1
|
Van Beirs C, Vanholme B. Study of spider flower C-lignin reveals two novel monolignol transporters. THE NEW PHYTOLOGIST 2025; 246:1420-1422. [PMID: 39925315 DOI: 10.1111/nph.20447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
This article is a Commentary on Zhuo et al. (2025), 246: 1520–1535.
Collapse
Affiliation(s)
- Caroline Van Beirs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052, Ghent, Belgium
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|
2
|
Kiani YS, Jabeen I. Challenges of Protein-Protein Docking of the Membrane Proteins. Methods Mol Biol 2024; 2780:203-255. [PMID: 38987471 DOI: 10.1007/978-1-0716-3985-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Despite the recent advances in the determination of high-resolution membrane protein (MP) structures, the structural and functional characterization of MPs remains extremely challenging, mainly due to the hydrophobic nature, low abundance, poor expression, purification, and crystallization difficulties associated with MPs. Whereby the major challenges/hurdles for MP structure determination are associated with the expression, purification, and crystallization procedures. Although there have been significant advances in the experimental determination of MP structures, only a limited number of MP structures (approximately less than 1% of all) are available in the Protein Data Bank (PDB). Therefore, the structures of a large number of MPs still remain unresolved, which leads to the availability of widely unplumbed structural and functional information related to MPs. As a result, recent developments in the drug discovery realm and the significant biological contemplation have led to the development of several novel, low-cost, and time-efficient computational methods that overcome the limitations of experimental approaches, supplement experiments, and provide alternatives for the characterization of MPs. Whereby the fine tuning and optimizations of these computational approaches remains an ongoing endeavor.Computational methods offer a potential way for the elucidation of structural features and the augmentation of currently available MP information. However, the use of computational modeling can be extremely challenging for MPs mainly due to insufficient knowledge of (or gaps in) atomic structures of MPs. Despite the availability of numerous in silico methods for 3D structure determination the applicability of these methods to MPs remains relatively low since all methods are not well-suited or adequate for MPs. However, sophisticated methods for MP structure predictions are constantly being developed and updated to integrate the modifications required for MPs. Currently, different computational methods for (1) MP structure prediction, (2) stability analysis of MPs through molecular dynamics simulations, (3) modeling of MP complexes through docking, (4) prediction of interactions between MPs, and (5) MP interactions with its soluble partner are extensively used. Towards this end, MP docking is widely used. It is notable that the MP docking methods yet few in number might show greater potential in terms of filling the knowledge gap. In this chapter, MP docking methods and associated challenges have been reviewed to improve the applicability, accuracy, and the ability to model macromolecular complexes.
Collapse
Affiliation(s)
- Yusra Sajid Kiani
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
3
|
Samineni L, Acharya B, Behera H, Oh H, Kumar M, Chowdhury R. Protein engineering of pores for separation, sensing, and sequencing. Cell Syst 2023; 14:676-691. [PMID: 37591205 DOI: 10.1016/j.cels.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Proteins are critical to cellular function and survival. They are complex molecules with precise structures and chemistries, which allow them to serve diverse functions for maintaining overall cell homeostasis. Since the discovery of the first enzyme in 1833, a gamut of advanced experimental and computational tools has been developed and deployed for understanding protein structure and function. Recent studies have demonstrated the ability to redesign/alter natural proteins for applications in industrial processes of interest and to make customized, novel synthetic proteins in the laboratory through protein engineering. We comprehensively review the successes in engineering pore-forming proteins and correlate the amino acid-level biochemistry of different pore modification strategies to the intended applications limited to nucleotide/peptide sequencing, single-molecule sensing, and precise molecular separations.
Collapse
Affiliation(s)
- Laxmicharan Samineni
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Bibek Acharya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Harekrushna Behera
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Zhou R, Zhang S, Nguyen HT, Ding H, Gaffney A, Kappes JC, Smith AB, Sodroski JG. Conformations of Human Immunodeficiency Virus Envelope Glycoproteins in Detergents and Styrene-Maleic Acid Lipid Particles. J Virol 2023; 97:e0032723. [PMID: 37255444 PMCID: PMC10308955 DOI: 10.1128/jvi.00327-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
The mature human immunodeficiency virus (HIV) envelope glycoprotein (Env) trimer, which consists of noncovalently associated gp120 exterior and gp41 transmembrane subunits, mediates virus entry into cells. The pretriggered (State-1) Env conformation is the major target for broadly neutralizing antibodies (bNAbs), whereas receptor-induced downstream Env conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. To examine the contribution of membrane anchorage to the maintenance of the metastable pretriggered Env conformation, we compared wild-type and State-1-stabilized Envs solubilized in detergents or in styrene-maleic acid (SMA) copolymers. SMA directly incorporates membrane lipids and resident membrane proteins into lipid nanoparticles (styrene-maleic acid lipid particles [SMALPs]). The integrity of the Env trimer in SMALPs was maintained at both 4°C and room temperature. In contrast, Envs solubilized in Cymal-5, a nonionic detergent, were unstable at room temperature, although their stability was improved at 4°C and/or after incubation with the entry inhibitor BMS-806. Envs solubilized in ionic detergents were relatively unstable at either temperature. Comparison of Envs solubilized in Cymal-5 and SMA at 4°C revealed subtle differences in bNAb binding to the gp41 membrane-proximal external region, consistent with these distinct modes of Env solubilization. Otherwise, the antigenicity of the Cymal-5- and SMA-solubilized Envs was remarkably similar, both in the absence and in the presence of BMS-806. However, both solubilized Envs were recognized differently from the mature membrane Env by specific bNAbs and pNAbs. Thus, detergent-based and detergent-free solubilization at 4°C alters the pretriggered membrane Env conformation in consistent ways, suggesting that Env assumes default conformations when its association with the membrane is disrupted. IMPORTANCE The human immunodeficiency virus (HIV) envelope glycoproteins (Envs) in the viral membrane mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins rely on purification procedures that allow the proteins to maintain their natural conformation. In this study, we show that a styrene-maleic acid (SMA) copolymer can extract HIV-1 Env from a membrane without the use of detergents. The Env in SMA is more stable at room temperature than Env in detergents. The purified Env in SMA maintains many but not all of the characteristics expected of the natural membrane Env. Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful tools for future studies of HIV-1 Env structure and its interaction with receptors and antibodies.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Althea Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Yao H, Cai H, Li D. Fluorescence-Detection Size-Exclusion Chromatography-Based Thermostability Assay for Membrane Proteins. Methods Mol Biol 2023; 2564:299-315. [PMID: 36107350 DOI: 10.1007/978-1-0716-2667-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Green fluorescent proteins (GFPs) have lightened up almost every aspect of biological research including protein sciences. In the field of membrane protein structural biology, GFPs have been used widely to monitor membrane protein localization, expression level, the purification process and yield, and the stability inside the cells and in the test tube. Of particular interest is the fluorescence-detector size-exclusion chromatography-based thermostability assay (FSEC-TS). By simple heating and FSEC, the generally applicable method allows rapid assessment of the thermostability of GFP-fused membrane proteins without purification. Here we describe the experimental details and some typical results for the FSEC-TS method.
Collapse
Affiliation(s)
| | | | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Genomics-based strategies toward the identification of a Z-ISO carotenoid biosynthetic enzyme suitable for structural studies. Methods Enzymol 2022; 671:171-205. [PMID: 35878977 DOI: 10.1016/bs.mie.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Over the past 20years, structural genomics efforts have proven enormously successful for the determination of integral membrane protein structures, particularly for those of prokaryotic origin. However, traditional genomic expansion screens have included up to hundreds of targets, necessitating the use of robotics and other automation not available to most laboratories. Moreover, such large-scale screens of eukaryotic targets are not easily performed at such a scale. To have broader appeal, traditional structural genomic approaches need to be modified and improved such that they are feasible for most laboratories and especially so for proteins from eukaryotic organisms. One such refinement, termed "microgenomic expansion," has been recently described. This approach improves the process of target selection by making target screening a two-step process, with a minimal number of targets tested at each step. Microgenomic expansion methods are applied here theoretically to a project that has the objective of acquiring a structure for the plant 15-cis-ζ-carotene isomerase, Z-ISO.
Collapse
|
7
|
Argudo PG, Spitzer L, Jerome F, Cramail H, Camacho L, Lecommandoux S. Design and Self-Assembly of Sugar-Based Amphiphiles: Spherical to Cylindrical Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7535-7544. [PMID: 35666568 DOI: 10.1021/acs.langmuir.2c00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sugar-based amphiphiles are a relevant natural alternative to synthetic ones due to their biodegradable properties. An understanding of their structure-assembly relationship is needed to allow the concrete synthesis of suitable derivatives. Here, four different mannose-derivative surfactants are characterized by pendant drop, dynamic light scattering, small-angle X-ray scattering, cryotransmission electron microscopy, and molecular dynamics techniques in aqueous media. Measurements denote how the polysaccharide average degree of polymerization (DP¯) and the addition of a hydroxyl group to the hydrophobic tail, and thus the presence of a second hydrophilic moiety, affect their self-assembly. A variation in the DP¯ of the amphiphile has no effect in the critical micelle concentration in contrast to a change in the hydrophobic molecular region. Moreover, high-DP¯ amphiphiles self-assemble into spherical micelles irrespective of the hydroxyl group presence. Low-DP¯ amphiphiles with only one hydrophilic moiety form cylindrical micelles, while the addition of a hydroxyl group to the tail leads to a spherical shape.
Collapse
Affiliation(s)
- Pablo G Argudo
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Léa Spitzer
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS-Université Poitiers, ENSIP, 1 rue Marcel Doré, 86073 Poitiers, France
| | - François Jerome
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS-Université Poitiers, ENSIP, 1 rue Marcel Doré, 86073 Poitiers, France
| | - Henri Cramail
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Luis Camacho
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, 14071 Córdoba, Spain
| | | |
Collapse
|
8
|
Yang M, Luo W, Zhang W, Wang H, Xue D, Wu Y, Zhao S, Zhao F, Zheng X, Tao H. Ugi Reaction Mediated Detergent Assembly for Membrane Protein Studies. Chem Asian J 2022; 17:e202200372. [PMID: 35575910 DOI: 10.1002/asia.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Despite the continuous efforts, the current repertoire of detergents is still far from sufficient for the biophysics studies of membrane proteins (MPs). Toward the rapid expansion of detergent diversity, we herein report a new strategy based on Ugi reaction mediated modular assembly. Structural varieties, including hydrophobic tails and hydrophilic heads, could be conveniently introduced from the multiple reaction components. New detergents then were comprehensively evaluated in the physical properties and preliminarily screened by the thermal stabilization for a transporter MsbA and a spectrum of G protein-coupled receptors (GPCRs). For the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR, detergent M-23-M finally stood out in a second evaluation for the maintenance of homogeneity and was further illustrated its application in the improvement of NMR study. Besides the promising utility in the MP study, the current results exhibit intriguing structural-physical relationship that would allow the guidance in the tuning of detergent properties in the future.
Collapse
Affiliation(s)
- Meifang Yang
- University of South China, Department of Pharmacy, CHINA
| | - Weiling Luo
- ShanghaiTech University, iHuman Institute, CHINA
| | - Wei Zhang
- ShanghaiTech University, iHuman Institute, CHINA
| | - Huixia Wang
- ShanghaiTech University, iHuman Institute, CHINA
| | | | - Yiran Wu
- ShanghaiTech University, iHuman Institute, CHINA
| | - Suwen Zhao
- ShanghaiTech University, iHuman Institute, CHINA
| | - Fei Zhao
- ShanghaiTech University, iHuman Institute, 230 Haike Road, 201210, Shanghai, CHINA
| | - Xing Zheng
- University of South China, Department of Pharmacy, CHINA
| | - Houchao Tao
- Shanghai University of Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Room 2421, Building 2, 1200 Cailun Road, 230032, Shanghai, CHINA
| |
Collapse
|
9
|
Clénet D, Clavier L, Strobbe B, Le Bon C, Zoonens M, Saulnier A. Full-length G glycoprotein directly extracted from rabies virus with detergent and then stabilized by amphipols in liquid and freeze-dried forms. Biotechnol Bioeng 2021; 118:4317-4330. [PMID: 34297405 PMCID: PMC9291542 DOI: 10.1002/bit.27900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 11/11/2022]
Abstract
Pathogen surface antigens are at the forefront of the viral strategy when invading host organisms. These antigens, including membrane proteins (MPs), are broadly targeted by the host immune response. Obtaining these MPs in a soluble and stable form constitutes a real challenge, regardless of the application purposes (e.g. quantification/characterization assays, diagnosis, and preventive and curative strategies). A rapid process to obtain a native-like antigen by solubilization of a full-length MP directly from a pathogen is reported herein. Rabies virus (RABV) was used as a model for this demonstration and its full-length G glycoprotein (RABV-G) was stabilized with amphipathic polymers, named amphipols (APols). The stability of RABV-G trapped in APol A8-35 (RABV-G/A8-35) was evaluated under different stress conditions (temperature, agitation, and light exposure). RABV-G/A8-35 in liquid form exhibited higher unfolding temperature (+6°C) than in detergent and was demonstrated to be antigenically stable over 1 month at 5°C and 25°C. Kinetic modeling of antigenicity data predicted antigenic stability of RABV-G/A8-35 in a solution of up to 1 year at 5°C. The RABV-G/A8-35 complex formulated in an optimized buffer composition and subsequently freeze-dried displayed long-term stability for 2-years at 5, 25, and 37°C. This study reports for the first time that a natural full-length MP extracted from a virus, complexed to APols and subsequently freeze-dried, displayed long-term antigenic stability, without requiring storage under refrigerated conditions.
Collapse
Affiliation(s)
- Didier Clénet
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
| | - Léna Clavier
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
| | - Benoît Strobbe
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
| | - Christel Le Bon
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, CNRS, Institut de Biologie Physico‐ChimiqueUniversité de ParisParisFrance
| | - Manuela Zoonens
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, CNRS, Institut de Biologie Physico‐ChimiqueUniversité de ParisParisFrance
| | - Aure Saulnier
- Bioprocess R&D DepartmentSanofi PasteurMarcy l'EtoileFrance
- Department of Analytical SciencesSanofi PasteurMarcy l'EtoileFrance
| |
Collapse
|
10
|
Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation. Biochem Soc Trans 2021; 49:1763-1777. [PMID: 34415288 PMCID: PMC8421053 DOI: 10.1042/bst20210181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
The solubilisation of membrane proteins (MPs) necessitates the overlap of two contradictory events; the extraction of MPs from their native lipid membranes and their subsequent stabilisation in aqueous environments. Whilst the current myriad of membrane mimetic systems provide a range of modus operandi, there are no golden rules for selecting the optimal pipeline for solubilisation of a specific MP hence a miscellaneous approach must be employed balancing both solubilisation efficiency and protein stability. In recent years, numerous diverse lipid membrane mimetic systems have been developed, expanding the pool of available solubilisation strategies. This review provides an overview of recent developments in the membrane mimetic field, with particular emphasis placed upon detergents, polymer-based nanodiscs and amphipols, highlighting the latest reagents to enter the toolbox of MP research.
Collapse
|
11
|
Cecchetti C, Strauss J, Stohrer C, Naylor C, Pryor E, Hobbs J, Tanley S, Goldman A, Byrne B. A novel high-throughput screen for identifying lipids that stabilise membrane proteins in detergent based solution. PLoS One 2021; 16:e0254118. [PMID: 34252116 PMCID: PMC8274869 DOI: 10.1371/journal.pone.0254118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022] Open
Abstract
Membrane proteins have a range of crucial biological functions and are the target of about 60% of all prescribed drugs. For most studies, they need to be extracted out of the lipid-bilayer, e.g. by detergent solubilisation, leading to the loss of native lipids, which may disturb important protein-lipid/bilayer interactions and thus functional and structural integrity. Relipidation of membrane proteins has proven extremely successful for studying challenging targets, but the identification of suitable lipids can be expensive and laborious. Therefore, we developed a screen to aid the high-throughput identification of beneficial lipids. The screen covers a large lipid space and was designed to be suitable for a range of stability assessment methods. Here, we demonstrate its use as a tool for identifying stabilising lipids for three membrane proteins: a bacterial pyrophosphatase (Tm-PPase), a fungal purine transporter (UapA) and a human GPCR (A2AR). A2AR is stabilised by cholesteryl hemisuccinate, a lipid well known to stabilise GPCRs, validating the approach. Additionally, our screen also identified a range of new lipids which stabilised our test proteins, providing a starting point for further investigation and demonstrating its value as a novel tool for membrane protein research. The pre-dispensed screen will be made commercially available to the scientific community in future and has a number of potential applications in the field.
Collapse
Affiliation(s)
- Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jannik Strauss
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Claudia Stohrer
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Edward Pryor
- Anatrace, Maumee, Ohio, United States of America
| | | | | | - Adrian Goldman
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- MIBS, Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail: (AG); (BB)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (AG); (BB)
| |
Collapse
|
12
|
Abstract
One essential prerequisite of any experiment involving a purified protein, such as interaction studies or structural and biophysical characterization, is to work with a "good-quality" sample in order to ensure reproducibility and reliability of the data. Here, we define a "good-quality" sample as a protein preparation that fulfills three criteria: (1) the preparation contains a protein that is pure and soluble and exhibits structural and functional integrity, (2) the protein must be structurally homogeneous, and (3) the preparation must be reproducible. To ensure effective quality control (QC) of all these parameters, we suggest to follow a simple workflow involving the use of gel electrophoresis, light scattering, and spectroscopic experiments. We describe the techniques used in every step of this workflow and provide easy-to-use standard protocols for each step.
Collapse
|
13
|
Taylor A, Warner M, Mendoza C, Memmott C, LeCheminant T, Bailey S, Christensen C, Keller J, Suli A, Mizrachi D. Chimeric Claudins: A New Tool to Study Tight Junction Structure and Function. Int J Mol Sci 2021; 22:ijms22094947. [PMID: 34066630 PMCID: PMC8124314 DOI: 10.3390/ijms22094947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
The tight junction (TJ) is a structure composed of multiple proteins, both cytosolic and membranal, responsible for cell–cell adhesion in polarized endothelium and epithelium. The TJ is intimately connected to the cytoskeleton and plays a role in development and homeostasis. Among the TJ’s membrane proteins, claudins (CLDNs) are key to establishing blood–tissue barriers that protect organismal physiology. Recently, several crystal structures have been reported for detergent extracted recombinant CLDNs. These structural advances lack direct evidence to support quaternary structure of CLDNs. In this article, we have employed protein-engineering principles to create detergent-independent chimeric CLDNs, a combination of a 4-helix bundle soluble monomeric protein (PDB ID: 2jua) and the apical—50% of human CLDN1, the extracellular domain that is responsible for cell–cell adhesion. Maltose-binding protein-fused chimeric CLDNs (MBP-CCs) used in this study are soluble proteins that retain structural and functional aspects of native CLDNs. Here, we report the biophysical characterization of the structure and function of MBP-CCs. MBP-fused epithelial cadherin (MBP-eCAD) is used as a control and point of comparison of a well-characterized cell-adhesion molecule. Our synthetic strategy may benefit other families of 4-α-helix membrane proteins, including tetraspanins, connexins, pannexins, innexins, and more.
Collapse
|
14
|
Cell-Free Expression of a Plant Membrane Protein BrPT2 From Boesenbergia Rotunda. Mol Biotechnol 2021; 63:316-326. [PMID: 33565047 DOI: 10.1007/s12033-021-00304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Prenylation of aromatic natural products by membrane-bound prenyltransferases (PTs) is an important biosynthesis step of many bioactive compounds. At present, only a few plant flavonoid-related PT genes have been functionally characterized, mainly due to the difficulties of expressing these membrane proteins. Rapid and effective methods to produce functional plant membrane proteins are thus indispensable. Here, we evaluated expression systems through cell-based and cell-free approaches to express Boesenbergia rotunda BrPT2 encoding a membrane-bound prenyltransferase. We attempted to express BrPT2 in Escherichia coli and tobacco plants but failed to detect this protein using the Western-blot technique, whereas an intact single band of 43 kDa was detected when BrPT2 was expressed using a cell-free protein synthesis system (PURE). Under in vitro enzymatic condition, the synthesized BrPT2 successfully catalyzed pinostrobin chalcone to pinostrobin. Molecular docking analysis showed that pinostrobin chalcone interacts with BrPT2 at two cavities: (1) the main binding site at the central cavity and (2) the allosteric binding site located away from the central cavity. Our findings suggest that cell-free protein synthesis could be an alternative for rapid production of valuable difficult-to-express membrane proteins.
Collapse
|
15
|
Cole C, Parks C, Rachele J, Valafar H. Increased usability, algorithmic improvements and incorporation of data mining for structure calculation of proteins with REDCRAFT software package. BMC Bioinformatics 2020; 21:204. [PMID: 33272215 PMCID: PMC7712608 DOI: 10.1186/s12859-020-3522-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background Traditional approaches to elucidation of protein structures by Nuclear Magnetic Resonance spectroscopy (NMR) rely on distance restraints also known as Nuclear Overhauser effects (NOEs). The use of NOEs as the primary source of structure determination by NMR spectroscopy is time consuming and expensive. Residual Dipolar Couplings (RDCs) have become an alternate approach for structure calculation by NMR spectroscopy. In previous works, the software package REDCRAFT has been presented as a means of harnessing the information containing in RDCs for structure calculation of proteins. However, to meet its full potential, several improvements to REDCRAFT must be made. Results In this work, we present improvements to REDCRAFT that include increased usability, better interoperability, and a more robust core algorithm. We have demonstrated the impact of the improved core algorithm in the successful folding of the protein 1A1Z with as high as ±4 Hz of added error. The REDCRAFT computed structure from the highly corrupted data exhibited less than 1.0 Å with respect to the X-ray structure. We have also demonstrated the interoperability of REDCRAFT in a few instances including with PDBMine to reduce the amount of required data in successful folding of proteins to unprecedented levels. Here we have demonstrated the successful folding of the protein 1D3Z (to within 2.4 Å of the X-ray structure) using only N-H RDCs from one alignment medium. Conclusions The additional GUI features of REDCRAFT combined with the NEF compliance have significantly increased the flexibility and usability of this software package. The improvements of the core algorithm have substantially improved the robustness of REDCRAFT in utilizing less experimental data both in quality and quantity.
Collapse
Affiliation(s)
- Casey Cole
- Department of Computer Science and Engineering, University of South Carolina, M. Bert Storey Engineering and Innovation Center, 550 Assembly St, Columbia, SC, 29201, USA
| | - Caleb Parks
- Department of Computer Science and Engineering, University of South Carolina, M. Bert Storey Engineering and Innovation Center, 550 Assembly St, Columbia, SC, 29201, USA
| | - Julian Rachele
- Department of Computer Science and Engineering, University of South Carolina, M. Bert Storey Engineering and Innovation Center, 550 Assembly St, Columbia, SC, 29201, USA
| | - Homayoun Valafar
- Department of Computer Science and Engineering, University of South Carolina, M. Bert Storey Engineering and Innovation Center, 550 Assembly St, Columbia, SC, 29201, USA.
| |
Collapse
|
16
|
IMPROvER: the Integral Membrane Protein Stability Selector. Sci Rep 2020; 10:15165. [PMID: 32938971 PMCID: PMC7495477 DOI: 10.1038/s41598-020-71744-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Identifying stabilising variants of membrane protein targets is often required for structure determination. Our new computational pipeline, the Integral Membrane Protein Stability Selector (IMPROvER) provides a rational approach to variant selection by employing three independent approaches: deep-sequence, model-based and data-driven. In silico tests using known stability data, and in vitro tests using three membrane protein targets with 7, 11 and 16 transmembrane helices provided measures of success. In vitro, individual approaches alone all identified stabilising variants at a rate better than expected by random selection. Low numbers of overlapping predictions between approaches meant a greater success rate was achieved (fourfold better than random) when approaches were combined and selections restricted to the highest ranked sites. The mix of information IMPROvER uses can be extracted for any helical membrane protein. We have developed the first general-purpose tool for selecting stabilising variants of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upalpha$$\end{document}α-helical membrane proteins, increasing efficiency and reducing workload. IMPROvER can be accessed at http://improver.ddns.net/IMPROvER/.
Collapse
|
17
|
Vermot A, Petit-Härtlein I, Breyton C, Le Roy A, Thépaut M, Vivès C, Moulin M, Härtlein M, Grudinin S, Smith SME, Ebel C, Martel A, Fieschi F. Interdomain Flexibility within NADPH Oxidase Suggested by SANS Using LMNG Stealth Carrier. Biophys J 2020; 119:605-618. [PMID: 32668232 PMCID: PMC7399496 DOI: 10.1016/j.bpj.2020.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 11/12/2022] Open
Abstract
Small angle neutron scattering (SANS) provides a method to obtain important low-resolution information for integral membrane proteins (IMPs), challenging targets for structural determination. Specific deuteration furnishes a "stealth" carrier for the solubilized IMP. We used SANS to determine a structural envelope of SpNOX, the Streptococcus pneumoniae NADPH oxidase (NOX), a prokaryotic model system for exploring structure and function of eukaryotic NOXes. SpNOX was solubilized in the detergent lauryl maltose neopentyl glycol, which provides optimal SpNOX stability and activity. Using deuterated solvent and protein, the lauryl maltose neopentyl glycol was experimentally undetected in SANS. This affords a cost-effective SANS approach for obtaining novel structural information on IMPs. Combining SANS data with molecular modeling provided a first, to our knowledge, structural characterization of an entire NOX enzyme. It revealed a distinctly less compact structure than that predicted from the docking of homologous crystal structures of the separate transmembrane and dehydrogenase domains, consistent with a flexible linker connecting the two domains.
Collapse
Affiliation(s)
- Annelise Vermot
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | - Cécile Breyton
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Aline Le Roy
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Michel Thépaut
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Corinne Vivès
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | | | | | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, Georgia
| | - Christine Ebel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | - Franck Fieschi
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France.
| |
Collapse
|
18
|
Baldini L, Casnati A, Sansone F. Multivalent and Multifunctional Calixarenes in Bionanotechnology. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Laura Baldini
- Department of Chemistry Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze, 17/a 43124 Parma Italy
| | - Alessandro Casnati
- Department of Chemistry Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze, 17/a 43124 Parma Italy
| | - Francesco Sansone
- Department of Chemistry Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze, 17/a 43124 Parma Italy
| |
Collapse
|
19
|
Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: Overcoming the antigen challenge and enabling discovery strategies. Methods 2020; 180:111-126. [PMID: 32422249 DOI: 10.1016/j.ymeth.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning helices, encompass families of proteins which are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels and transporters. Although these proteins have typically been targeted by small molecule drugs and peptides, the high specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. However, it remains the case that isolation of antibodies with desired pharmacological function(s) has proven difficult due to technical challenges in preparing membrane protein antigens suitable to support antibody drug discovery. In this review recent progress in defining strategies for generation of membrane protein antigens is outlined. We also highlight antibody isolation strategies which have generated antibodies which bind the membrane protein and modulate the protein function.
Collapse
|
20
|
Hall SCL, Clifton LA, Tognoloni C, Morrison KA, Knowles TJ, Kinane CJ, Dafforn TR, Edler KJ, Arnold T. Adsorption of a styrene maleic acid (SMA) copolymer-stabilized phospholipid nanodisc on a solid-supported planar lipid bilayer. J Colloid Interface Sci 2020; 574:272-284. [PMID: 32330753 PMCID: PMC7276985 DOI: 10.1016/j.jcis.2020.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Over recent years, there has been a rapid development of membrane-mimetic systems to encapsulate and stabilize planar segments of phospholipid bilayers in solution. One such system has been the use of amphipathic copolymers to solubilize lipid bilayers into nanodiscs. The attractiveness of this system, in part, stems from the capability of these polymers to solubilize membrane proteins directly from the host cell membrane. The assumption has been that the native lipid annulus remains intact, with nanodiscs providing a snapshot of the lipid environment. Recent studies have provided evidence that phospholipids can exchange from the nanodiscs with either lipids at interfaces, or with other nanodiscs in bulk solution. Here we investigate kinetics of lipid exchange between three recently studied polymer-stabilized nanodiscs and supported lipid bilayers at the silicon-water interface. We show that lipid and polymer exchange occurs in all nanodiscs tested, although the rate and extent differs between different nanodisc types. Furthermore, we observe adsorption of nanodiscs to the supported lipid bilayer for one nanodisc system which used a polymer made using reversible addition-fragmentation chain transfer polymerization. These results have important implications in applications of polymer-stabilized nanodiscs, such as in the fabrication of solid-supported films containing membrane proteins.
Collapse
Affiliation(s)
- Stephen C L Hall
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 ODE, UK
| | - Luke A Clifton
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Cecilia Tognoloni
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Kerrie A Morrison
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Christian J Kinane
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Thomas Arnold
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 ODE, UK; ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK; Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK; European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund, Sweden.
| |
Collapse
|
21
|
Hardy D, Bill RM, Jawhari A, Rothnie AJ. Functional Expression of Multidrug Resistance Protein 4 MRP4/ABCC4. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:1000-1008. [PMID: 31381460 PMCID: PMC6873218 DOI: 10.1177/2472555219867070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
To study the function and structure of membrane proteins, high quantities of pure and stable protein are needed. One of the first hurdles in accomplishing this is expression of the membrane protein at high levels and in a functional state. Membrane proteins are naturally expressed at low levels, so finding a suitable host for overexpression is imperative. Multidrug resistance protein 4 (MRP4) or ATP-binding cassette subfamily C member 4 (ABCC4) is a multi-transmembrane protein that is able to transport a range of organic anionic compounds (both endogenous and xenobiotic) out of the cell. This versatile transporter has been linked with extracellular signaling pathways and cellular protection, along with conferring drug resistance in cancers. Here we report the use of MRP4 as a case study to be expressed in three different expression systems: mammalian, insect, and yeast cells, to gain the highest yield possible. Interestingly, using the baculovirus expression system with Sf9 insect cells produced the highest protein yields. Vesicular transport assays were used to confirm that MRP4 expressed in Sf9 was functional using a fluorescent cAMP analogue (fluo-cAMP) instead of the traditional radiolabeled substrates. MRP4 transported fluo-cAMP in an ATP-dependent manner. The specificity of functional expression of MRP4 was validated by the use of nonhydrolyzable ATP analogues and MRP4 inhibitor MK571. Functionally expressed MRP4 in Sf9 cells can now be used in downstream processes such as solubilization and purification in order to better understand its function and structure.
Collapse
Affiliation(s)
- David Hardy
- Life & Health Sciences, Aston
University, Birmingham, UK
- CALIXAR, Lyon, France
| | - Roslyn M. Bill
- Life & Health Sciences, Aston
University, Birmingham, UK
| | | | | |
Collapse
|
22
|
Agez M, Mandon ED, Iwema T, Gianotti R, Limani F, Herter S, Mössner E, Kusznir EA, Huber S, Lauer M, Ringler P, Ferrara C, Klein C, Jawhari A. Biochemical and biophysical characterization of purified native CD20 alone and in complex with rituximab and obinutuzumab. Sci Rep 2019; 9:13675. [PMID: 31548565 PMCID: PMC6757138 DOI: 10.1038/s41598-019-50031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/24/2019] [Indexed: 11/17/2022] Open
Abstract
CD20 is a B-lymphocyte specific integral membrane protein, an activated-glycosylated phosphoprotein expressed on the surface of B-cells and a clinically validated target of monoclonal antibodies such as rituximab, ocrelizumab, ofatumumab and obinutuzumab in the treatment of all B cell lymphomas and leukemias as well as autoimmune diseases. Here, we report the extraction and purification of native CD20 from SUDHL4 and RAMOS cell lines. To improve the protein yield, we applied a calixarene-based detergent approach to solubilize, stabilize and purify native CD20 from HEK293 cells. Size Exclusion Chromatography (SEC) and Analytical Ultracentrifugation show that purified CD20 was non-aggregated and that CD20 oligomerization is concentration dependent. Negative stain electron microscopy and atomic force microscopy revealed homogenous populations of CD20. However, no defined structure could be observed. Interestingly, micellar solubilized and purified CD20 particles adopt uniformly confined nanodroplets which do not fuse and aggregate. Finally, purified CD20 could bind to rituximab and obinutuzumab as demonstrated by SEC, and Surface Plasmon Resonance (SPR). Specificity of binding was confirmed using CD20 antibody mutants to human B-cell lymphoma cells. The strategy described in this work will help investigate CD20 binding with newly developed antibodies and eventually help to optimize them. This approach may also be applicable to other challenging membrane proteins.
Collapse
Affiliation(s)
- Morgane Agez
- CALIXAR, 60 avenue Rockefeller 69008, Lyon, France
| | | | - Thomas Iwema
- CALIXAR, 60 avenue Rockefeller 69008, Lyon, France
| | - Reto Gianotti
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Florian Limani
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Sylvia Herter
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Eric A Kusznir
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Matthias Lauer
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Claudia Ferrara
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | |
Collapse
|
23
|
Coughlin Q, Hopper AT, Blanco MJ, Tirunagaru V, Robichaud AJ, Doller D. Allosteric Modalities for Membrane-Bound Receptors: Insights from Drug Hunting for Brain Diseases. J Med Chem 2019; 62:5979-6002. [PMID: 30721063 DOI: 10.1021/acs.jmedchem.8b01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Medicinal chemists are accountable for embedding the appropriate drug target profile into the molecular architecture of a clinical candidate. An accurate characterization of the functional effects following binding of a drug to its biological target is a fundamental step in the discovery of new medicines, informing the translation of preclinical efficacy and safety observations into human trials. Membrane-bound proteins, particularly ion channels and G protein-coupled receptors (GPCRs), are biological targets prone to allosteric modulation. Investigations using allosteric drug candidates and chemical tools suggest that their functional effects may be tailored with a high degree of translational alignment, making them molecular tools to correct pathophysiological functional tone and enable personalized medicine when a causative target-to-disease link is known. We present select examples of functional molecular fine-tuning of allosterism and discuss consequences relevant to drug design.
Collapse
|
24
|
Substrate polyspecificity and conformational relevance in ABC transporters: new insights from structural studies. Biochem Soc Trans 2018; 46:1475-1484. [PMID: 30514765 DOI: 10.1042/bst20180146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Transport of molecules and ions across biological membranes is an essential process in all organisms. It is carried out by a range of evolutionarily conserved primary and secondary transporters. A significant portion of the primary transporters belong to the ATP-binding cassette (ABC) superfamily, which utilise the free-energy from ATP hydrolysis to shuttle many different substrates across various biological membranes, and consequently, are involved in both normal and abnormal physiology. In humans, ABC transporter-associated pathologies are perhaps best exemplified by multidrug-resistance transporters that efflux many xenobiotic compounds due to their remarkable substrate polyspecificity. Accordingly, understanding the transport mechanism(s) is of great significance, and indeed, much progress has been made in recent years, particularly from structural studies on ABC exporters. Consequently, the general mechanism of 'alternate access' has been modified to describe individual transporter nuances, though some aspects of the transport process remain unclear. Moreover, as new information has emerged, the physiological relevance of the 'open-apo' conformation of MsbA (a bacterial exporter) has been questioned and, by extension, its contribution to mechanistic models. We present here a comprehensive overview of the most recently solved structures of ABC exporters, focusing on new insights regarding the nature of substrate polyspecificity and the physiological relevance of the 'open-apo' conformation. This review evaluates the claim that the latter may be an artefact of detergent solubilisation, and we hypothesise that the biophysical properties of the membrane play a key role in the function of ABC exporters allowing them to behave like a 'spring-hinge' during their transport cycle.
Collapse
|
25
|
Membrane protein engineering to the rescue. Biochem Soc Trans 2018; 46:1541-1549. [PMID: 30381335 DOI: 10.1042/bst20180140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
The inherent hydrophobicity of membrane proteins is a major barrier to membrane protein research and understanding. Their low stability and solubility in aqueous environments coupled with poor expression levels make them a challenging area of research. For many years, the only way of working with membrane proteins was to optimise the environment to suit the protein, through the use of different detergents, solubilising additives, and other adaptations. However, with innovative protein engineering methodologies, the membrane proteins themselves are now being adapted to suit the environment. This mini-review looks at the types of adaptations which are applied to membrane proteins from a variety of different fields, including water solubilising fusion tags, thermostabilising mutation screening, scaffold proteins, stabilising protein chimeras, and isolating water-soluble domains.
Collapse
|
26
|
Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:406-419. [PMID: 30175702 PMCID: PMC6265046 DOI: 10.1017/s1431927618012382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is a powerful tool for macromolecular to near-atomic resolution structure determination in the biological sciences. The specimen is maintained in a near-native environment within a thin film of vitreous ice and imaged in a transmission electron microscope. The images can then be processed by a number of computational methods to produce three-dimensional information. Recent advances in sample preparation, imaging, and data processing have led to tremendous growth in the field of cryo-EM by providing higher resolution structures and the ability to investigate macromolecules within the context of the cell. Here, we review developments in sample preparation methods and substrates, detectors, phase plates, and cryo-correlative light and electron microscopy that have contributed to this expansion. We also have included specific biological applications.
Collapse
Affiliation(s)
- Rebecca S Dillard
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Cheri M Hampton
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Joshua D Strauss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Zunlong Ke
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Deanna Altomara
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Ricardo C Guerrero-Ferreira
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Gabriella Kiss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Elizabeth R Wright
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| |
Collapse
|
27
|
Lenoir G, Dieudonné T, Lamy A, Lejeune M, Vazquez-Ibar JL, Montigny C. Screening of Detergents for Stabilization of Functional Membrane Proteins. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2018; 93:e59. [PMID: 30021058 DOI: 10.1002/cpps.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane protein studies usually require use of detergents to extract and isolate proteins from membranes and manipulate them in a soluble context for their functional or structural characterization. However, solubilization with detergent may interfere with MP stability and may directly affect MP function or structure. Moreover, detergent properties can be affected such as critical micellar concentration (CMC) can be affected by the experimental conditions. Consequently, the experimenter must pay attention to both the protein and the behavior of the detergent. This article provides a convenient protocol for estimating the CMC of detergents in given experimental conditions. Then, it presents two protocols aimed at monitoring the function of a membrane protein in the presence of detergent. Such experiments may help to test various detergents for their inactivating or stabilizing effects on long incubation times, ranging from few hours to some days. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Thibaud Dieudonné
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Anaïs Lamy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Maylis Lejeune
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - José-Luis Vazquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| |
Collapse
|
28
|
Production of membrane proteins for characterisation of their pheromone-sensing and antimicrobial resistance functions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:723-737. [PMID: 30066130 PMCID: PMC6182600 DOI: 10.1007/s00249-018-1325-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/08/2018] [Accepted: 07/21/2018] [Indexed: 12/15/2022]
Abstract
Despite the importance of membrane proteins in cellular processes, studies of these hydrophobic proteins present major technical challenges, including expression and purification for structural and biophysical studies. A modified strategy of that proposed previously by Saidijam et al. (2005) and others, for the routine expression of bacterial membrane proteins involved in environmental sensing and antimicrobial resistance (AMR), is proposed which results in purification of sufficient proteins for biophysical experiments. We report expression successes amongst a collection of enterococcal vancomycin resistance membrane proteins: VanTG, VanTG-M transporter domain, VanZ and the previously characterised VanS (A-type) histidine protein kinase (HPK). Using the same strategy, we report on the successful amplification and purification of intact BlpH and ComD2 HPKs of Streptococcus pneumoniae. Near-UV circular dichroism revealed both recombinant proteins bound their pheromone ligands BlpC and CSP2. Interestingly, CSP1 also interacted with ComD. Finally, we evaluate the alternative strategy for studying sensory HPKs involving isolated soluble sensory domain fragments, exemplified by successful production of VicKESD of Enterococcus faecalis VicK. Purified VicKESD possessed secondary structure post-purification. Thermal denaturation experiments using far-UV CD, a technique which can be revealing regarding ligand binding, revealed that: (a) VicKESD denaturation occurs between 15 and 50 °C; and (b) reducing conditions did not detectably affect denaturation profiles suggesting reducing conditions per se are not directly sensed by VicKESD. Our findings provide information on a modified strategy for the successful expression, production and/or storage of bacterial membrane HPKs, AMR proteins and sensory domains for their future crystallisation, and ligand binding studies.
Collapse
|
29
|
Reading E. Structural Mass Spectrometry of Membrane Proteins within Their Native Lipid Environments. Chemistry 2018; 24:13391-13398. [PMID: 29672954 DOI: 10.1002/chem.201801556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 01/22/2023]
Abstract
Mass spectrometry has emerged as an important structural biology tool for understanding membrane protein structure, function, and dynamics. Generally, structural mass spectrometry of membrane proteins has been performed on purified or reconstituted systems which lack the native lipid membrane and cellular environments. However, there has been progress in the use and adaptations of these methods for probing membrane proteins within increasingly more native contexts. In this Concept article the use and utility of structural mass spectrometry techniques for studying membrane proteins within native environments are highlighted.
Collapse
Affiliation(s)
- Eamonn Reading
- Department of Chemistry, King's College London, 7 Trinity Street, SE1 1DB, London, UK
| |
Collapse
|
30
|
Igonet S, Raingeval C, Cecon E, Pučić-Baković M, Lauc G, Cala O, Baranowski M, Perez J, Jockers R, Krimm I, Jawhari A. Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor. Sci Rep 2018; 8:8142. [PMID: 29802269 PMCID: PMC5970182 DOI: 10.1038/s41598-018-26113-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Structural studies of integral membrane proteins have been limited by the intrinsic conformational flexibility and the need to stabilize the proteins in solution. Stabilization by mutagenesis was very successful for structural biology of G protein-coupled receptors (GPCRs). However, it requires heavy protein engineering and may introduce structural deviations. Here we describe the use of specific calixarenes-based detergents for native GPCR stabilization. Wild type, full length human adenosine A2A receptor was used to exemplify the approach. We could stabilize native, glycosylated, non-aggregated and homogenous A2AR that maintained its ligand binding capacity. The benefit of the preparation for fragment screening, using the Saturation-Transfer Difference nuclear magnetic resonance (STD-NMR) experiment is reported. The binding of the agonist adenosine and the antagonist caffeine were observed and competition experiments with CGS-21680 and ZM241385 were performed, demonstrating the feasibility of the STD-based fragment screening on the native A2A receptor. Interestingly, adenosine was shown to bind a second binding site in the presence of the agonist CGS-21680 which corroborates published results obtained with molecular dynamics simulation. Fragment-like compounds identified using STD-NMR showed antagonistic effects on A2AR in the cAMP cellular assay. Taken together, our study shows that stabilization of native GPCRs represents an attractive approach for STD-based fragment screening and drug design.
Collapse
Affiliation(s)
| | - Claire Raingeval
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Gordan Lauc
- GENOS, Borongajska cesta 83h, 10000, Zagreb, Croatia
| | - Olivier Cala
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Maciej Baranowski
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France
| | - Javier Perez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Krimm
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Anass Jawhari
- CALIXAR, 60 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
31
|
Ahmad I, Nawaz N, Darwesh NM, ur Rahman S, Mustafa MZ, Khan SB, Patching SG. Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif 2018; 144:12-18. [DOI: 10.1016/j.pep.2017.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/28/2022]
|
32
|
Functional characterisation of G protein-coupled receptors. Methods 2018; 147:213-220. [PMID: 29510249 DOI: 10.1016/j.ymeth.2018.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Characterisation of receptors can involve either assessment of their ability to bind ligands or measure receptor activation as a result of agonist or inverse agonist interactions. This review focuses on G protein-coupled receptors (GPCRs), examining techniques that can be applied to both receptors in membranes and after solubilisation. Radioligand binding remains a widely used technique, although there is increasing use of fluorescent ligands. These can be used in a variety of experimental designs, either directly monitoring ligand itself with techniques such as fluorescence polarisation or indirectly via resonance energy transfer (fluorescence/Forster resonance energy transfer, FRET and bioluminescence resonance energy transfer, BRET). Label free techniques such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are also increasingly being used. For GPCRs, the main measure of receptor activation is to investigate the association of the G protein with the receptor. The chief assay measures the receptor-stimulated binding of GTP or a suitable analogue to the receptor. The direct association of the G protein with the receptor has been investigated via resonance energy techniques. These have also been used to measure ligand-induced conformational changes within the receptor; a variety of experimental techniques are available to incorporate suitable donors and acceptors within the receptor.
Collapse
|
33
|
Hardy D, Desuzinges Mandon E, Rothnie AJ, Jawhari A. The yin and yang of solubilization and stabilization for wild-type and full-length membrane protein. Methods 2018; 147:118-125. [PMID: 29477816 DOI: 10.1016/j.ymeth.2018.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 11/16/2022] Open
Abstract
Membrane proteins (MP) are stable in their native lipid environment. To enable structural and functional investigations, MP need to be extracted from the membrane. This is a critical step that represents the main obstacle for MP biochemistry and structural biology. General guidelines and rules for membrane protein solubilization remain difficult to establish. This review aims to provide the reader with a comprehensive overview of the general concepts of MP solubilization and stabilization as well as recent advances in detergents innovation. Understanding how solubilization and stabilization are intimately linked is key to facilitate MP isolation toward fundamental structural and functional research as well as drug discovery applications. How to manage the tour de force of destabilizing the lipid bilayer and stabilizing MP at the same time is the holy grail of successful isolation and investigation of such a delicate and fascinating class of proteins.
Collapse
Affiliation(s)
- David Hardy
- CALIXAR, 60 Avenue Rockefeller, 69008 Lyon, France; Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Alice J Rothnie
- Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|
34
|
Zhang Z, Liu J, Rozovsky S. Preparation of Selenocysteine-Containing Forms of Human SELENOK and SELENOS. Methods Mol Biol 2018; 1661:241-263. [PMID: 28917050 PMCID: PMC6160314 DOI: 10.1007/978-1-4939-7258-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenoprotein K (SELENOK) and Selenoprotein S (SELENOS) are the members of the endoplasmic-reticulum-associated degradation (ERAD) complex, which is responsible for translocating misfolded proteins from the endoplasmic reticulum (ER) to the cytosol for degradation. Besides its involvement in the ERAD, SELENOK was shown to bind and stabilize the palmitoyl transferase DHHC6, and thus contributes to palmitoylation. SELENOK and SELENOS reside in the ER membrane by the way of a single transmembrane helix. Both contain an intrinsically disordered region with a selenocysteine (Sec) located one or two residues away from the C-terminus. Here, we describe the preparation of the Sec-containing forms of SELENOS and SELENOK. SELENOK, which contains no native cysteines, was prepared in an E. coli cysteine auxotroph strain by exploiting the codon and the insertion machinery of Cys for the incorporation of Sec. In contrast, the preparation of SELENOS, which contains functionally important cysteine residues, relied on E. coli's native Sec incorporation mechanism.
Collapse
Affiliation(s)
- Zhengqi Zhang
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA.
| |
Collapse
|
35
|
Agez M, Schultz P, Medina I, Baker DJ, Burnham MP, Cardarelli RA, Conway LC, Garnier K, Geschwindner S, Gunnarsson A, McCall EJ, Frechard A, Audebert S, Deeb TZ, Moss SJ, Brandon NJ, Wang Q, Dekker N, Jawhari A. Molecular architecture of potassium chloride co-transporter KCC2. Sci Rep 2017; 7:16452. [PMID: 29184062 PMCID: PMC5705597 DOI: 10.1038/s41598-017-15739-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/27/2017] [Indexed: 01/15/2023] Open
Abstract
KCC2 is a neuron specific K+-Cl− co-transporter that controls neuronal chloride homeostasis, and is critically involved in many neurological diseases including brain trauma, epilepsies, autism and schizophrenia. Despite significant accumulating data on the biology and electrophysiological properties of KCC2, structure-function relationships remain poorly understood. Here we used calixarene detergent to solubilize and purify wild-type non-aggregated and homogenous KCC2. Specific binding of inhibitor compound VU0463271 was demonstrated using surface plasmon resonance (SPR). Mass spectrometry revealed glycosylations and phosphorylations as expected from functional KCC2. We show by electron microscopy (EM) that KCC2 exists as monomers and dimers in solution. Monomers are organized into “head” and “core” domains connected by a flexible “linker”. Dimers are asymmetrical and display a bent “S-shape” architecture made of four distinct domains and a flexible dimerization interface. Chemical crosslinking in reducing conditions shows that disulfide bridges are involved in KCC2 dimerization. Moreover, we show that adding a tag to the C-terminus is detrimental to KCC2 function. We postulate that the conserved KCC2 C-ter may be at the interface of dimerization. Taken together, our findings highlight the flexible multi-domain structure of KCC2 with variable anchoring points at the dimerization interface and an important C-ter extremity providing the first in-depth functional architecture of KCC2.
Collapse
Affiliation(s)
- Morgane Agez
- CALIXAR, 60 avenue Rockefeller, 69008, Lyon, France
| | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404, Illkirch, France
| | | | - David J Baker
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Matthew P Burnham
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, UK
| | - Ross A Cardarelli
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA
| | - Leslie C Conway
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA
| | | | | | - Anders Gunnarsson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Eileen J McCall
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Alexandre Frechard
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404, Illkirch, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Tarek Z Deeb
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.,Department of Neuroscience, Physiology and Pharmacology, University College, London, WC1E, 6BT, UK
| | - Nicholas J Brandon
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA.,Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Qi Wang
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, Massachusetts, 02111, USA.,Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Niek Dekker
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Anass Jawhari
- CALIXAR, 60 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
36
|
Redirecting membrane machinery. Nat Chem Biol 2017; 13:927-928. [DOI: 10.1038/nchembio.2451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: Back to the Future? J Med Chem 2017; 61:1382-1414. [PMID: 28737935 DOI: 10.1021/acs.jmedchem.7b00318] [Citation(s) in RCA: 712] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, peptide drug discovery has experienced a revival of interest and scientific momentum, as the pharmaceutical industry has come to appreciate the role that peptide therapeutics can play in addressing unmet medical needs and how this class of compounds can be an excellent complement or even preferable alternative to small molecule and biological therapeutics. In this Perspective, we give a concise description of the recent progress in peptide drug discovery in a holistic manner, highlighting enabling technological advances affecting nearly every aspect of this field: from lead discovery, to synthesis and optimization, to peptide drug delivery. An emphasis is placed on describing research efforts to overcome the inherent weaknesses of peptide drugs, in particular their poor pharmacokinetic properties, and how these efforts have been critical to the discovery, design, and subsequent development of novel therapeutics.
Collapse
Affiliation(s)
- Antoine Henninot
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - James C Collins
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - John M Nuss
- Ferring Research Institute , 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
38
|
Abstract
High-resolution membrane protein structures are essential for understanding the molecular basis of diverse biological events and important in drug development. Detergents are usually used to extract these bio-macromolecules from the membranes and maintain them in a soluble and stable state in aqueous solutions for downstream characterization. However, many eukaryotic membrane proteins solubilized in conventional detergents tend to undergo structural degradation, necessitating the development of new amphiphilic agents with enhanced properties. In this study, we designed and synthesized a novel class of glucoside amphiphiles, designated tandem malonate-based glucosides (TMGs). A few TMG agents proved effective at both stabilizing a range of membrane proteins and extracting proteins from the membrane environment. These favourable characteristics, along with synthetic convenience, indicate that these agents have potential in membrane protein research.
Collapse
|
39
|
Screening for the best detergent for the isolation of placental membrane proteins. Int J Biol Macromol 2017; 102:431-437. [PMID: 28414111 DOI: 10.1016/j.ijbiomac.2017.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 11/22/2022]
Abstract
Although membrane proteins (MPs) play crucial roles in physiological processes, information on them are insufficient, mostly due to their peculiar nature and surrounding which demand specific procedures for their extraction (using detergents) and analysis. A pallet of ten detergents and β-cyclodextrin was employed to investigate their efficiency in extracting total placental MPs, glycoproteins and insulin-like growth factor receptors (IR/IGF1R/IGF2R). Regardless of detergent used, the identity of major extracted proteins was the same. Glycoproteins extracted with Triton X-100 contained the greatest variety and quantity of glycans recognised by fifteen lectins, pointing to this detergent as universal medium for the extraction of membrane glycoproteins. Glycoproteins extracted using Brij 35 exhibited weak interaction with only seven lectins and were differently recognised by lectins of the similar glycan specificity. Brij 35, Tween 20, saponin and digitonin selectively extracted IGF2R compared to other two receptors. Pilot experiments should be conducted in order to choose adequate detergent for the extraction of specific MP. To obtain preparations enriched in specific receptor of the insulin/IGF system sequential solubilisation of placental MPs can be proposed: to use Brij 35 to extract IGF2R and subject the insoluble remaining suspension to Triton X-114 in order to extract most of IGF1R with small amounts of IR.
Collapse
|
40
|
Desuzinges Mandon E, Agez M, Pellegrin R, Igonet S, Jawhari A. Novel systematic detergent screening method for membrane proteins solubilization. Anal Biochem 2016; 517:40-49. [PMID: 27847172 DOI: 10.1016/j.ab.2016.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/20/2016] [Accepted: 11/10/2016] [Indexed: 01/09/2023]
Abstract
Membrane proteins play crucial role in many cellular processes including cell adhesion, cell-cell communication, signal transduction and transport. To better understand the molecular basis of such central biological machines and in order to specifically study their biological and medical role, it is necessary to extract them from their membrane environment. To do so, it is challenging to find the best solubilization condition. Here we describe, a systematic screening method called BMSS (Biotinylated Membranes Solubilization & Separation) that allow screening 96 conditions at once. Streptavidine magnetic beads are used to separate solubilized proteins from remaining biotinylated membranes after solubilization. Relative quantification of dot blots help to select the best conditions to be confirmed by classical ultra-centrifugation and western blot. Classical detergents with different physical-chemical characteristics, novel calixarene based detergents and combination of both, were used for solubilization trials to obtain broad spectrum of conditions. Here, we show the application of BMSS to discover solubilization conditions of a GPCR target (MP-A) and a transporter (MP-B). The selected conditions allowed the solubilization and purification of non-aggregated and homogenous native membrane proteins A and B. Taken together, BMSS represent a rapid, reproducible and high throughput assessment of solubilization toward biochemical/functional characterization, biophysical screening and structural investigations of membrane proteins of high biological and medical relevance.
Collapse
Affiliation(s)
| | - Morgane Agez
- CALIXAR, 60 Avenue Rockefeller, 69008 Lyon, France
| | | | | | | |
Collapse
|
41
|
Desuzinges Mandon E, Traversier A, Champagne A, Benier L, Audebert S, Balme S, Dejean E, Rosa Calatrava M, Jawhari A. Expression and purification of native and functional influenza A virus matrix 2 proton selective ion channel. Protein Expr Purif 2016; 131:42-50. [PMID: 27825980 DOI: 10.1016/j.pep.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
Abstract
Influenza A virus displays one of the highest infection rates of all human viruses and therefore represents a severe human health threat associated with an important economical challenge. Influenza matrix protein 2 (M2) is a membrane protein of the viral envelope that forms a proton selective ion channel. Here we report the expression and native isolation of full length active M2 without mutations or fusions. The ability of the influenza virus to efficiently infect MDCK cells was used to express native M2 protein. Using a Calixarene detergents/surfactants based approach; we were able to solubilize most of M2 from the plasma membrane and purify it. The tetrameric form of native M2 was maintained during the protein preparation. Mass spectrometry shows that M2 was phosphorylated in its cytoplasmic tail (serine 64) and newly identifies an acetylation of the highly conserved Lysine 60. ELISA shows that solubilized and purified M2 was specifically recognized by M2 antibody MAB65 and was able to displace the antibody from M2 MDCK membranes. Using a bilayer voltage clamp measurement assay, we demonstrate a pH dependent proton selective ion channel activity. The addition of the M2 ion channel blocker amantadine allows a total inhibition of the channel activity, illustrating therefore the specificity of purified M2 activity. Taken together, this work shows the production and isolation of a tetrameric and functional native M2 ion channel that will pave the way to structural and functional characterization of native M2, conformational antibody development, small molecules compounds screening towards vaccine treatment.
Collapse
Affiliation(s)
| | - Aurélien Traversier
- Laboratoire de Virologie et Pathologie Humaine (VirPath), Centre International de Recherche en Infectiologie (CIRI), U1111 INSERM, UMR 5308 CNRS, ENS Lyon, Université Claude Bernard Lyon1 (UCBL1), Lyon, France
| | - Anne Champagne
- CALIXAR, 60 Avenue Rockefeller, 69008 Lyon, France; CNRS, Institut de Chimie et Biologie de Protéines, 69007 Lyon, France
| | | | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | | - Manuel Rosa Calatrava
- Laboratoire de Virologie et Pathologie Humaine (VirPath), Centre International de Recherche en Infectiologie (CIRI), U1111 INSERM, UMR 5308 CNRS, ENS Lyon, Université Claude Bernard Lyon1 (UCBL1), Lyon, France; VirNext, Faculté de Médecine RTH Laennec, EZUS, Lyon, France
| | | |
Collapse
|