1
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
3
|
Sun C, Zheng S, Perry JSA, Norris GT, Cheng M, Kong F, Skyberg R, Cang J, Erisir A, Kipnis J, Hill DL. Maternal diet during early gestation influences postnatal taste activity-dependent pruning by microglia. J Exp Med 2023; 220:e20212476. [PMID: 37733279 PMCID: PMC10512853 DOI: 10.1084/jem.20212476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
A key process in central sensory circuit development involves activity-dependent pruning of exuberant terminals. Here, we studied gustatory terminal field maturation in the postnatal mouse nucleus of the solitary tract (NST) during normal development and in mice where their mothers were fed a low NaCl diet for a limited period soon after conception. Pruning of terminal fields of gustatory nerves in controls involved the complement system and is likely driven by NaCl-elicited taste activity. In contrast, offspring of mothers with an early dietary manipulation failed to prune gustatory terminal fields even though peripheral taste activity developed normally. The ability to prune in these mice was rescued by activating myeloid cells postnatally, and conversely, pruning was arrested in controls with the loss of myeloid cell function. The altered pruning and myeloid cell function appear to be programmed before the peripheral gustatory system is assembled and corresponds to the embryonic period when microglia progenitors derived from the yolk sac migrate to and colonize the brain.
Collapse
Affiliation(s)
- Chengsan Sun
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Shuqiu Zheng
- Division of Nephrology, University School of Medicine, Charlottesville, VA, USA
| | - Justin S A Perry
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Geoffrey T Norris
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Fanzhen Kong
- Department of Anatomy, Binzhou Medical University, Yantai, China
| | - Rolf Skyberg
- Institute of Neuroscience, University of Oregon , Eugene, OR, USA
| | - Jianhua Cang
- Departments of Psychology and Biology, University of Virginia, Charlottesville, VA, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - David L Hill
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Cropley VL, Kittel M, Heurich M, Föcking M, Leweke FM, Pantelis C. Complement proteins are elevated in blood serum but not CSF in clinical high-risk and antipsychotic-naïve first-episode psychosis. Brain Behav Immun 2023; 113:136-144. [PMID: 37437819 DOI: 10.1016/j.bbi.2023.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Alterations in the complement system have been reported in some people with psychotic disorder, including in pre-psychotic individuals, suggesting that complement pathway dysregulation may be a feature of the early psychosis phenotype. Measurement of complement protein expression in psychosis has been largely restricted to the blood from patients with established illness who were taking antipsychotic medication. The present study examined a range of complement proteins in blood and cerebrospinal fluid (CSF) derived from individuals at clinical high-risk for psychosis (CHR), antipsychotic-naïve first-episode psychosis (FEP) and healthy controls. A panel of complement proteins (C1q, C3, C3b/iC3b, C4, factor B and factor H) were quantified in serum and matched CSF in 72 participants [n = 23 individuals at CHR, n = 24 antipsychotic-naïve FEP, n = 25 healthy controls] using a multiplex immunoassay. Analysis of covariance was used to assess between-group differences in complement protein levels in serum and CSF. Pearson's correlation was used to assess the relationship between serum and CSF proteins, and between complement proteins and symptom severity. In serum, all proteins, except for C3, were significantly higher in FEP and CHR. While a trend was observed, protein levels in CSF did not statistically differ between groups and appeared to be impacted by BMI and sample storage time. Across the whole sample, serum and CSF protein levels were not correlated. In FEP, higher levels of serum classical and alternative grouped pathway components were correlated with symptom severity. Our exploratory study provides evidence for increased activity of the peripheral complement system in the psychosis spectrum, with such elevations varying with clinical severity. Further study of complement in CSF is warranted. Longitudinal investigations are required to elucidate whether complement proteins change peripherally and/or centrally with progression of psychotic illness.
Collapse
Affiliation(s)
- V L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & NorthWestern Mental Health, Melbourne, Australia.
| | - M Kittel
- Institute for Clinical Chemistry, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Heurich
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, United Kingdom
| | - M Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F M Leweke
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & NorthWestern Mental Health, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia
| |
Collapse
|
5
|
Zipp F, Bittner S, Schafer DP. Cytokines as emerging regulators of central nervous system synapses. Immunity 2023; 56:914-925. [PMID: 37163992 PMCID: PMC10233069 DOI: 10.1016/j.immuni.2023.04.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023]
Abstract
Cytokines are key messengers by which immune cells communicate, and they drive many physiological processes, including immune and inflammatory responses. Early discoveries demonstrated that cytokines, such as the interleukin family members and TNF-α, regulate synaptic scaling and plasticity. Still, we continue to learn more about how these traditional immune system cytokines affect neuronal structure and function. Different cytokines shape synaptic function on multiple levels ranging from fine-tuning neurotransmission, to regulating synapse number, to impacting global neuronal networks and complex behavior. These recent findings have cultivated an exciting and growing field centered on the importance of immune system cytokines for regulating synapse and neural network structure and function. Here, we highlight the latest findings related to cytokines in the central nervous system and their regulation of synapse structure and function. Moreover, we explore how these mechanisms are becoming increasingly important to consider in diseases-especially those with a large neuroinflammatory component.
Collapse
Affiliation(s)
- Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Iweka CA, Seigneur E, Hernandez AL, Paredes SH, Cabrera M, Blacher E, Pasternak CT, Longo FM, de Lecea L, Andreasson KI. Myeloid deficiency of the intrinsic clock protein BMAL1 accelerates cognitive aging by disrupting microglial synaptic pruning. J Neuroinflammation 2023; 20:48. [PMID: 36829230 PMCID: PMC9951430 DOI: 10.1186/s12974-023-02727-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Aging is associated with loss of circadian immune responses and circadian gene transcription in peripheral macrophages. Microglia, the resident macrophages of the brain, also show diurnal rhythmicity in regulating local immune responses and synaptic remodeling. To investigate the interaction between aging and microglial circadian rhythmicity, we examined mice deficient in the core clock transcription factor, BMAL1. Aging Cd11bcre;Bmallox/lox mice demonstrated accelerated cognitive decline in association with suppressed hippocampal long-term potentiation and increases in immature dendritic spines. C1q deposition at synapses and synaptic engulfment were significantly decreased in aging Bmal1-deficient microglia, suggesting that BMAL1 plays a role in regulating synaptic pruning in aging. In addition to accelerated age-associated hippocampal deficits, Cd11bcre;Bmallox/lox mice also showed deficits in the sleep-wake cycle with increased wakefulness across light and dark phases. These results highlight an essential role of microglial BMAL1 in maintenance of synapse homeostasis in the aging brain.
Collapse
Affiliation(s)
- Chinyere Agbaegbu Iweka
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Amira Latif Hernandez
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | | | - Mica Cabrera
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Eran Blacher
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, 9190401, Jerusalem, Israel
| | - Connie Tsai Pasternak
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Stanford Immunology Program, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
7
|
Astrocytes regulate neuronal network activity by mediating synapse remodeling. Neurosci Res 2023; 187:3-13. [PMID: 36170922 DOI: 10.1016/j.neures.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022]
Abstract
Based on experience during our life, neuronal connectivity continuously changes through structural remodeling of synapses. Recent studies have shown that the complex interaction between astrocytes and synapses regulates structural synapse remodeling by inducing the formation and elimination of synapses, as well as their functional maturation. Defects in this astrocyte-mediated synapse remodeling cause problems in not only neuronal network activities but also animal behaviors. Moreover, in various neurological disorders, astrocytes have been shown to play central roles in the initiation and progression of synaptic pathophysiology through impaired interactions with synapses. In this review, we will discuss recent studies identifying the novel roles of astrocytes in neuronal circuit remodeling, focusing on synapse formation and elimination. We will also discuss the potential implication of defective astrocytic function in evoking various brain disorders.
Collapse
|
8
|
Zhuang Y, Dong J, Ge Q, Zhang B, Yang M, Lu S, Li H, Niu F, Xu X, Liu B. Contralateral synaptic changes following severe unilateral brain injury. Brain Res Bull 2022; 188:21-29. [PMID: 35868500 DOI: 10.1016/j.brainresbull.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/02/2022]
Abstract
The brain is highly integrated and thus unilateral injury can impact the contralateral hemisphere. However, further research is needed to clarify the changes in the response of the contralateral homotopic area to ipsilateral injury. We hypothesized that severe unilateral brain injury would be accompanied by contralateral synaptic changes that are related to functional recovery. To test this, we divided rats into sham and experimental groups. In the experimental group, we performed right motor cortex resection. These rats were further divided into three subgroups according to post-injury time: 7 days, 14 days, and 30 days post-injury. Rats in each group were evaluated using a beam walking test to quantify the recovery of motor function, and all rats received an injection of adeno-associated virus-containing green fluorescent protein (GFP). Finally, we conducted morphological and histological analyses to identify synaptic changes. Over time, the behavior of the rats that underwent right motor cortex resection recovered. Furthermore, in contrast to the sham group, the experimental groups exhibited an increase in the spine density and expression of synaptic proteins in layer V of the contralateral motor cortex, which was consistent with the GFP-labeled neurons. Moreover, more immature spines were observed 7 days post-injury. Notably, spine morphology matured from 7 to 30 days, and the increase in Synapsin-1 intensity in layer V peaked 14 days after the resection, whereas PSD-95 intensity continued to increase until day 30. Our findings suggested that following motor function recovery from unilateral brain injury, spine morphology and synaptic proteins change dynamically in the contralateral hemisphere.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinqian Dong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengshi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghua Lu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
9
|
Carpanini SM, Torvell M, Bevan RJ, Byrne RAJ, Daskoulidou N, Saito T, Saido TC, Taylor PR, Hughes TR, Zelek WM, Morgan BP. Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models. Acta Neuropathol Commun 2022; 10:99. [PMID: 35794654 PMCID: PMC9258209 DOI: 10.1186/s40478-022-01404-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Complement is involved in developmental synaptic pruning and pathological synapse loss in Alzheimer's disease. It is posited that C1 binding initiates complement activation on synapses; C3 fragments then tag them for microglial phagocytosis. However, the precise mechanisms of complement-mediated synaptic loss remain unclear, and the role of the lytic membrane attack complex (MAC) is unexplored. We here address several knowledge gaps: (i) is complement activated through to MAC at the synapse? (ii) does MAC contribute to synaptic loss? (iii) can MAC inhibition prevent synaptic loss? Novel methods were developed and optimised to quantify C1q, C3 fragments and MAC in total and regional brain homogenates and synaptoneurosomes from WT and AppNL-G-F Alzheimer's disease model mouse brains at 3, 6, 9 and 12 months of age. The impact on synapse loss of systemic treatment with a MAC blocking antibody and gene knockout of a MAC component was assessed in Alzheimer's disease model mice. A significant increase in C1q, C3 fragments and MAC was observed in AppNL-G-F mice compared to controls, increasing with age and severity. Administration of anti-C7 antibody to AppNL-G-F mice modulated synapse loss, reflected by the density of dendritic spines in the vicinity of plaques. Constitutive knockout of C6 significantly reduced synapse loss in 3xTg-AD mice. We demonstrate that complement dysregulation occurs in Alzheimer's disease mice involving the activation (C1q; C3b/iC3b) and terminal (MAC) pathways in brain areas associated with pathology. Inhibition or ablation of MAC formation reduced synapse loss in two Alzheimer's disease mouse models, demonstrating that MAC formation is a driver of synapse loss. We suggest that MAC directly damages synapses, analogous to neuromuscular junction destruction in myasthenia gravis.
Collapse
Affiliation(s)
- Sarah M Carpanini
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Megan Torvell
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Ryan J Bevan
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Robert A J Byrne
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Philip R Taylor
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Timothy R Hughes
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Wioleta M Zelek
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - B Paul Morgan
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
10
|
Lowery RL, Majewska AK. Synapse-specific plasticity relies on neuroimmune interactions. Proc Natl Acad Sci U S A 2022; 119:e2207817119. [PMID: 35737828 PMCID: PMC9271177 DOI: 10.1073/pnas.2207817119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Rebecca L. Lowery
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - Ania K. Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| |
Collapse
|
11
|
Lipoxygenase Metabolism: Critical Pathways in Microglia-mediated Neuroinflammation and Neurodevelopmental Disorders. Neurochem Res 2022; 47:3213-3220. [DOI: 10.1007/s11064-022-03645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
12
|
Chelini G, Pangrazzi L, Bozzi Y. At the Crossroad Between Resiliency and Fragility: A Neurodevelopmental Perspective on Early-Life Experiences. Front Cell Neurosci 2022; 16:863866. [PMID: 35465609 PMCID: PMC9023311 DOI: 10.3389/fncel.2022.863866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal development of the brain is characterized by sensitive windows during which, local circuitry are drastically reshaped by life experiences. These critical periods (CPs) occur at different time points for different brain functions, presenting redundant physiological changes in the underlying brain regions. Although circuits malleability during CPs provides a valuable window of opportunity for adaptive fine-tuning to the living environment, this aspect of neurodevelopment also represents a phase of increased vulnerability for the development of a variety of disorders. Consistently, accumulating epidemiological studies point to adverse childhood experience as a major risk factor for many medical conditions, especially stress- and anxiety-related conditions. Thanks to creative approaches to manipulate rodents’ rearing environment, neurobiologist have uncovered a pivotal interaction between CPs and early-life experiences, offering an interesting landscape to improve our understanding of brain disorders. In this short review, we discuss how early-life experience impacts cellular and molecular players involved in CPs of development, translating into long-lasting behavioral consequences in rodents. Bringing together findings from multiple laboratories, we delineate a unifying theory in which systemic factors dynamically target the maturation of brain functions based on adaptive needs, shifting the balance between resilience and vulnerability in response to the quality of the rearing environment.
Collapse
Affiliation(s)
- Gabriele Chelini
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- *Correspondence: Gabriele Chelini,
| | - Luca Pangrazzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Yuri Bozzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Consiglio Nazionale delle Ricerche (CNR) Neuroscience Institute, Pisa, Italy
| |
Collapse
|
13
|
Mice lacking 5-lipoxygenase display motor deficits associated with cortical and hippocampal synapse abnormalities. Brain Behav Immun 2022; 100:183-193. [PMID: 34896181 DOI: 10.1016/j.bbi.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/30/2022] Open
Abstract
Neural-immune interactions are related to the synapse plasticity and other dynamic processes in the nervous system. The absence or dysfunction of cellular/molecular elements from the immune system lead to impairments in the central and peripheral nervous system with behavior consequences such as cognitive, sensory, and locomotor deficits as well as social disabilities and anxiety disturbances. Cellular interactions between immune cells such as macrophages, microglia, and neutrophils with glial or neuronal cells have been of increasing interest over the last years. However, little is known about the role of immune-derived soluble factors in the context of homeostasis of the nervous system. Leukotrienes (LTs) are lipid mediators derived from the oxidation of arachidonic acid by 5-lipoxygenase (5-LO), and are classically involved in inflammation, allergies, and asthma. Here, we demonstrated that adult mice lacking 5-LO (5-LO-/-) showed motor deficits in rotarod test and increased repetitive behavior (marble burying test). These behavioral changes are accompanied by increased levels of synapse proteins (PSD95 and synaptophysin) at the motor cortex and hippocampus, but not with BDNF alterations. No changes in microglial cell density or morphology were seen in the brains of 5-LO-/- mice. Furthermore, expression of fractalkine receptor CX3CR1 was increased and of its ligand CX3CL1 was decreased in the cortex of 5-LO-/- mice. Here we provide evidence for the involvement of 5-LO products structuring synapses network with motor behavior consequences. We suggest that the absence of 5-LO products lead to modified microglial/neuron interaction, reducing microglial pruning.
Collapse
|
14
|
Fernández de Cossío L, Lacabanne C, Bordeleau M, Castino G, Kyriakakis P, Tremblay MÈ. Lipopolysaccharide-induced maternal immune activation modulates microglial CX3CR1 protein expression and morphological phenotype in the hippocampus and dentate gyrus, resulting in cognitive inflexibility during late adolescence. Brain Behav Immun 2021; 97:440-454. [PMID: 34343619 DOI: 10.1016/j.bbi.2021.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Inflammation during pregnancy can disturb brain development and lead to disorders in the progeny, including autism spectrum disorder and schizophrenia. However, the mechanism by which a prenatal, short-lived increase of cytokines results in adverse neurodevelopmental outcomes remains largely unknown. Microglia-the brain's resident immune-cells-stand as fundamental cellular mediators, being highly sensitive and responsive to immune signals, which also play key roles during normal development. The fractalkine signaling axis is a neuron-microglia communication mechanism used to regulate neurogenesis and network formation. Previously, we showed hippocampal reduction of fractalkine receptor (Cx3cr1) mRNA at postnatal day (P) 15 in male offspring exposed to maternal immune activation induced with lipopolysaccharide (LPS) during late gestation, which was concomitant to an increased dendritic spine density in the dentate gyrus, a neurogenic niche. The current study sought to evaluate the origin and impact of this reduced hippocampal Cx3cr1 mRNA expression on microglia and cognition. We found that microglial total cell number and density are not affected in the dorsal hippocampus and dentate gyrus, respectively, but that the microglial CX3CR1 protein is decreased in the hippocampus of LPS-male offspring at P15. Further characterization of microglial morphology in the dentate gyrus identified a more ameboid phenotype in LPS-exposed offspring, predominantly in males, at P15. We thus explored maternal plasma and fetal brain cytokines to understand the mechanism behind microglial priming, showing a robust immune activation in the mother at 2 and 4 hrs after LPS administration, while only IL-10 tended towards upregulation at 2 hrs after LPS in fetal brains. To evaluate the functional long-term consequences, we assessed learning and cognitive flexibility behavior during late adolescence, finding that LPS affects only the latter with a male predominance on perseveration. A CX3CR1 gene variant in humans that results in disrupted fractalkine signaling has been recently associated with an increased risk for neurodevelopmental disorders. We show that an acute immune insult during late gestation can alter fractalkine signaling by reducing the microglial CX3CR1 protein expression, highlighting neuron-microglial fractalkine signaling as a relevant target underlying the outcomes of environmental risk factors on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lourdes Fernández de Cossío
- Department of Neurosciences, University of California, La Jolla, CA, USA; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| | - Chloé Lacabanne
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Garance Castino
- Department of Biology, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | | | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Université Laval, Québec, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Colombia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Mendes MS, Majewska AK. An overview of microglia ontogeny and maturation in the homeostatic and pathological brain. Eur J Neurosci 2021; 53:3525-3547. [PMID: 33835613 PMCID: PMC8225243 DOI: 10.1111/ejn.15225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and are increasingly recognized as critical players in development, brain homeostasis, and disease pathogenesis. The lifespan, maintenance, proliferation, and turnover of microglia are important factors that regulate microglial behavior and affect their roles in the CNS. However, emerging evidence suggests that microglia are morphologically and phenotypically distinct in different brain areas, at different ages, and during disease. Ongoing research focuses on understanding how microglia acquire specific phenotypes in response to extrinsic cues in the environment and how phenotypes are specified by intrinsic properties of different populations of microglia. With the development of pharmacological and genetic tools that allow the investigation of microglia in vivo, there have been considerable advances in understanding molecular signatures of both homeostatic microglia and those reacting to injury and disease. Here, we review the master gene regulators that define microglia as well as discuss the evidence that microglia are heterogeneous and fall into distinct clusters that display specific intrinsic properties and perform unique tasks in different settings. Taken together, the information presented supports the idea that microglia morphology and transcriptional heterogeneity should be considered when studying the complex nature of microglia and their roles in brain health and disease.
Collapse
Affiliation(s)
- Monique S Mendes
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
16
|
Auditory Brainstem Deficits from Early Treatment with a CSF1R Inhibitor Largely Recover with Microglial Repopulation. eNeuro 2021; 8:ENEURO.0318-20.2021. [PMID: 33558268 PMCID: PMC8009669 DOI: 10.1523/eneuro.0318-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Signaling between neurons and glia is necessary for the formation of functional neural circuits. A role for microglia in the maturation of connections in the medial nucleus of the trapezoid body (MNTB) was previously demonstrated by postnatal microglial elimination using a colony stimulating factor 1 receptor (CSF1R). Defective pruning of calyces of Held and significant reduction of the mature astrocyte marker glial fibrillary acidic protein (GFAP) were observed after hearing onset. Here, we investigated the time course required for microglia to populate the mouse MNTB after cessation of CSF1R inhibitor treatment. We then examined whether defects seen after microglial depletion were rectified by microglial repopulation. We found that microglia returned to control levels at four weeks of age (18 d postcessation of treatment). Calyceal innervation of MNTB neurons was comparable to control levels at four weeks and GFAP expression recovered by seven weeks. We further investigated the effects of microglia elimination and repopulation on auditory function using auditory brainstem recordings (ABRs). Temporary microglial depletion significantly elevated auditory thresholds in response to 4. 8, and 12 kHz at four weeks. Treatment significantly affected latencies, interpeak latencies, and amplitudes of all the ABR peaks in response to many of the frequencies tested. These effects largely recovered by seven weeks. These findings highlight the functions of microglia in the formation of auditory neural circuits early in development. Further, the results suggest that microglia retain their developmental functions beyond the period of circuit refinement.
Collapse
|
17
|
Shi Z, Zhang Z, Schaffer L, Huang Z, Fu L, Head S, Gaasterland T, Wang X, Li X. Dynamic transcriptome landscape in the song nucleus HVC between juvenile and adult zebra finches. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10035. [PMID: 36618441 PMCID: PMC9744550 DOI: 10.1002/ggn2.10035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023]
Abstract
Male juvenile zebra finches learn to sing by imitating songs of adult males early in life. The development of the song control circuit and song learning and maturation are highly intertwined processes, involving gene expression, neurogenesis, circuit formation, synaptic modification, and sensory-motor learning. To better understand the genetic and genomic mechanisms underlying these events, we used RNA-Seq to examine genome-wide transcriptomes in the song control nucleus HVC of male juvenile (45 d) and adult (100 d) zebra finches. We report that gene groups related to axon guidance, RNA processing, lipid metabolism, and mitochondrial functions show enriched expression in juvenile HVC compared to the rest of the brain. As juveniles mature into adulthood, massive gene expression changes occur. Expression of genes related to amino acid metabolism, cell cycle, and mitochondrial function is reduced, accompanied by increased and enriched expression of genes with synaptic functions, including genes related to G-protein signaling, neurotransmitter receptors, transport of small molecules, and potassium channels. Unexpectedly, a group of genes with immune system functions is also developmentally regulated, suggesting potential roles in the development and functions of HVC. These data will serve as a rich resource for investigations into the development and function of a neural circuit that controls vocal behavior.
Collapse
Affiliation(s)
- Zhimin Shi
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
| | - Zeyu Zhang
- Key Laboratory of Genetic Network BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Zhi Huang
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
| | - Lijuan Fu
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
- Present address:
California Medical Innovations InstituteSan DiegoCaliforniaUSA
| | - Steven Head
- Scripps Research InstituteLa JollaCaliforniaUSA
| | - Terry Gaasterland
- Scripps Research InstituteLa JollaCaliforniaUSA
- University of California at San DiegoLa JollaCaliforniaUSA
| | - Xiu‐Jie Wang
- Key Laboratory of Genetic Network BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - XiaoChing Li
- Neuroscience Center of ExcellenceLouisiana State University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
18
|
Kunz N, Kemper C. Complement Has Brains-Do Intracellular Complement and Immunometabolism Cooperate in Tissue Homeostasis and Behavior? Front Immunol 2021; 12:629986. [PMID: 33717157 PMCID: PMC7946832 DOI: 10.3389/fimmu.2021.629986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
The classical liver-derived and serum-effective complement system is well appreciated as a key mediator of host protection via instruction of innate and adaptive immunity. However, recent studies have discovered an intracellularly active complement system, the complosome, which has emerged as a central regulator of the core metabolic pathways fueling human immune cell activity. Induction of expression of components of the complosome, particularly complement component C3, during transmigration from the circulation into peripheral tissues is a defining characteristic of monocytes and T cells in tissues. Intracellular complement activity is required to induce metabolic reprogramming of immune cells, including increased glycolytic flux and OXPHOS, which drive the production of the pro-inflammatory cytokine IFN-γ. Consequently, reduced complosome activity translates into defects in normal monocyte activation, faulty Th1 and cytotoxic T lymphocyte responses and loss of protective tissue immunity. Intriguingly, neurological research has identified an unexpected connection between the physiological presence of innate and adaptive immune cells and certain cytokines, including IFN-γ, in and around the brain and normal brain function. In this opinion piece, we will first review the current state of research regarding complement driven metabolic reprogramming in the context of immune cell tissue entry and residency. We will then discuss how published work on the role of IFN-γ and T cells in the brain support a hypothesis that an evolutionarily conserved cooperation between the complosome, cell metabolism and IFN-γ regulates organismal behavior, as well as immunity.
Collapse
Affiliation(s)
- Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Klaus C, Liao H, Allendorf DH, Brown GC, Neumann H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia 2020; 69:1619-1636. [PMID: 33340149 DOI: 10.1002/glia.23945] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Sialic acids are monosaccharides that normally terminate the glycan chains of cell surface glyco-proteins and -lipids in mammals, and are highly enriched in the central nervous tissue. Sialic acids are conjugated to proteins and lipids (termed "sialylation") by specific sialyltransferases, and are removed ("desialylation") by neuraminidases. Cell surface sialic acids are sensed by complement factor H (FH) to inhibit complement activation or by sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors to inhibit microglial activation, phagocytosis, and oxidative burst. In contrast, desialylation of cells enables binding of the opsonins C1, calreticulin, galectin-3, and collectins, stimulating phagocytosis of such cells. Hypersialylation is used by bacteria and cancers as camouflage to escape immune recognition, while polysialylation of neurons protects synapses and neurogenesis. Insufficient lysosomal cleavage of sialylated molecules can lead to lysosomal accumulation of lipids and aggregated proteins, which if excessive may be expelled into the extracellular space. On the other hand, desialylation of immune receptors can activate them or trigger removal of proteins. Loss of inhibitory SIGLECs or FH triggers reduced clearance of aggregates, oxidative brain damage and complement-mediated retinal damage. Thus, cell surface sialylation recognized by FH, SIGLEC, and other immune-related receptors acts as a major checkpoint inhibitor of innate immune responses in the central nervous system, while excessive cleavage of sialic acid residues and consequently removing this checkpoint inhibitor may trigger lipid accumulation, protein aggregation, inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Christine Klaus
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Huan Liao
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | | | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Smalley JL, Kontou G, Choi C, Ren Q, Albrecht D, Abiraman K, Santos MAR, Bope CE, Deeb TZ, Davies PA, Brandon NJ, Moss SJ. Isolation and Characterization of Multi-Protein Complexes Enriched in the K-Cl Co-transporter 2 From Brain Plasma Membranes. Front Mol Neurosci 2020; 13:563091. [PMID: 33192291 PMCID: PMC7643010 DOI: 10.3389/fnmol.2020.563091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Kcc2 plays a critical role in determining the efficacy of synaptic inhibition, however, the cellular mechanisms neurons use to regulate its membrane trafficking, stability and activity are ill-defined. To address these issues, we used affinity purification to isolate stable multi-protein complexes of K-Cl Co-transporter 2 (Kcc2) from the plasma membrane of murine forebrain. We resolved these using blue-native polyacrylamide gel electrophoresis (BN-PAGE) coupled to LC-MS/MS and label-free quantification. Data are available via ProteomeXchange with identifier PXD021368. Purified Kcc2 migrated as distinct molecular species of 300, 600, and 800 kDa following BN-PAGE. In excess of 90% coverage of the soluble N- and C-termini of Kcc2 was obtained. In total we identified 246 proteins significantly associated with Kcc2. The 300 kDa species largely contained Kcc2, which is consistent with a dimeric quaternary structure for this transporter. The 600 and 800 kDa species represented stable multi-protein complexes of Kcc2. We identified a set of novel structural, ion transporting, immune related and signaling protein interactors, that are present at both excitatory and inhibitory synapses, consistent with the proposed localization of Kcc2. These included spectrins, C1qa/b/c and the IP3 receptor. We also identified interactors more directly associated with phosphorylation; Akap5, Akap13, and Lmtk3. Finally, we used LC-MS/MS on the same purified endogenous plasma membrane Kcc2 to detect phosphorylation sites. We detected 11 sites with high confidence, including known and novel sites. Collectively our experiments demonstrate that Kcc2 is associated with components of the neuronal cytoskeleton and signaling molecules that may act to regulate transporter membrane trafficking, stability, and activity.
Collapse
Affiliation(s)
- Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Georgina Kontou
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Catherine Choi
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Qiu Ren
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - David Albrecht
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Krithika Abiraman
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | | | - Christopher E Bope
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Nicholas J Brandon
- AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States.,Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Jackson HM, Foley KE, O'Rourke R, Stearns TM, Fathalla D, Morgan BP, Howell GR. A novel mouse model expressing human forms for complement receptors CR1 and CR2. BMC Genet 2020; 21:101. [PMID: 32907542 PMCID: PMC7487969 DOI: 10.1186/s12863-020-00893-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer's disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. RESULTS To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO. CONCLUSION The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease.
Collapse
Affiliation(s)
- Harriet M Jackson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
- Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Kate E Foley
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Rita O'Rourke
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | | | - Dina Fathalla
- Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - B Paul Morgan
- Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA.
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
22
|
Liao H, Klaus C, Neumann H. Control of Innate Immunity by Sialic Acids in the Nervous Tissue. Int J Mol Sci 2020; 21:ijms21155494. [PMID: 32752058 PMCID: PMC7432451 DOI: 10.3390/ijms21155494] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sialic acids (Sias) are the most abundant terminal sugar residues of glycoproteins and glycolipids on the surface of mammalian cells. The nervous tissue is the organ with the highest expression level of Sias. The ‘sialylation’ of glycoconjugates is performed via sialyltransferases, whereas ‘desialylation’ is done by sialidases or is a possible consequence of oxidative damage. Sialic acid residues on the neural cell surfaces inhibit complement and microglial activation, as well as phagocytosis of the underlying structures, via binding to (i) complement factor H (CFH) or (ii) sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors. In contrast, activated microglial cells show sialidase activity that desialylates both microglia and neurons, and further stimulates innate immunity via microglia and complement activation. The desialylation conveys neurons to become susceptible to phagocytosis, as well as triggers a microglial phagocytosis-associated oxidative burst and inflammation. Dysfunctions of the ‘Sia–SIGLEC’ and/or ‘Sia–complement’ axes often lead to neurological diseases. Thus, Sias on glycoconjugates of the intact glycocalyx and its desialylation are major regulators of neuroinflammation.
Collapse
Affiliation(s)
| | | | - Harald Neumann
- Correspondence: ; Tel.: +49-228-6885-500; Fax: +49-228-6885-501
| |
Collapse
|
23
|
Puigdellívol M, Allendorf DH, Brown GC. Sialylation and Galectin-3 in Microglia-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2020; 14:162. [PMID: 32581723 PMCID: PMC7296093 DOI: 10.3389/fncel.2020.00162] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Microglia are brain macrophages that mediate neuroinflammation and contribute to and protect against neurodegeneration. The terminal sugar residue of all glycoproteins and glycolipids on the surface of mammalian cells is normally sialic acid, and addition of this negatively charged residue is known as “sialylation,” whereas removal by sialidases is known as “desialylation.” High sialylation of the neuronal cell surface inhibits microglial phagocytosis of such neurons, via: (i) activating sialic acid receptors (Siglecs) on microglia that inhibit phagocytosis and (ii) inhibiting binding of opsonins C1q, C3, and galectin-3. Microglial sialylation inhibits inflammatory activation of microglia via: (i) activating Siglec receptors CD22 and CD33 on microglia that inhibit phagocytosis and (ii) inhibiting Toll-like receptor 4 (TLR4), complement receptor 3 (CR3), and other microglial receptors. When activated, microglia release a sialidase activity that desialylates both microglia and neurons, activating the microglia and rendering the neurons susceptible to phagocytosis. Activated microglia also release galectin-3 (Gal-3), which: (i) further activates microglia via binding to TLR4 and TREM2, (ii) binds to desialylated neurons opsonizing them for phagocytosis via Mer tyrosine kinase, and (iii) promotes Aβ aggregation and toxicity in vivo. Gal-3 and desialylation may increase in a variety of brain pathologies. Thus, Gal-3 and sialidases are potential treatment targets to prevent neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David H Allendorf
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Pan Y, Monje M. Activity Shapes Neural Circuit Form and Function: A Historical Perspective. J Neurosci 2020; 40:944-954. [PMID: 31996470 PMCID: PMC6988998 DOI: 10.1523/jneurosci.0740-19.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
The brilliant and often prescient hypotheses of Ramon y Cajal have proven foundational for modern neuroscience, but his statement that "In adult centers the nerve paths are something fixed, ended, immutable … " is an exception that did not stand the test of empirical study. Mechanisms of cellular and circuit-level plasticity continue to shape and reshape many regions of the adult nervous system long after the neurodevelopmental period. Initially focused on neurons alone, the field has followed a meteoric trajectory in understanding of activity-regulated neurodevelopment and ongoing neuroplasticity with an arc toward appreciating neuron-glial interactions and the role that each neural cell type plays in shaping adaptable neural circuity. In this review, as part of a celebration of the 50th anniversary of Society for Neuroscience, we provide a historical perspective, following this arc of inquiry from neuronal to neuron-glial mechanisms by which activity and experience modulate circuit structure and function. The scope of this consideration is broad, and it will not be possible to cover the wealth of knowledge about all aspects of activity-dependent circuit development and plasticity in depth.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
25
|
Klaus C, Hansen JN, Ginolhac A, Gérard D, Gnanapragassam VS, Horstkorte R, Rossdam C, Buettner FFR, Sauter T, Sinkkonen L, Neumann H, Linnartz-Gerlach B. Reduced sialylation triggers homeostatic synapse and neuronal loss in middle-aged mice. Neurobiol Aging 2020; 88:91-107. [PMID: 32087947 DOI: 10.1016/j.neurobiolaging.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Sialic acid-binding Ig-like lectin (Siglec) receptors are linked to neurodegenerative processes, but the role of sialic acids in physiological aging is still not fully understood. We investigated the impact of reduced sialylation in the brain of mice heterozygous for the enzyme glucosamine-2-epimerase/N-acetylmannosamine kinase (GNE+/-) that is essential for sialic acid biosynthesis. We demonstrate that GNE+/- mice have hyposialylation in different brain regions, less synapses in the hippocampus and reduced microglial arborization already at 6 months followed by increased loss of neurons at 12 months. A transcriptomic analysis revealed no pro-inflammatory changes indicating an innate homeostatic immune process leading to the removal of synapses and neurons in GNE+/- mice during aging. Crossbreeding with complement C3-deficient mice rescued the earlier onset of neuronal and synaptic loss as well as the changes in microglial arborization. Thus, sialic acids of the glycocalyx contribute to brain homeostasis and act as a recognition system for the innate immune system in the brain.
Collapse
Affiliation(s)
- Christine Klaus
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Aurélien Ginolhac
- Epigenetics Team, Systems Biology Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Deborah Gérard
- Epigenetics Team, Systems Biology Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Vinayaga S Gnanapragassam
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Charlotte Rossdam
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Sauter
- Epigenetics Team, Systems Biology Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Epigenetics Team, Systems Biology Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Harald Neumann
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.
| | - Bettina Linnartz-Gerlach
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Liu Y, Fu X, Tang Z, Li C, Xu Y, Zhang F, Zhou D, Zhu C. Altered expression of the CSMD1 gene in the peripheral blood of schizophrenia patients. BMC Psychiatry 2019; 19:113. [PMID: 30987620 PMCID: PMC6466712 DOI: 10.1186/s12888-019-2089-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a heritable, refractory, and devastating psychiatric disorder. Previous studies have shown that the variants of CUB and sushi multiple domains 1 (CSMD1) demonstrate significant genome-wide association with SCZ. However, few studies have been conducted on the effect of antipsychotics on the expression levels of CSMD1. This study explored whether a change occurs in the expression of the CSMD1 gene before and after antipsychotic treatment in SCZ patients. METHODS The study population comprised Han Chinese patients from eastern China, including 32 SCZ patients and 48 healthy controls. The expression of CSMD1 before and after treatment in the SCZ group and between the two groups was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS The expression levels of the CSMD1 gene in the peripheral blood mononuclear cells (PBMCs) of SCZ patients were lower than those in the healthy controls. The expression levels of the CSMD1 gene in the PBMCs of the SCZ patients after antipsychotic treatment were higher than those in the baseline SCZ patients (all P < 0.05). CONCLUSIONS Our results showed that the expression levels of CSMD1 are correlated with the development and treatment of SCZ, providing further evidence for the involvement of CSMD1 in SCZ.
Collapse
Affiliation(s)
- Yansong Liu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Xiaoqian Fu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Zhen Tang
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Cui Li
- Department of Psychology, Xinghua People's Hospital, Xinghua, 225700, Jiangsu, China
| | - Yong Xu
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fuquan Zhang
- Department of Clinical Psychology, Wuxi Mental Health Center, Nanjing Medical University, 156 Qianrong Road, Wuxi, Jiangsu Province, 214151, China
| | - Deyi Zhou
- Department of Clinical Psychology, Wuxi Mental Health Center, Nanjing Medical University, 156 Qianrong Road, Wuxi, Jiangsu Province, 214151, China.
| | - Chunming Zhu
- Department of Clinical Psychology, Wuxi Mental Health Center, Nanjing Medical University, 156 Qianrong Road, Wuxi, Jiangsu Province, 214151, China.
| |
Collapse
|
27
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Clarke DJ, Chohan TW, Kassem MS, Smith KL, Chesworth R, Karl T, Kuligowski MP, Fok SY, Bennett MR, Arnold JC. Neuregulin 1 Deficiency Modulates Adolescent Stress-Induced Dendritic Spine Loss in a Brain Region-Specific Manner and Increases Complement 4 Expression in the Hippocampus. Schizophr Bull 2019; 45:339-349. [PMID: 29566220 PMCID: PMC6403066 DOI: 10.1093/schbul/sby029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.
Collapse
Affiliation(s)
- David J Clarke
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | - Tariq W Chohan
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | | | - Kristie L Smith
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, Australia,Neuroscience Research Australia, Randwick, Australia,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Michael P Kuligowski
- Australian Microscopy & Microanalysis Research Facility, University of Sydney, Camperdown, Australia
| | - Sandra Y Fok
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | | | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia,To whom correspondence should be addressed; Brain and Mind Centre, Level 6, Building F, 94 Mallett Street, Camperdown, NSW 2050, Australia; tel: +61-29351-0812, e-mail:
| |
Collapse
|
29
|
Sun C, Zhu L, Ma R, Ren J, Wang J, Gao S, Yang D, Ning K, Ling B, Lu B, Chen X, Xu J. Astrocytic miR-324-5p is essential for synaptic formation by suppressing the secretion of CCL5 from astrocytes. Cell Death Dis 2019; 10:141. [PMID: 30760705 PMCID: PMC6374376 DOI: 10.1038/s41419-019-1329-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/01/2018] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
Abstract
There is accumulating evidence that astrocytes play an important role in synaptic formation, plasticity, and pruning. Dicer and the fine-tuning of microRNA (miRNA) network are important for maintaining the normal functions of central nervous system and dysregulation of miRNAs is implicated in neurological disorders. However, little is known about the role of Dicer and miRNAs of astrocytes in the homeostasis of synapse as well as its plasticity. By selectively deleting Dicer in postnatal astrocytes, Dicer-deficient mice exhibited reactive astrogliosis and deficits in dendritic spine formation. Astrocyte-conditioned medium (ACM) collected from Dicer-null astrocytes caused synapse degeneration in cultured primary neurons. The expression of chemokine ligand 5 (CCL5) elevated in Dicer-deleted astrocytes which led to the significant augmentation of secreted CCL5 in ACM. In neurons treated with Dicer KO-ACM, CCL5 supplementation inhibited MAPK/CREB signaling pathway and exacerbated the synaptic formation deficiency, while CCL5 knockdown partially rescued the synapse degeneration. Moreover, we validated CCL5 as miR-324-5p targeted gene. ACM collected from miR-324-5p antagomir-transfected astrocytes mimicked the effect of CCL5 treatment on inhibiting synapse formation and MAPK/CREB signaling in Dicer KO-ACM-cocultured neurons. Furthermore, decreased miR-324-5p expression and elevated CCL5 expression were observed in the brain of aging mice. Our work reveals the non-cell-autonomous roles of astroglial miRNAs in regulation of astrocytic secretory milieu and neuronal synaptogenesis, implicating the loss or misregulation of astroglial miRNA network may contribute to neuroinflammation, neurodegeneration, and aging.
Collapse
Affiliation(s)
- Chenxi Sun
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Zhu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rongjie Ma
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Ren
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Wang
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shane Gao
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danjing Yang
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Bin Ling
- The Second People's Hospital of Yunnan Province, Kunming, China.
| | - Bing Lu
- East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xu Chen
- Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China.
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Uzuneser TC, Speidel J, Kogias G, Wang AL, de Souza Silva MA, Huston JP, Zoicas I, von Hörsten S, Kornhuber J, Korth C, Müller CP. Disrupted-in-Schizophrenia 1 (DISC1) Overexpression and Juvenile Immune Activation Cause Sex-Specific Schizophrenia-Related Psychopathology in Rats. Front Psychiatry 2019; 10:222. [PMID: 31057438 PMCID: PMC6465888 DOI: 10.3389/fpsyt.2019.00222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023] Open
Abstract
Synaptic pruning is a critical refinement step during neurodevelopment, and schizophrenia has been associated with overpruning of cortical dendritic spines. Both human studies and animal models implicate disrupted-in-schizophrenia 1 (DISC1) gene as a strong susceptibility factor for schizophrenia. Accumulating evidence supports the involvement of DISC1 protein in the modulation of synaptic elimination during critical periods of neurodevelopment and of dopamine D2-receptor-mediated signaling during adulthood. In many species, synaptic pruning occurs during juvenile and adolescent periods and is mediated by microglia, which can be over-activated by an immune challenge, giving rise to overpruning. Therefore, we sought to investigate possible interactions between a transgenic DISC1 model (tgDISC1) and juvenile immune activation (JIA) by the bacterial cell wall endotoxin lipopolysaccharide on the induction of schizophrenia-related behavioral and neurochemical disruptions in adult female and male rats. We examined possible behavioral aberrations along three major symptom dimensions of schizophrenia including psychosis, social and emotional disruptions, and cognitive impairments. We detected significant gene-environment interactions in the amphetamine-induced locomotion in female animals and in the amphetamine-induced anxiety in male animals. Surprisingly, gene-environment interactions improved social memory in both male and female animals. JIA alone disrupted spatial memory and recognition memory, but only in male animals. DISC1 overexpression alone induced an improvement in sensorimotor gating, but only in female animals. Our neurochemical analyses detected sex- and manipulation-dependent changes in the postmortem monoamine content of animals. Taken together, we here report sex-specific effects of environment and genotype as well as their interaction on behavioral phenotypes and neurochemical profiles relevant for schizophrenia.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jil Speidel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Maria A de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten Korth
- Department of Neuropathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
31
|
Buechler J, Salinas PC. Deficient Wnt Signaling and Synaptic Vulnerability in Alzheimer's Disease: Emerging Roles for the LRP6 Receptor. Front Synaptic Neurosci 2018; 10:38. [PMID: 30425633 PMCID: PMC6218458 DOI: 10.3389/fnsyn.2018.00038] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Synapse dysfunction and loss represent critical early events in the pathophysiology of Alzheimer’s disease (AD). While extensive research has elucidated the direct synaptotoxic effects of Amyloid-β (Aβ) oligomers, less is known about how signaling pathways at the synapse are affected by Aβ. A better understanding of the cellular and molecular mechanisms underlying synaptic vulnerability in AD is key to illuminating the determinants of AD susceptibility and will unveil novel therapeutic avenues. Canonical Wnt signaling through the Wnt co-receptor LRP6 has a critical role in maintaining the structural and functional integrity of synaptic connections in the adult brain. Accumulating evidence suggests that deficient Wnt signaling may contribute to AD pathology. In particular, LRP6 deficiency compromises synaptic function and stability, and contributes to Aß production and plaque formation. Here, we review the role of Wnt signaling for synaptic maintenance in the adult brain and the contribution of aberrant Wnt signaling to synaptic degeneration in AD. We place a focus on emerging evidence implicating the LRP6 receptor as an important modulator of AD risk and pathology.
Collapse
Affiliation(s)
- Johanna Buechler
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
32
|
Hammond JW, Qiu WQ, Marker DF, Chamberlain JM, Greaves-Tunnell W, Bellizzi MJ, Lu SM, Gelbard HA. HIV Tat causes synapse loss in a mouse model of HIV-associated neurocognitive disorder that is independent of the classical complement cascade component C1q. Glia 2018; 66:2563-2574. [PMID: 30325063 DOI: 10.1002/glia.23511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Microglial activation, increased proinflammatory cytokine production, and a reduction in synaptic density are key pathological features associated with HIV-associated neurocognitive disorders (HAND). Even with combination antiretroviral therapy (cART), more than 50% of HIV-positive individuals experience some type of cognitive impairment. Although viral replication is inhibited by cART, HIV proteins such as Tat are still produced within the nervous system that are neurotoxic, involved in synapse elimination, and provoke enduring neuroinflammation. As complement deposition on synapses followed by microglial engulfment has been shown during normal development and disease to be a mechanism for pruning synapses, we have tested whether complement is required for the loss of synapses that occurs after a cortical Tat injection mouse model of HAND. In Tat-injected animals evaluated 7 or 28 days after injection, levels of early complement pathway components, C1q and C3, are significantly elevated and associated with microgliosis and a loss of synapses. However, C1qa knockout mice have the same level of Tat-induced synapse loss as wild-type (WT) mice, showing that the C1q-initiated classical complement cascade is not driving synapse removal during HIV1 Tat-induced neuroinflammation.
Collapse
Affiliation(s)
- Jennetta W Hammond
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York
| | - Wen Q Qiu
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York
| | - Daniel F Marker
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York
| | - Jeffrey M Chamberlain
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York
| | - Will Greaves-Tunnell
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York
| | - Matthew J Bellizzi
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York
| | - Shao-Ming Lu
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
33
|
Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC, Hunter ES, Ginhoux F, Knudsen TB. Blood-brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res 2018; 109:1680-1710. [PMID: 29251840 DOI: 10.1002/bdr2.1180] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) serves as a gateway for passage of drugs, chemicals, nutrients, metabolites, and hormones between vascular and neural compartments in the brain. Here, we review BBB development with regard to the microphysiology of the neurovascular unit (NVU) and the impact of BBB disruption on brain development. Our focus is on modeling these complex systems. Extant in silico models are available as tools to predict the probability of drug/chemical passage across the BBB; in vitro platforms for high-throughput screening and high-content imaging provide novel data streams for profiling chemical-biological interactions; and engineered human cell-based microphysiological systems provide empirical models with which to investigate the dynamics of NVU function. Computational models are needed that bring together kinetic and dynamic aspects of NVU function across gestation and under various physiological and toxicological scenarios. This integration will inform adverse outcome pathways to reduce uncertainty in translating in vitro data and in silico models for use in risk assessments that aim to protect neurodevelopmental health.
Collapse
Affiliation(s)
- Katerine S Saili
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Todd J Zurlinden
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Andrew J Schwab
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Nancy C Baker
- Leidos, contractor to NCCT, Research Triangle Park, North Carolina 27711
| | - E Sidney Hunter
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Thomas B Knudsen
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| |
Collapse
|
34
|
Ryan MC, Kochunov P, Sherman PM, Rowland LM, Wijtenburg SA, Acheson A, Hong LE, Sladky J, McGuire S. Miniature pig magnetic resonance spectroscopy model of normal adolescent brain development. J Neurosci Methods 2018; 308:173-182. [PMID: 30099002 DOI: 10.1016/j.jneumeth.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND We are developing the miniature pig (Sus scrofa domestica), an in-vivo translational, gyrencephalic model for brain development, as an alternative to laboratory rodents/non-human primates. We analyzed longitudinal changes in adolescent pigs using proton magnetic resonance spectroscopy (1H-MRS) and examined the relationship with white matter (WM) integrity derived from diffusion weighted imaging (DWI). NEW METHOD Twelve female Sinclair™ pigs underwent three imaging/spectroscopy sessions every 23.95 ± 3.73 days beginning at three months of age using a clinical 3 T scanner. 1H-MRS data were collected using 1.2 × 1.0 × 3.0 cm voxels placed in left and right hemisphere WM using a Point Resolved Spectroscopy sequence (TR = 2000 ms, TE = 30 ms). Concentrations of N-acetylaspartate, myo-inositol (MI), glutamate + glutamine, choline, creatine, and macromolecules (MM) 09 and 14 were averaged from both hemispheres. DWI data were collected using 15 shells of b-values (b = 0-3500 s/mm2) with 32 directions/shell and fit using the WM Tract Integrity model to calculate fractional anisotropy (FA), kurtosis anisotropy (KA) and permeability-diffusivity index. RESULTS MI and MM09 significantly declined with age. Increased FA and KA significantly correlated with decline in MI and MM09. Correlations lost significance once corrected for age. COMPARISON WITH EXISTING METHODS MRI scanners/protocols can be used to collect 1H-MRS and DWI data in pigs. Pigs have a larger, more complex, gyrencephalic brain than laboratory rodents but are less complex than non-human primates, thus satisfying the "replacement" principle of animal research. CONCLUSIONS Longitudinal effects in MRS measurements were similar to those reported in adolescent humans. MRS changes correlated with diffusion measurements indicating ongoing WM myelination/maturation.
Collapse
Affiliation(s)
- Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Paul M Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Radiology, 59thMedical Wing, 1100 Wilford Hall Loop, Bldg 4551, Joint Base San Antonio, TX, 78236, United States.
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, 4301 W Markham St., Little Rock, AR, 72205, United States.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - John Sladky
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 1100 Wilford Hall Loop, Bldg 4551, Joint Base San Antonio, Lackland AFB, TX, 78236, United States.
| | - Stephen McGuire
- Department of Neurology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States.
| |
Collapse
|
35
|
Complement links platelets to innate immunity. Semin Immunol 2018; 37:43-52. [DOI: 10.1016/j.smim.2018.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
|
36
|
Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus. J Neurosci 2018; 38:5710-5726. [PMID: 29793972 DOI: 10.1523/jneurosci.3618-17.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 01/22/2023] Open
Abstract
Astrocyte-derived factors can control synapse formation and functions, making astrocytes an attractive target for regulating neuronal circuits and associated behaviors. Abnormal astrocyte-neuronal interactions are also implicated in neurodevelopmental disorders and neurodegenerative diseases associated with impaired learning and memory. However, little is known about astrocyte-mediated mechanisms that regulate learning and memory. Here, we propose astrocytic ephrin-B1 as a regulator of synaptogenesis in adult hippocampus and mouse learning behaviors. We found that astrocyte-specific ablation of ephrin-B1 in male mice triggers an increase in the density of immature dendritic spines and excitatory synaptic sites in the adult CA1 hippocampus. However, the prevalence of immature dendritic spines is associated with decreased evoked postsynaptic firing responses in CA1 pyramidal neurons, suggesting impaired maturation of these newly formed and potentially silent synapses or increased excitatory drive on the inhibitory neurons resulting in the overall decreased postsynaptic firing. Nevertheless, astrocyte-specific ephrin-B1 knock-out male mice exhibit normal acquisition of fear memory but enhanced contextual fear memory recall. In contrast, overexpression of astrocytic ephrin-B1 in the adult CA1 hippocampus leads to the loss of dendritic spines, reduced excitatory input, and impaired contextual memory retention. Our results suggest that astrocytic ephrin-B1 may compete with neuronal ephrin-B1 and mediate excitatory synapse elimination through its interactions with neuronal EphB receptors. Indeed, a deletion of neuronal EphB receptors impairs the ability of astrocytes expressing functional ephrin-B1 to engulf synaptosomes in vitro Our findings demonstrate that astrocytic ephrin-B1 regulates long-term contextual memory by restricting new synapse formation in the adult hippocampus.SIGNIFICANCE STATEMENT These studies address a gap in our knowledge of astrocyte-mediated regulation of learning and memory by unveiling a new role for ephrin-B1 in astrocytes and elucidating new mechanisms by which astrocytes regulate learning. Our studies explore the mechanisms underlying astrocyte regulation of hippocampal circuit remodeling during learning using new genetic tools that target ephrin-B signaling in astrocytes in vivo On a subcellular level, astrocytic ephrin-B1 may compete with neuronal ephrin-B1 and trigger astrocyte-mediated elimination of EphB receptor-containing synapses. Given the role EphB receptors play in neurodevelopmental disorders and neurodegenerative diseases, these findings establish a foundation for future studies of astrocyte-mediated synaptogenesis in clinically relevant conditions that can help to guide the development of clinical applications for a variety of neurological disorders.
Collapse
|
37
|
Kassa RM, Bonafede R, Boschi F, Malatesta M, Mariotti R. The role of mutated SOD1 gene in synaptic stripping and MHC class I expression following nerve axotomy in ALS murine model. Eur J Histochem 2018; 62:2904. [PMID: 29943955 PMCID: PMC5966710 DOI: 10.4081/ejh.2018.2904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/02/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motoneuron death. Several cellular pathways have been described to be involved in ALS pathogenesis; however, the involvement of presynaptic stripping and the related MHC class I molecules in mutant SOD1 motoneurons remains to be clarified. To this purpose, we here investigated, for the first time, the motoneurons behavior, di per se and after facial axonal injury, in terms of synaptic stripping and MHC class I expression in wild-type (Wt) mice and in a murine model of ALS, the SOD1(G93A) mice, at the presymptomatic and symptomatic stage of the disease. Concerning Wt animals, we found a reduction in synaptophysin immunoreactivity and an increase of MHC class I molecules in facial motoneurons after axotomy. In uninjured motoneurons of SOD1(G93A) mice, an altered presynaptic framework was evident, and this phenomenon increased during the disease course. The alteration in the presynaptic input is related to excitatory fibers. Moreover, after injury, a further decrease of excitatory input was not associated to an upregulation of MHC class I molecules in motoneuron soma. This study demonstrates, for the first time, that the presence of mutated SOD1 protein affects the MHC class I molecules expression, altering the presynaptic input in motoneurons. Nevertheless, a positive MHC class I immunolabeling was evident in glial cells around facial injured motoneurons, underlying an involvement of these cells in synaptic stripping. This study contributes to better understand the involvement of the mutated SOD1 protein in the vulnerability of motoneurons after damage.
Collapse
|
38
|
Mice lacking galectin-3 (Lgals3) function have decreased home cage movement. BMC Neurosci 2018; 19:27. [PMID: 29716523 PMCID: PMC5930520 DOI: 10.1186/s12868-018-0428-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/21/2018] [Indexed: 11/17/2022] Open
Abstract
Background Galectins are a large family of proteins evolved to recognize specific carbohydrate moieties. Given the importance of pattern recognition processes for multiple biological tasks, including CNS development and immune recognition, we examined the home cage behavioral phenotype of mice lacking galectin-3 (Lgals3) function. Using a sophisticated monitoring apparatus capable of examining feeding, drinking, and movement at millisecond temporal and 0.5 cm spatial resolutions, we observed daily behavioral patterns from 10 wildtype male C57BL/6J and 10 Lgals3 constitutive knockout (Lgals3−/−; both cohorts aged 2–3 months) mice over 17 consecutive days. We performed a second behavioral assessment of this cohort at age 6–7 months. Results At both ages, Lgals3−/− mice demonstrated less movement compared to wildtype controls. Both forward locomotion and movement-in-place behaviors were decreased in Lgals3−/− mice, due to decreased bout numbers, initiation rates, and durations. We additionally noted perturbation of behavioral circadian rhythms in Lgals3−/− mice, with mice at both ages demonstrating greater variability in day-to-day performance of feeding, drinking, and movement (as assessed by Lomb-Scargle analysis) compared to wildtype. Conclusion Carbohydrate recognition tasks performed by Lgals3 may be required for appropriate development of CNS structures involved in the generation and control of locomotor behavior. Electronic supplementary material The online version of this article (10.1186/s12868-018-0428-x) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Coulthard LG, Hawksworth OA, Woodruff TM. Complement: The Emerging Architect of the Developing Brain. Trends Neurosci 2018; 41:373-384. [PMID: 29606485 DOI: 10.1016/j.tins.2018.03.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 01/11/2023]
Abstract
Complement activation products have long been associated with roles in the innate immune system, linking the humoral and cellular responses. However, among their recently described non-inflammatory roles, complement proteins also have multiple emerging novel functions in brain development. Within this context, separate proteins and pathways of complement have carved out physiological niches in the formation, development, and refinement of neurons. They demonstrate actions that are both reminiscent of peripheral immune actions and removed from them. We review here three key roles for complement proteins in the developing brain: progenitor proliferation, neuronal migration, and synaptic pruning.
Collapse
Affiliation(s)
- Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Owen A Hawksworth
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
40
|
Guo L, Rezvanian A, Kukreja L, Hoveydai R, Bigio EH, Mesulam MM, El Khoury J, Geula C. Postmortem Adult Human Microglia Proliferate in Culture to High Passage and Maintain Their Response to Amyloid-β. J Alzheimers Dis 2018; 54:1157-1167. [PMID: 27567845 DOI: 10.3233/jad-160394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microglia are immune cells of the brain that display a range of functions. Most of our knowledge about microglia biology and function is based on cells from the rodent brain. Species variation in the complexity of the brain and differences in microglia response in the primate when compared with the rodent, require use of adult human microglia in studies of microglia biology. While methods exist for isolation of microglia from postmortem human brains, none allow culturing cells to high passage. Thus cells from the same case could not be used in parallel studies and multiple conditions. Here we report a method, which includes use of growth factors such as granulocyte macrophage colony stimulating factor, for successful culturing of adult human microglia from postmortem human brains up to 28 passages without significant loss of proliferation. Such cultures maintained their phenotype, including uptake of the scavenger receptor ligand acetylated low density lipoprotein and response to the amyloid-β peptide, and were used to extend in vivo studies in the primate brain demonstrating that inhibition of microglia activation protects neurons from amyloid-β toxicity. Significantly, microglia cultured from brains with pathologically confirmed Alzheimer's disease displayed the same characteristics as microglia cultured from normal aged brains. The method described here provides the scientific community with a new and reliable tool for mechanistic studies of human microglia function in health from childhood to old age, and in disease, enhancing the relevance of the findings to the human brain and neurodegenerative conditions.
Collapse
Affiliation(s)
- Ling Guo
- The Third People's Hospital of Yunnan Province, Kunming, China
| | - Aras Rezvanian
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lokesh Kukreja
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ramez Hoveydai
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Eileen H Bigio
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph El Khoury
- Department of Medicine, Harvard Medical School and Division of Infectious Disease, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Changiz Geula
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
41
|
Baronchelli S, La Spada A, Ntai A, Barbieri A, Conforti P, Jotti GS, Redaelli S, Bentivegna A, De Blasio P, Biunno I. Epigenetic and transcriptional modulation of WDR5, a chromatin remodeling protein, in Huntington's disease human induced pluripotent stem cell (hiPSC) model. Mol Cell Neurosci 2017; 82:46-57. [PMID: 28476540 DOI: 10.1016/j.mcn.2017.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 11/24/2022] Open
Abstract
DNA methylation (DNAm) changes are of increasing relevance to neurodegenerative disorders, including Huntington's disease (HD). We performed genome-wide screening of possible DNAm changes occurring during striatal differentiation in human induced pluripotent stem cells derived from a HD patient (HD-hiPSCs) as cellular model. We identified 240 differentially methylated regions (DMRs) at promoters in fully differentiated HD-hiPSCs. Subsequently, we focused on the methylation differences in a subcluster of genes related to Jumonji Domain Containing 3 (JMJD3), a demethylase that epigenetically regulates neuronal differentiation and activates neuronal progenitor associated genes, which are indispensable for neuronal fate acquisition. Noticeably among these genes, WD repeat-containing protein 5 (WDR5) promoter was found hypermethylated in HD-hiPSCs, resulting in a significant down-modulation in its expression and of the encoded protein. A similar WDR5 expression decrease was seen in a small series of HD-hiPSC lines characterized by different CAG length. The decrease in WDR5 expression was particularly evident in HD-hiPSCs compared to hESCs and control-hiPSCs from healthy subjects. WDR5 is a core component of the MLL/SET1 chromatin remodeling complexes essential for H3K4me3, previously reported to play an important role in stem cells self-renewal and differentiation. These results suggest the existence of epigenetic mechanisms in HD and the identification of genes, which are able to modulate HD phenotype, is important both for biomarker discovery and therapeutic interventions.
Collapse
Affiliation(s)
- Simona Baronchelli
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Alberto La Spada
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Aikaterini Ntai
- Integrated Systems Engineering Srl, Via Fantoli 16/15, 20138 Milano, Italy
| | - Andrea Barbieri
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan and Istituto Nazionale di Genetica Molecolare Padiglione Invernizzi, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Gloria Saccani Jotti
- Department of Biological Science, Biotechnology and Translational - S.Bi.Bi.T., University of Parma, Via Gramsci 14, 43121 Parma, Italy
| | - Serena Redaelli
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Milan, Italy
| | - Angela Bentivegna
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Milan, Italy; NeuroMI, Milan Center of Neuroscience, via Pergolesi 33, 20900 Monza, Italy
| | - Pasquale De Blasio
- Integrated Systems Engineering Srl, Via Fantoli 16/15, 20138 Milano, Italy
| | - Ida Biunno
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy; IRCCS Multimedica, via Fantoli 16/15, 20138 Milano, Italy.
| |
Collapse
|
42
|
Abstract
The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| | - Chinfei Chen
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| |
Collapse
|
43
|
Abstract
Inflammatory activation of microglia is a hallmark of several disorders of the central nervous system. In addition to protecting the brain against inflammatory insults, microglia are neuroprotective and play a significant role in maintaining neuronal connectivity, but the prolongation of an inflammatory status may limit the beneficial functions of these immune cells. The finding that estrogen receptors are present in monocyte-derived cells and that estrogens prevent and control the inflammatory response raise the question of the role that this sex steroid plays in the manifestation and progression of pathologies that have a clear sex difference in prevalence, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. The present review aims to provide a critical review of the current literature on the actions of estrogen in microglia and on the involvement of estrogen receptors in the manifestation of selected neurological disorders. This current understanding highlights a research area that should be expanded to identify appropriate replacement therapies to slow the progression of such diseases.
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
44
|
Williams PA, Tribble JR, Pepper KW, Cross SD, Morgan BP, Morgan JE, John SWM, Howell GR. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener 2016; 11:26. [PMID: 27048300 PMCID: PMC4822272 DOI: 10.1186/s13024-016-0091-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Background Glaucoma is a complex, multifactorial disease characterised by the loss of retinal ganglion cells and their axons leading to a decrease in visual function. The earliest events that damage retinal ganglion cells in glaucoma are currently unknown. Retinal ganglion cell death appears to be compartmentalised, with soma, dendrite and axon changes potentially occurring through different mechanisms. There is mounting evidence from other neurodegenerative diseases suggesting that neuronal dendrites undergo a prolonged period of atrophy, including the pruning of synapses, prior to cell loss. In addition, recent evidence has shown the role of the complement cascade in synaptic pruning in glaucoma and other diseases. Results Using a genetic (DBA/2J mouse) and an inducible (rat microbead) model of glaucoma we first demonstrate that there is loss of retinal ganglion cell synapses and dendrites at time points that precede axon or soma loss. We next determine the role of complement component 1 (C1) in early synaptic loss and dendritic atrophy during glaucoma. Using a genetic knockout of C1qa (D2.C1qa-/- mouse) or pharmacological inhibition of C1 (in the rat bead model) we show that inhibition of C1 is sufficient to preserve dendritic and synaptic architecture. Conclusions This study further supports assessing the potential for complement-modulating therapeutics for the prevention of retinal ganglion cell degeneration in glaucoma.
Collapse
Affiliation(s)
| | - James R Tribble
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - Stephen D Cross
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,Department of Ophthalmology, Tufts University of Medicine, Boston, MA, 02111, USA. .,The Howard Hughes Medical Institute, Bar Harbor, ME, 04609, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA, USA.
| |
Collapse
|
45
|
Xian W, Wu Y, Xiong W, Li L, Li T, Pan S, Song L, Hu L, Pei L, Yao S, Shang Y. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response. Biochem Biophys Res Commun 2016; 472:175-81. [PMID: 26915798 DOI: 10.1016/j.bbrc.2016.02.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions.
Collapse
Affiliation(s)
- Wenjing Xian
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Song
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisha Hu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
46
|
Manitz MP, Plümper J, Demir S, Ahrens M, Eßlinger M, Wachholz S, Eisenacher M, Juckel G, Friebe A. Flow cytometric characterization of microglia in the offspring of PolyI:C treated mice. Brain Res 2016; 1636:172-182. [PMID: 26872595 DOI: 10.1016/j.brainres.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The neuropathology of schizophrenia has been reported to be closely associated with microglial activation. In a previous study, using the prenatal PolyI:C schizophrenia animal model, we showed an increase in cell numbers and a reduction in microglial branching in 30-day-old PolyI:C descendants, which suggests that there is microglial activation during adolescence. To provide more information about the activation state, we aimed to examine the expression levels of Iba1, which was reported to be up-regulated in activated microglia. We used a flow cytometric approach and investigated CD11b and CD45, two additional markers for the identification of microglial cells. We demonstrated that intracellular staining against Iba1 can be used as a reliable flow cytometric method for identification of microglial cells. Prenatal PolyI:C treatment had long-term effects on CD11b and CD45 expression. It also resulted in a trend towards increased Iba1 expression. Imbalance in CD11b, CD45, and Iba1 expression might contribute to impaired synaptic surveillance and enhanced activation/inflammatory activity of microglia in adult offspring.
Collapse
Affiliation(s)
- Marie Pierre Manitz
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Jennifer Plümper
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany
| | - Seray Demir
- Department of Neuroimmunology, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | - Manuela Eßlinger
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Simone Wachholz
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| | - Georg Juckel
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| | - Astrid Friebe
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, D-44791 Bochum, Germany.
| |
Collapse
|
47
|
Edmonson CA, Ziats MN, Rennert OM. A Non-inflammatory Role for Microglia in Autism Spectrum Disorders. Front Neurol 2016; 7:9. [PMID: 26869989 PMCID: PMC4734207 DOI: 10.3389/fneur.2016.00009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/19/2016] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, difficulties with language, and repetitive/restricted behaviors. The etiology of ASD is still largely unclear, but immune dysfunction and abnormalities in synaptogenesis have repeatedly been implicated as contributing to the disease phenotype. However, an understanding of how and if these two processes are related has not firmly been established. As non-inflammatory roles of microglia become increasingly recognized as critical to normal neurodevelopment, it is important to consider how dysfunction in these processes might explain the seemingly disparate findings of immune dysfunction and aberrant synaptogenesis seen in ASD. In this review, we highlight research demonstrating the importance of microglia to the development of normal neural networks, review recent studies demonstrating abnormal microglia in autism, and discuss how the relationship between these processes may contribute to the development of autism and other neurodevelopmental disorders at the cellular level.
Collapse
Affiliation(s)
- Catherine A Edmonson
- University of Florida College of Medicine, Gainesville, FL, USA; National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mark N Ziats
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Owen M Rennert
- National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
48
|
Dugue R, Barone FC. Ischemic, traumatic and neurodegenerative brain inflammatory changes. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl.16.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review serves to link the role of the immune system in the neuropathology of acute ischemic stroke, traumatic brain injury and neurodegenerative disease. The blood–brain barrier delineates the CNS from the peripheral immune system. However, the blood–cerebrospinal fluid barrier acts as a gate between the periphery and the brain, permitting immune activity crosstalk and modulation. In acute ischemic stroke, traumatic brain injury and other neurodegenerative diseases, the blood–brain barrier is compromised and an influx of inflammatory cells and plasma proteins occurs, resulting in edema, demyelination, cell dysfunction and death, and neurobehavioral changes. The role of the complement system, key cytokines, microglia and other neuroglia in brain degenerative pathology will be discussed.
Collapse
Affiliation(s)
- Rachelle Dugue
- Departments of Neurology & Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Frank C Barone
- Departments of Neurology & Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
49
|
Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology (Berl) 2016; 233:1637-50. [PMID: 26847047 PMCID: PMC4828495 DOI: 10.1007/s00213-016-4218-9] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023]
Abstract
RATIONALE Psychosocial stressors are a well-documented risk factor for mental illness. Neuroinflammation, in particular elevated microglial activity, has been proposed to mediate this association. A number of preclinical studies have investigated the effect of stress on microglial activity. However, these have not been systematically reviewed before. OBJECTIVES This study aims to systematically review the effects of stress on microglia, as indexed by the histological microglial marker ionised calcium binding adaptor molecule 1 (Iba-1), and consider the implications of these for the role of stress in the development of mental disorders. METHODS A systematic review was undertaken using pre-defined search criteria on PubMed and EMBASE. Inclusion and data extraction was agreed by two independent researchers after review of abstracts and full text. RESULTS Eighteen studies met the inclusion criteria. These used seven different psychosocial stressors, including chronic restraint, social isolation and repeated social defeat in gerbils, mice and/or rats. The hippocampus (11/18 studies) and prefrontal cortex (13/18 studies) were the most frequently studied areas. Within the hippocampus, increased Iba-1 levels of between 20 and 200 % were reported by all 11 studies; however, one study found this to be a duration-dependent effect. Of those examining the prefrontal cortex, ∼75 % found psychosocial stress resulted in elevated Iba-1 activity. Elevations were also consistently seen in the nucleus accumbens, and under some stress conditions in the amygdala and paraventricular nucleus. CONCLUSIONS There is consistent evidence that a range of psychosocial stressors lead to elevated microglial activity in the hippocampus and good evidence that this is also the case in other brain regions. These effects were seen with early-life/prenatal stress, as well as stressors in adulthood. We consider these findings in terms of the two-hit hypothesis, which proposes that early-life stress primes microglia, leading to a potentiated response to subsequent stress. The implications for understanding the pathoaetiology of mental disorders and the development of new treatments are also considered.
Collapse
|
50
|
Gene expression analysis in Fmr1KO mice identifies an immunological signature in brain tissue and mGluR5-related signaling in primary neuronal cultures. Mol Autism 2015; 6:66. [PMID: 26697163 PMCID: PMC4687343 DOI: 10.1186/s13229-015-0061-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a neurodevelopmental disorder whose biochemical manifestations involve dysregulation of mGluR5-dependent pathways, which are widely modeled using cultured neurons. In vitro phenotypes in cultured neurons using standard morphological, functional, and chemical approaches have demonstrated considerable variability. Here, we study transcriptomes obtained in situ in the intact brain tissues of a murine model of FXS to see how they reflect the in vitro state. METHODS We used genome-wide mRNA expression profiling as a robust characterization tool for studying differentially expressed pathways in fragile X mental retardation 1 (Fmr1) knockout (KO) and wild-type (WT) murine primary neuronal cultures and in embryonic hippocampal and cortical murine tissue. To study the developmental trajectory and to relate mouse model data to human data, we used an expression map of human development to plot murine differentially expressed genes in KO/WT cultures and brain. RESULTS We found that transcriptomes from cell cultures showed a stronger signature of Fmr1KO than whole tissue transcriptomes. We observed an over-representation of immunological signaling pathways in embryonic Fmr1KO cortical and hippocampal tissues and over-represented mGluR5-downstream signaling pathways in Fmr1KO cortical and hippocampal primary cultures. Genes whose expression was up-regulated in Fmr1KO murine cultures tended to peak early in human development, whereas differentially expressed genes in embryonic cortical and hippocampal tissues clustered with genes expressed later in human development. CONCLUSIONS The transcriptional profile in brain tissues primarily centered on immunological mechanisms, whereas the profiles from cell cultures showed defects in neuronal activity. We speculate that the isolation and culturing of neurons caused a shift in neurological transcriptome towards a "juvenile" or "de-differentiated" state. Moreover, cultured neurons lack the close coupling with glia that might be responsible for the immunological phenotype in the intact brain. Our results suggest that cultured cells may recapitulate an early phase of the disease, which is also less obscured with a consequent "immunological" phenotype and in vivo compensatory mechanisms observed in the embryonic brain. Together, these results suggest that the transcriptome of cultured primary neuronal cells, in comparison to whole brain tissue, more robustly demonstrated the difference between Fmr1KO and WT mice and might reveal a molecular phenotype, which is typically hidden by compensatory mechanisms present in vivo. Moreover, cultures might be useful for investigating the perturbed pathways in early human brain development and genes previously implicated in autism.
Collapse
|