein. The PCNA inhibitors, PCNA‑I1S and T2AA, inhibited AR transcriptional activity and the expression of AR target genes in LNCaP‑AI and 22Rv1 cells, but not in AR‑negative PC‑3 cells. The knockdown of PCNA expression reduced dihydrotestosterone‑stimulated AR transcriptional activity and abolished the inhibitory effect of PCNA‑I1S on AR activity. The PCNA inhibitor, PCNA‑I1, exerted additive growth inhibitory effects with androgen deprivation and enzalutamide in cells expressing AR‑FL or AR‑FL/AR‑V7, but not in AR‑negative PC‑3 cells. Finally, R9‑AR‑PIP, a small peptide mimicking AR PIP‑box, was found to bind to GFP‑PCNA at Kd of 2.73 µM and inhibit the expression of AR target genes, AR transcriptional activity and the growth of AR‑expressing cells. On the whole, these data strongly suggest that AR is a PCNA partner protein and interacts with PCNA via the PIP‑box and that targeting the PCNA‑AR interaction may represent an innovative and selective therapeutic strategy against prostate cancer, particularly castration‑resistant prostate cancers overexpressing constitutively active AR‑Vs.
Collapse
Affiliation(s)
- Shan Lu
- Division of Hematology‑Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongyun Dong
- Division of Hematology‑Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
45
|
Horsfall AJ, Vandborg BA, Kowalczyk W, Chav T, Scanlon DB, Abell AD, Bruning JB. Unlocking the PIP-box: A peptide library reveals interactions that drive high-affinity binding to human PCNA. J Biol Chem 2021; 296:100773. [PMID: 33984330 PMCID: PMC8191301 DOI: 10.1016/j.jbc.2021.100773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022] Open
Abstract
The human sliding clamp, Proliferating Cell Nuclear Antigen (hPCNA), interacts with over 200 proteins through a conserved binding motif, the PIP-box, to orchestrate DNA replication and repair. It is not clear how changes to the features of a PIP-box modulate protein binding and thus how they fine-tune downstream processes. Here, we present a systematic study of each position within the PIP-box to reveal how hPCNA-interacting peptides bind with drastically varied affinities. We synthesized a series of 27 peptides derived from the native protein p21 with small PIP-box modifications and another series of 19 peptides containing PIP-box binding motifs from other proteins. The hPCNA-binding affinity of all peptides, characterized as KD values determined by surface plasmon resonance, spanned a 4000-fold range, from 1.83 nM to 7.59 μM. The hPCNA-bound peptide structures determined by X-ray crystallography and modeled computationally revealed intermolecular and intramolecular interaction networks that correlate with high hPCNA affinity. These data informed rational design of three new PIP-box sequences, testing of which revealed the highest affinity hPCNA-binding partner to date, with a KD value of 1.12 nM, from a peptide with PIP-box QTRITEYF. This work showcases the sequence-specific nuances within the PIP-box that are responsible for high-affinity hPCNA binding, which underpins our understanding of how nature tunes hPCNA affinity to regulate DNA replication and repair processes. In addition, these insights will be useful to future design of hPCNA inhibitors.
Collapse
Affiliation(s)
- Aimee J Horsfall
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Beth A Vandborg
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Theresa Chav
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Denis B Scanlon
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
46
|
Horsfall AJ, Chav T, Bruning JB, Abell AD. A turn-on fluorescent PCNA sensor. Bioorg Med Chem Lett 2021; 41:128031. [PMID: 33839250 DOI: 10.1016/j.bmcl.2021.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
The solvatochromic amino-acids 4-DMNA or 4-DAPA, were separately introduced at position 147, 150 or 151 of a short p21 peptide (141-155) known to bind sliding clamp protein PCNA. The ability of these peptides, 1a-3a and 1b-3b, to act as a turn-on fluorescent sensor for PCNA was then investigated. The 4-DMNA-containing peptides (1a-3a) displayed up to a 40-fold difference in fluorescence between a polar (Tris buffer) and a hydrophobic solvent (dioxane with 5 mM 18-crown-6), while the 4-DAPA-containing peptides (1b-3b) displayed a significantly enhanced (300-fold) increase in fluorescence from Tris buffer to dioxane with 18-crown-6. SPR analysis of the peptides against PCNA revealed that the 151-substituted peptides 3a and 3b interacted specifically with PCNA, with KD values of 921 nM and 1.28 μM, respectively. Analysis of the fluorescence of these peptides in the presence of increasing concentrations of PCNA revealed a 10-fold change in fluorescence for 3a at 2.5 equivalents of PCNA, compared to only a 3.5-fold change in fluorescence for 3b. Peptide 3a is an important lead for development of a PCNA-selective turn-on fluorescent sensor for application as a cell proliferation sensor to investigate diseases such as cancer.
Collapse
Affiliation(s)
- Aimee J Horsfall
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa Chav
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
47
|
Song X, Yan T, Tian F, Li F, Ren L, Li Q, Zhang S. Aptamer Functionalized Upconversion Nanotheranostic Agent With Nuclear Targeting as the Highly Localized Drug-Delivery System of Doxorubicin. Front Bioeng Biotechnol 2021; 9:639487. [PMID: 33692990 PMCID: PMC7937813 DOI: 10.3389/fbioe.2021.639487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
As a widely used anticancer drug, doxorubicin (DOX) could induce cell death mainly via interfering with DNA activity; thus, DOX could perform therapeutic effects mainly in the cell nucleus. However, most of the reported drug delivery systems lacked the well localization in the nucleus and released DOX molecules into the cytoplasm. Due to formidable barriers formed in the nuclear envelope, only around 1% of DOX could reach the nucleus and keep active. Therefore, DOX molecules were inevitably overloaded to achieve the desired therapeutic efficacy, which would induce serious side effects. Herein, we developed a highly localized drug nanocarrier for in situ release of DOX molecules to their action site where they could directly interfere with the DNA activity. In this work, we used cationic polymer-modified upconversion nanoparticles (UCNPs) as the luminescence core and gene carrier, while aptamers served as the DNA nanotrain to load DOX. Finally, the prepared nanotheranostic agent displayed good targetability, high cell apoptosis ratio (93.04%) with quite lower concentration than the LC50 of DOX, and obvious inhibition on tumor growth.
Collapse
Affiliation(s)
- Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong, China.,Materials Science and Engineering, Mobile Postdoctoral Center, Qingdao University, Shandong, China
| | - Tao Yan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong, China
| | - Feng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong, China
| | - Fengyan Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong, China
| | - Linlin Ren
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong, China.,Materials Science and Engineering, Mobile Postdoctoral Center, Qingdao University, Shandong, China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong, China
| |
Collapse
|
48
|
Gong Y, Huang T, Yu Q, Liu B, Wang J, Wang Z, Huang X. Sorafenib suppresses proliferation rate of fibroblast-like synoviocytes through the arrest of cell cycle in experimental adjuvant arthritis. J Pharm Pharmacol 2021; 73:32-39. [PMID: 33791811 DOI: 10.1093/jpp/rgaa053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/08/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Rheumatoid arthritis, a recurrent incendiary autoimmune joint syndrome, features by prominent synovial hyperplasia. Fibroblast-like synoviocytes are the executive components in the pathogenesis of rheumatoid arthritis. It is generally accepted that excessive proliferation and reduced apoptosis of fibroblast-like synoviocytes lead to synovial hyperplasia. Our previously studies found that sorafenib could inhibit adjuvant arthritis in rats and induced adjuvant arthritis fibroblast-like synoviocytes apoptosis. Presently, we aim to investigate the inhibitory effect with mechanisms of action of sorafenib on adjuvant arthritis fibroblast-like synoviocytes proliferation. METHODS Cell counting kit-8 and flow cytometry detection were conducted to monitor FLSs proliferation and cell cycle. Western blotting and qPCR assays were performed to detect P21, P53, CDK4, CyclinD1 and proliferating cell nuclear antigen content levels. KEY FINDINGS Sorafenib significantly inhibited adjuvant arthritis fibroblast-like synoviocytes proliferation with an IC50 value of 4 µmol/L by a concentration-dependent pattern, which accompanies by G1 cell cycle arrest. Also, sorafenib significantly decreased the levels of P21, CyclinD1, CDK4 and proliferating cell nuclear antigen, as well as up-regulated P53 expression in adjuvant arthritis fibroblast-like synoviocytes. CONCLUSIONS Sorafenib could inhibit adjuvant arthritis fibroblast-like synoviocytes proliferation via arresting G1/S cell cycle progression, which was partially through CDK4/CyclinD1-mediated pathway, as well as up-regulating P53 and down-regulating proliferating cell nuclear antigen expressions. These results suggest that sorafenib may provide a new paradigm for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- YongFang Gong
- Department of Anatomy, Bengbu Medical College, Bengbu, China
- Department of Anatomy, Anhui Medical University, Hefei, China
| | - TianYu Huang
- Grade 2016, Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - QiRui Yu
- Grade 2017, Department of medical imaging, Bengbu Medical College, Bengbu, China
| | - Biao Liu
- Grade 2016, Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Jing Wang
- Grade 2016, Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - ZhenHuan Wang
- Department of Anatomy, Bengbu Medical College, Bengbu, China
| | - XueYing Huang
- Department of Anatomy, Anhui Medical University, Hefei, China
| |
Collapse
|
49
|
Abdel-Hamid NM, Abd Allah SG, Hassan MK, Ahmed AAM, Anber NH, Adel Faried I. Possible Protective Potency of Argun Nut ( Medemia argun - An Ancient Egyptian Palm) against Hepatocellular Carcinoma in Rats. Nutr Cancer 2021; 74:527-538. [PMID: 33570439 DOI: 10.1080/01635581.2021.1883683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Medemia argun (MA) fruits have been found to possess proanthocyanidins (PACs), having antioxidant activity. Methods: Intraperitoneal (IP) diethyl nitrosamine (DENA; 200 mg/kg, once) and carbon tetra chloride (CCl4, 3 ml/kg/week, subcutaneously, for 6 weeks) induced HCC in rats. Animals groups: Group I; received vehicle (control). Group II; received MA seed extract, 100 mg/kg (twice/week) for 12 weeks, IP. Group III; received carcinogenic agents only. Group IV; received MA for two weeks before administration of DENA/CCl4 till the end of the experiment. The total period of the experiment was three months. Results: DENA and CCl4 induced HCC, elevated serum alpha-fetoprotein (AFP), liver size, weight, tissue lymphocytic infiltration, nuclear/cytoplasmic ratio, collagen fiber and polysaccharide deposition, cellular proliferation, excessive pro-apoptotic caspase-3 accumulation, disrupted apoptosis. MA prior to DENA/CCl4, significantly protected liver against cancer progression, indicated by serum enzymes, antioxidant markers(glutathione, nitric oxide, and depressed malondialdehyde contents) in the MA-pretreated group, compared to the HCC one, without apparent useful action on superoxide dismutase activity, enhanced apoptosis in liver, through increased casapase-3 expression. The HCC group showed decreased antioxidant defense and BAX/Bcl-2 ratio. Conclusions: This study assumes that MA has a chemo-preventive effect against hepatocarcinogenesis.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Sara Gamal Abd Allah
- Department of Biotechnology, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Mohamed K Hassan
- Department of Biotechnology, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Amal A M Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Nahla H Anber
- Fellow of Biochemistry in the Emergency Hospital, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
50
|
Rosental B, Hadad U, Brusilovsky M, Campbell KS, Porgador A. A novel mechanism for cancer cells to evade immune attack by NK cells: The interaction between NKp44 and proliferating cell nuclear antigen. Oncoimmunology 2021; 1:572-574. [PMID: 22754791 PMCID: PMC3382898 DOI: 10.4161/onci.19366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We recently reported proliferating cell nuclear antigen (PCNA) as a ligand for the NK cell activating receptor, NKp44, which unexpectedly triggers inhibition. The recognition of nuclear proteins such as PCNA, by related NK cell receptors has been reported. Widespread upregulation of PCNA in tumor cells may therefore promote immune evasion.
Collapse
Affiliation(s)
- Benyamin Rosental
- The Shraga Segal Department of Microbiology and Immunology; Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer Sheva, Israel
| | | | | | | | | |
Collapse
|