1
|
López-Unzu MA, Teresa Soto-Navarrete M, Sans-Coma V, Fernández B, Carmen Durán A. The myoarchitecture of the vertebrate cardiac ventricles: evolution and classification. J Exp Biol 2024; 227:jeb247441. [PMID: 39392075 DOI: 10.1242/jeb.247441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The ventricle of the vertebrate heart is the main segment of the cardiac outflow region. Compared with other cardiac components, it shows remarkable histomorphological variation among different animal groups. This variation is especially apparent in the myocardium, which is generally classified into three main types: trabeculated, compact and mixed. The trabeculated or 'spongy' myocardium is characterized by the existence of trabeculae and deep recesses or intertrabecular spaces, lined by the endocardium. The compact type is composed of condensed myocardial fibers, with almost no trabeculated layer. The mixed type consists of an outer compact layer and an inner trabeculated layer. Among vertebrates, fishes show a great diversity of myocardial types. On this basis, the ventricular myoarchitecture has been categorized into four groups of varying complexity. This classification is made according to (i) the proportion of the two types of myocardium, trabeculated versus compact, and (ii) the vascularization of the heart wall. Here, we review the morphogenetic mechanisms that give rise to the different ventricular myoarchitecture in gnathostomes (i.e. jawed vertebrates) with special emphasis on the diversity of the ventricular myocardium throughout the phylogeny of ancient actinopterygians and teleosts. Finally, we propose that the classification of the ventricular myoarchitecture should be reconsidered, given that the degrees of myocardial compactness on which the current classification system is based do not constitute discrete states, but an anatomical continuum.
Collapse
Affiliation(s)
- Miguel A López-Unzu
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul-IBYDA, 29004 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares-CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul-IBYDA, 29004 Málaga, Spain
| |
Collapse
|
2
|
Zhao J, Zhao J. Maternal and zygotic ZFP57 regulate coronary vascular formation and myocardium maturation in mouse embryo. Dev Dyn 2024; 253:144-156. [PMID: 36004502 DOI: 10.1002/dvdy.530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Genomic and epigenomic dynamics both play critical roles during embryogenesis. Zfp57 maintains genomic imprinting with both maternal and zygotic functions. In our previous study, we found that maternal and zygotic Zfp57 modulate NOTCH signaling during cardiac development. In this study, we investigated Zfp57 mutants from E11.5 to E13.5 to delineate its function during cardiac development. RESULTS Here, we describe novel roles of maternal and zygotic Zfp57 during cardiovascular system development. We found that maternal and zygotic Zfp57 was required for coronary vascular development. Maternal and zygotic loss of Zfp57 perturbed the sprouting of the sinus venosus-derived endothelial cells and led to underdeveloped coronary vasculature, meanwhile, there was an ectopic overproduction of blood islands over the ventricles. Furthermore, loss of Zfp57 and failed vasculature disturbed myocardium maturation. Loss of maternal and zygotic Zfp57 resulted in hyper trabeculation and failed myocardium compaction. Zfp57 zygotic mutant (M+ Z- ) hearts displayed noncompaction cardiomyopathy at E18.5. CONCLUSIONS Our results suggest that maternal and zygotic ZFP57 are essential for coronary vascular formation and myocardium maturation in mice. Our research provides evidence for the role of genomic imprinting during embryogenesis.
Collapse
Affiliation(s)
- Junzheng Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjie Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
3
|
Chen F, Chen J, Wang H, Tang H, Huang L, Wang S, Wang X, Fang X, Liu J, Li L, Ouyang K, Han Z. Histone Lysine Methyltransferase SETD2 Regulates Coronary Vascular Development in Embryonic Mouse Hearts. Front Cell Dev Biol 2021; 9:651655. [PMID: 33898448 PMCID: PMC8063616 DOI: 10.3389/fcell.2021.651655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital heart defects are the most common birth defect and have a clear genetic component, yet genomic structural variations or gene mutations account for only a third of the cases. Epigenomic dynamics during human heart organogenesis thus may play a critical role in regulating heart development. However, it is unclear how histone mark H3K36me3 acts on heart development. Here we report that histone-lysine N-methyltransferase SETD2, an H3K36me3 methyltransferase, is a crucial regulator of the mouse heart epigenome. Setd2 is highly expressed in embryonic stages and accounts for a predominate role of H3K36me3 in the heart. Loss of Setd2 in cardiac progenitors results in obvious coronary vascular defects and ventricular non-compaction, leading to fetus lethality in mid-gestation, without affecting peripheral blood vessel, yolk sac, and placenta formation. Furthermore, deletion of Setd2 dramatically decreased H3K36me3 level and impacted the transcriptional landscape of key cardiac-related genes, including Rspo3 and Flrt2. Taken together, our results strongly suggest that SETD2 plays a primary role in H3K36me3 and is critical for coronary vascular formation and heart development in mice.
Collapse
Affiliation(s)
- Fengling Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jiewen Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hong Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huayuan Tang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shijia Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xinru Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xi Fang
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
4
|
Doll CF, Pereira NJ, Hashimi MS, Grindrod TJ, Alkassis FF, Cai LX, Milovanovic U, Sandino AI, Kasahara H. Gestational intermittent hyperoxia rescues murine genetic congenital heart disease in part. Sci Rep 2021; 11:6608. [PMID: 33758249 PMCID: PMC7988122 DOI: 10.1038/s41598-021-85569-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
Cardiac development is a dynamic process, temporally and spatially. When disturbed, it leads to congenital cardiac anomalies that affect approximately 1% of live births. Genetic variants in several loci lead to anomalies, with the transcription factor NKX2-5 being one of the largest. However, there are also non-genetic factors that influence cardiac malformations. We examined the hypothesis that hyperoxia may be beneficial and can rescue genetic cardiac anomalies induced by an Nkx2-5 mutation. Intermittent mild hyperoxia (40% PO2) was applied for 10 h per day to normal wild-type female mice mated with heterozygous Nkx2-5 mutant males from gestational day 8.5 to birth. Hyperoxia therapy reduced excessive trabeculation in Nkx2-5 mutant mice compared to normoxic conditions (ratio of trabecular layer relative to compact layer area, normoxia 1.84 ± 0.07 vs. hyperoxia 1.51 ± 0.04) and frequency of muscular ventricular septal defects per heart (1.53 ± 0.32 vs. 0.68 ± 0.15); however, the incidence of membranous ventricular septal defects in Nkx2-5 mutant hearts was not changed. Nkx2-5 mutant embryonic hearts showed defective coronary vessel organization, which was improved by intermittent mild hyperoxia. The results of our study showed that mild gestational hyperoxia therapy rescued genetic cardiac malformation induced by Nkx2-5 mutation in part.
Collapse
Affiliation(s)
- Cassandra F Doll
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Natalia J Pereira
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Mustafa S Hashimi
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Tabor J Grindrod
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Fariz F Alkassis
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Lawrence X Cai
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Una Milovanovic
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Adriana I Sandino
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd. M543, Gainesville, FL, 32610-0274, USA. .,International University of Health and Welfare, School of Medicine, 852 Hatakeda, Narita, Chiba, Japan.
| |
Collapse
|
5
|
Cai LX, Alkassis FF, Kasahara H. Defective coronary vessel organization and reduction of VEGF-A in mouse embryonic hearts with gestational mild hypoxia. Dev Dyn 2020; 249:636-645. [PMID: 31900966 DOI: 10.1002/dvdy.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vasculature is formed by responding to homeostatic tissue demands including in developing hearts. Hypoxia generally stimulates vascular formation in which vascular endothelial growth factor A (VEGF-A) plays a critical role. Gestational hypoxia increases the risk of low intrauterine growth and low birth weight, both of which are known to increase the risk of the fetus developing cardiovascular defects. In fact, continuous gestational mild hypoxia (14% O2 ) from the mid-embryonic stage causes cardiac anomalies accompanied by a thinning compact layer in mice in vivo. Because coronary vasculature formation is necessary for compact layers to thicken, we hypothesized that defective coronary vessel organization is related to the thinning compact layer under gestational hypoxia conditions. RESULTS Continuous gestational mild hypoxia (14% O2 ) applied from embryonic day 10.5 (E10.5) reduced the expression of VEGF-A mRNA and proteins by over 60% in E12.5 hearts relative to control normoxic hearts. Formation of CD31-positive vascular plexus, blood islands, and microvessels in embryonic ventricles were stunted by gestational hypoxia compared to control E12.5 hearts. CONCLUSIONS Our results suggest that mild hypoxia (14% O2 ) does not induce coronary vessel organization or VEGF-A expression in developing mouse hearts, opposing the general effects of hypoxia-triggering vascular organization and VEGF-A expression.
Collapse
Affiliation(s)
- Lawrence X Cai
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Fariz F Alkassis
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
6
|
Shevchenko KM. Morphological features of atrial myocardium embryonic development and its changes caused by hypoxia effect. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mortality and morbidity during the prenatal period of development remain a real problem at the present time. The Scientific Committee EURO-PERISTAT has revealed that mortality of fetuses associated with congenital abnormalities is on average 15–20% across Europe. Hypoxia is one of the top causes of death of fetuses. Since the heart begins to function before birth, influence of teratogenic factors leads to formation of anomalies of its development. Congenital heart defects are the most common of these and occur with a frequency of 24%. Abnormalities associated with the atrium occur with frequency of 6.4 per 10,000 cases. Investigation of structural changes of the atrial myocardium is a key for understanding of pathogenic mechanisms of cardiovascular diseases that are caused by influence of hypoxia. Nowadays, a great deal of research is being dedicated to normal cardiogenesis and much less work is focused on abnormal heart development. There are numerous teratogenic factors such as alcohol, retinoic acid, hyperthermia, hypoxia that are most common causes of heart diseases. The attention of researchers has been predominantly focused on study of changes of the ventricular myocardium under the effect of hypoxia. It is known that the atrium is different from the ventricles by derivation, development and structure. Therefore, the effects of pathological factors on the atrial myocardium will be different as complared to their effect on the ventricles. Also, almost all research has focused on study of consequences of hypoxia at the late stages of cardiogenesis. However, the greatest number of abnormalities is associated with the early embryonic period, as structures that continue development are more sensitive to the effects of harmful factors. Thus, comparative analysis of scientific research devoted to morphological study of atrial myocardium transformations on the cellular and ultrastructural levels under the influence of hypoxia during the stages of cardiogenesis is an important task.
Collapse
|
7
|
Schliermann A, Nickel J. Unraveling the Connection between Fibroblast Growth Factor and Bone Morphogenetic Protein Signaling. Int J Mol Sci 2018; 19:ijms19103220. [PMID: 30340367 PMCID: PMC6214098 DOI: 10.3390/ijms19103220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Ontogeny of higher organisms as well the regulation of tissue homeostasis in adult individuals requires a fine-balanced interplay of regulating factors that individually trigger the fate of particular cells to either stay undifferentiated or to differentiate towards distinct tissue specific lineages. In some cases, these factors act synergistically to promote certain cellular responses, whereas in other tissues the same factors antagonize each other. However, the molecular basis of this obvious dual signaling activity is still only poorly understood. Bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are two major signal protein families that have a lot in common: They are both highly preserved between different species, involved in essential cellular functions, and their ligands vastly outnumber their receptors, making extensive signal regulation necessary. In this review we discuss where and how BMP and FGF signaling cross paths. The compiled data reflect that both factors synchronously act in many tissues, and that antagonism and synergism both exist in a context-dependent manner. Therefore, by challenging a generalization of the connection between these two pathways a new chapter in BMP FGF signaling research will be introduced.
Collapse
Affiliation(s)
- Anna Schliermann
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
| | - Joachim Nickel
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, 97222 Würzburg, Germany.
- Fraunhofer Institut für Silicatforschung, Translationszentrum TLZ-RT, Röntgenring 11, 97222 Würzburg, Germany.
| |
Collapse
|
8
|
Chen L, Pan H, Zhang YH, Feng K, Kong X, Huang T, Cai YD. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues. Genes (Basel) 2017; 8:genes8100252. [PMID: 28974058 PMCID: PMC5664102 DOI: 10.3390/genes8100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/28/2017] [Indexed: 12/26/2022] Open
Abstract
Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein–protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Hongying Pan
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, USA.
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA 02115, USA.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou 510507, Guangdong, China.
| | - XiangYin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Maturation of human pluripotent stem cell derived cardiomyocytes is improved in cardiovascular construct. Cytotechnology 2017; 69:785-800. [PMID: 28397099 PMCID: PMC5595750 DOI: 10.1007/s10616-017-0088-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/17/2017] [Indexed: 11/21/2022] Open
Abstract
In order to translate preclinical data into the clinical studies, relevant in vitro models with structure and key functional properties similar to native human tissue should be used. In vitro cardiac models with vascular structures mimic the highly vascularized myocardium and provide interactions between endothelial cells, stromal cells and cardiomyocytes. Currently, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been shown to present immature morphology and fetal-like electrophysiological properties that may limit their use as physiological test platform. The aim of this study was to develop multicellular in vitro cardiovascular construct modeling human heart tissue. In the cardiovascular construct, hPSC-CMs were cultured with a vascular-like network formed by human foreskin fibroblasts and human umbilical vein endothelial cells that served as a platform in the construct. Cardiomyocyte orientation, maturation, electrophysiological properties and drug responses of the cardiovascular construct were characterized and compared to CM monoculture. hPSC-CMs in cardiovascular construct showed elongated morphology and aligned with the vascular-like network. Electrophysiological properties and calcium metabolism of hPSC-CMs as well as response to E-4031 and adrenaline demonstrated normal physiological behavior. Increased expression of cardiac structural proteins and ion channels in cardiovascular construct compared to CM monoculture were detected. In conclusion, vascular-like network supports the structural and functional maturation of hPSC-CMs. Our results suggest that cardiovascular construct presents more mature in vitro cardiac model compared to CM monoculture and could therefore serve as an advanced test system for cardiac safety and efficacy assessment as well as a model system for biomedical research.
Collapse
|
10
|
Zhang KK, Xiang M, Zhou L, Liu J, Curry N, Heine Suñer D, Garcia-Pavia P, Zhang X, Wang Q, Xie L. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation. Hum Mol Genet 2016; 25:1140-51. [PMID: 26744331 PMCID: PMC4764195 DOI: 10.1093/hmg/ddv636] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/21/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation. We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny.
Collapse
Affiliation(s)
- Ke K Zhang
- Department of Pathology, School of Medicine and Health Sciences, ND INBRE Bioinformatics Core, University of North Dakota, Grand Forks, ND 58202, USA
| | - Menglan Xiang
- Department of Basic Sciences, School of Medicine and Health Sciences and ND INBRE Bioinformatics Core, University of North Dakota, Grand Forks, ND 58202, USA
| | - Lun Zhou
- Department of Basic Sciences, School of Medicine and Health Sciences and Department of Gerontology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jielin Liu
- Department of Basic Sciences, School of Medicine and Health Sciences and
| | - Nathan Curry
- Department of Basic Sciences, School of Medicine and Health Sciences and
| | - Damian Heine Suñer
- Laboratori de Genetica Molecular, Hospital Son Espases, Palma de Mallorca 07010, Spain
| | - Pablo Garcia-Pavia
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla, 1, 28222 Majadahonda, Madrid, Spain
| | - Xiaohua Zhang
- Nemours Research Institute, Nemours Children's hospital, Orlando, FL 32827, USA
| | - Qin Wang
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA, Department of Molecular Medicine and Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA and
| | - Linglin Xie
- Department of Basic Sciences, School of Medicine and Health Sciences and Department of Nutrition and Food Science, Texas A&M University, Cater-Mattil Hall Rm 217B, TAMU 2253, College Station, TX 77843, USA
| |
Collapse
|
11
|
Durán AC, López-Unzu MA, Rodríguez C, Fernández B, Lorenzale M, Linares A, Salmerón F, Sans-Coma V. Structure and vascularization of the ventricular myocardium in Holocephali: their evolutionary significance. J Anat 2016; 226:501-10. [PMID: 25994124 DOI: 10.1111/joa.12317] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 11/27/2022] Open
Abstract
It was generally assumed that the ventricle of the primitive vertebrate heart was composed of trabeculated, or spongy, myocardium, supplied by oxygen-poor luminal blood. In addition, it was presumed that the mixed ventricular myocardium, consisting of a compacta and a spongiosa, and its supply through coronary arteries appeared several times throughout fish evolution. Recent work has suggested, however, that a fully vascularized, mixed myocardium may be the primitive condition in gnathostomes. The present study of the heart ventricles of four holocephalan species aimed to clarify this controversy. Our observations showed that the ventricular myocardium of Chimaera monstrosa and Harriotta raleighana consists of a very thin compacta overlying a widespread spongiosa. The ventricle of Hydrolagus affinis is composed exclusively of trabeculated myocardium. In these three species there is a well-developed coronary artery system. The main coronary artery trunks run along the outflow tract, giving off subepicardial ventricular arteries. The trabeculae of the spongiosa are irrigated by branches of the subepicardial arteries and by penetrating arterial vessels arising directly from the main coronary trunks at the level of the conoventricular junction. The ventricle of Rhinochimaera atlantica has only spongy myocardium supplied by luminal blood. Small coronary arterial vessels are present in the subepicardium, but they do not enter the myocardial trabeculae. The present findings show for the first time that in a wild living vertebrate species, specifically H. affinis, an extensive coronary artery system supplying the whole cardiac ventricle exists in the absence of a well-developed compact ventricular myocardium. This is consistent with the notion derived from experimental work that myocardial cell proliferation and coronary vascular growth rely on distinct developmental programs. Our observations, together with data in the literature on elasmobranchs, support the view that the mixed ventricular myocardium is primitive for chondrichthyans. The reduction or even lack of compacta in holocephali has to be regarded as a derived anatomical trait. Our findings also fit in with the view that the mixed myocardium was the primitive condition in gnathostomes, and that the absence of compact ventricular myocardium in different actinopterygian groups is the result of a repeated loss of such type of cardiac muscle during fish evolution.
Collapse
Affiliation(s)
- Ana C Durán
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Miguel A López-Unzu
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Cristina Rodríguez
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Borja Fernández
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Miguel Lorenzale
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Andrea Linares
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Francisca Salmerón
- Spanish Institute of Oceanography, Oceanographic Centre of Málaga, Fuengirola, Málaga, Spain
| | - Valentín Sans-Coma
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| |
Collapse
|
12
|
Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling. Stem Cells Int 2015; 2016:7057894. [PMID: 26697079 PMCID: PMC4677258 DOI: 10.1155/2016/7057894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/31/2015] [Accepted: 09/13/2015] [Indexed: 01/09/2023] Open
Abstract
Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs) as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT) and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.
Collapse
|
13
|
Hernandez-Torres F, Aranega AE, Franco D. Identification of regulatory elements directing miR-23a-miR-27a-miR-24-2 transcriptional regulation in response to muscle hypertrophic stimuli. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:885-97. [PMID: 25050919 DOI: 10.1016/j.bbagrm.2014.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/19/2023]
Abstract
MiRNAs are small non-coding RNAs that significantly regulate the translation of protein coding genes in higher organisms. MicroRNAs are involved in almost every biological process, including early development, lineage commitment, growth and differentiation, cell death, and metabolic control. Misregulation of miRNAs belonging to the intergenic miR-23a-miR-27a-miR-24-2 cluster has been recently associated to cardiac and skeletal muscle diseases, and they are up-regulated in hypertrophic cardiomyopathy and skeletal muscle atrophy. Despite these facts, the basal transcriptional regulation of miR-23a/miR-27-a/miR-24-2 cluster and how it is altered under pathological conditions remain unclear. In this study, we identified and functionally characterized conserved upstream and downstream regulatory sequences from the miR-23a-miR-27a-miR-24-2 locus that are implicated on its transcriptional control. Our data demonstrate that Srf plays a pivotal role in modulating miR-23a-miR-27a-miR-24-2 cluster proximal promoter activity. Importantly, pro-hypertrophic signalling pathways such as those driven by angiotensin II and norepinephrine also regulate miR-23a-miR-27a-miR-24-2 cluster proximal promoter activity. Taking together, our results provide new insights into the regulatory networks driving miR-23a-miR-27a-miR-24-2 cluster expression in cardiac and skeletal muscles.
Collapse
Affiliation(s)
| | - Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
14
|
Helmer RA, Martínez-Zaguilán R, Dertien JS, Fulford C, Foreman O, Peiris V, Chilton BS. Helicase-like transcription factor (Hltf) regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis. PLoS One 2013; 8:e80461. [PMID: 24278285 PMCID: PMC3835564 DOI: 10.1371/journal.pone.0080461] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022] Open
Abstract
HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum) brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05) - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf’s regulation of the G2/M transition (p=9.726E-15) of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2) and lysyl (Plod2) collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3) for collagen trimerization, and lysyl oxidase (Loxl2) for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps) was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and fragmented. Thus, silencing Hltf during heart organogenesis compromised DNA double-strand break repair, and caused aberrant collagen biogenesis altering the structural network that transmits cardiomyocyte force into muscle contraction.
Collapse
Affiliation(s)
- Rebecca A. Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Raul Martínez-Zaguilán
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Janet S. Dertien
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Candra Fulford
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Oded Foreman
- The Jackson Laboratory, Sacramento, California, United States of America
| | - Vasum Peiris
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S. Chilton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Vuorenpää H, Ikonen L, Kujala K, Huttala O, Sarkanen JR, Ylikomi T, Aalto-Setälä K, Heinonen T. Novel in vitro cardiovascular constructs composed of vascular-like networks and cardiomyocytes. In Vitro Cell Dev Biol Anim 2013; 50:275-86. [PMID: 24163159 DOI: 10.1007/s11626-013-9703-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/03/2013] [Indexed: 01/17/2023]
Abstract
The interaction between different cardiac cells has shown to be important for critical biological properties including cell survival, proliferation, differentiation and function. The improvement of culture conditions with different cell types and to study their effects on cardiomyocyte viability and functionality is essential. For practical applications including general toxicity testing, drug development and tissue engineering it is important to study whether co-cultures have additional advantages over cardiomyocyte monoculture. Two multicellular in vitro cardiovascular constructs devoid of added biomaterial were developed in this study. In the first construct, neonatal rat cardiomyocytes (CM) were seeded on vascular-like network formed by human umbilical vein endothelial cells (HUVEC) and human adipose stromal cells (hASC). In the second construct, CMs were seeded on vascular-like network formed by HUVECs and human foreskin fibroblasts. The ability of these two vascular-like networks to support the viability and functionality of CMs was analyzed. Different culture media compositions were evaluated to support the development of optimal cardiovascular construct. Our results demonstrate that both vascular-like networks markedly improved CM viability and functionality. In the constructs, co-localization of CMs and vascular-like networks was seen. Multicellular constructs also allowed synchronized contractility of CMs. Serum-free medium supplemented with vascular endothelial growth factor and basic fibroblast growth factor was found to provide the most optimal conditions for cardiovascular construct as an entity. In conclusion, when combining a vascular-like network with CMs, the viability and functionality of CMs was markedly improved. The results suggest that the cardiovascular constructs developed provide a promising new tool for the assessment of toxicological and safety pharmacological effects of compounds in vitro.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- FICAM, Finnish Centre for Alternative Methods, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33014, Tampere, Finland,
| | | | | | | | | | | | | | | |
Collapse
|
16
|
MacDonald ST, Bamforth SD, Bragança J, Chen CM, Broadbent C, Schneider JE, Schwartz RJ, Bhattacharya S. A cell-autonomous role of Cited2 in controlling myocardial and coronary vascular development. Eur Heart J 2013; 34:2557-2565. [PMID: 22504313 PMCID: PMC3748368 DOI: 10.1093/eurheartj/ehs056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/30/2012] [Accepted: 02/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIMS Myocardial development is dependent on concomitant growth of cardiomyocytes and a supporting vascular network. The coupling of myocardial and coronary vascular development is partly mediated by vascular endothelial growth factor (VEGFA) signalling and additional unknown mechanisms. We examined the cardiomyocyte specific role of the transcriptional co-activator Cited2 on myocardial microstructure and vessel growth, in relation to Vegfa expression. METHODS AND RESULTS A cardiomyocyte-specific knockout of mouse Cited2 (Cited2(Nkx)) was analysed using magnetic resonance imaging and histology. Ventricular septal defects and significant compact layer thinning (P < 0.02 at right ventricular apex, P < 0.009 at the left ventricular apex in Cited2(Nkx) vs. controls, n = 11 vs. n = 7, respectively) were found. This was associated with a significant decrease in the number of capillaries to larger vessels (ratio 1.56 ± 0.56 vs. 3.25 ± 1.63, P = 2.7 × 10(-6) Cited2(Nkx) vs. controls, n = 11 vs. n = 7, respectively) concomitant with a 1.5-fold reduction in Vegfa expression (P < 0.02, Cited2(Nkx) vs. controls, n = 12 vs. n = 12, respectively). CITED2 was subsequently found at the Vegfa promoter in mouse embryonic hearts using chromatin immunoprecipitation, and moreover found to stimulate human VEGFA promoter activity in cooperation with TFAP2 transcription factors in transient transfection assays. There was no change in the myocardial expression of the left-right patterning gene Pitx2c, a previously known target of CITED2. CONCLUSIONS This study delineates a novel cell-autonomous role of Cited2 in regulating VEGFA transcription and the development of myocardium and coronary vasculature in the mouse. We suggest that coupling of myocardial and coronary growth in the developing heart may occur in part through a Cited2→Vegfa pathway.
Collapse
Affiliation(s)
- Simon T. MacDonald
- Department of Cardiovascular Medicine, University of Oxford and Wellcome Trust Centre for Human Genetics, Roosevelt Drive, OxfordOX3 7BN, UK
| | - Simon D. Bamforth
- Department of Cardiovascular Medicine, University of Oxford and Wellcome Trust Centre for Human Genetics, Roosevelt Drive, OxfordOX3 7BN, UK
| | - José Bragança
- Department of Cardiovascular Medicine, University of Oxford and Wellcome Trust Centre for Human Genetics, Roosevelt Drive, OxfordOX3 7BN, UK
| | - Chiann-Mun Chen
- Department of Cardiovascular Medicine, University of Oxford and Wellcome Trust Centre for Human Genetics, Roosevelt Drive, OxfordOX3 7BN, UK
| | - Carol Broadbent
- Department of Cardiovascular Medicine, University of Oxford and Wellcome Trust Centre for Human Genetics, Roosevelt Drive, OxfordOX3 7BN, UK
| | - Jürgen E. Schneider
- Department of Cardiovascular Medicine, University of Oxford and Wellcome Trust Centre for Human Genetics, Roosevelt Drive, OxfordOX3 7BN, UK
| | - Robert J. Schwartz
- Institute of Biosciences and Technology, Texas A&M Health Science Centre, Houston, TX 77030-3498, USA
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, University of Oxford and Wellcome Trust Centre for Human Genetics, Roosevelt Drive, OxfordOX3 7BN, UK
| |
Collapse
|
17
|
Willis MS, Dyer LA, Ren R, Lockyer P, Moreno-Miralles I, Schisler JC, Patterson C. BMPER regulates cardiomyocyte size and vessel density in vivo. Cardiovasc Pathol 2012. [PMID: 23200275 DOI: 10.1016/j.carpath.2012.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND BMPER, an orthologue of Drosophila melanogaster Crossveinless-2, is a secreted factor that regulates bone morphogenetic protein activity in endothelial cell precursors and during early cardiomyocyte differentiation. Although previously described in the heart, the role of BMPER in cardiac development and function remain unknown. METHODS BMPER-deficient hearts were phenotyped histologically and functionally using echocardiography and Doppler analysis. Since BMPER -/- mice die perinatally, adult BMPER +/- mice were challenged to pressure-overload-induced cardiac hypertrophy and hindlimb ischemia to determine changes in angiogenesis and regulation of cardiomyocyte size. RESULTS We identify for the first time the cardiac phenotype associated with BMPER haploinsufficiency. BMPER messenger RNA and protein are present in the heart during cardiac development through at least E14.5 but is lost by E18.5. BMPER +/- ventricles are thinner and less compact than sibling wild-type hearts. In the adult, BMPER +/- hearts present with decreased anterior and posterior wall thickness, decreased cardiomyocyte size and an increase in cardiac vessel density. Despite these changes, BMPER +/- mice respond to pressure-overload-induced cardiac hypertrophy challenge largely to the same extent as wild-type mice. CONCLUSION BMPER appears to play a role in regulating both vessel density and cardiac development in vivo; however, BMPER haploinsufficiency does not result in marked effects on cardiac function or adaptation to pressure overload hypertrophy.
Collapse
Affiliation(s)
- Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Schmid M, Stary S, Blaicher W, Gollinger M, Husslein P, Streubel B. Prenatal genetic diagnosis using microarray analysis in fetuses with congenital heart defects. Prenat Diagn 2011; 32:376-82. [DOI: 10.1002/pd.2862] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 02/02/2023]
Affiliation(s)
- Maximilian Schmid
- Department of Obstetrics and Feto-maternal Medicine; Medical University of Vienna; Vienna; Austria
| | - Susanne Stary
- Clinical Institute of Pathology; Medical University of Vienna; Vienna; Austria
| | - Wibke Blaicher
- Department of Obstetrics and Feto-maternal Medicine; Medical University of Vienna; Vienna; Austria
| | - Michaela Gollinger
- Clinical Institute of Pathology; Medical University of Vienna; Vienna; Austria
| | - Peter Husslein
- Department of Obstetrics and Feto-maternal Medicine; Medical University of Vienna; Vienna; Austria
| | - Berthold Streubel
- Clinical Institute of Pathology; Medical University of Vienna; Vienna; Austria
| |
Collapse
|
19
|
Abstract
As the developing heart grows and the chamber walls thicken, passive diffusion of oxygen and nutrients is replaced by a vascular plexus which remodels and expands to form a mature coronary vascular system. The coronary arteries and veins ensure the continued development of the heart and facilitate cardiac output with progression towards birth. Many aspects of coronary vessel development are surprisingly not well understood and recently there has been much debate surrounding both the developmental origin and tissue contribution of cardiovascular cells alongside the specific signals that determine their fate and function. What is clear is that an understanding of the cellular and molecular cues to vascularize the heart of the embryo has significant implications for adult heart disease and regeneration, as we move towards targeted cell-based therapies for neovascularization and coronary bypass engraftment. This review will focus on the proposed cellular origins for the coronary endothelium with due consideration to the pro-epicardial organ/epicardium, sinus venosus and endocardium as potential sources, and we will explore the outstanding questions and technical limitations with respect to accurate labelling and lineage tracing of the developing coronaries. We will briefly document canonical vascular signalling that induces vessels in the heart alongside a focus on the potential for developmental reprogramming and putative mechanisms underpinning venous vs. arterial cell fate. Finally, we will extrapolate directly from development to address adult maintenance of the coronaries, vascular homeostasis and remodelling in response to pathology, aligned with the potential for revascularizing the injured adult heart.
Collapse
Affiliation(s)
- Paul R Riley
- Molecular Medicine Unit, UCL-Institute of Child Health, London WC1N 1EH, UK.
| | | |
Collapse
|
20
|
Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 2011; 109:47-59. [PMID: 21597009 PMCID: PMC3140796 DOI: 10.1161/circresaha.110.237206] [Citation(s) in RCA: 502] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/05/2011] [Indexed: 12/30/2022]
Abstract
RATIONALE The developing heart requires both mechanical load and vascularization to reach its proper size, yet the regulation of human heart growth by these processes is poorly understood. OBJECTIVE We seek to elucidate the responses of immature human myocardium to mechanical load and vascularization using tissue engineering approaches. METHODS AND RESULTS Using human embryonic stem cell and human induced pluripotent stem cell-derived cardiomyocytes in a 3-dimensional collagen matrix, we show that uniaxial mechanical stress conditioning promotes 2-fold increases in cardiomyocyte and matrix fiber alignment and enhances myofibrillogenesis and sarcomeric banding. Furthermore, cyclic stress conditioning markedly increases cardiomyocyte hypertrophy (2.2-fold) and proliferation rates (21%) versus unconditioned constructs. Addition of endothelial cells enhances cardiomyocyte proliferation under all stress conditions (14% to 19%), and addition of stromal supporting cells enhances formation of vessel-like structures by ≈10-fold. Furthermore, these optimized human cardiac tissue constructs generate Starling curves, increasing their active force in response to increased resting length. When transplanted onto hearts of athymic rats, the human myocardium survives and forms grafts closely apposed to host myocardium. The grafts contain human microvessels that are perfused by the host coronary circulation. CONCLUSIONS Our results indicate that both mechanical load and vascular cell coculture control cardiomyocyte proliferation, and that mechanical load further controls the hypertrophy and architecture of engineered human myocardium. Such constructs may be useful for studying human cardiac development as well as for regenerative therapy.
Collapse
Affiliation(s)
- Nathaniel L. Tulloch
- Molecular and Cellular Biology Program Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Veronica Muskheli
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Maria V. Razumova
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - F. Steven Korte
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Michael Regnier
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Kip D. Hauch
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Lil Pabon
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Hans Reinecke
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| | - Charles E. Murry
- Department of Pathology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
- Department of Bioengineering Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
- Department of Medicine/Cardiology Center for Cardiovascular Biology Institute for Stem Cell and Regenerative Medicine University of Washington, Seattle WA 98109
| |
Collapse
|
21
|
Korf-Klingebiel M, Kempf T, Schlüter KD, Willenbockel C, Brod T, Heineke J, Schmidt VJ, Jantzen F, Brandes RP, Sugden PH, Drexler H, Molkentin JD, Wollert KC. Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction. Circulation 2011; 123:504-14. [PMID: 21262993 DOI: 10.1161/circulationaha.110.989665] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.
Collapse
Affiliation(s)
- Mortimer Korf-Klingebiel
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shrivastava S, Srivastava D, Olson EN, DiMaio JM, Bock-Marquette I. Thymosin beta4 and cardiac repair. Ann N Y Acad Sci 2010; 1194:87-96. [PMID: 20536454 DOI: 10.1111/j.1749-6632.2010.05468.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypoxic heart disease is a predominant cause of disability and death worldwide. As adult mammals are incapable of cardiac repair after infarction, the discovery of effective methods to achieve myocardial and vascular regeneration is crucial. Efforts to use stem cells to repopulate damaged tissue are currently limited by technical considerations and restricted cell potential. We discovered that the small, secreted peptide thymosin beta4 (Tbeta4) could be sufficiently used to inhibit myocardial cell death, stimulate vessel growth, and activate endogenous cardiac progenitors by reminding the adult heart on its embryonic program in vivo. The initiation of epicardial thickening accompanied by increase of myocardial and epicardial progenitors with or without infarction indicate that the reactivation process is independent of injury. Our results demonstrate Tbeta4 to be the first known molecule able to initiate simultaneous myocardial and vascular regeneration after systemic administration in vivo. Given our findings, the utility of Tbeta4 to heal cardiac injury may hold promise and warrant further investigation.
Collapse
Affiliation(s)
- Santwana Shrivastava
- Department of Cardiovascular and Thoracic Surgery, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
23
|
Holler KL, Hendershot TJ, Troy SE, Vincentz JW, Firulli AB, Howard MJ. Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development. Dev Biol 2010; 341:291-304. [PMID: 20144608 PMCID: PMC2854279 DOI: 10.1016/j.ydbio.2010.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/29/2022]
Abstract
The basic helix-loop-helix DNA binding protein Hand2 has critical functions in cardiac development both in neural crest-derived and mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest has allowed us to genetically dissect Hand2-dependent defects specifically in outflow tract and cardiac cushion independent of Hand2 functions in mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest results in misalignment of the aortic arch arteries and outflow tract, contributing to development of double outlet right ventricle (DORV) and ventricular septal defects (VSD). These neural crest-derived developmental anomalies are associated with altered expression of Hand2-target genes we have identified by gene profiling. A number of Hand2 direct target genes have been identified using ChIP and ChIP-on-chip analyses. We have identified and validated a number of genes related to cell migration, proliferation/cell cycle and intracellular signaling whose expression is affected by Hand2 deletion in the neural crest and which are associated with development of VSD and DORV. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting expression of target genes associated with a number of functional interactions in neural crest-derived cells required for proper patterning of the outflow tract, generation of the appropriate number of neural crest-derived cells for elongation of the conotruncus and cardiac cushion organization. Our genetic model has made it possible to investigate the molecular genetics of neural crest contributions to outflow tract morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Kristen L. Holler
- Department of Neurosciences and Program in Neurosciences and Degenerative DiseaseΨ Health Sciences Campus University of Toledo, 3000 Arlington Ave, Toledo, OH 43614-1007
| | - Tyler J. Hendershot
- Department of Neurosciences and Program in Neurosciences and Degenerative DiseaseΨ Health Sciences Campus University of Toledo, 3000 Arlington Ave, Toledo, OH 43614-1007
| | - Sophia E. Troy
- Department of Neurosciences and Program in Neurosciences and Degenerative DiseaseΨ Health Sciences Campus University of Toledo, 3000 Arlington Ave, Toledo, OH 43614-1007
| | - Joshua W. Vincentz
- Riley Heart Research Center, Herman B Webb Center for Pediatric Research, Indiana Medical School, 1044 W. Walnut, St., Indianapolis, IN 46202-5225, USA
| | - Anthony B. Firulli
- Riley Heart Research Center, Herman B Webb Center for Pediatric Research, Indiana Medical School, 1044 W. Walnut, St., Indianapolis, IN 46202-5225, USA
| | - Marthe J. Howard
- Department of Neurosciences and Program in Neurosciences and Degenerative DiseaseΨ Health Sciences Campus University of Toledo, 3000 Arlington Ave, Toledo, OH 43614-1007
| |
Collapse
|
24
|
Akins RE, Rockwood D, Robinson KG, Sandusky D, Rabolt J, Pizarro C. Three-dimensional culture alters primary cardiac cell phenotype. Tissue Eng Part A 2010; 16:629-41. [PMID: 20001738 PMCID: PMC2813151 DOI: 10.1089/ten.tea.2009.0458] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/10/2009] [Indexed: 01/21/2023] Open
Abstract
The directed formation of complex three-dimensional (3D) tissue architecture is a fundamental goal in tissue engineering and regenerative medicine. The growth of cells in 3D structures is expected to influence cellular phenotype and function, especially relative cell distribution, expression profiles, and responsiveness to exogenous signals; however, relatively few studies have been carried out to examine the effects of 3D reaggregation on cells from critical target organs, like the heart. Accordingly, we cultured primary cardiac ventricular cells in a 3D model system using a serum-free medium to test the hypothesis that expression profiles, multicellular organizational pathways, tissue maturation markers, and responsiveness to hormone stimulation were significantly altered in stable cell populations grown in 3D versus 2D culture. We found that distinct multi-cellular structures formed in 3D in conjunction with changes in mRNA expression profile, up-regulation of endothelial cell migratory pathways, decreases in the expression of fetal genes (Nppa and Ankrd1), and increased sensitivity to tri-iodothyronine stimulation when compared to parallel 2D cultures comprising the same cell populations. These results indicate that the culture of primary cardiac cells in 3D aggregates leads to physiologically relevant alterations in component cell phenotype consistent with cardiac ventricular tissue formation and maturation.
Collapse
Affiliation(s)
- Robert E Akins
- Nemours Biomedical Research Center, AI duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Bock-Marquette I, Shrivastava S, Pipes GCT, Thatcher JE, Blystone A, Shelton JM, Galindo CL, Melegh B, Srivastava D, Olson EN, DiMaio JM. Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J Mol Cell Cardiol 2009; 46:728-38. [PMID: 19358334 PMCID: PMC2768533 DOI: 10.1016/j.yjmcc.2009.01.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hypoxic heart disease is a predominant cause of disability and death worldwide. Since adult mammalian hearts are incapable of regeneration after hypoxia, attempts to modify this deficiency are critical. As demonstrated in zebrafish, recall of the embryonic developmental program may be the key to success. Because thymosin beta4 (TB4) is beneficial for myocardial cell survival and essential for coronary development in embryos, we hypothesized that it reactivates the embryonic developmental program and initiates epicardial progenitor mobilization in adult mammals. We found that TB4 stimulates capillary-like tube formation of adult coronary endothelial cells and increases embryonic endothelial cell migration and proliferation in vitro. The increase of blood vessel/epicardial substance (Bves) expressing cells accompanied by elevated VEGF, Flk-1, TGF-beta, Fgfr-2, Fgfr-4, Fgf-17 and beta-Catenin expression and increase of Tbx-18 and Wt-1 positive myocardial progenitors suggested organ-wide recall of the embryonic program in the adult epicardium. TB4 also positively regulated the expression and phosphorylation of myristoylated alanine-rich C-kinase substrate (Marcks), a direct substrate and indicator of protein kinase C (PKC) activity in vitro and in vivo. PKC inhibition significantly reduced TB4 initiated epicardial thickening, capillary growth and the number of myocardial progenitors. Our results demonstrate that TB4 is the first known molecule capable of organ-wide activation of the embryonic coronary developmental program in the adult mammalian heart after systemic administration and that PKC plays a significant role in the process.
Collapse
Affiliation(s)
- Ildiko Bock-Marquette
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9148, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nesbitt TL, Roberts A, Tan H, Junor L, Yost MJ, Potts JD, Dettman RW, Goodwin RL. Coronary endothelial proliferation and morphogenesis are regulated by a VEGF-mediated pathway. Dev Dyn 2009; 238:423-30. [PMID: 19161222 PMCID: PMC3991472 DOI: 10.1002/dvdy.21847] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Though development of the coronary vasculature is a critical event during embryogenesis, the molecular mechanisms that regulate its formation are not well characterized. Two unique approaches were used to investigate interactions between cardiac myocytes and proepicardial (PE) cells, which are the coronary anlagen. One of these experimental approaches used a 3-D collagen scaffold system on which specific cell-cell and cell-matrix interactions were studied. The other approach used a whole heart culture system that allowed for the analysis of epicardial to mesenchymal transformation (EMT). The VEGF signaling system has been implicated previously as an important regulator of coronary development. Our results demonstrated that a specific isoform of VEGF-A, VEGF(164), increased PE-derived endothelial cell proliferation and also increased EMT. However, VEGF-stimulated endothelial cells did not robustly coalesce into endothelial tubes as they did when cocultured with cardiac myocytes. Interestingly, blocking VEGF signaling via flk-1 inhibition reduced endothelial tube formation despite the presence of cardiac myocytes. These results indicate that VEGF signaling is complex during coronary development and that combinatorial signaling by other VEGF-A isoforms or other flk-1-binding VEGFs are likely to regulate endothelial tube formation.
Collapse
Affiliation(s)
- Tresa L. Nesbitt
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Andrea Roberts
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Hong Tan
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Lorain Junor
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Michael J. Yost
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Jay D. Potts
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Robert W. Dettman
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard L. Goodwin
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
27
|
Nanka O, Krizova P, Fikrle M, Tuma M, Blaha M, Grim M, Sedmera D. Abnormal Myocardial and Coronary Vasculature Development in Experimental Hypoxia. Anat Rec (Hoboken) 2008; 291:1187-99. [DOI: 10.1002/ar.20738] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Abstract
PURPOSE OF REVIEW There is considerable increase in the use of left ventricular assist devices for the treatment of severe heart failure. Traditionally viewed as a bridge to transplantation and more recently as a destination therapy, left ventricular assist device support is now recognized to offer potential for myocardial recovery through reverse remodeling, a potential that is further enhanced by combination with pharmacologic therapy. In this study, we examine the molecular changes associated with left ventricular assist device support and how these may contribute to the recovery process. RECENT FINDINGS Studies in both patients and experimental models have demonstrated that improved function is associated with alterations in several key pathways including cell survival, cytokine signaling, calcium handling, adrenergic receptor signaling, cytoskeletal and contractile proteins, energy metabolism, extracellular matrix, and endothelial and microvascular functions. Moreover, the unique research opportunities offered by left ventricular assist device analysis are beginning to distinguish changes associated with recovery from those of mechanical unloading alone and identify potential predictors and novel therapeutic targets capable of enhancing myocardial repair. SUMMARY Significant progress has been made toward revealing molecular changes associated with myocardial recovery from heart failure. These studies also offer new insight into the pathogenesis of heart failure and point to novel therapeutic strategies.
Collapse
|
29
|
Martin-Puig S, Wang Z, Chien KR. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2008; 2:320-31. [PMID: 18397752 DOI: 10.1016/j.stem.2008.03.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heart cells are the unitary elements that define cardiac function and disease. The recent identification of distinct families of cardiovascular progenitor cells begins to build a foundation for our understanding of the developmental logic of human cardiovascular disease, and also points to new approaches to arrest and/or reverse its progression, a major goal of regenerative medicine. In this review, we highlight recent clarifications, revisions, and advances in our understanding of the many lives of a heart cell, with a primary focus on the emerging links between cardiogenesis and heart stem cell biology.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114-2790, USA
| | | | | |
Collapse
|
30
|
DWYER JP, RITCHIE ME, SMYTH GK, HARRAP SB, DELBRIDGE LM, DOMENIGHETTI AA, DI NICOLANTONIO R. Myocardial Gene Expression Associated with Genetic Cardiac Hypertrophy in the Absence of Hypertension. Hypertens Res 2008; 31:941-55. [DOI: 10.1291/hypres.31.941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Filipczyk AA, Passier R, Rochat A, Mummery CL. Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci 2007; 64:704-18. [PMID: 17380311 PMCID: PMC2778649 DOI: 10.1007/s00018-007-6523-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Investigating the signalling pathways that regulate heart development is essential if stem cells are to become an effective source of cardiomyocytes that can be used for studying cardiac physiology and pharmacology and eventually developing cell-based therapies for heart repair. Here, we briefly describe current understanding of heart development in vertebrates and review the signalling pathways thought to be involved in cardiomyogenesis in multiple species. We discuss how this might be applied to stem cells currently thought to have cardiomyogenic potential by considering the factors relevant for each differentiation step from the undifferentiated cell to nascent mesoderm, cardiac progenitors and finally a fully determined cardiomyocyte. We focus particularly on how this is being applied to human embryonic stem cells and provide recent examples from both our own work and that of others.
Collapse
Affiliation(s)
- A. A. Filipczyk
- Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Utrecht, The Netherlands
| | - R. Passier
- Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Utrecht, The Netherlands
| | - A. Rochat
- Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Utrecht, The Netherlands
- Mouse Molecular Genetics Group, Faculté de Médecine Pitié-Salpêtriére, 105, boulevard de l’Hôpital, 75364 Paris Cedex 13, France
| | - C. L. Mummery
- Hubrecht Laboratory, Netherlands Institute of Developmental Biology, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands and Heart Lung Center, University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
32
|
Vincent KA, Jiang C, Boltje I, Kelly RA. Gene therapy progress and prospects: therapeutic angiogenesis for ischemic cardiovascular disease. Gene Ther 2007; 14:781-9. [PMID: 17476300 DOI: 10.1038/sj.gt.3302953] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the past decade, both in vitro and in vivo studies have provided new insights into the cellular and molecular mechanisms that govern angiogenesis and arteriogenesis. However, therapeutic angiogenesis clinical trials using recombinant protein or gene therapy formulations of single angiogenic growth factors have yielded at best only modest success to date. Among the second generation of angiogenic agents are therapeutic transgenes that enhance expression of two or more proangiogenic cytokines. These include synthetic constructs that mimic that activity of endogenous transcriptional regulators and other upstream, regulatory factors that have the potential to induce formation of morphologically and physiologically functional vessels. These agents are now beginning to be evaluated in clinical trials for patients with advanced ischemic cardiac and peripheral vascular disease.
Collapse
Affiliation(s)
- K A Vincent
- Genzyme Corporation, Framingham, MA 01701-9322, USA
| | | | | | | |
Collapse
|