1
|
Chen M, Deng Y, Zheng M, Xiao R, Wang X, Liu B, He J, Wang J. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum. J Appl Microbiol 2024; 135:lxae048. [PMID: 38389225 DOI: 10.1093/jambio/lxae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
AIMS Stem rot caused by Fusarium concentricum is a new disease of Paris polyphylla reported by our research group. The present study investigates the growth inhibitory and apoptotic effects of Bacillus velezensis FJAT-54560 lipopeptide against F. concentricum. METHODS AND RESULTS HPLC preparation and LC-MS analysis results show that the crude lipopeptides secreted by Bacillus velezensis FJAT-54560 isolated from Jasminum sambac consist of C14-17 iturin A, C14 fengycin B, C16 fengycin A/A2, C18 fengycin A, C20 fengycin B2, C21 fengycin A2, C22-23 fengycin A, C12-16 surfactin A, and C15 surfactin A derivatives. The mass ratios (g/g) of iturin, fengycin, and surfactin in lipopeptides are 2.40, 67.51, and 30.08%, respectively. Through inhibition zone and inhibition rate experiments, we found that crude lipopeptides and purified fengycin exhibit strong antifungal activity against F. concentricum, including accumulation of reactive oxygen species, loss of mitochondrial membrane potential, DNA fragmentation, Ca2+ accumulation, chromatin condensation, and phosphatidylserine externalization. Transcriptomic analysis indicates that crude lipopeptide-induced apoptosis in F. concentricum cells may be mediated by apoptosis-inducing factors and apoptosis mediators and can serve as a metacaspase-independent model. CONCLUSION Lipopeptides from Bacillus velezensis FJAT-54560 can control the pathogenic fungus F. concentricum by inducing apoptosis.
Collapse
Affiliation(s)
- Meichun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yingjie Deng
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Meixia Zheng
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Rongfeng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Jieping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
2
|
Wu J, Xin R, Jiang Y, Jin H, Liu H, Zhang H, Jiang D, Fu Y, Xie J, Cheng J, Lin Y. Botrytis cinerea type II inhibitor of apoptosis BcBIR1 enhances the biocontrol capacity of Coniothyrium minitans. Microb Biotechnol 2024; 17:e14402. [PMID: 38393322 PMCID: PMC10886433 DOI: 10.1111/1751-7915.14402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024] Open
Abstract
Apoptosis-like programmed cell death is associated with fungal development, ageing, pathogenicity and stress responses. Here, to explore the potential of Botrytis cinerea type II inhibitor of apoptosis (IAP) BcBIR1 in elevating the biocontrol efficacy of Coniothyrium minitans, the BcBIR1 gene was heterologously expressed in C. minitans. Results indicated that the strains expressing BcBIR1 had higher rates of conidiation, mycelial growth and biomass growth than the wild-type strain. Moreover, BcBIR1 was found to inhibit apoptosis, indicating its role as an IAP in C. minitans. Under various abiotic stresses, the growth rates of BcBIR1-expressing strains were significantly higher than that of the wild-type strain. Moreover, the conidial survival rate of the BcBIR1-expressing strains treated with ultraviolet irradiation was enhanced. In antifungal activity assay, the culture filtrates of BcBIR1-expressing strains displayed a stronger inhibitory effect on B. cinerea and Sclerotinia sclerotiorum than the wild-type strain. The study also found that BcBIR1 expression increased the mycoparasitism against the sclerotia, but not the hyphae of S. sclerotiorum. Taken together, these results suggest that BcBIR1 enhances vegetative growth, conidiation, anti-apoptosis activity, abiotic stress resistance, antifungal activity and mycoparasitism in C. minitans. As an IAP, BcBIR1 may improve the control capacity of C. minitans against S. sclerotiorum.
Collapse
Affiliation(s)
- Jianing Wu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ruolong Xin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yachan Jiang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Huanan Jin
- Key Laboratory of Elemene Class Anti‐cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institute, Health Science CenterHangzhou Normal UniversityHangzhouZhejiangChina
| | - Hao Liu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Hongxiang Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Daohong Jiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiatao Xie
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiasen Cheng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
3
|
Pérez-Lara G, Olivares-Yañez C, van Bakel H, Larrondo LF, Canessa P. Genome-Wide Characterization of Light-Regulated Gene Expression in Botrytis cinerea Reveals Underlying Complex Photobiology. Int J Mol Sci 2023; 24:8705. [PMID: 37240051 PMCID: PMC10218500 DOI: 10.3390/ijms24108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Botrytis cinerea is a necrotrophic fungus characterized mainly by its wide host range of infected plants. The deletion of the white-collar-1 gene (bcwcl1), which encodes for a blue-light receptor/transcription factor, causes a decrease in virulence, particularly when assays are conducted in the presence of light or photocycles. However, despite ample characterization, the extent of the light-modulated transcriptional responses regulated by BcWCL1 remains unknown. In this study, pathogen and pathogen:host RNA-seq analyses, conducted during non-infective in vitro plate growth and when infecting Arabidopsis thaliana leaves, respectively, informed on the global gene expression patterns after a 60 min light pulse on the wild-type B05.10 or ∆bcwcl1 B. cinerea strains. The results revealed a complex fungal photobiology, where the mutant did not react to the light pulse during its interaction with the plant. Indeed, when infecting Arabidopsis, no photoreceptor-encoding genes were upregulated upon the light pulse in the ∆bcwcl1 mutant. Differentially expressed genes (DEGs) in B. cinerea under non-infecting conditions were predominantly related to decreased energy production in response to the light pulse. In contrast, DEGs during infection significantly differ in the B05.10 strain and the ∆bcwcl1 mutant. Upon illumination at 24 h post-infection in planta, a decrease in the B. cinerea virulence-associated transcripts was observed. Accordingly, after a light pulse, biological functions associated with plant defense appear enriched among light-repressed genes in fungus-infected plants. Taken together, our results show the main transcriptomic differences between wild-type B. cinerea B05.10 and ∆bcwcl1 after a 60 min light pulse when growing saprophytically on a Petri dish and necrotrophically over A. thaliana.
Collapse
Affiliation(s)
- Gabriel Pérez-Lara
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Consuelo Olivares-Yañez
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luis F. Larrondo
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
- Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago 8331150, Chile
| | - Paulo Canessa
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| |
Collapse
|
4
|
The Botrytis cinerea Gene Expression Browser. J Fungi (Basel) 2023; 9:jof9010084. [PMID: 36675905 PMCID: PMC9861337 DOI: 10.3390/jof9010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
For comprehensive gene expression analyses of the phytopathogenic fungus Botrytis cinerea, which infects a number of plant taxa and is a cause of substantial agricultural losses worldwide, we developed BEB, a web-based B. cinerea gene Expression Browser. This computationally inexpensive web-based application and its associated database contain manually curated RNA-Seq data for B. cinerea. BEB enables expression analyses of genes of interest under different culture conditions by providing publication-ready heatmaps depicting transcript levels, without requiring advanced computational skills. BEB also provides details of each experiment and user-defined gene expression clustering and visualization options. If needed, tables of gene expression values can be downloaded for further exploration, including, for instance, the determination of differentially expressed genes. The BEB implementation is based on open-source computational technologies that can be deployed for other organisms. In this case, the new implementation will be limited only by the number of transcriptomic experiments that are incorporated into the platform. To demonstrate the usability and value of BEB, we analyzed gene expression patterns across different conditions, with a focus on secondary metabolite gene clusters, chromosome-wide gene expression, previously described virulence factors, and reference genes, providing the first comprehensive expression overview of these groups of genes in this relevant fungal phytopathogen. We expect this tool to be broadly useful in B. cinerea research, providing a basis for comparative transcriptomics and candidate gene identification for functional assays.
Collapse
|
5
|
Lerer V, Shlezinger N. Inseparable companions: Fungal viruses as regulators of fungal fitness and host adaptation. Front Cell Infect Microbiol 2022; 12:1020608. [PMID: 36310864 PMCID: PMC9606465 DOI: 10.3389/fcimb.2022.1020608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 08/01/2023] Open
|
6
|
Oren-Young L, Llorens E, Bi K, Zhang M, Sharon A. Botrytis cinerea methyl isocitrate lyase mediates oxidative stress tolerance and programmed cell death by modulating cellular succinate levels. Fungal Genet Biol 2020; 146:103484. [PMID: 33220429 DOI: 10.1016/j.fgb.2020.103484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Fungi lack the entire animal core apoptotic machinery. Nevertheless, regulated cell death with apoptotic markers occurs in multicellular as well as in unicellular fungi and is essential for proper fungal development and stress adaptation. The discrepancy between appearance of an apoptotic-like regulated cell death (RCD) in the absence of core apoptotic machinery is further complicated by the fact that heterologous expression of animal apoptotic genes in fungi affects fungal RCD. Here we describe the role of BcMcl, a methyl isocitrate lyase from the plant pathogenic fungus Botrytis cinerea, in succinate metabolism, and the connection of succinate with stress responses and cell death. Over expression of bcmcl resulted in elevated tolerance to oxidative stress and reduced levels of RCD, which were associated with accumulation of elevated levels of succinate. Deletion of bcmcl had almost no effect on fungal development or stress sensitivity, and succinate levels were unchanged in the deletion strain. Gene expression experiments showed co-regulation of bcmcl and bcicl (isocitrate lyase); expression of the bcicl gene was enhanced in bcmcl deletion and suppressed in bcmcl over expression strains. External addition of succinate reproduced the phenotypes of the bcmcl over expression strains, including developmental defects, reduced virulence, and improved oxidative stress tolerance. Collectively, our results implicate mitochondria metabolic pathways, and in particular succinate metabolism, in regulation of fungal stress tolerance, and highlight the role of this onco-metabolite as potential mediator of fungal RCD.
Collapse
Affiliation(s)
- Liat Oren-Young
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eugenio Llorens
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kai Bi
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mingzhe Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
7
|
The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020; 9:pathogens9110923. [PMID: 33171745 PMCID: PMC7695001 DOI: 10.3390/pathogens9110923] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen.
Collapse
|
8
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
9
|
Lin C, Pan Y, Ye N, Shih Y, Liu F, Chen C. LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death. MOLECULAR PLANT PATHOLOGY 2020; 21:1149-1166. [PMID: 32662583 PMCID: PMC7411634 DOI: 10.1111/mpp.12968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 05/08/2023]
Abstract
Defence-related LsGRP1 is a leaf-specific plant class II glycine-rich protein (GRP) involved in salicylic acid-induced systemic resistance against grey mould caused by necrotrophic Botrytis elliptica in lily (Lilium) cultivar Stargazer. The C-terminal region of LsGRP1 (LsGRP1C ) can inhibit fungal growth in vitro via a mechanism of inducing fungal apoptosis programmed cell death (PCD). In this study, the role of LsGRP1 in induced defence mechanism was investigated using LsGRP1-silenced Stargazer lily and LsGRP1-transgenic Arabidopsis thaliana. LsGRP1 silencing in lily was found to slightly inhibit plant growth and greatly increase the susceptibility to B. elliptica by suppressing callose deposition and early reactive oxygen species (ROS) accumulation. In contrast, LsGRP1-transgenic Arabidopsis showed higher resistance to Botrytis cinerea and also to Pseudomonas syringae pv. tomato DC3000 as compared to the wild type, accompanied with the enhancement of callose deposition and ROS accumulation. Additionally, LsGRP1 silencing increased plant cell death caused by B. elliptica secretion and reduced pathogen-associated molecular pattern (PAMP)-triggered defence activation in Stargazer lily. Consistently, LsGRP1 expression boosted PAMP-triggered defence responses and effector recognition-induced hypersensitive response in Arabidopsis. Moreover, fungal apoptosis PCD triggered by LsGRP1 in an LsGRP1C -dependent manner was demonstrated by leaf infiltration with LsGRP1C -containing recombinant proteins in Stargazer lily. Based on these results, we presume that LsGRP1 plays roles in plant defence via functioning as a pathogen-inducible switch for plant innate immune activation and acting as a fungal apoptosis PCD inducer to combat pathogen attack.
Collapse
Affiliation(s)
- Chia‐Hua Lin
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Ying‐Chieh Pan
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Nai‐Hua Ye
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Yu‐Ting Shih
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Fan‐Wei Liu
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Chao‐Ying Chen
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
10
|
Zhang L, Zhong K, Lv R, Zheng X, Zhang Z, Zhang H. The inhibitor of apoptosis protein MoBir1 is involved in the suppression of hydrogen peroxide-induced fungal cell death, reactive oxygen species generation, and pathogenicity of rice blast fungus. Appl Microbiol Biotechnol 2019; 103:6617-6627. [PMID: 31175429 DOI: 10.1007/s00253-019-09931-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023]
Abstract
The inhibitor of apoptosis protein (IAP) family has been identified in a variety of organisms. All IAPs contain one to three baculoviral IAP repeat (BIR) domains, which are required for anti-apoptotic activity. Here, we identified a type II BIR domain-containing protein, MoBir1, in the rice blast fungus Magnaporthe oryzae. Expression of the MoBIR1 gene in Saccharomyces cerevisiae suppressed hydrogen peroxide-induced cell death and delayed yeast cell chronological aging. Delayed aging was found to require the carboxyl terminus of MoBir1. M. oryzae transformants overexpressing the MoBIR1 gene demonstrated increased growth rate and biomass, delayed mycelial aging, and enhanced resistance to hydrogen peroxide but reduced reactive oxygen species generation and virulence. Moreover, MoBIR1-overexpressing transformants exhibited anti-apoptotic activity. However, MoBIR1 silencing resulted in no obvious phenotypic changes, compared with the wild-type M. oryzae strain Guy11. Our findings broaden the knowledge on fungal type II BIR domain-containing proteins.
Collapse
Affiliation(s)
- Lisha Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076, Tübingen, Germany
| | - Kaili Zhong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ruili Lv
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.
| |
Collapse
|
11
|
Calderón CE, Rotem N, Harris R, Vela‐Corcía D, Levy M. Pseudozyma aphidis activates reactive oxygen species production, programmed cell death and morphological alterations in the necrotrophic fungus Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2019; 20:562-574. [PMID: 30537338 PMCID: PMC6637909 DOI: 10.1111/mpp.12775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many types of yeast have been studied in the last few years as potential biocontrol agents against different phytopathogenic fungi. Their ability to control plant diseases is mainly through combined modes of action. Among them, antibiosis, competition for nutrients and niches, induction of systemic resistance in plants and mycoparasitism have been the most studied. In previous work, we have established that the epiphytic yeast Pseudozyma aphidis inhibits Botrytis cinerea through induced resistance and antibiosis. Here, we demonstrate that P. aphidis adheres to B. cinerea hyphae and competes with them for nutrients. We further show that the secreted antifungal compounds activate the production of reactive oxygen species and programmed cell death in B. cinerea mycelium. Finally, P. aphidis and its secreted compounds negatively affect B. cinerea hyphae, leading to morphological alterations, including hyphal curliness, vacuolization and branching, which presumably affects the colonization ability and infectivity of B. cinerea. This study demonstrates additional modes of action for P. aphidis and its antifungal compounds against the plant pathogen B. cinerea.
Collapse
Affiliation(s)
- Claudia E. Calderón
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovot76100Israel
| | - Neta Rotem
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovot76100Israel
| | - Raviv Harris
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovot76100Israel
| | - David Vela‐Corcía
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovot76100Israel
| | - Maggie Levy
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovot76100Israel
| |
Collapse
|
12
|
Melo R, Sanhueza L, Mendoza L, Cotoras M. Characterization of the fungitoxic activity on Botrytis cinerea of the aristolochic acids I and II. Lett Appl Microbiol 2018; 68:48-55. [PMID: 30325521 DOI: 10.1111/lam.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/23/2023]
Abstract
The fungitoxic effect of aristolochic acids I and II on mycelial growth and conidial germination of Botrytis cinerea was analysed. Aristolochic acid I had a higher effect on mycelial growth of B. cinerea than aristolochic acid II with IC50 value of 18·7 and 57·0 μg ml-1 , respectively. These compounds did not affect the conidia germination. Also, the effect of both compounds on DNA and plasmatic membrane integrity of B. cinerea was studied. Only aristolochic acid II was able to cause damage to the integrity of the plasmatic membrane. When the fungus was incubated with a mixture of these compounds, degradation of DNA was observed. Finally, biotransformation products were not detected in the culture broth when B. cinerea was incubated in the presence of the aristolochic acids. Studies of structural characteristics that increase the antifungal effect of compounds against B. cinerea will permit to design new molecules to control this phytopathogenic fungus. SIGNIFICANCE AND IMPACT OF THE STUDY: The fungitoxic effect on Botrytis cinerea of aristolochic acids I and II was characterized. The only structural difference among these compounds is a methoxy group at carbon 8. However, despite their structural similarity, the fungitoxic effect of aristolochic acid I was higher than the effect of aristolochic acid II. This result suggests that the methoxy group is important for the fungitoxic activity of these compounds on B. cinerea.
Collapse
Affiliation(s)
- R Melo
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - L Sanhueza
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - L Mendoza
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - M Cotoras
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
13
|
Shlezinger N, Irmer H, Dhingra S, Beattie SR, Cramer RA, Braus GH, Sharon A, Hohl TM. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science 2018; 357:1037-1041. [PMID: 28883073 DOI: 10.1126/science.aan0365] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/22/2017] [Indexed: 01/24/2023]
Abstract
Humans inhale mold conidia daily and typically experience lifelong asymptomatic clearance. Conidial germination into tissue-invasive hyphae can occur in individuals with defects in myeloid function, although the mechanism of myeloid cell-mediated immune surveillance remains unclear. By monitoring fungal physiology in vivo, we demonstrate that lung neutrophils trigger programmed cell death with apoptosis-like features in Aspergillus fumigatus conidia, the most prevalent human mold pathogen. An antiapoptotic protein, AfBIR1, opposes this process by inhibiting fungal caspase activation and DNA fragmentation in the murine lung. Genetic and pharmacologic studies indicate that AfBIR1 expression and activity underlie conidial susceptibility to NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-dependent killing and, in turn, host susceptibility to invasive aspergillosis. Immune surveillance exploits a fungal apoptosis-like programmed cell death pathway to maintain sterilizing immunity in the lung.
Collapse
Affiliation(s)
- Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Henriette Irmer
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sarah R Beattie
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
15
|
Eizner E, Ronen M, Gur Y, Gavish A, Zhu W, Sharon A. Characterization of Botrytis-plant interactions using PathTrack © -an automated system for dynamic analysis of disease development. MOLECULAR PLANT PATHOLOGY 2017; 18:503-512. [PMID: 27061637 PMCID: PMC6638221 DOI: 10.1111/mpp.12410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 05/28/2023]
Abstract
The measurement of disease development is integral in studies on plant-microbe interactions. To address the need for a dynamic and quantitative disease evaluation, we developed PathTrack© , and used it to analyse the interaction of plants with Botrytis cinerea. PathTrack© is composed of an infection chamber, a photography unit and software that produces video files and numerical values of disease progression. We identified a previously unrecognized infection stage and determined numerical parameters of pathogenic development. Using these parameters, we identified differences in disease dynamics between seemingly similar B. cinerea pathogenicity mutants, and revealed new details on plant susceptibility to the fungus. We showed that the difference between the lesion expansion rate on leaves and colony spreading rate on artificial medium reflects the levels of the plant immune system, suggesting that this parameter can be used to quantify plant defence. Our results shed new light and reveal new details of the interaction between the model necrotrophic pathogen B. cinerea and plants. The concept that we present is universal and may be applied to facilitate the study of various types of plant-pathogen association.
Collapse
Affiliation(s)
- Elad Eizner
- Department of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel Aviv69978Israel
- Department of Physical Electronics, Fleischman Faculty of EngineeringTel Aviv UniversityTel Aviv69978Israel
| | - Mordechi Ronen
- Department of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel Aviv69978Israel
| | - Yonatan Gur
- Department of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel Aviv69978Israel
| | - Assaf Gavish
- Department of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel Aviv69978Israel
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel Aviv69978Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of PlantsTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
16
|
Cotoras M, Castro P, Vivanco H, Melo R, Mendoza L. Farnesol induces apoptosis-like phenotype in the phytopathogenic fungusBotrytis cinerea. Mycologia 2017; 105:28-33. [DOI: 10.3852/12-012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Milena Cotoras
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Paulo Castro
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Herman Vivanco
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Ricardo Melo
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| | - Leonora Mendoza
- Facultad de Química y Biología, Universídad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
17
|
Shalaby S, Larkov O, Lamdan NL, Goldshmidt-Tran O, Horwitz BA. Plant phenolic acids induce programmed cell death of a fungal pathogen: MAPK signaling and survival of Cochliobolus heterostrophus. Environ Microbiol 2016; 18:4188-4199. [PMID: 27631532 DOI: 10.1111/1462-2920.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/09/2016] [Indexed: 11/29/2022]
Abstract
Plant aromatic compounds provide signals and a nutrient source to pathogens, and also act as stressors. Structure-activity relationships suggest two pathways sensing these compounds in the maize pathogen Cochliobolus heterostrophus, one triggering a stress response, and one inducing enzymes for their degradation. Focusing on the stress pathway, we found that ferulic acid causes rapid appearance of TUNEL-positive nuclei, dispersion of histone H1:GFP, hyphal shrinkage, and eventually membrane damage. These hallmarks of programmed cell death (PCD) were not seen upon exposure to caffeic acid, a very similar compound. Exposure to ferulic acid dephosphorylated two MAP kinases: Hog1 (stress activated) and Chk1 (pathogenicity related), while increasing phosphorylation of Mps1 (cell integrity related). Mutants lacking Hog1 or Chk1 are hypersensitive to ferulic acid while Mps1 mutants are not. These results implicate three MAPK pathways in the stress response. Ferulic acid and the antifungal fludioxonil have opposite additive effects on survival and on dephosphorylation of Hog1, which is thus implicated in survival. The results may explain why some fungal pathogens of plants undergo cell death early in host invasion, when phenolics are released from plant tissue.
Collapse
Affiliation(s)
- Samer Shalaby
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Olga Larkov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Netta-Li Lamdan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| |
Collapse
|
18
|
Pietrzak K, Glińska S, Gapińska M, Ruman T, Nowak A, Aydin E, Gutarowska B. Silver nanoparticles: a mechanism of action on moulds. Metallomics 2016; 8:1294-1302. [DOI: 10.1039/c6mt00161k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Shlezinger N, Israeli M, Mochly E, Oren-Young L, Zhu W, Sharon A. Translocation from nuclei to cytoplasm is necessary for anti A-PCD activity and turnover of the Type II IAP BcBir1. Mol Microbiol 2015; 99:393-406. [DOI: 10.1111/mmi.13238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Neta Shlezinger
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Maayan Israeli
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Elad Mochly
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Liat Oren-Young
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
20
|
Lin CH, Chang MW, Chen CY. A potent antimicrobial peptide derived from the protein LsGRP1 of Lilium. PHYTOPATHOLOGY 2014; 104:340-346. [PMID: 24620722 DOI: 10.1094/phyto-09-13-0252-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
LsGRP1 is a defense-related gene differentially expressed in lily leaves in response to pathogen attack. The difficulty in the expression of LsGRP1 in Escherichia coli suggested the presence of antimicrobial activity in LsGRP1. To evaluate the antimicrobial trait of LsGRP1, three LsGRP1-derived peptides were chemically synthesized; namely LsGRP1(N) (N-terminal region without the signal peptide), LsGRP1(G) (glycine-rich region), and LsGRP1(C) (C-terminal cysteine-rich region). LsGRP1(C) was proposed to be a potential antimicrobial agent according to its broad-spectrum and effective antimicrobial activity. LsGRP1(C) displayed inhibition effects on bacterial and fungal growth, possibly by altering the integrity of the cell membrane, as indicated by scanning electron microscopy and SYTOX Green staining assays. Additionally, LsGRP1(C) induced programmed cell death-like phenomenon in the tested fungal species as indicated by 2',7'-dichlorodihydrofluorescein diacetate and 4',6'-diamidino-2-phenylindole assays. Further immunofluorescence staining showed that LsGRP1(C) was located at the fungal cell surface. According to these observations, we concluded that LsGRP1(C) originated from the plant defense-related protein LsGRP1 would play a role as an antimicrobial peptide and have a potential for practical use.
Collapse
|
21
|
Affiliation(s)
- Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
22
|
Gao K, Xiong Q, Xu J, Wang K, Wang K. CpBir1 is required for conidiation, virulence and anti-apoptotic effects and influences hypovirus transmission in Cryphonectria parasitica. Fungal Genet Biol 2012; 51:60-71. [PMID: 23084963 DOI: 10.1016/j.fgb.2012.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/29/2022]
Abstract
Inhibitors of apoptosis proteins (IAPs) are critically important in the regulation of unicellular yeast and metazoan apoptosis. All IAPs contain one to three baculovirus IAP repeat (BIR) domains, which are essential for the anti-apoptotic activity of the IAPs. A homolog of IAPs, CpBir1, which bears two BIR domains, was recently identified from the chestnut blight fungus Cryphonectria parasitica genome. CpIAP was deleted by gene replacement, and the phenotypes of ΔIAP were characterized. CpBir1 was significantly down-regulated by hypovirus infection but up-regulated by H(2)O(2). Similar to Saccharomyces cerevisiae Bir1p, the Cpbir1 mutant was sensitive to H(2)O(2), and constitutive overexpression of CpBir1 increased resistance to H(2)O(2). The Cpbir1 mutant also showed defects in aerial hyphal formation, colony growth, mycelial morphology, conidiogenesis, pigmentation, resistance to stress conditions and virulence. Genetic complementation with native Cpbir1 fully recovered all these defective phenotypes. The CpBir1-eGFP fusion protein was localized to the nucleus in juvenile cultures, while it was found in the cytoplasm in old cultures, suggesting that the localization pattern of CpBir1 may correlate with the process of anti-apoptosis. Increased accumulation of reactive oxygen species (ROS) in the Cpbir1 deletion mutant further supports the anti-apoptotic function of CpBir1. Among five selected vegetative compatible (vc) types of C. parasitica, Cpbir1 deletion was found to block virus from transferring between Cpbir1 mutants. However, hypovirus infected Cpbir1 mutants showed a similar ability to transmit virus to other virus-free isolates compared with the infected wild-type strain. In summary, Cpbir1 encodes an IAP CpBir1 that is down-regulated by hypovirus infection and required for conidiation, virulence and anti-apoptosis, as well as affects hypovirus transmission in chestnut blight fungus C. parasitica.
Collapse
Affiliation(s)
- Kun Gao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
23
|
Shlezinger N, Goldfinger N, Sharon A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front Oncol 2012; 2:97. [PMID: 22891165 PMCID: PMC3412994 DOI: 10.3389/fonc.2012.00097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.
Collapse
Affiliation(s)
- Neta Shlezinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Nir Goldfinger
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University,Tel Aviv, Israel
| |
Collapse
|