1
|
Kofman SB, Chu LH, Ames JM, Chavarria SD, Lichauco K, Daniels BP, Oberst A. RIPK3 coordinates RHIM domain-dependent antiviral inflammatory transcription in neurons. Sci Signal 2025; 18:eado9745. [PMID: 40168465 PMCID: PMC12042699 DOI: 10.1126/scisignal.ado9745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025]
Abstract
Neurons are postmitotic, nonregenerative cells that have evolved fine-tuned immunological responses to maintain life-long cellular integrity, including resistance to common programmed cell death pathways such as necroptosis. We previously demonstrated a necroptosis-independent role for the key necroptotic kinase RIPK3 in host defense against neurotropic flavivirus infection. Here, we show that RIPK3 activation had distinct outcomes in primary cortical neurons when compared with mouse embryonic fibroblasts (MEFs) during Zika virus (ZIKV) infection or after sterile activation. We found that RIPK3 activation did not induce neuronal death but instead drove antiviral gene transcription after ZIKV infection. Although RIPK3 activation in MEFs induced cell death, ablation of downstream cell death effectors unveiled a RIPK3-dependent transcriptional program that largely overlapped with that observed in ZIKV-infected neurons. In death-resistant MEFs, RIPK3-dependent transcription relied on interactions with the RHIM domain-containing proteins RIPK1 and TRIF, similar to the requirements for the RIPK3-dependent antiviral transcriptional signature in ZIKV-infected neurons. These findings suggest that the pleotropic functions of RIPK3 are largely context dependent and that in cells that are resistant to cell death, RIPK3 acts as a mediator of inflammatory transcription.
Collapse
Affiliation(s)
- Sigal B. Kofman
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Lan H. Chu
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Joshua M. Ames
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | | | - Katrina Lichauco
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
2
|
Jeong D, Kim S, Park H, Woo K, Choi J, Choi M, Shin J, Park SH, Seon M, Lee D, Cha J, Kim Y. Optogenetically Activatable MLKL as a Standalone Functional Module for Necroptosis and Therapeutic Applications in Antitumoral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412393. [PMID: 39921454 PMCID: PMC11967802 DOI: 10.1002/advs.202412393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Necroptosis plays a crucial role in the progression of various diseases and has gained substantial attention for its potential to activate antitumor immunity. However, the complex signaling networks that regulate necroptosis have made it challenging to fully understand its mechanisms and translate this knowledge into therapeutic applications. To address these challenges, an optogenetically activatable necroptosis system is developed that allows for precise spatiotemporal control of key necroptosis regulators, bypassing complex upstream signaling processes. The system, specifically featuring optoMLKL, demonstrates that it can rapidly assemble into functional higher-order "hotspots" within cellular membrane compartments, independent of RIPK3-mediated phosphorylation. Moreover, the functional module of optoMLKL significantly enhances innate immune responses by promoting the release of iDAMPs and cDAMPs, which are critical for initiating antitumor immunity. Furthermore, optoMLKL exhibits antitumor effects when activated in patient-derived pancreatic cancer organoids, highlighting its potential for clinical application. These findings will pave the way for innovative cancer therapies by leveraging optogenetic approaches to precisely control and enhance necroptosis.
Collapse
Affiliation(s)
- Da‐Hye Jeong
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Seokhwi Kim
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Han‐Hee Park
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Kyoung‐Jin Woo
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Jae‐Il Choi
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Minji Choi
- Program in Biomedical Science and EngineeringGraduate schoolInha UniversityIncheon22212Republic of Korea
| | - Jisoo Shin
- Program in Biomedical Science and EngineeringGraduate schoolInha UniversityIncheon22212Republic of Korea
| | - So Hyun Park
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Myung‐Wook Seon
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| | - Dakeun Lee
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
- Department of PathologyAjou University School of MedicineSuwon16499Republic of Korea
| | - Jong‐Ho Cha
- Program in Biomedical Science and EngineeringGraduate schoolInha UniversityIncheon22212Republic of Korea
- Department of Biomedical SciencesCollege of MedicineInha UniversityIncheon22212Republic of Korea
- Biohybrid Systems Research CenterInha UniversityIncheon22212Republic of Korea
| | - You‐Sun Kim
- Department of BiochemistryAjou University School of MedicineSuwon16499Republic of Korea
- Department of Biomedical ScienceGraduate School of Ajou UniversitySuwon16499Republic of Korea
| |
Collapse
|
3
|
Kobe B, Nanson JD, Hoad M, Blumenthal A, Gambin Y, Sierecki E, Stacey KJ, Ve T, Halfmann R. Signalling by co-operative higher-order assembly formation: linking evidence at molecular and cellular levels. Biochem J 2025; 482:275-294. [PMID: 40040472 DOI: 10.1042/bcj20220094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The concept of higher-order assembly signalling or signalling by co-operative assembly formation (SCAF) was proposed based on the structures of signalling assemblies formed by proteins featuring domains from the death-fold family and the Toll/interleukin-1 receptor domain family. Because these domains form filamentous assemblies upon stimulation and activate downstream pathways through induced proximity, they were envisioned to sharpen response thresholds through the extreme co-operativity of higher-order assembly. Recent findings demonstrate that a central feature of the SCAF mechanism is the nucleation barrier that allows a switch-like, digital or 'all-or-none' response to minute stimuli. In agreement, this signalling mechanism features in cell-death and innate immunity activation pathways where a binary decision is required. Here, we broaden the concept of SCAF to encapsulate the essential kinetic properties of open-ended assembly in signalling, compare properties of filamentous assemblies and other co-operative assemblies such as biomolecular condensates, and review how this concept operates in cells.
Collapse
Affiliation(s)
- Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey D Nanson
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Mikayla Hoad
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Antje Blumenthal
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Yann Gambin
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Sierecki
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, U.S.A
| |
Collapse
|
4
|
Sun J, Chang R, Song L. The origin and evolution of necroptosis signaling pathway in metazoa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105339. [PMID: 39947503 DOI: 10.1016/j.dci.2025.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
Necroptosis, a new form of cell death, is attracting significant attention as it is involved in the development and progression of many diseases in mammals. The structural domains and evolutionary principles of necroptotic components as well as the potential activation mechanism are not well understood in lower vertebrates and invertebrates. In the present study, TNFα, TNFR1, TLR3 and TLR4 are all presented in Mollusca and even higher phyla. ZBP1, TRADD and TRIF are only in some vertebrates. RIPK1/3 and MLKL are early originated from Mollusca and Echinodermata, respectively. Among which, RIPK1 with RHIM and Death domain and RIPK3 with a STYKc domain and two cRHIMs in Mollusca may fuse to be the classical RIPK1/3. More importantly, RIPK1/3 in Mollusca also provides structural domain conditions for the generation of the later ZBP1/TRADD/TRIF and MLKL, respectively. Taken together, necroptotic components in Mollusca are important fundamental for the evolution of necroptotic pathways. These findings provide insights into the evolutionary principles of necroptotic components and the possible activation mechanism of necroptosis pathways in various species.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Renle Chang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
5
|
Hoblos H, Cawthorne W, Samson AL, Murphy JM. Protein shapeshifting in necroptotic cell death signaling. Trends Biochem Sci 2025; 50:92-105. [PMID: 39730228 DOI: 10.1016/j.tibs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux. As molecular level knowledge of cell death signaling grows, we anticipate targeting the conformations of key necrosomal effector proteins will emerge as new avenues for drug development.
Collapse
Affiliation(s)
- Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
6
|
Fay EJ, Isterabadi K, Rezanka CM, Le J, Daugherty MD. Evolutionary and functional analyses reveal a role for the RHIM in tuning RIPK3 activity across vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.09.593370. [PMID: 39149247 PMCID: PMC11326134 DOI: 10.1101/2024.05.09.593370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Receptor interacting protein kinases (RIPK) RIPK1 and RIPK3 play important roles in diverse innate immune pathways. Despite this, some RIPK1/3-associated proteins are absent in specific vertebrate lineages, suggesting that some RIPK1/3 functions are conserved while others are more evolutionarily labile. Here, we perform comparative evolutionary analyses of RIPK1-5 and associated proteins in vertebrates to identify lineage-specific rapid evolution of RIPK3 and RIPK1 and recurrent loss of RIPK3-associated proteins. Despite this, diverse vertebrate RIPK3 proteins are able to activate NF-κB and cell death in human cells. Additional analyses revealed a striking conservation of the RIP homotypic interaction motif (RHIM) in RIPK3, as well as other human RHIM-containing proteins. Interestingly, diversity in the RIPK3 RHIM can tune activation of NF-κB while retaining the ability to activate cell death. Altogether, these data suggest that NF-κB activation is a core, conserved function of RIPK3, and the RHIM can tailor RIPK3 function to specific needs within and between species.
Collapse
Affiliation(s)
- Elizabeth J. Fay
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Kolya Isterabadi
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Charles M. Rezanka
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Jessica Le
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| | - Matthew D. Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
7
|
Li H, Zhang Y, Rao G, Zhang C, Guan Z, Huang Z, Li S, Lozach PY, Cao S, Peng K. Rift Valley fever virus coordinates the assembly of a programmable E3 ligase to promote viral replication. Cell 2024; 187:6896-6913.e15. [PMID: 39366381 DOI: 10.1016/j.cell.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Viruses encode strategies to degrade cellular proteins to promote infection and pathogenesis. Here, we revealed that the non-structural protein NSs of Rift Valley fever virus forms a filamentous E3 ligase to trigger efficient degradation of targeted proteins. Reconstitution in vitro and cryoelectron microscopy analysis with the 2.9-Å resolution revealed that NSs forms right-handed helical fibrils. The NSs filamentous oligomers associate with the cellular FBXO3 to form a remodeled E3 ligase. The NSs-FBXO3 E3 ligase targets the cellular TFIIH complex through the NSs-P62 interaction, leading to ubiquitination and proteasome-dependent degradation of the TFIIH complex. NSs-FBXO3-triggered TFIIH complex degradation resulted in robust inhibition of antiviral immunity and promoted viral pathogenesis in vivo. Furthermore, it is demonstrated that NSs can be programmed to target additional proteins for proteasome-dependent degradation, serving as a versatile targeted protein degrader. These results showed that a virulence factor forms a filamentous and programmable degradation machinery to induce organized degradation of cellular proteins to promote viral infection.
Collapse
Affiliation(s)
- Huiling Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yulan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Guibo Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Chongtao Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Zhenqiong Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ziyan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, UMR754, Team iWays, Lyon, France
| | - Sheng Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
8
|
Zhang Z, Zhang F, Xie W, Niu Y, Wang H, Li G, Zhao L, Wang X, Xie W. Induced Necroptosis and Its Role in Cancer Immunotherapy. Int J Mol Sci 2024; 25:10760. [PMID: 39409087 PMCID: PMC11477008 DOI: 10.3390/ijms251910760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Necroptosis is a type of regulated cell death (RCD) that is triggered by changes in the extracellular or intracellular milieu that are picked up by certain death receptors. Thanks to its potent capacity to induce immunological responses and overcome apoptotic resistance, it has garnered significant attention as a potential cancer treatment. Basic information for the creation of nano-biomedical treatments is provided by studies on the mechanisms underlying tumor necroptosis. Receptor-interacting protein kinase 1 (RIPK1)-RIPK3-mediated necroptosis, Toll-like receptor domain-containing adapter-inducing interferon (IFN)-β (TRIF)-RIPK3-mediated necroptosis, Z-DNA-binding protein 1 (ZBP1)-RIPK3-mediated necroptosis, and IFNR-mediated necroptosis are the four signaling pathways that collectively account for triggered necroptosis in this review. Necroptosis has garnered significant interest as a possible cancer treatment strategy because, in contrast to apoptosis, it elicits immunological responses that are relevant to therapy. Thus, a thorough discussion is held on the connections between tumor cell necroptosis and the immune environment, cancer immunosurveillance, and cells such as dendritic cells (DCs), cytotoxic T cells, natural killer (NK) cells, natural killer T (NKT) cells, and their respective cytokines. Lastly, a summary of the most recent nanomedicines that cause necroptosis in order to cause immunogenic cell death is provided in order to emphasize their promise for cancer immunotherapy.
Collapse
Affiliation(s)
- Ziyao Zhang
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Fangming Zhang
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Wenjing Xie
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China;
| | - Yubo Niu
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Haonan Wang
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Guofeng Li
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
| | - Xing Wang
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| | - Wensheng Xie
- The Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Z.); (F.Z.); (Y.N.); (H.W.); (G.L.)
| |
Collapse
|
9
|
Chen R, Huang Q, Rao Y, Wang J, Yu R, Peng S, Huang K, Huang Y, Zhu X, Tang D, Zhang X, Lin T, Chen T, Yan A. Genomic and Transcriptional Analysis of the Necroptosis Pathway Elements RIPK and MLKL in Sea Cucumber, Holothuria leucospilota. Genes (Basel) 2024; 15:1297. [PMID: 39457421 PMCID: PMC11507063 DOI: 10.3390/genes15101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Receptor-interacting protein kinases (RIPKs) and mixed-lineage kinase domain-like protein (MLKL) are crucial in regulating innate immune responses and cell death signaling (necroptosis and apoptosis), and are potential candidates for genetic improvement in breeding programs. Knowledge about the RIPK family and MLKL in sea cucumber remains limited. Methods: We searched the genomes of sea cucumber Holothuria leucospilota for genes encoding RIPKs and MLKL, performed phylogenetic tree, motif and functional domain analyses, and examined tissue distribution and embryonic development patterns using qPCR. Results: RIPK5 (Hl-RIPK5), RIPK7 (Hl-RIPK7) and MLKL (Hl-MLKL) were identified in sea cucumber H. leucospilota. Hl-RIPK5 and Hl-RIPK7 were mainly expressed in coelomocytes, suggesting that they play a role in innate immunity, whereas Hl-MLKL exhibited relatively low expression across tissues. During embryonic development, Hl-MLKL was highly expressed from the 2-cell stage to the morula stage, while Hl-RIPK5 and Hl-RIPK7 were primarily expressed after the morula stage, indicating different roles in embryonic development. In primary coelomocytes, Hl-RIPK5 transcriptional activity was significantly depressed by LPS, poly(I:C), or pathogen Vibrio harveyi. Hl-RIPK7 expression levels were unchanged following the same challenges. Hl-MLKL mRNA levels were significantly decreased with poly(I:C) or V. harveyi, but did not change with LPS. Conclusions: These findings provide valuable insights into the evolutionary tree and characterization of RIPK and MLKL genes in sea cucumber, contributing to the broader understanding of the RIPK gene family and MLKL in ancient echinoderms.
Collapse
Affiliation(s)
- Rong Chen
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Institute of Applied Biotechnology, School of Life Science and Technolog, Lingnan Normal University, Zhanjiang 528048, China; (R.C.); (Y.R.)
| | - Qianying Huang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Yingzhu Rao
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Institute of Applied Biotechnology, School of Life Science and Technolog, Lingnan Normal University, Zhanjiang 528048, China; (R.C.); (Y.R.)
| | - Junyan Wang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Ruiming Yu
- School of Global Public Health, New York University, New York, NY 10012, USA;
| | - Shuangxin Peng
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Kaiyi Huang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Yihang Huang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Xiangxing Zhu
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Dongsheng Tang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Xiaoli Zhang
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| | - Tiehao Lin
- Guangdong Institute for Drug Control, Guangzhou 5106630, China;
| | - Ting Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
- Research Centre on Aquaculture Nutrition and Environmental Ecology of the Ministry of Agriculture and Rural Affair, Shanghai Ocean University, Shanghai 201306, China
| | - Aifen Yan
- School of Medicine, Foshan University, Foshan 528000, China; (Q.H.); (J.W.); (S.P.); (K.H.); (Y.H.); (X.Z.); (D.T.); (X.Z.)
| |
Collapse
|
10
|
Liu Q, Liu C, He Q, Wang L, Song L. The involvement of CgRHIM-containing protein in regulating haemocyte apoptosis after high temperature stress in Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105226. [PMID: 38992733 DOI: 10.1016/j.dci.2024.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The interactions induced by RIP homotypic interaction motif (RHIM) are essential for the activation of inflammatory signaling and certain cell death pathways. In the present study, a RHIM-containing protein was identified from Pacific oyster Crassostrea gigas, which harbored a RHIM domain and a Death domain (designated CgRHIM-containing protein). The mRNA transcripts of CgRHIM-containing protein were constitutively expressed in all the examined tissues of oysters, with the highest expression level in mantle. The CgRHIM-containing protein was mainly distributed in the cytoplasm of oyster haemocytes. After high temperature stress, the expression levels of CgRel and CgBcl-2 increased significantly, and reached the peak level at 12 h, then decreased gradually. The transcripts of CgRHIM-containing protein, Cgcaspase-8 and Cgcaspase-3 in haemocytes up-regulated at 12 h after high temperature stress. Moreover, the protein abundance of CgRHIM-containing protein increased significantly, and the ubiquitination level of CgRHIM-containing protein in haemocytes showed an increasing trend at first and then decreased. After the expression of CgRHIM-containing protein was knocked down by siRNA, the mRNA expression levels of CgRel and CgBcl-2 decreased significantly at 6 h after high temperature stress, and those of CgFADD-like, Cgcaspase-8 and Cgcaspase-3, as well as the apoptosis rate of haemocytes also decreased significantly at 24 h. These results indicated that CgRHIM-containing protein might regulate haemocyte apoptosis in oysters upon high temperature stress via mediating the expression of Rel, Bcl-2 and caspase-8/3.
Collapse
Affiliation(s)
- Qian Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Qianqian He
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
11
|
Wang X, Wei D, Pan Y, Liu J, Xiao X, Xia Q, Wang F. A cryptic homotypic interaction motif of insect STING is required for its antiviral signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105224. [PMID: 38969190 DOI: 10.1016/j.dci.2024.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Stimulator of interferon genes (STING) mediates innate immune response upon binding to cyclic GMP-AMP (cGAMP). It recruits tank-binding kinase 1 (TBK1) and transcription factor interferon regulatory factor 3 (IRF3) through its C-terminal tail and facilitates TBK1-dependent phosphorylation of IRF3 via forming STING polymers in mammalian cells. However, the mechanism behind STING-mediated activation of NF-κB transcription factor, Relish, in insect cells is unknown. Our study revealed that insect STING formed oligomers and the cryptic RIP homotypic interaction motif (cRHIM) was required for its oligomerization and its anti-viral functions. Cells expressing cRHIM-deficient mutants exhibited lower levels of anti-viral molecules, higher viral load after viral infection and weak activation of Relish. Moreover, we observed that under cGAMP stimulation, insect STING interacted with IMD, and deletion of the cRHIM motif on either protein prevented this interaction. Finally, we demonstrated that cGAMP enhanced the amyloid-like property of insect STING aggregates by ThT staining. In summary, our research showed that insect STING employed a homotypic motif to form intermolecular interactions that are essential for its antiviral signaling.
Collapse
Affiliation(s)
- Xinyi Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Dongmei Wei
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yumeng Pan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Jinming Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Xiaoyi Xiao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Fei Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
12
|
Xu Y, Lin F, Liao G, Sun J, Chen W, Zhang L. Ripks and Neuroinflammation. Mol Neurobiol 2024; 61:6771-6787. [PMID: 38349514 DOI: 10.1007/s12035-024-03981-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/20/2024] [Indexed: 08/22/2024]
Abstract
Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Yue Xu
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Lin
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Guolei Liao
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Jiaxing Sun
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Wenli Chen
- Department of Pharmacy, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Lei Zhang
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Herbert A. Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological diseases. Genes Immun 2024; 25:265-276. [PMID: 38811682 DOI: 10.1038/s41435-024-00277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Osteogenesis imperfecta type 10 (OI10) is caused by loss of function codon variants in the gene SERPINH1 that encodes heat shock protein 47 (HSP47), rather than in a gene specifying bone formation. The HSP47 variants disrupt the folding of both collagen and the endonuclease IRE1α (inositol-requiring enzyme 1α) that splices X-Box Binding Protein 1 (XBP1) mRNA. Besides impairing bone development, variants likely affect osteoclast differentiation. Three distinct biochemical scaffold play key roles in the differentiation and regulated cell death of osteoclasts. These scaffolds consist of non-templated protein modifications, ordered lipid arrays, and protein filaments. The scaffold components are specified genetically, but assemble in response to extracellular perturbagens, pathogens, and left-handed Z-RNA helices encoded genomically by flipons. The outcomes depend on interactions between RIPK1, RIPK3, TRIF, and ZBP1 through short interaction motifs called RHIMs. The causal HSP47 nonsynonymous substitutions occur in a novel variant leucine repeat region (vLRR) that are distantly related to RHIMs. Other vLRR protein variants are causal for a variety of different mendelian diseases. The same scaffolds that drive mendelian pathology are associated with many other complex disease outcomes. Their assembly is triggered dynamically by flipons and other context-specific switches rather than by causal, mendelian, codon variants.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA, USA.
| |
Collapse
|
14
|
Yang Y, Zeng L, Lin T, Liu L, Zhao C, Xiao S, Ma H, Li J, Mao F, Qin Y, Zhang Y, Zhang Y, Yu Z, Xiang Z. ChRIPK1 caused necroptosis signaling pathway deficiency in Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109736. [PMID: 38950760 DOI: 10.1016/j.fsi.2024.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
RIPK1/TAK1 are important for programmed cell death, including liver death, necroptosis and apoptosis. However, there have been few published reports on the functions of RIPK1/TAK1 in invertebrates. In this study, full-length ChRIPK1 and ChTAK1 were cloned from C. hongkongensis through the rapid amplification of cDNA ends (RACE) technology. ChRIPK1 has almost no homology with human RIPK1 and lacks a kinase domain at the N-terminus but has a DD and RHIM domain. ChTAK1 is conserved throughout evolution. qRT‒PCR was used to analyze the mRNA expression patterns of ChRIPK1 in different tissues, developmental stages, and V. coralliilyticus-infected individuals, and both were highly expressed in the mantle and gills, while ChRIPK1 was upregulated in hemocytes and gills after V. coralliilyticus or S. aureus infection, which indicates that ChRIPK1 is involved in immune regulation. Fluorescence assays revealed that ChRIPK1 localized to the cytoplasm of HEK293T cells in a punctiform manner, but the colocalization of ChRIPK1 with ChTAK1 abolished the punctiform morphology. In the dual-luciferase reporter assay, both ChRIPK1 and ChRIPK1-RIHM activated the NF-κB signaling pathway in HEK293T cells, and ChTAK1 activated ChRIPK1 in the NF-κB signaling pathway. The apoptosis rate of the hemocytes was not affected by the necroptosis inhibitor Nec-1 but was significantly decreased, and ChRIPK1 expression was knocked down in the hemocytes of C. hongkongensis. These findings indicated that ChRIPK1 induces apoptosis but not necroptosis in oysters. This study provides a theoretical basis for further research on the molecular mechanism by which invertebrates regulate the programmed cell death of hemocytes in oysters.
Collapse
Affiliation(s)
- Yucheng Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zeng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianxiang Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congxin Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitao Ma
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Mao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Qin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuehuan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziniu Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiming Xiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Xie F, Wu D, Huang J, Liu X, Shen Y, Huang J, Su Z, Li J. ZBP1 condensate formation synergizes Z-NAs recognition and signal transduction. Cell Death Dis 2024; 15:487. [PMID: 38982083 PMCID: PMC11233663 DOI: 10.1038/s41419-024-06889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Z-DNA binding protein 1 (ZBP1) is a crucial player in the intracellular recognition of Z-form nucleic acids (Z-NAs) through its Zαβ domain, initiating downstream interactions with RIPK1 and RIPK3 via RHIM domains. This engagement leads to the assembly of PANoptosomes, ultimately inducing programmed cell death to curb pathogen dissemination. How Zαβ and RHIM domain cooperate to trigger Z-NAs recognition and signal transduction remains unclear. Here, we show that ZBP1 condensate formation facilitates Z-NAs binding and antiviral signal transduction. The ZBP1 Zαβ dimerizes in a concentration-dependent manner, forming characteristic condensates in solutions evidenced by DLS and SAXS methods. ZBP1 exhibits a binding preference for 10-bp length CG (10CG) DNA and Z-RNA ligand, which in turn enhanced Zαβ dimerization, expediting the formation of droplet condensates in vitro and amyloid-like puncta in cells. Subsequent investigations reveal that Zαβ could form condensates with liquid-liquid phase separation property upon HSV and IAV infections, while full-length ZBP1 forms amyloid-like puncta with or without infections. Furthermore, ZBP1 RHIM domains show typical amyloidal fibril characterizations and cross-polymerize with RIPK1 depending on the core motif of 206IQIG209, while mutated ZBP1 could impede necroptosis and antiviral immunity in HT-29 cells. Thus, ZBP1 condensate formation facilitates the recognition of viral Z-NAs and activation of downstream signal transduction via synergic action of different domains, revealing its elaborated mechanism in innate immunity.
Collapse
Affiliation(s)
- Feiyan Xie
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Di Wu
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410083, Hunan, China
| | - Xuehe Liu
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Yanfang Shen
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jixi Li
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
16
|
Abstract
Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.
Collapse
Affiliation(s)
- Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Dimitry Ofengeim
- Sanofi, Rare and Neurological Diseases Research, Cambridge, MA, USA.
| |
Collapse
|
17
|
Wang L, Zhang Y, Huang M, Yuan Y, Liu X. RIP3 in Necroptosis: Underlying Contributions to Traumatic Brain Injury. Neurochem Res 2024; 49:245-257. [PMID: 37743445 DOI: 10.1007/s11064-023-04038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Traumatic brain injury (TBI) is a global public safety issue that poses a threat to death, characterized by high fatality rates, severe injuries and low recovery rates. There is growing evidence that necroptosis regulates the pathophysiological processes of a variety of diseases, particularly those affecting the central nervous system. Thus, moderate necroptosis inhibition may be helpful in the management of TBI. Receptor-interacting protein kinase (RIP) 3 is a key mediator in the necroptosis, and its absence helps restore the microenvironment at the injured site and improve cognitive impairment after TBI. In this report, we review different domains of RIP3, multiple analyses of necroptosis, and associations between necroptosis and TBI, RIP3, RIP1, and mixed lineage kinase domain-like. Next, we elucidate the potential involvement of RIP3 in TBI and highlight how RIP3 deficiency enhances neuronal function.
Collapse
Affiliation(s)
- Lvxia Wang
- School of Life and Environmental Sciences, Shaoxing University, Zhejiang, China
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yiling Yuan
- Department of Biosciences, Durham University, Durham, UK
| | - Xuehong Liu
- School of Life and Environmental Sciences, Shaoxing University, Zhejiang, China.
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
18
|
Wu X, Arya RK, Huang E, McMullen MR, Nagy LE. Receptor-interacting protein 1 and 3 kinase activity are required for high-fat diet induced liver injury in mice. Front Endocrinol (Lausanne) 2023; 14:1267996. [PMID: 38161978 PMCID: PMC10757356 DOI: 10.3389/fendo.2023.1267996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Background The RIP1-RIP3-MLKL-mediated cell death pathway is associated with progression of non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Previous work identified a critical role for MLKL, the key effector regulating necroptosis, but not RIP3, in mediating high fat diet-induced liver injury in mice. RIP1 and RIP3 have active N-terminus kinase domains essential for activation of MLKL and subsequent necroptosis. However, little is known regarding domain-specific roles of RIP1/RIP3 kinase in liver diseases. Here, we hypothesized that RIP1/RIP3 kinase activity are required for the development of high fat diet-induced liver injury. Methods Rip1K45A/K45A and Rip3K51A/K51A kinase-dead mice on a C57BL/6J background and their littermate controls (WT) were allowed free access to a diet high in fat, fructose and cholesterol (FFC diet) or chow diet. Results Both Rip1K45A/K45A and Rip3K51A/K51A mice were protected against FFC diet-induced steatosis, hepatocyte injury and expression of hepatic inflammatory cytokines and chemokines. FFC diet increased phosphorylation and oligomerization of MLKL and hepatocyte death in livers of WT, but not in Rip3K51A/K51A, mice. Consistent with in vivo data, RIP3 kinase deficiency in primary hepatocytes prevented palmitic acid-induced translocation of MLKL to the cell surface and cytotoxicity. Additionally, loss of Rip1 or Rip3 kinase suppressed FFC diet-mediated formation of crown-like structures (indicators of dead adipocytes) and expression of mRNA for inflammatory response genes in epididymal adipose tissue. Moreover, FFC diet increased expression of multiple adipokines, including leptin and plasminogen activator inhibitor 1, in WT mice, which was abrogated by Rip3 kinase deficiency. Discussion The current data indicate that both RIP1 and RIP3 kinase activity contribute to FFC diet-induced liver injury. This effect of RIP1 and RIP3 kinase deficiency on injury is consistent with the protection of Mlkl-/- mice from high fat diet-induced liver injury, but not the reported lack of protection in Rip3-/- mice. Taken together with previous reports, our data suggest that other domains of RIP3 likely counteract the effect of RIP3 kinase in response to high fat diets.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Rakesh K. Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Megan R. McMullen
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Laura E. Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Gondelaud F, Lozach PY, Longhi S. Viral amyloids: New opportunities for antiviral therapeutic strategies. Curr Opin Struct Biol 2023; 83:102706. [PMID: 37783197 DOI: 10.1016/j.sbi.2023.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Amyloidoses are an array of diseases associated with the aggregation of proteins into fibrils. While it was previously thought that amyloid fibril-forming proteins are exclusively host-cell encoded, recent studies have revealed that pathogenic viruses can form amyloid-like fibrils too. Intriguingly, viral amyloids are often composed of virulence factors, known for their contribution to cell death and disease progression. In this review, we survey the literature about viral proteins capable of forming amyloid-like fibrils. The molecular and cellular mechanisms underlying the formation of viral amyloid-like aggregates are explored. In addition, we discuss the functional implications for viral amplification and the complex interplay between viral amyloids, biological functions, virulence, and virus-induced pathologies.
Collapse
Affiliation(s)
- Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France
| | - Pierre-Yves Lozach
- Université Claude Bernard Lyon 1, INRAE, EPHE, IVPC UMR754, Team iWays, 69007, Lyon, France. https://twitter.com/pylozach
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
20
|
Pati S, Singh Gautam A, Dey M, Tiwari A, Kumar Singh R. Molecular and functional characteristics of receptor-interacting protein kinase 1 (RIPK1) and its therapeutic potential in Alzheimer's disease. Drug Discov Today 2023; 28:103750. [PMID: 37633326 DOI: 10.1016/j.drudis.2023.103750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Inflammation and cell death processes positively control the organ homeostasis of an organism. Receptor-interacting protein kinase 1 (RIPK1), a member of the RIPK family, is a crucial regulator of cell death and inflammation, and control homeostasis at the cellular and tissue level. Necroptosis, a programmed form of necrosis-mediated cell death and tumor necrosis factor (TNF)-induced necrotic cell death, is mostly regulated by RIPK1 kinase activity. Thus, RIPK1 has recently emerged as an upstream kinase that controls multiple cellular pathways and participates in regulating inflammation and cell death. All the major cell types in the central nervous system (CNS) have been found to express RIPK1. Selective inhibition of RIPK1 has been shown to prevent neuronal cell death, which could ultimately lead to a significant reduction of neurodegeneration and neuroinflammation. In addition, the kinase structure of RIPK1 is highly conducive to the development of specific pharmacological small-molecule inhibitors. These factors have led to the emergence of RIPK1 as an important therapeutic target for Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Satyam Pati
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Mangaldeep Dey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Aman Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
21
|
Qi Z, Zhu L, Wang K, Wang N. PANoptosis: Emerging mechanisms and disease implications. Life Sci 2023; 333:122158. [PMID: 37806654 DOI: 10.1016/j.lfs.2023.122158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
PANoptosis, a unique new form of programmed cell death (PCD), is characterized by pyroptosis, apoptosis, and necroptosis, but it cannot be explained by pyroptosis, apoptosis or necroptosis alone. Assembly of the PANoptosome complex is a key feature of PANoptosis. To date, four kinds of PANoptosomes with distinct sensors and regulators have been defined, namely Z-DNA binding protein 1 (ZBP1) PANoptosome, absent in melanoma 2 (AIM2) PANoptosome, receptor-interacting protein kinase 1 (RIPK1) PANoptosome, and nucleotide-binding leucine-rich repeat-containing receptor 12 (NLRP12). Each PANoptosome contains three components: sensors for pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), adaptors as connected bridges, and catalytic effectors or executioners. Mechanistically, different PAMPs or DAMPs are recognized by the sensors in a context-dependent manner, which initiates PANoptosome assembly through adaptors, and ultimately engages synchronous activation of pyroptosis, apoptosis, and necroptosis via different catalytic effectors. Resultantly, PANoptosis is emerged as a prospective and promising therapeutic target for various diseases. This review covers the accumulating evidence about the roles and mechanisms of PANoptosis in innate immunity and discusses the attractive prospect of manipulating PANoptosis as a new treatment for diseases.
Collapse
Affiliation(s)
- Zehong Qi
- Department of Pathophysiology, Key Laboratory of Sepsis Translational Medicine of Hunan, School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China
| | - Lili Zhu
- Department of Pathophysiology, Key Laboratory of Sepsis Translational Medicine of Hunan, School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, Key Laboratory of Sepsis Translational Medicine of Hunan, School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China.
| | - Nian Wang
- Department of Pathophysiology, Key Laboratory of Sepsis Translational Medicine of Hunan, School of Basic Medical Science, Central South University, 410008 Changsha, Hunan, China.
| |
Collapse
|
22
|
Wu E, He W, Wu C, Chen Z, Zhou S, Wu X, Hu Z, Jia K, Pan J, Wang L, Qin J, Liu D, Lu J, Wang H, Li J, Wang S, Sun L. HSPA8 acts as an amyloidase to suppress necroptosis by inhibiting and reversing functional amyloid formation. Cell Res 2023; 33:851-866. [PMID: 37580406 PMCID: PMC10624691 DOI: 10.1038/s41422-023-00859-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
Ultra-stable fibrous structure is a hallmark of amyloids. In contrast to canonical disease-related amyloids, emerging research indicates that a significant number of cellular amyloids, termed 'functional amyloids', contribute to signal transduction as temporal signaling hubs in humans. However, it is unclear how these functional amyloids are effectively disassembled to terminate signal transduction. RHIM motif-containing amyloids, the largest functional amyloid family discovered thus far, play an important role in mediating necroptosis signal transduction in mammalian cells. Here, we identify heat shock protein family A member 8 (HSPA8) as a new type of enzyme - which we name as 'amyloidase' - that directly disassembles RHIM-amyloids to inhibit necroptosis signaling in cells and mice. Different from its role in chaperone-mediated autophagy where it selects substrates containing a KFERQ-like motif, HSPA8 specifically recognizes RHIM-containing proteins through a hydrophobic hexapeptide motif N(X1)φ(X3). The SBD domain of HSPA8 interacts with RHIM-containing proteins, preventing proximate RHIM monomers from stacking into functional fibrils; furthermore, with the NBD domain supplying energy via ATP hydrolysis, HSPA8 breaks down pre-formed RHIM-amyloids into non-functional monomers. Notably, HSPA8's amyloidase activity in disassembling functional RHIM-amyloids does not require its co-chaperone system. Using this amyloidase activity, HSPA8 reverses the initiator RHIM-amyloids (formed by RIP1, ZBP1, and TRIF) to prevent necroptosis initiation, and reverses RIP3-amyloid to prevent necroptosis execution, thus eliminating multi-level RHIM-amyloids to effectively prevent spontaneous necroptosis activation. The discovery that HSPA8 acts as an amyloidase dismantling functional amyloids provides a fundamental understanding of the reversibility nature of functional amyloids, a property distinguishing them from disease-related amyloids that are unbreakable in vivo.
Collapse
Affiliation(s)
- Erpeng Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyan He
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenlu Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Shijie Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xialian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiheng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kelong Jia
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiasong Pan
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Limin Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie Qin
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dan Liu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junxia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huayi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Liming Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
23
|
Zhong Y, Zhong X, Qiao L, Wu H, Liu C, Zhang T. Zα domain proteins mediate the immune response. Front Immunol 2023; 14:1241694. [PMID: 37771585 PMCID: PMC10523160 DOI: 10.3389/fimmu.2023.1241694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The Zα domain has a compact α/β architecture containing a three-helix bundle flanked on one side by a twisted antiparallel β sheet. This domain displays a specific affinity for double-stranded nucleic acids that adopt a left-handed helical conformation. Currently, only three Zα-domain proteins have been identified in eukaryotes, specifically ADAR1, ZBP1, and PKZ. ADAR1 is a double-stranded RNA (dsRNA) binding protein that catalyzes the conversion of adenosine residues to inosine, resulting in changes in RNA structure, function, and expression. In addition to its editing function, ADAR1 has been shown to play a role in antiviral defense, gene regulation, and cellular differentiation. Dysregulation of ADAR1 expression and activity has been associated with various disease states, including cancer, autoimmune disorders, and neurological disorders. As a sensing molecule, ZBP1 exhibits the ability to recognize nucleic acids with a left-handed conformation. ZBP1 harbors a RIP homotypic interaction motif (RHIM), composed of a highly charged surface region and a leucine-rich hydrophobic core, enabling the formation of homotypic interactions between proteins with similar structure. Upon activation, ZBP1 initiates a downstream signaling cascade leading to programmed cell death, a process mediated by RIPK3 via the RHIM motif. PKZ was identified in fish, and contains two Zα domains at the N-terminus. PKZ is essential for normal growth and development and may contribute to the regulation of immune system function in fish. Interestingly, some pathogenic microorganisms also encode Zα domain proteins, such as, Vaccinia virus and Cyprinid Herpesvirus. Zα domain proteins derived from pathogenic microorganisms have been demonstrated to be pivotal contributors in impeding the host immune response and promoting virus replication and spread. This review focuses on the mammalian Zα domain proteins: ADAR1 and ZBP1, and thoroughly elucidates their functions in the immune response.
Collapse
Affiliation(s)
- Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangjun Qiao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong Wu
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Division of Liver, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|