1
|
Kendrick AA, Nguyen KHV, Ma W, Karasmanis EP, Amaro RE, Reck-Peterson SL, Leschziner AE. Multiple steps of dynein activation by Lis1 visualized by cryo-EM. Nat Struct Mol Biol 2025:10.1038/s41594-025-01558-w. [PMID: 40410592 DOI: 10.1038/s41594-025-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/11/2025] [Indexed: 05/25/2025]
Abstract
Cytoplasmic dynein-1 (dynein) is an essential molecular motor controlled in part by autoinhibition. Lis1, a key dynein regulator mutated in the neurodevelopmental disease lissencephaly, plays a role in dynein activation. We recently identified a structure of partially autoinhibited dynein bound to Lis1, which suggests an intermediate state in dynein's activation pathway. However, other structural information is needed to fully understand how Lis1 activates dynein. Here, we used cryo-EM and yeast dynein and Lis1 incubated with ATP at different time points to reveal conformations that we propose represent additional intermediate states in dynein's activation pathway. We solved 16 high-resolution structures, including 7 distinct dynein and dynein-Lis1 structures from the same sample. Our data support a model in which Lis1 relieves dynein autoinhibition by increasing its basal ATP hydrolysis rate and promoting conformations compatible with complex assembly and motility. Together, this analysis advances our understanding of dynein activation and the contribution of Lis1 to this process.
Collapse
Affiliation(s)
- Agnieszka A Kendrick
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Kendrick H V Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, VT, USA
| | - Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Belančić A, Janković T, Gkrinia EMM, Kristić I, Rajič Bumber J, Rački V, Pilipović K, Vitezić D, Mršić-Pelčić J. Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurol Int 2025; 17:41. [PMID: 40137462 PMCID: PMC11944370 DOI: 10.3390/neurolint17030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | | | - Iva Kristić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| |
Collapse
|
3
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
4
|
Ramos RL, De Heredia MMB, Zhang Y, Stout RF, Tindi JO, Wu L, Schwartz GJ, Botbol YM, Sidoli S, Poojari A, Rakowski-Anderson T, Shafit-Zagardo B. Patient-specific mutation of Dync1h1 in mice causes brain and behavioral deficits. Neurobiol Dis 2024; 199:106594. [PMID: 39025270 DOI: 10.1016/j.nbd.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
AIMS Cytoplasmic dynein heavy chain (DYNC1H1) is a multi-subunit protein complex that provides motor force for movement of cargo on microtubules and traffics them back to the soma. In humans, mutations along the DYNC1H1 gene result in intellectual disabilities, cognitive delays, and neurologic and motor deficits. The aim of the study was to generate a mouse model to a newly identified de novo heterozygous DYNC1H1 mutation, within a functional ATPase domain (c9052C > T(P3018S)), identified in a child with motor deficits, and intellectual disabilities. RESULTS P3018S heterozygous (HET) knockin mice are viable; homozygotes are lethal. Metabolic and EchoMRI™ testing show that HET mice have a higher metabolic rate, are more active, and have less body fat compared to wildtype mice. Neurobehavioral studies show that HET mice perform worse when traversing elevated balance beams, and on the negative geotaxis test. Immunofluorescent staining shows neuronal migration abnormalities in the dorsal and lateral neocortex with heterotopia in layer I. Neuron-subtype specific transcription factors CUX1 and CTGF identified neurons from layers II/III and VI respectively in cortical layer I, and abnormal pyramidal neurons with MAP2+ dendrites projecting downward from the pial surface. CONCLUSION The HET mice are a good model for the motor deficits seen in the child, and highlights the importance of cytoplasmic dynein in the maintenance of cortical function and dendritic orientation relative to the pial surface. Our results are discussed in the context of other dynein mutant mice and in relation to clinical presentation in humans with DYNC1H1 mutations.
Collapse
Affiliation(s)
- Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Riland Academic Health Center, Room 26, Old Westbury, NY 11568, United States of America
| | | | - Yongwei Zhang
- Cancer Center, Albert Einstein College of Medicine, 1301 Morris Park Ave, Price Building, Rm 269, Bronx, NY 10461, United States of America.
| | - Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Riland Academic Health Center, Room 22, Old Westbury, NY 11568, United States of America.
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Rm 501, 1410 Pelham Parkway S., Bronx, NY 10461, United States of America.
| | - Liching Wu
- Dept of Medicine, Albert Einstein College of Medicine, United States of America.
| | - Gary J Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, United States of America.
| | - Yair M Botbol
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer Building, Rm 520, Bronx, NY 10461, United States of America.
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein, United States of America.
| | - Ankita Poojari
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States of America.
| | - Tammy Rakowski-Anderson
- Institute for Animal Studies, Albert Einstein College of Medicine, Van Etten Building, Room 463, Bronx, NY 10461, United States of America.
| | - Bridget Shafit-Zagardo
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer Building 514, Bronx, NY 10461, United States of America.
| |
Collapse
|
5
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Thümmler K, Wrzos C, Franz J, McElroy D, Cole JJ, Hayden L, Arseni D, Schwarz F, Junker A, Edgar JM, Kügler S, Neef A, Wolf F, Stadelmann C, Linington C. Fibroblast growth factor 9 (FGF9)-mediated neurodegeneration: Implications for progressive multiple sclerosis? Neuropathol Appl Neurobiol 2023; 49:e12935. [PMID: 37705188 DOI: 10.1111/nan.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
AIMS Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Katja Thümmler
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Claudia Wrzos
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Franz
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | - Daniel McElroy
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John J Cole
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Lorna Hayden
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Diana Arseni
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Friedrich Schwarz
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Junker
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neuropathology, University Hospital Essen, Essen, Germany
| | - Julia M Edgar
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sebastian Kügler
- Institute for Neurology, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Andreas Neef
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells (MBExC), University of Goettingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells (MBExC), University of Goettingen, Göttingen, Germany
| | | |
Collapse
|
7
|
Karasmanis EP, Reimer JM, Kendrick AA, Nguyen KHV, Rodriguez JA, Truong JB, Lahiri I, Reck-Peterson SL, Leschziner AE. Lis1 relieves cytoplasmic dynein-1 autoinhibition by acting as a molecular wedge. Nat Struct Mol Biol 2023; 30:1357-1364. [PMID: 37620585 PMCID: PMC10497415 DOI: 10.1038/s41594-023-01069-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Cytoplasmic dynein-1 transports intracellular cargo towards microtubule minus ends. Dynein is autoinhibited and undergoes conformational changes to form an active complex that consists of one or two dynein dimers, the dynactin complex, and activating adapter(s). The Lissencephaly 1 gene, LIS1, is genetically linked to the dynein pathway from fungi to mammals and is mutated in people with the neurodevelopmental disease lissencephaly. Lis1 is required for active dynein complexes to form, but how it enables this is unclear. Here, we present a structure of two yeast dynein motor domains with two Lis1 dimers wedged in-between. The contact sites between dynein and Lis1 in this structure, termed 'Chi,' are required for Lis1's regulation of dynein in Saccharomyces cerevisiae in vivo and the formation of active human dynein-dynactin-activating adapter complexes in vitro. We propose that this structure represents an intermediate in dynein's activation pathway, revealing how Lis1 relieves dynein's autoinhibited state.
Collapse
Affiliation(s)
- Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Agnieszka A Kendrick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kendrick H V Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jennifer A Rodriguez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joey B Truong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Indrajit Lahiri
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Christoff RR, Nani JV, Lessa G, Rabello T, Rossi AD, Krenn V, Higa LM, Tanuri A, Garcez PP, Hayashi MAF. Assessing the role of Ndel1 oligopeptidase activity in congenital Zika syndrome: Potential predictor of congenital syndrome endophenotype and treatment response. J Neurochem 2023; 166:763-776. [PMID: 37497817 DOI: 10.1111/jnc.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Maternal infections are among the main risk factors for cognitive impairments in the offspring. Zika virus (ZIKV) can be transmitted vertically, causing a set of heterogeneous birth defects, such as microcephaly, ventriculomegaly and corpus callosum dysgenesis. Nuclear distribution element like-1 (Ndel1) oligopeptidase controls crucial aspects of cerebral cortex development underlying cortical malformations. Here, we examine Ndel1 activity in an animal model for ZIKV infection, which was associated with deregulated corticogenesis. We observed here a reduction in Ndel1 activity in the forebrain associated with the congenital syndrome induced by ZIKV isolates, in an in utero and postnatal injections of different inoculum doses in mice models. In addition, we observed a strong correlation between Ndel1 activity and brain size of animals infected by ZIKV, suggesting the potential of this measure as a biomarker for microcephaly. More importantly, the increase of interferon (IFN)-beta signaling, which was used to rescue the ZIKV infection outcomes, also recovered Ndel1 activity to levels similar to those of uninfected healthy control mice, but with no influence on Ndel1 activity in uninfected healthy control animals. Taken together, we demonstrate for the first time here an association of corticogenesis impairments determined by ZIKV infection and the modulation of Ndel1 activity. Although further studies are still necessary to clarify the possible role(s) of Ndel1 activity in the molecular mechanism(s) underlying the congenital syndrome induced by ZIKV, we suggest here the potential of monitoring the Ndel1 activity to predict this pathological condition at early stages of embryos or offspring development, during while the currently employed methods are unable to detect impaired corticogenesis leading to microcephaly. Ndel1 activity may also be possibly used to follow up the positive response to the treatment, such as that employing the IFN-beta that is able to rescue the ZIKV-induced brain injury.
Collapse
Affiliation(s)
- Raissa R Christoff
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Gabriel Lessa
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Tailene Rabello
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Atila D Rossi
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Veronica Krenn
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milano, Italy
| | - Luiza M Higa
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Patricia P Garcez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Garrott SR, Gillies JP, Siva A, Little SR, El Jbeily R, DeSantis ME. Ndel1 disfavors dynein-dynactin-adaptor complex formation in two distinct ways. J Biol Chem 2023; 299:104735. [PMID: 37086789 PMCID: PMC10248797 DOI: 10.1016/j.jbc.2023.104735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023] Open
Abstract
Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.
Collapse
Affiliation(s)
- Sharon R Garrott
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aravintha Siva
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Saffron R Little
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rita El Jbeily
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Yu J, Yang X, Zheng J, Sgobio C, Sun L, Cai H. Deficiency of Perry syndrome-associated p150 Glued in midbrain dopaminergic neurons leads to progressive neurodegeneration and endoplasmic reticulum abnormalities. NPJ Parkinsons Dis 2023; 9:35. [PMID: 36879021 PMCID: PMC9988887 DOI: 10.1038/s41531-023-00478-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple missense mutations in p150Glued are linked to Perry syndrome (PS), a rare neurodegenerative disease pathologically characterized by loss of nigral dopaminergic (DAergic) neurons. Here we generated p150Glued conditional knockout (cKO) mice by deleting p150Glued in midbrain DAergic neurons. The young cKO mice displayed impaired motor coordination, dystrophic DAergic dendrites, swollen axon terminals, reduced striatal dopamine transporter (DAT), and dysregulated dopamine transmission. The aged cKO mice showed loss of DAergic neurons and axons, somatic accumulation of α-synuclein, and astrogliosis. Further mechanistic studies revealed that p150Glued deficiency in DAergic neurons led to the reorganization of endoplasmic reticulum (ER) in dystrophic dendrites, upregulation of ER tubule-shaping protein reticulon 3, accumulation of DAT in reorganized ERs, dysfunction of COPII-mediated ER export, activation of unfolded protein response, and exacerbation of ER stress-induced cell death. Our findings demonstrate the importance of p150Glued in controlling the structure and function of ER, which is critical for the survival and function of midbrain DAergic neurons in PS.
Collapse
Affiliation(s)
- Jia Yu
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China.
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Xuan Yang
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Jiayin Zheng
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Carmelo Sgobio
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - Lixin Sun
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Garrott SR, Gillies JP, Siva A, Little SR, Jbeily REI, DeSantis ME. Ndel1 modulates dynein activation in two distinct ways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525437. [PMID: 36747695 PMCID: PMC9900795 DOI: 10.1101/2023.01.25.525437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dynein is the primary minus-end-directed microtubule motor [1]. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex" [2, 3]. The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and adaptor [4, 5]. Ndel1 and its orthologue Nde1 are dynein and Lis1 binding proteins that help control where dynein localizes within the cell [6]. Cell-based assays suggest that Ndel1/Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear [6]. Using purified proteins and quantitative binding assays, we found that Ndel1's C-terminal region contributes to binding to dynein and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in Ndel1's C-terminal domain increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.
Collapse
Affiliation(s)
- Sharon R Garrott
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aravintha Siva
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saffron R Little
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita EI Jbeily
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Reimer JM, DeSantis ME, Reck-Peterson SL, Leschziner AE. Structures of human dynein in complex with the lissencephaly 1 protein, LIS1. eLife 2023; 12:84302. [PMID: 36692009 PMCID: PMC9889085 DOI: 10.7554/elife.84302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
The lissencephaly 1 protein, LIS1, is mutated in type-1 lissencephaly and is a key regulator of cytoplasmic dynein-1. At a molecular level, current models propose that LIS1 activates dynein by relieving its autoinhibited form. Previously we reported a 3.1 Å structure of yeast dynein bound to Pac1, the yeast homologue of LIS1, which revealed the details of their interactions (Gillies et al., 2022). Based on this structure, we made mutations that disrupted these interactions and showed that they were required for dynein's function in vivo in yeast. We also used our yeast dynein-Pac1 structure to design mutations in human dynein to probe the role of LIS1 in promoting the assembly of active dynein complexes. These mutations had relatively mild effects on dynein activation, suggesting that there may be differences in how dynein and Pac1/LIS1 interact between yeast and humans. Here, we report cryo-EM structures of human dynein-LIS1 complexes. Our new structures reveal the differences between the yeast and human systems, provide a blueprint to disrupt the human dynein-LIS1 interactions more accurately, and map type-1 lissencephaly disease mutations, as well as mutations in dynein linked to malformations of cortical development/intellectual disability, in the context of the dynein-LIS1 complex.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Morgan E DeSantis
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Cell and Developmental Biology, University of California, San DiegoLa JollaUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Molecular Biology, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
13
|
Jara KA, Loening NM, Reardon PN, Yu Z, Woonnimani P, Brooks C, Vesely CH, Barbar EJ. Multivalency, autoinhibition, and protein disorder in the regulation of interactions of dynein intermediate chain with dynactin and the nuclear distribution protein. eLife 2022; 11:e80217. [PMID: 36416224 PMCID: PMC9771362 DOI: 10.7554/elife.80217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
As the only major retrograde transporter along microtubules, cytoplasmic dynein plays crucial roles in the intracellular transport of organelles and other cargoes. Central to the function of this motor protein complex is dynein intermediate chain (IC), which binds the three dimeric dynein light chains at multivalent sites, and dynactin p150Glued and nuclear distribution protein (NudE) at overlapping sites of its intrinsically disordered N-terminal domain. The disorder in IC has hindered cryo-electron microscopy and X-ray crystallography studies of its structure and interactions. Here we use a suite of biophysical methods to reveal how multivalent binding of the three light chains regulates IC interactions with p150Glued and NudE. Using IC from Chaetomium thermophilum, a tractable species to interrogate IC interactions, we identify a significant reduction in binding affinity of IC to p150Glued and a loss of binding to NudE for constructs containing the entire N-terminal domain as well as for full-length constructs when compared to the tight binding observed with short IC constructs. We attribute this difference to autoinhibition caused by long-range intramolecular interactions between the N-terminal single α-helix of IC, the common site for p150Glued, and NudE binding, and residues closer to the end of the N-terminal domain. Reconstitution of IC subcomplexes demonstrates that autoinhibition is differentially regulated by light chains binding, underscoring their importance both in assembly and organization of IC, and in selection between multiple binding partners at the same site.
Collapse
Affiliation(s)
- Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | | | - Patrick N Reardon
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
- Oregon State University NMR FacilityCorvallisUnited States
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Prajna Woonnimani
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Coban Brooks
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Cat H Vesely
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| |
Collapse
|
14
|
Barbosa J, Sunkel CE, Conde C. SPIN(DLY)-OFF: A tale of conformational change to control DYNEIN. J Cell Biol 2022; 221:e202209063. [PMID: 36200976 PMCID: PMC9545695 DOI: 10.1083/jcb.202209063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Barbosa et al. discuss work by Mussachio and colleagues (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202206131) finding that conformational changes in the DYNEIN adaptor SPINDLY can precisely control DYNEIN activation at kinetochores.
Collapse
Affiliation(s)
- João Barbosa
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciência Biomédica de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Pabbathi A, Coleman L, Godar S, Paul A, Garlapati A, Spencer M, Eller J, Alper JD. Long-range electrostatic interactions significantly modulate the affinity of dynein for microtubules. Biophys J 2022; 121:1715-1726. [PMID: 35346642 PMCID: PMC9117880 DOI: 10.1016/j.bpj.2022.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022] Open
Abstract
The dynein family of microtubule minus-end-directed motor proteins drives diverse functions in eukaryotic cells, including cell division, intracellular transport, and flagellar beating. Motor protein processivity, which characterizes how far a motor walks before detaching from its filament, depends on the interaction between its microtubule-binding domain (MTBD) and the microtubule. Dynein's MTBD switches between high- and low-binding affinity states as it steps. Significant structural and functional data show that specific salt bridges within the MTBD and between the MTBD and the microtubule govern these affinity state shifts. However, recent computational work suggests that nonspecific, long-range electrostatic interactions between the MTBD and the microtubule may also play an important role in the processivity of dynein. To investigate this hypothesis, we mutated negatively charged amino acids remote from the dynein MTBD-microtubule-binding interface to neutral residues and measured the binding affinity using microscale thermophoresis and optical tweezers. We found a significant increase in the binding affinity of the mutated MTBDs for microtubules. Furthermore, we found that charge screening by free ions in solution differentially affected the binding and unbinding rates of MTBDs to microtubules. Together, these results demonstrate a significant role for long-range electrostatic interactions in regulating dynein-microtubule affinity. Moreover, these results provide insight into the principles that potentially underlie the biophysical differences between molecular motors with various processivities and protein-protein interactions more generally.
Collapse
Affiliation(s)
- Ashok Pabbathi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | - Lawrence Coleman
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | - Subash Godar
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | - Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina; Eukaryotic Pathogen Innovations Center, Clemson, University, Clemson, South Carolina
| | - Aman Garlapati
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina
| | - Matheu Spencer
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | - Jared Eller
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina; Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina
| | - Joshua Daniel Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina; Eukaryotic Pathogen Innovations Center, Clemson, University, Clemson, South Carolina; Department of Biological Sciences, Clemson University, Clemson, South Carolina.
| |
Collapse
|
16
|
Garrott SR, Gillies JP, DeSantis ME. Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport. Front Cell Dev Biol 2022; 10:871935. [PMID: 35493069 PMCID: PMC9041303 DOI: 10.3389/fcell.2022.871935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein’s interaction with cargo and modulate dynein’s ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein’s regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein’s important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1’s molecular effect on dynein activity.
Collapse
Affiliation(s)
- Sharon R. Garrott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Morgan E. DeSantis
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Morgan E. DeSantis,
| |
Collapse
|
17
|
Domínguez-Sala E, Valdés-Sánchez L, Canals S, Reiner O, Pombero A, García-López R, Estirado A, Pastor D, Geijo-Barrientos E, Martínez S. Abnormalities in Cortical GABAergic Interneurons of the Primary Motor Cortex Caused by Lis1 (Pafah1b1) Mutation Produce a Non-drastic Functional Phenotype. Front Cell Dev Biol 2022; 10:769853. [PMID: 35309904 PMCID: PMC8924048 DOI: 10.3389/fcell.2022.769853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
LIS1 (PAFAH1B1) plays a major role in the developing cerebral cortex, and haploinsufficient mutations cause human lissencephaly type 1. We have studied morphological and functional properties of the cerebral cortex of mutant mice harboring a deletion in the first exon of the mouse Lis1 (Pafah1b1) gene, which encodes for the LisH domain. The Lis1/sLis1 animals had an overall unaltered cortical structure but showed an abnormal distribution of cortical GABAergic interneurons (those expressing calbindin, calretinin, or parvalbumin), which mainly accumulated in the deep neocortical layers. Interestingly, the study of the oscillatory activity revealed an apparent inability of the cortical circuits to produce correct activity patterns. Moreover, the fast spiking (FS) inhibitory GABAergic interneurons exhibited several abnormalities regarding the size of the action potentials, the threshold for spike firing, the time course of the action potential after-hyperpolarization (AHP), the firing frequency, and the frequency and peak amplitude of spontaneous excitatory postsynaptic currents (sEPSC’s). These morphological and functional alterations in the cortical inhibitory system characterize the Lis1/sLis1 mouse as a model of mild lissencephaly, showing a phenotype less drastic than the typical phenotype attributed to classical lissencephaly. Therefore, the results described in the present manuscript corroborate the idea that mutations in some regions of the Lis1 gene can produce phenotypes more similar to those typically described in schizophrenic and autistic patients and animal models.
Collapse
Affiliation(s)
- E Domínguez-Sala
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - L Valdés-Sánchez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - S Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - O Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - A Pombero
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - R García-López
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - A Estirado
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - D Pastor
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - E Geijo-Barrientos
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - S Martínez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Madrid, Spain
| |
Collapse
|
18
|
Gillies JP, Reimer JM, Karasmanis EP, Lahiri I, Htet ZM, Leschziner AE, Reck-Peterson SL. Structural basis for cytoplasmic dynein-1 regulation by Lis1. eLife 2022; 11:e71229. [PMID: 34994688 PMCID: PMC8824474 DOI: 10.7554/elife.71229] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
The lissencephaly 1 gene, LIS1, is mutated in patients with the neurodevelopmental disease lissencephaly. The Lis1 protein is conserved from fungi to mammals and is a key regulator of cytoplasmic dynein-1, the major minus-end-directed microtubule motor in many eukaryotes. Lis1 is the only dynein regulator known to bind directly to dynein's motor domain, and by doing so alters dynein's mechanochemistry. Lis1 is required for the formation of fully active dynein complexes, which also contain essential cofactors: dynactin and an activating adaptor. Here, we report the first high-resolution structure of the yeast dynein-Lis1 complex. Our 3.1 Å structure reveals, in molecular detail, the major contacts between dynein and Lis1 and between Lis1's ß-propellers. Structure-guided mutations in Lis1 and dynein show that these contacts are required for Lis1's ability to form fully active human dynein complexes and to regulate yeast dynein's mechanochemistry and in vivo function.
Collapse
Affiliation(s)
- John P Gillies
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Indrajit Lahiri
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Biological Sciences, Indian Institute of Science Education and Research MohaliMohaliIndia
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Molecular Biology Section, University of California, San DiegoSan DiegoUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San DiegoSan DiegoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
19
|
Molecular Cloning of Dynein Heavy Chain and the Effect of Dynein Inhibition on the Testicular Function of Portunus trituberculatus. Animals (Basel) 2021; 11:ani11123582. [PMID: 34944356 PMCID: PMC8697902 DOI: 10.3390/ani11123582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Portunus trituberculatus is a very important marine economic species. The study of its reproductive biology can provide a theoretical basis for its breeding. Dynein is a member of the motor protein family. It plays an important role in various life activities, such as cell division and intracellular material transport. In order to study the role of dynein in the testis of Portunus trituberculatus, we cloned the heavy chain of dynein and used the dynein inhibitor sodium orthovanadate to make the dynein lose its function. By detecting the localization of dynein, as well as the detection of various apoptosis indexes, antioxidant stress indexes and immune indexes, this study proved that dynein is essential in testis. Abstract Dynein is a motor protein with multiple transport functions. However, dynein’s role in crustacean testis is still unknown. We cloned the full-length cDNA of cytoplasmic dynein heavy chain (Pt-dhc) gene and its structure was analyzed. Its expression level was highest in testis. We injected the dynein inhibitor sodium orthovanadate (SOV) into the crab. The distribution of Portunus trituberculatus dynein heavy chain (Pt-DHC) in mature sperm was detected by immunofluorescence. The apoptosis of spermatids was detected using a TUNEL kit; gene expression in testis was detected by fluorescence quantitative PCR (qPCR). The expression of immune-related factors in the testis were detected by an enzyme activity kit. The results showed that the distribution of Pt-DHC was abnormal after SOV injection, indicating that the function of dynein was successfully inhibited. Apoptosis-related genes p53 and caspase-3, and antioxidant stress genes HSP70 and NOS were significantly decreased, and anti-apoptosis gene bcl-2 was significantly increased. The activities of superoxide dismutase (SOD) and alkaline phosphatase (AKP) were significantly decreased. The results showed that there was no apoptosis in testicular cells after dynein function was inhibited, but the cell function was disordered. This study laid a theoretical foundation for the further study of apoptosis in testis and the function of dynein in testis and breeding of P. trituberculatus.
Collapse
|
20
|
Richards A, Berth SH, Brady S, Morfini G. Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Front Cell Neurosci 2021; 15:684762. [PMID: 34234649 PMCID: PMC8255969 DOI: 10.3389/fncel.2021.684762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
Much remains unknown about mechanisms sustaining the various stages in the life cycle of neurotropic viruses. An understanding of those mechanisms operating before their replication and propagation could advance the development of effective anti-viral strategies. Here, we review our current knowledge of strategies used by neurotropic viruses to undergo bidirectional movement along axons. We discuss how the invasion strategies used by specific viruses might influence their mode of interaction with selected components of the host’s fast axonal transport (FAT) machinery, including specialized membrane-bounded organelles and microtubule-based motor proteins. As part of this discussion, we provide a critical evaluation of various reported interactions among viral and motor proteins and highlight limitations of some in vitro approaches that led to their identification. Based on a large body of evidence documenting activation of host kinases by neurotropic viruses, and on recent work revealing regulation of FAT through phosphorylation-based mechanisms, we posit a potential role of host kinases on the engagement of viruses in retrograde FAT. Finally, we briefly describe recent evidence linking aberrant activation of kinase pathways to deficits in FAT and neuronal degeneration in the context of human neurodegenerative diseases. Based on these findings, we speculate that neurotoxicity elicited by viral infection may involve deregulation of host kinases involved in the regulation of FAT and other cellular processes sustaining neuronal function and survival.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sarah H Berth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Scott Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Abstract
Dyneins make up a family of AAA+ motors that move toward the minus end of microtubules. Cytoplasmic dynein is responsible for transporting intracellular cargos in interphase cells and mediating spindle assembly and chromosome positioning during cell division. Other dynein isoforms transport cargos in cilia and power ciliary beating. Dyneins were the least studied of the cytoskeletal motors due to challenges in the reconstitution of active dynein complexes in vitro and the scarcity of high-resolution methods for in-depth structural and biophysical characterization of these motors. These challenges have been recently addressed, and there have been major advances in our understanding of the activation, mechanism, and regulation of dyneins. This review synthesizes the results of structural and biophysical studies for each class of dynein motors. We highlight several outstanding questions about the regulation of bidirectional transport along microtubules and the mechanisms that sustain self-coordinated oscillations within motile cilia.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Ruensern Tan
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | - Emre Kusakci
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Jonathan Fernandes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA.,Physics Department, University of California, Berkeley, California 94720, USA
| |
Collapse
|
22
|
James R, Chaytow H, Ledahawsky LM, Gillingwater TH. Revisiting the role of mitochondria in spinal muscular atrophy. Cell Mol Life Sci 2021; 78:4785-4804. [PMID: 33821292 PMCID: PMC8195803 DOI: 10.1007/s00018-021-03819-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease of variable clinical severity that is caused by mutations in the survival motor neuron 1 (SMN1) gene. Despite its name, SMN is a ubiquitous protein that functions within and outside the nervous system and has multiple cellular roles in transcription, translation, and proteostatic mechanisms. Encouragingly, several SMN-directed therapies have recently reached the clinic, albeit this has highlighted the increasing need to develop combinatorial therapies for SMA to achieve full clinical efficacy. As a subcellular site of dysfunction in SMA, mitochondria represents a relevant target for a combinatorial therapy. Accordingly, we will discuss our current understanding of mitochondrial dysfunction in SMA, highlighting mitochondrial-based pathways that offer further mechanistic insights into the involvement of mitochondria in SMA. This may ultimately facilitate translational development of targeted mitochondrial therapies for SMA. Due to clinical and mechanistic overlaps, such strategies may also benefit other motor neuron diseases and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Rachel James
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Helena Chaytow
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Leire M Ledahawsky
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
23
|
Enlargement of early endosomes and traffic jam in basal forebrain cholinergic neurons in Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:207-218. [PMID: 34225963 DOI: 10.1016/b978-0-12-819975-6.00011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While a handful of neurotransmitter systems including cholinergic, norepinephrinergic, and serotonergic undergo significant degeneration in Alzheimer's disease, the cholinergic system has been the prime target for research and therapy. The cholinergic system in the basal forebrain is strategically located to impose significant modulatory effects on vast cortical and subcortical regions of the brain. Numerous studies have established a strong link between neurotrophin signaling and basal forebrain cholinergic neuron degeneration in several neurodegenerative disorders. Evidence presented during the last few years points to the effects of endosomal pathology and primarily unidirectional traffic jam. Hence, formulating new therapies, e.g., to reduce local production of β C-terminal fragments and preventing changes in endosomal morphology have become attractive potential therapeutic strategies to restore cholinergic neurons and their neuromodulatory function. While it is not expected that restoring the cholinergic system function will fully mitigate cognitive dysfunction in Alzheimer's disease, pivotal aspects of cognition including attention-deficit during the prodromal stages might well be at disposal for corrective measures.
Collapse
|
24
|
Vincent J, Preston M, Mouchet E, Laugier N, Corrigan A, Boulanger J, Brown DG, Clark R, Wigglesworth M, Carter AP, Bullock SL. A High-Throughput Cellular Screening Assay for Small-Molecule Inhibitors and Activators of Cytoplasmic Dynein-1-Based Cargo Transport. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:985-999. [PMID: 32436764 PMCID: PMC7116108 DOI: 10.1177/2472555220920581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytoplasmic dynein-1 (hereafter dynein) is a six-subunit motor complex that transports a variety of cellular components and pathogens along microtubules. Dynein's cellular functions are only partially understood, and potent and specific small-molecule inhibitors and activators of this motor would be valuable for addressing this issue. It has also been hypothesized that an inhibitor of dynein-based transport could be used in antiviral or antimitotic therapy, whereas an activator could alleviate age-related neurodegenerative diseases by enhancing microtubule-based transport in axons. Here, we present the first high-throughput screening (HTS) assay capable of identifying both activators and inhibitors of dynein-based transport. This project is also the first collaborative screening report from the Medical Research Council and AstraZeneca agreement to form the UK Centre for Lead Discovery. A cellular imaging assay was used, involving chemically controlled recruitment of activated dynein complexes to peroxisomes. Such a system has the potential to identify molecules that affect multiple aspects of dynein biology in vivo. Following optimization of key parameters, the assay was developed in a 384-well format with semiautomated liquid handling and image acquisition. Testing of more than 500,000 compounds identified both inhibitors and activators of dynein-based transport in multiple chemical series. Additional analysis indicated that many of the identified compounds do not affect the integrity of the microtubule cytoskeleton and are therefore candidates to directly target the transport machinery.
Collapse
Affiliation(s)
- John Vincent
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Marian Preston
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Elizabeth Mouchet
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Nicolas Laugier
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | - Adam Corrigan
- Quantitative Biology, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Cambridge, Cambridgeshire, UK
| | - Jérôme Boulanger
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Boston, USA
| | - Roger Clark
- Discovery Biology, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Cambridge, Cambridgeshire, UK
| | - Mark Wigglesworth
- HTS, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Macclesfield, Cheshire, UK
| | - Andrew P Carter
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| |
Collapse
|
25
|
Gonçalves JC, Quintremil S, Yi J, Vallee RB. Nesprin-2 Recruitment of BicD2 to the Nuclear Envelope Controls Dynein/Kinesin-Mediated Neuronal Migration In Vivo. Curr Biol 2020; 30:3116-3129.e4. [PMID: 32619477 PMCID: PMC9670326 DOI: 10.1016/j.cub.2020.05.091] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate brain development depends on a complex program of cell proliferation and migration. Post-mitotic neuronal migration in the developing cerebral cortex involves Nesprin-2, which recruits cytoplasmic dynein, kinesin, and actin to the nuclear envelope (NE) in other cell types. However, the relative importance of these interactions in neurons has remained poorly understood. To address these issues, we performed in utero electroporation into the developing rat brain to interfere with Nesprin-2 function. We find that an ∼100-kDa "mini" form of the ∼800-kDa Nesprin-2 protein, which binds dynein and kinesin, is sufficient, remarkably, to support neuronal migration. In contrast to dynein's role in forward nuclear migration in these cells, we find that kinesin-1 inhibition accelerates neuronal migration, suggesting a novel role for the opposite-directed motor proteins in regulating migration velocity. In contrast to studies in fibroblasts, the actin-binding domain of Nesprin-2 was dispensable for neuronal migration. We find further that, surprisingly, the motor proteins interact with Nesprin-2 through the dynein/kinesin "adaptor" BicD2, both in neurons and in non-mitotic fibroblasts. Furthermore, mutation of the Nesprin-2 LEWD sequence, implicated in nuclear envelope kinesin recruitment in other systems, interferes with BicD2 binding. Although disruption of the Nesprin-2/BicD2 interaction severely inhibited nuclear movement, centrosome advance proceeded unimpeded, supporting an independent mechanism for centrosome advance. Our data together implicate Nesprin-2 as a novel and fundamentally important form of BicD2 cargo and help explain BicD2's role in neuronal migration and human disease.
Collapse
Affiliation(s)
- João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| |
Collapse
|
26
|
Canty JT, Yildiz A. Activation and Regulation of Cytoplasmic Dynein. Trends Biochem Sci 2020; 45:440-453. [PMID: 32311337 PMCID: PMC7179903 DOI: 10.1016/j.tibs.2020.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein is an AAA+ motor that drives the transport of many intracellular cargoes towards the minus end of microtubules (MTs). Previous in vitro studies characterized isolated dynein as an exceptionally weak motor that moves slowly and diffuses on an MT. Recent studies altered this view by demonstrating that dynein remains in an autoinhibited conformation on its own, and processive motility is activated when it forms a ternary complex with dynactin and a cargo adaptor. This complex assembles more efficiently in the presence of Lis1, providing an explanation for why Lis1 is a required cofactor for most cytoplasmic dynein-driven processes in cells. This review describes how dynein motility is activated and regulated by cargo adaptors and accessory proteins.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Htet ZM, Gillies JP, Baker RW, Leschziner AE, DeSantis ME, Reck-Peterson SL. LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat Cell Biol 2020; 22:518-525. [PMID: 32341549 PMCID: PMC7271980 DOI: 10.1038/s41556-020-0506-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/11/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein-1 is a molecular motor that drives nearly all minus-end-directed microtubule-based transport in human cells, performing functions that range from retrograde axonal transport to mitotic spindle assembly1,2. Activated dynein complexes consist of one or two dynein dimers, the dynactin complex and an 'activating adaptor', and they show faster velocity when two dynein dimers are present3-6. Little is known about the assembly process of this massive ~4 MDa complex. Here, using purified recombinant human proteins, we uncover a role for the dynein-binding protein LIS1 in promoting the formation of activated dynein-dynactin complexes that contain two dynein dimers. Complexes activated by proteins representing three families of activating adaptors-BicD2, Hook3 and Ninl-all show enhanced motile properties in the presence of LIS1. Activated dynein complexes do not require sustained LIS1 binding for fast velocity. Using cryo-electron microscopy, we show that human LIS1 binds to dynein at two sites on the motor domain of dynein. Our research suggests that LIS1 binding at these sites functions in multiple stages of assembling the motile dynein-dynactin-activating adaptor complex.
Collapse
Affiliation(s)
- Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Biophysics Graduate Program, Harvard Medical School, Boston, MA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - John P Gillies
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA
| | - Richard W Baker
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
28
|
Li J, Wu F, Cheng L, Zhang J, Cha C, Chen L, Feng T, Zhang J, Guo G. A nuclear localization signal is required for the nuclear translocation of Fign and its microtubule‑severing function. Mol Med Rep 2020; 21:2367-2374. [PMID: 32236575 PMCID: PMC7185285 DOI: 10.3892/mmr.2020.11040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 03/04/2020] [Indexed: 01/21/2023] Open
Abstract
It is commonly known that the specific function of a given ATPase associated with diverse cellular activities protein (i.e., a member of the AAA superfamily of proteins) depends primarily on its subcellular location. The microtubule-severing protein fidgetin (Fign) possesses a nuclear localization signal (NLS) that facilitates its translocation to the nucleus, where its assembly is finalized; here, Fign contributes to the regulation of microtubule configuration by cutting and trimming microtubule polymers. In the present study, Fign was found to be a nuclear protein, whose N-terminal sequence (SSLKRKAFYM; residues 314–323) acts as an NLS. Following substitution (KR to NN; 317–318) or deletion (NT; 314–323) mutations within the NLS, Fign, which is predominantly expressed in the nucleus, was found to reside in the cytoplasm of transfected cells. Furthermore, Fign was found to have an essential role in microtubule severing by preferentially targeting highly-tyrosinated microtubules (tyr-MTs). Mutation of the Fign NLS did not affect its microtubule-severing function or the cleavage of tyr-MTs, but did affect the cellular distribution of the Fign protein itself. Taken altogether, an NLS for Fign was identified, and it was demonstrated that the basic amino acids K317 and R318 are necessary for regulating its entry into the nucleus, whereas an increase in Fign in the cytosol due to mutations of the NLS did not affect its cleavage function.
Collapse
Affiliation(s)
- Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Longfei Cheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiaqi Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Caihui Cha
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Taoshan Feng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
29
|
Nishida N, Komori Y, Takarada O, Watanabe A, Tamura S, Kubo S, Shimada I, Kikkawa M. Structural basis for two-way communication between dynein and microtubules. Nat Commun 2020; 11:1038. [PMID: 32098965 PMCID: PMC7042235 DOI: 10.1038/s41467-020-14842-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
The movements of cytoplasmic dynein on microtubule (MT) tracks is achieved by two-way communication between the microtubule-binding domain (MTBD) and the ATPase domain via a coiled-coil stalk, but the structural basis of this communication remains elusive. Here, we regulate MTBD either in high-affinity or low-affinity states by introducing a disulfide bond to the stalk and analyze the resulting structures by NMR and cryo-EM. In the MT-unbound state, the affinity changes of MTBD are achieved by sliding of the stalk α-helix by a half-turn, which suggests that structural changes propagate from the ATPase-domain to MTBD. In addition, MT binding induces further sliding of the stalk α-helix even without the disulfide bond, suggesting how the MT-induced conformational changes propagate toward the ATPase domain. Based on differences in the MT-binding surface between the high- and low-affinity states, we propose a potential mechanism for the directional bias of dynein movement on MT tracks.
Collapse
Affiliation(s)
- Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yuta Komori
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Takarada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoko Tamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Kubo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
30
|
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020; 9:cells9020358. [PMID: 32033020 PMCID: PMC7072452 DOI: 10.3390/cells9020358] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
Collapse
|
31
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
32
|
Gonçalves JC, Dantas TJ, Vallee RB. Distinct roles for dynein light intermediate chains in neurogenesis, migration, and terminal somal translocation. J Cell Biol 2019; 218:808-819. [PMID: 30674581 PMCID: PMC6400572 DOI: 10.1083/jcb.201806112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein participates in multiple aspects of neocortical development. These include neural progenitor proliferation, morphogenesis, and neuronal migration. The cytoplasmic dynein light intermediate chains (LICs) 1 and 2 are cargo-binding subunits, though their relative roles are not well understood. Here, we used in utero electroporation of shRNAs or LIC functional domains to determine the relative contributions of the two LICs in the developing rat brain. We find that LIC1, through BicD2, is required for apical nuclear migration in neural progenitors. In newborn neurons, we observe specific roles for LIC1 in the multipolar to bipolar transition and glial-guided neuronal migration. In contrast, LIC2 contributes to a novel dynein role in the little-studied mode of migration, terminal somal translocation. Together, our results provide novel insight into the LICs' unique functions during brain development and dynein regulation overall.
Collapse
Affiliation(s)
- João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
33
|
Celestino R, Henen MA, Gama JB, Carvalho C, McCabe M, Barbosa DJ, Born A, Nichols PJ, Carvalho AX, Gassmann R, Vögeli B. A transient helix in the disordered region of dynein light intermediate chain links the motor to structurally diverse adaptors for cargo transport. PLoS Biol 2019; 17:e3000100. [PMID: 30615611 PMCID: PMC6336354 DOI: 10.1371/journal.pbio.3000100] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/17/2019] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
All animal cells use the motor cytoplasmic dynein 1 (dynein) to transport diverse cargo toward microtubule minus ends and to organize and position microtubule arrays such as the mitotic spindle. Cargo-specific adaptors engage with dynein to recruit and activate the motor, but the molecular mechanisms remain incompletely understood. Here, we use structural and dynamic nuclear magnetic resonance (NMR) analysis to demonstrate that the C-terminal region of human dynein light intermediate chain 1 (LIC1) is intrinsically disordered and contains two short conserved segments with helical propensity. NMR titration experiments reveal that the first helical segment (helix 1) constitutes the main interaction site for the adaptors Spindly (SPDL1), bicaudal D homolog 2 (BICD2), and Hook homolog 3 (HOOK3). In vitro binding assays show that helix 1, but not helix 2, is essential in both LIC1 and LIC2 for binding to SPDL1, BICD2, HOOK3, RAB-interacting lysosomal protein (RILP), RAB11 family-interacting protein 3 (RAB11FIP3), ninein (NIN), and trafficking kinesin-binding protein 1 (TRAK1). Helix 1 is sufficient to bind RILP, whereas other adaptors require additional segments preceding helix 1 for efficient binding. Point mutations in the C-terminal helix 1 of Caenorhabditis elegans LIC, introduced by genome editing, severely affect development, locomotion, and life span of the animal and disrupt the distribution and transport kinetics of membrane cargo in axons of mechanosensory neurons, identical to what is observed when the entire LIC C-terminal region is deleted. Deletion of the C-terminal helix 2 delays dynein-dependent spindle positioning in the one-cell embryo but overall does not significantly perturb dynein function. We conclude that helix 1 in the intrinsically disordered region of LIC provides a conserved link between dynein and structurally diverse cargo adaptor families that is critical for dynein function in vivo. A highly conserved mechanism links the microtubule minus end–directed motor dynein to structurally diverse cargo adaptors through its light intermediate chain; this interaction is crucial for dynein function in vivo. The large size and complex organization of animal cells make the correct and efficient distribution of intracellular content a challenge. The solution is to use motor proteins, which harness energy from ATP hydrolysis to walk along actin filaments or microtubules, for directional transport of cargo. The multi-subunit motor cytoplasmic dynein 1 (dynein) is responsible for transport directed toward the minus ends of microtubules. An important question is how dynein is recruited to its diverse cargo, which includes organelles such as endosomes and mitochondria, proteins, and mRNA. In this study, we use nuclear magnetic resonance spectroscopy to show that the light intermediate chain (LIC) subunit of human dynein uses a short helix in its disordered C-terminal region to bind structurally distinct adaptor proteins that connect the motor to specific cargo. We then use genome editing in the animal model C. elegans to demonstrate the functional relevance of the C-terminal LIC helix for dynein-dependent cargo transport in neurons. Thus, dynein recruitment to cargo involves a highly conserved interaction between LIC and adaptor proteins.
Collapse
Affiliation(s)
- Ricardo Celestino
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - José B. Gama
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cátia Carvalho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Maxwell McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Daniel J. Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Alexandra Born
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ana X. Carvalho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- * E-mail: (RG); (BV)
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail: (RG); (BV)
| |
Collapse
|
34
|
Klinman E, Tokito M, Holzbaur ELF. CDK5-dependent activation of dynein in the axon initial segment regulates polarized cargo transport in neurons. Traffic 2018; 18:808-824. [PMID: 28941293 DOI: 10.1111/tra.12529] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
Abstract
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal-specific kinase cyclin-dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5-dependent phosphorylation of the dynein regulator Ndel1 is required for proper re-routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis-sorting defects. While inhibition of the CDK5-Ndel1-Lis1-dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein-dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.
Collapse
Affiliation(s)
- Eva Klinman
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariko Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erika L F Holzbaur
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Shi L, Hines T, Bergson C, Smith D. Coupling of microtubule motors with AP-3 generated organelles in axons by NEEP21 family member calcyon. Mol Biol Cell 2018; 29:2055-2068. [PMID: 29949458 PMCID: PMC6232961 DOI: 10.1091/mbc.e18-01-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transport of late endosomes and lysosome-related organelles (LE/LROs) in axons is essential for supplying synaptic cargoes and for removing damaged macromolecules. Defects in this system are implicated in a range of human neurodegenerative and neurodevelopmental disorders. The findings reported here identify a novel mechanism regulating LE/LRO transport based on the coordinated coupling of microtubule motors and vesicle coat proteins to the neuron-enriched, transmembrane protein calcyon (Caly). We found that the cytoplasmic C-terminus of Caly pulled down proteins involved in microtubule-dependent transport (DIC, KIF5A, p150Glued, Lis1) and organelle biogenesis (AP-1 and AP-3) from the brain. In addition, RNA interference-mediated knockdown of Caly increased the percentage of static LE/LROs labeled by LysoTracker in cultured dorsal root ganglion axons. In contrast, overexpression of Caly stimulated movement of organelles positive for LysoTracker or the AP-3 cargo GFP-PI4KIIα. However, a Caly mutant (ATEA) that does not bind AP-3 was unable to pull down motor proteins from brain, and expression of the ATEA mutant failed to increase either LE/LRO flux or levels of associated dynein. Taken together, these data support the hypothesis that Caly is a multifunctional scaffolding protein that regulates axonal transport of LE/LROs by coordinately interacting with motor and vesicle coat proteins.
Collapse
Affiliation(s)
- Liang Shi
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Timothy Hines
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - Clare Bergson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Deanna Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
36
|
Maciel R, Bis DM, Rebelo AP, Saghira C, Züchner S, Saporta MA. The human motor neuron axonal transcriptome is enriched for transcripts related to mitochondrial function and microtubule-based axonal transport. Exp Neurol 2018; 307:155-163. [PMID: 29935168 DOI: 10.1016/j.expneurol.2018.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/05/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
Local axonal translation of specific mRNA species plays an important role in axon maintenance, plasticity during development and recovery from injury. Recently, disrupted axonal mRNA transport and translation have been linked to neurodegenerative disorders. To identify mRNA species that are actively transported to axons and play an important role in axonal physiology, we mapped the axonal transcriptome of human induced pluripotent stem cell (iPSC)-derived motor neurons using permeable inserts to obtain large amounts of enriched axonal material for RNA isolation and sequencing. Motor neurons from healthy subjects were used to determine differences in gene expression profiles between neuronal somatodendritic and axonal compartments. Our results demonstrate that several transcripts were enriched in either the axon or neuronal bodies. Gene ontology analysis demonstrated enrichment in the axonal compartment for transcripts associated with mitochondrial electron transport, microtubule-based axonal transport and ER-associated protein catabolism. These results suggest that local translation of mRNAs is required to meet the high-energy demand of axons and to support microtubule-based axonal transport. Interestingly, several transcripts related to human genetic disorders associated with axonal degeneration (inherited axonopathies) were identified among the mRNA species enriched in motor axons.
Collapse
Affiliation(s)
- Renata Maciel
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dana M Bis
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Adriana P Rebelo
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cima Saghira
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephan Züchner
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
37
|
Abstract
Cytoplasmic dynein 1 is an important microtubule-based motor in many eukaryotic cells. Dynein has critical roles both in interphase and during cell division. Here, we focus on interphase cargoes of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A central challenge in the field is to understand how a single motor can transport such a diverse array of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is a set of coiled-coil proteins - activating adaptors - that both recruit dynein-dynactin to their cargoes and activate dynein motility.
Collapse
|
38
|
Gumy LF, Hoogenraad CC. Local mechanisms regulating selective cargo entry and long-range trafficking in axons. Curr Opin Neurobiol 2018; 51:23-28. [PMID: 29510294 DOI: 10.1016/j.conb.2018.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/14/2018] [Indexed: 02/02/2023]
Abstract
The polarized long-distance transport of neuronal cargoes depends on the presence of functional and structural axonal subcompartments. Given the heterogeneity of neuronal cargoes, selective sorting and entry occurs in the proximal axon where multiple subcellular specializations such as the axon initial segment, the pre-axonal exclusion zone, the MAP2 pre-axonal filtering zone and the Tau diffusion barrier provide different levels of regulation. Cargoes allowed to pass through the proximal axon spread into the more distal parts. Recent findings show that diverse cargo distributions along the axon depend on the compartmentalized organization of the cytoskeleton and the local regulation of multiple motor proteins by microtubule associated proteins. In this review, we focus on the local mechanisms that control cargo motility and discuss how they play a role in the overall circulation of axonal cargoes.
Collapse
Affiliation(s)
- Laura F Gumy
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
39
|
Dwivedi D, Sharma M. Multiple Roles, Multiple Adaptors: Dynein During Cell Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:13-30. [PMID: 30637687 DOI: 10.1007/978-981-13-3065-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynein is an essential protein complex present in most eukaryotes that regulate biological processes ranging from ciliary beating, intracellular transport, to cell division. Elucidating the detailed mechanism of dynein function has been a challenging task owing to its large molecular weight and high complexity of the motor. With the advent of technologies in the last two decades, studies have uncovered a wealth of information about the structural, biochemical, and cell biological roles of this motor protein. Cytoplasmic dynein associates with dynactin through adaptor proteins to mediate retrograde transport of vesicles, mRNA, proteins, and organelles on the microtubule tracts. In a mitotic cell, dynein has multiple localizations, such as at the nuclear envelope, kinetochores, mitotic spindle and spindle poles, and cell cortex. In line with this, dynein regulates multiple events during the cell cycle, such as centrosome separation, nuclear envelope breakdown, spindle assembly checkpoint inactivation, chromosome segregation, and spindle positioning. Here, we provide an overview of dynein structure and function with focus on the roles played by this motor during different stages of the cell cycle. Further, we review in detail the role of dynactin and dynein adaptors that regulate both recruitment and activity of dynein during the cell cycle.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|
40
|
De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis 2017; 105:283-299. [PMID: 28235672 PMCID: PMC5536153 DOI: 10.1016/j.nbd.2017.02.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Kurt J De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Majid Hafezparast
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
41
|
Redwine WB, DeSantis ME, Hollyer I, Htet ZM, Tran PT, Swanson SK, Florens L, Washburn MP, Reck-Peterson SL. The human cytoplasmic dynein interactome reveals novel activators of motility. eLife 2017; 6. [PMID: 28718761 PMCID: PMC5533585 DOI: 10.7554/elife.28257] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/14/2017] [Indexed: 12/25/2022] Open
Abstract
In human cells, cytoplasmic dynein-1 is essential for long-distance transport of many cargos, including organelles, RNAs, proteins, and viruses, towards microtubule minus ends. To understand how a single motor achieves cargo specificity, we identified the human dynein interactome by attaching a promiscuous biotin ligase (‘BioID’) to seven components of the dynein machinery, including a subunit of the essential cofactor dynactin. This method reported spatial information about the large cytosolic dynein/dynactin complex in living cells. To achieve maximal motile activity and to bind its cargos, human dynein/dynactin requires ‘activators’, of which only five have been described. We developed methods to identify new activators in our BioID data, and discovered that ninein and ninein-like are a new family of dynein activators. Analysis of the protein interactomes for six activators, including ninein and ninein-like, suggests that each dynein activator has multiple cargos. DOI:http://dx.doi.org/10.7554/eLife.28257.001
Collapse
Affiliation(s)
- William B Redwine
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Ian Hollyer
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Biophysics Graduate Program, Harvard Medical School, Boston, United States
| | - Phuoc Tien Tran
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | | | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas, United States.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas, United States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, United States
| |
Collapse
|
42
|
Gutierrez PA, Ackermann BE, Vershinin M, McKenney RJ. Differential effects of the dynein-regulatory factor Lissencephaly-1 on processive dynein-dynactin motility. J Biol Chem 2017; 292:12245-12255. [PMID: 28576829 DOI: 10.1074/jbc.m117.790048] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/01/2017] [Indexed: 02/02/2023] Open
Abstract
Cytoplasmic dynein is the primary minus-end-directed microtubule motor protein in animal cells, performing a wide range of motile activities, including transport of vesicular cargos, mRNAs, viruses, and proteins. Lissencephaly-1 (LIS1) is a highly conserved dynein-regulatory factor that binds directly to the dynein motor domain, uncoupling the enzymatic and mechanical cycles of the motor and stalling dynein on the microtubule track. Dynactin, another ubiquitous dynein-regulatory factor, releases dynein from an autoinhibited state, leading to a dramatic increase in fast, processive dynein motility. How these opposing activities are integrated to control dynein motility is unknown. Here, we used fluorescence single-molecule microscopy to study the interaction of LIS1 with the processive dynein-dynactin-BicD2N (DDB) complex. Surprisingly, in contrast to the prevailing model for LIS1 function established in the context of dynein alone, we found that binding of LIS1 to DDB does not strongly disrupt processive motility. Motile DDB complexes bound up to two LIS1 dimers, and mutational analysis suggested that LIS1 binds directly to the dynein motor domains during DDB movement. Interestingly, LIS1 enhanced DDB velocity in a concentration-dependent manner, in contrast to observations of the effect of LIS1 on the motility of isolated dynein. Thus, LIS1 exerts concentration-dependent effects on dynein motility and can synergize with dynactin to enhance processive dynein movement. Our results suggest that the effect of LIS1 on dynein motility depends on both LIS1 concentration and the presence of other regulatory factors such as dynactin and may provide new insights into the mechanism of LIS1 haploinsufficiency in the neurodevelopmental disorder lissencephaly.
Collapse
Affiliation(s)
- Pedro A Gutierrez
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616
| | - Bryce E Ackermann
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616
| | - Michael Vershinin
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112; Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616.
| |
Collapse
|
43
|
Beecroft SJ, McLean CA, Delatycki MB, Koshy K, Yiu E, Haliloglu G, Orhan D, Lamont PJ, Davis MR, Laing NG, Ravenscroft G. Expanding the phenotypic spectrum associated with mutations of DYNC1H1. Neuromuscul Disord 2017; 27:607-615. [PMID: 28554554 DOI: 10.1016/j.nmd.2017.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
Autosomal dominant mutations of DYNC1H1 cause a range of neurogenetic diseases, including mental retardation with cortical malformations, hereditary spastic paraplegia and spinal muscular atrophy. Using SNP array, linkage analysis and next generation sequencing, we identified two families and one isolated proband sharing a known spinal muscular atrophy, lower extremity predominant (SMALED) causing mutation DYNC1H1 c.1792C>T, p.Arg598Cys, and another family harbouring a c.2327C>T, p.Pro776Leu mutation. Here, we present a detailed clinical and pathological examination of these patients, and show that patients with DYNC1H1 mutations may present with a phenotype mimicking a congenital myopathy. We also highlight features that increase the phenotypic overlap with BICD2, which causes SMALED2. Serial muscle biopsies were available for several patients, spanning from infancy and early childhood to middle age. These provide a unique insight into the developmental and pathological origins of SMALED, suggesting in utero denervation with reinnervation by surrounding intact motor neurons and segmental anterior horn cell deficits. We characterise biopsy features that may make diagnosis of this condition easier in the future.
Collapse
Affiliation(s)
- Sarah J Beecroft
- Neurogenetic Diseases Group Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia; QEII Medical Centre, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Catriona A McLean
- Victorian Neuromuscular Laboratory, Alfred Health, Commercial Rd, Prahran, Vic. 3181, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Childrens Research Institute, Parkville, Vic. 3052, Australia; Victorian Clinical Genetics Services, Parkville, Vic. 3052, Australia
| | - Kurian Koshy
- Launceston General Hospital, Launceston, Tas. 7250, Australia
| | - Eppie Yiu
- Bruce Lefroy Centre, Murdoch Childrens Research Institute, Parkville, Vic. 3052, Australia; Neurology Department, Royal Children's Hospital, Melbourne, Vic. 3052, Australia
| | - Goknur Haliloglu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara 06100, Turkey
| | - Diclehan Orhan
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara 06100, Turkey
| | - Phillipa J Lamont
- Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Australia
| | - Mark R Davis
- Neurogenetic Unit, Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Nigel G Laing
- Neurogenetic Diseases Group Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia; QEII Medical Centre, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Neurogenetic Unit, Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gianina Ravenscroft
- Neurogenetic Diseases Group Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia; QEII Medical Centre, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| |
Collapse
|
44
|
Local inhibition of microtubule dynamics by dynein is required for neuronal cargo distribution. Nat Commun 2017; 8:15063. [PMID: 28406181 PMCID: PMC5399302 DOI: 10.1038/ncomms15063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Abnormal axonal transport is associated with neuronal disease. We identified a role for DHC-1, the C. elegans dynein heavy chain, in maintaining neuronal cargo distribution. Surprisingly, this does not involve dynein's role as a retrograde motor in cargo transport, hinging instead on its ability to inhibit microtubule (MT) dynamics. Neuronal MTs are highly static, yet the mechanisms and functional significance of this property are not well understood. In disease-mimicking dhc-1 alleles, excessive MT growth and collapse occur at the dendrite tip, resulting in the formation of aberrant MT loops. These unstable MTs act as cargo traps, leading to ectopic accumulations of cargo and reduced availability of cargo at normal locations. Our data suggest that an anchored dynein pool interacts with plus-end-out MTs to stabilize MTs and allow efficient retrograde transport. These results identify functional significance for neuronal MT stability and suggest a mechanism for cellular dysfunction in dynein-linked disease.
Collapse
|
45
|
Liu JJ. Regulation of dynein-dynactin-driven vesicular transport. Traffic 2017; 18:336-347. [PMID: 28248450 DOI: 10.1111/tra.12475] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
Most of the long-range intracellular movements of vesicles, organelles and other cargoes are driven by microtubule (MT)-based molecular motors. Cytoplasmic dynein, a multisubunit protein complex, with the aid of dynactin, drives transport of a wide variety of cargoes towards the minus end of MTs. In this article, I review our current understanding of the mechanisms underlying spatiotemporal regulation of dynein-dynactin-driven vesicular transport with a special emphasis on the many steps of directional movement along MT tracks. These include the recruitment of dynein to MT plus ends, the activation and processivity of dynein, and cargo recognition and release by the motor complex at the target membrane. Furthermore, I summarize the most recent findings about the fine control mechanisms for intracellular transport via the interaction between the dynein-dynactin motor complex and its vesicular cargoes.
Collapse
Affiliation(s)
- Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Sleigh JN, Vagnoni A, Twelvetrees AE, Schiavo G. Methodological advances in imaging intravital axonal transport. F1000Res 2017; 6:200. [PMID: 28344778 PMCID: PMC5333613 DOI: 10.12688/f1000research.10433.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer’s disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied
in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the
in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions.
Collapse
Affiliation(s)
- James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Alessio Vagnoni
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alison E Twelvetrees
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|
47
|
DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes. Proc Natl Acad Sci U S A 2017; 114:E1597-E1606. [PMID: 28196890 DOI: 10.1073/pnas.1620141114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.
Collapse
|
48
|
EXPRESSION OF Β-TUBULIN IN THE SENSORIMOTOR CORTEX OF THE CEREBRAL HEMATURIA IN THE MODELING OF TRANSIENT ISCHEMIA ON THE BACKGROUND OF SENSITIZATION OF BRAIN ANTIGEN AND IMMUNE CORRECTION OF THE CHANGES. WORLD OF MEDICINE AND BIOLOGY 2017. [DOI: 10.26724/2079-8334-2017-4-62-173-178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Lungu M, Romila A, Hangan L, Caraban B. Schizencephaly Associated with Polymicrogirya – Cause for Late-Onset Epileptic Seizures in Adult. A Case Report. ARS MEDICA TOMITANA 2016. [DOI: 10.1515/arsm-2016-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The article presents the case of a 61-year old female patient, with no history of neurological illness, who presents a rapid onset of two convulsive seizures, triggered by a psychological trauma. The first convulsive seizure is repeated within 24 hours.
The general, as well as the neurological clinical examination have not found any pathological signs. MRI scanning of the brain pointed to right-parietal schizencephaly, associated with polymicrogyria, the believed causes of the epileptic seizures.
Collapse
Affiliation(s)
- Mihaela Lungu
- Neurological Department, Emergency Clinical Hospital, Galati; Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati
| | - Aurelia Romila
- Geriatric Department, Emergency Clinical Hospital, Galati; Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, Center for Research on Medical-Pharmaceutical
| | - L.T. Hangan
- Faculty of Medicine, University “Ovidius” of Constanta
| | - B.M. Caraban
- Faculty of Medicine, University “Ovidius” of Constanta
| |
Collapse
|
50
|
Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun 2016; 7:12551. [PMID: 27553190 PMCID: PMC4999518 DOI: 10.1038/ncomms12551] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
Microcephaly is a cortical malformation disorder characterized by an abnormally small brain. Recent studies have revealed severe cases of microcephaly resulting from human mutations in the NDE1 gene, which is involved in the regulation of cytoplasmic dynein. Here using in utero electroporation of NDE1 short hairpin RNA (shRNA) in embryonic rat brains, we observe cell cycle arrest of proliferating neural progenitors at three distinct stages: during apical interkinetic nuclear migration, at the G2-to-M transition and in regulation of primary cilia at the G1-to-S transition. RNAi against the NDE1 paralogue NDEL1 has no such effects. However, NDEL1 overexpression can functionally compensate for NDE1, except at the G2-to-M transition, revealing a unique NDE1 role. In contrast, NDE1 and NDEL1 RNAi have comparable effects on postmitotic neuronal migration. These results reveal that the severity of NDE1-associated microcephaly results not from defects in mitosis, but rather the inability of neural progenitors to ever reach this stage. Human mutations in the NDE1 gene have been associated with cortical malformations and severe microcephaly. Here, the authors show in embryonic rat brains that NDE1-depleted neural progenitors arrest at three specific cell cycle stages before mitosis, resulting in a severe decrease in neurogenesis.
Collapse
|