1
|
Liu FF, Li K. The Abnormal ERα-miRNA Cross-Talk in AD-Affected Human Hippocampus: A Bioinformatics Perspective. Mol Neurobiol 2025; 62:7998-8012. [PMID: 39966328 PMCID: PMC12078360 DOI: 10.1007/s12035-025-04771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Estrogen's impact on Alzheimer's disease (AD) is multifaceted, with its receptors potentially influencing AD pathology in both beneficial and detrimental ways. This study aims to dissect the intricate cross-talk between estrogen receptor alpha (ERα) and microRNAs (miRNAs) in AD-affected human hippocampus. Through a comprehensive literature review in the PubMed database, coupled with a GeneCards database search, we obtained AD-related key miRNAs and genes in the hippocampus. Using bioinformatics tools, we predicted target genes and miRNAs of ERα, and the targets of the identified miRNAs. The integration of these elements resulted in the construction of an ERα-related FFL network, which includes 13 miRNAs and 56 core genes. Gene ontology (GO) and pathway enrichment analyses were conducted, revealing significant enrichment in biological processes such as neuron death and response to metal ions, and cellular components like membrane microdomains. Notably, the AKT-associated signaling pathway was prominently highlighted, with key genes including GSK3A, CDKN1A, AKT2, and MDM2, and key miRNAs including miR-485 and let-7f, suggesting a potential role of ERα in modulating this pathway in AD. The findings of this study provide a novel perspective on the regulatory network of ERα in the hippocampal region of AD and may pave the way for future research into the therapeutic potential of targeting the ERα pathway in neurodegenerative diseases.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Hankou District, Wuhan, 430014, People's Republic of China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Hankou District, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Molina B, González-Mariscal G, Camacho-Arroyo I. Expression, distribution, and function of sex hormone receptors in the rabbit brain. Horm Behav 2025; 173:105762. [PMID: 40403422 DOI: 10.1016/j.yhbeh.2025.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Sex hormones such as estradiol, progesterone, and testosterone are crucial for vertebrate brain functions by interacting with their specific receptors. In rabbits, these hormones regulate sexual behavior, scent marking, nest building, and nipple searching across different brain regions. However, information on sex hormone receptors in the rabbit brain is limited. We examined intracellular progesterone (PR), estrogen (ER), and androgen receptors (AR) in the rabbit brain. PR activation by progesterone is associated with pregnancy and maternal behaviors like nest building and nipple searching. PR is expressed in female and male rabbits' cerebral cortex, hypothalamus, preoptic area, and hippocampus. In males, it is also found in the olfactory bulb, mesencephalon, and cerebellum. Rabbits express two ER subtypes, ERα and ERβ, with different expression patterns and functions. The former is in the amygdala, bed nucleus of the stria terminalis, hippocampus, hypothalamus, preoptic area, septum, and thalamus of females. In males, ERα is expressed in the hypothalamus, olfactory bulb, prefrontal cortex, preoptic area, mesencephalon, and cerebellum. Both ERs are located in male rabbits' amygdala, claustrum, and hippocampus. ERs influence estrous behavior and chinning. ERα has a role in rabbit hippocampus development and plasticity. AR is expressed in male rabbit hypothalamus, olfactory bulb, prefrontal cortex, hippocampus, preoptic area, mesencephalon, and cerebellum, related to sexual behavior and chinning. Interestingly, sex hormones regulate their own receptor expression and those of other sex hormones. Thus, estradiol regulates PR expression. This review summarizes the expression and distribution of sex hormone receptors in the rabbit brain and their behavioral role.
Collapse
Affiliation(s)
- Beatriz Molina
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| |
Collapse
|
3
|
Serafini S, Angiolillo A, Ferretti G, Viviani G, Matrone C, Di Costanzo A. Exploring differences in circulating metabolites of females and males with Alzheimer's disease. J Cereb Blood Flow Metab 2025:271678X251340513. [PMID: 40377007 DOI: 10.1177/0271678x251340513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to cognitive and functional decline and primarily affects the elderly population. Metabolic alterations, particularly in the amino acid and fatty acid pathways, are increasingly being recognized in AD. However, the role of sex in these metabolic changes remains insufficiently understood, despite evidence suggesting that AD may manifest more strongly in females. This study investigated sex-specific metabolic patterns in AD by analyzing routine and non-routine hematological tests, including amino acids and fatty acid profiles. The results showed that certain metabolites such as citrulline and alanine were frequently altered in patients with AD. Notably, docosahexaenoic acid, dihomo-gamma-linolenic acid, and gamma-linolenic acid levels were exclusively elevated in female patients. Additionally, females exhibited significantly lower Aβ42 and higher gamma-linolenic acid levels than males, with the trend becoming more pronounced during the early stages of the disease. Despite these differences, most metabolic markers did not show significant sex-based variation. These findings suggest that while some sex-specific metabolic differences exist in AD, a larger cohort is needed to confirm these patterns and fully understand the influence of sex on AD-related metabolic changes.
Collapse
Affiliation(s)
- Sara Serafini
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences, "V.Tiberio", Centre for Research and Training in Medicine of Aging, University of Molise, Campobasso, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences, "V.Tiberio", Centre for Research and Training in Medicine of Aging, University of Molise, Campobasso, Italy
- Molise Regional Health Service, ASREM, Campobasso, Italy
| | - Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Naples, Italy
| | - Giulia Viviani
- Department of Medicine and Health Sciences, "V.Tiberio", Centre for Research and Training in Medicine of Aging, University of Molise, Campobasso, Italy
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Naples, Italy
| | - Alfonso Di Costanzo
- Department of Medicine and Health Sciences, "V.Tiberio", Centre for Research and Training in Medicine of Aging, University of Molise, Campobasso, Italy
- Molise Regional Health Service, ASREM, Campobasso, Italy
| |
Collapse
|
4
|
Losinski GM, Key MN, Vidoni ED, Clutton J, Morris JK, Burns JM, Watts A. APOE4 and chronic health risk factors are associated with sex-specific preclinical Alzheimer's disease neuroimaging biomarkers. Front Glob Womens Health 2025; 6:1531062. [PMID: 40444147 PMCID: PMC12119584 DOI: 10.3389/fgwh.2025.1531062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Introduction Two thirds of Alzheimer's disease (AD) patients are female. Genetic and chronic health risk factors for AD affect females more negatively compared to males. Objective This multimodal neuroimaging study aimed to examine sex differences in cognitively unimpaired older adults on: (1) amyloid-β via 18F-AV-45 Florbetapir PET imaging, (2) neurodegeneration via T1 weighted MRI volumetrics, (3) cerebral blood flow via ASL-MRI. We identified AD risk factors including genetic (APOE genotype status) and health markers (fasting glucose, mean arterial pressure, waist-to-hip ratio, and android and gynoid body fat) associated with neuroimaging outcomes for which we observed sex differences. Methods Participants were sedentary, amyloid-β positive older adults (N = 112, ages 65-87 years) without evidence of cognitive impairment (CDR = 0). Results Multivariate analysis of covariance models adjusted for intracranial volume, age, and years of education demonstrated lower volume [F (7, 102) = 2.67, p = 0.014] and higher blood flow F (6, 102) = 4.25, p ≤ 0.001) among females compared to males in regions of interest connected to AD pathology and the estrogen receptor network. We did not observe sex differences in amyloid-β levels. Higher than optimal waist to hip ratio was most strongly associated with lower volume among female participants. Discussion Findings suggest genetic and chronic health risk factors are associated with sex-specific AD neuroimaging biomarkers. Underlying sex-specific biological pathways may explain these findings. Our results highlight the importance of considering sex differences in neuroimaging studies and when developing effective interventions for AD prevention and risk reduction.
Collapse
Affiliation(s)
- Genna M. Losinski
- Department of Psychology, University of Kansas, Lawrence, KS, United States
| | - Mickeal N. Key
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Jonathan Clutton
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Jill K. Morris
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| | - Amber Watts
- Department of Psychology, University of Kansas, Lawrence, KS, United States
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Fairway, KS, United States
| |
Collapse
|
5
|
Bentall L, Parr‐Brownlie L. Sexual Dimorphism in Levodopa-Induced Dyskinesia Following Parkinson's Disease: Uncharted Territory. Eur J Neurosci 2025; 61:e70144. [PMID: 40360439 PMCID: PMC12075048 DOI: 10.1111/ejn.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/12/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Sexual dimorphism is well-documented in Parkinson's disease (PD); however, when it comes to levodopa-induced dyskinesia (LID), epidemiological and clinical findings are scarce. This is an oversight because recent studies show significant correlations between LID risk and female sex. Estrogen strongly impacts neuronal function, affecting cognitive tasks such as movement, object recognition, and reward. In movement pathways, estrogen increases dopamine synthesis, transmission, and regulation, resulting in neuroprotection for PD in women. However, following menopause, PD prevalence, symptom severity, and LID risk increase for women. Consequently, early to mid-life estrogen state is neuroprotective, but later in life becomes a risk factor for PD and LID. This review explores estrogen's action in the brain, specifically within the dopamine system. Sexual dimorphism is described for the prevalence and onset of PD and LID. We examine the cellular basis of estrogen's role in sexual dimorphism and integrate these ideas to hypothesize why the risk for LID is higher for women, than men, with PD. Lastly, this review proposes that women with PD need their symptoms to be considered and managed differently to males. Treatment of women with PD should be based on their menopausal stage, as estrogen may be masking, exacerbating, or complicating symptoms. Importantly, we present these concepts to stimulate discussion among clinical and bench scientists so that key experiments can be conducted to examine the mechanisms underlying LID, so they can be prevented to improve the quality of life for women and men living with PD in the future.
Collapse
|
6
|
Demetriou A, Lindqvist B, Ali HG, Shamekh MM, Varshney M, Inzunza J, Maioli S, Nilsson P, Nalvarte I. ERβ mediates sex-specific protection in the App-NL-G-F mouse model of Alzheimer's disease. Biol Sex Differ 2025; 16:29. [PMID: 40302001 PMCID: PMC12039102 DOI: 10.1186/s13293-025-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Menopausal loss of neuroprotective estrogen is thought to contribute to the sex differences in Alzheimer's disease (AD). Activation of estrogen receptor beta (ERβ) can be clinically relevant since it avoids the adverse systemic effects of ERα activation. However, very few studies have explored ERβ-mediated neuroprotection in AD, and no information on its contribution to the sex differences in AD exists. In the present study, we specifically explored the role of ERβ in mediating sex-specific protection against AD pathology in the AppNL-G-F knock-in mouse model of amyloidosis, and if surgical menopause (ovariectomy) modulates pathology in this model. METHODS We treated male and female AppNL-G-F knock-in mice with the clinically relevant and selective ERβ agonist LY500307. A subset of the females was ovariectomized prior to treatment. Y-maze and contextual fear conditioning tests were used to assess memory performance, and biochemical assays such as qPCR, immunohistochemistry, Western blot, and multiplex immunoassays, were used to evaluate amyloid pathology. RESULTS We found that Female AppNL-G-F mice had higher soluble Aβ levels in cortex and hippocampus than males and more activated microglia. ERβ activation protected against amyloid pathology and cognitive decline in both male and female AppNL-G-F mice. Although ovariectomy increased soluble amyloid beta (Aβ) in cortex and insoluble Aβ in hippocampus, as well as sustained neuroinflammation after ERβ activation, it had otherwise limited effects on pathology. We further identified that ERβ did not alter APP processing, but rather exerted its protection at least partly via microglia activation in a sex-specific manner. CONCLUSION Combined, we provide new understanding to the sex differences in AD by demonstrating that ERβ protects against AD pathology differently in males and females, warranting reassessment of ERβ in combating AD.
Collapse
Affiliation(s)
- Aphrodite Demetriou
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Visionsgatan 4, J9:20, 171 64, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Birgitta Lindqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57, Huddinge, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Heba G Ali
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Visionsgatan 4, J9:20, 171 64, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57, Huddinge, Sweden
- Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Mohamed M Shamekh
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Visionsgatan 4, J9:20, 171 64, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57, Huddinge, Sweden
- Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57, Huddinge, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57, Huddinge, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Visionsgatan 4, J9:20, 171 64, Solna, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Visionsgatan 4, J9:20, 171 64, Solna, Sweden
| | - Ivan Nalvarte
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Visionsgatan 4, J9:20, 171 64, Solna, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57, Huddinge, Sweden.
| |
Collapse
|
7
|
Cruz AGD, Santos JDMD, Alves EDS, Santos ARMD, Trinca BF, Camargo FND, Bovolin GF, Camporez JP. Metabolic effects of late-onset estradiol replacement in high-fat-fed ovariectomized mice. Curr Res Physiol 2025; 8:100144. [PMID: 40331103 PMCID: PMC12051062 DOI: 10.1016/j.crphys.2025.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Background Decreased estrogen levels in postmenopausal women negatively impact metabolic health. It is known that estradiol (E2) replacement can reverse this condition. However, there is no consensus on whether the effects mediated by E2 depend on the starting time of E2 replacement after menopause. We aimed to investigate the effects of different onset E2 treatments on glucose tolerance and metabolic parameters in high-fat-fed ovariectomized mice. Material and methods Eight-week-old female C57BL/6J mice were divided into three groups: SHAM, OVX, and E2, to evaluate three different time points of E2 replacement after ovariectomy: early (after 4 weeks), intermediate (after 12 weeks), and late replacement (after 20 weeks). E2 groups received treatment through subcutaneous pellets. Results E2 replacement improved the parameters analyzed independently of the time since ovariectomy, reducing body weight gain and fat mass, as well as increasing the percentage of lean mass. Glucose intolerance, fasting insulin, HOMA-IR, and cholesterol levels were also reduced after treatment with E2. In the liver, there was a decrease in triacylglycerol (TAG) deposition, with no difference in the expression of SREBP1 and ERα proteins. In the muscle, there was a decrease in TAG deposition. In periuterine adipose tissue, there was an increase in the expression of SREBP1, FASN, and SCD, with no difference in the expression of ERα. Conclusions Our findings reinforce the critical role of E2 in regulating both glucose and lipid metabolism and indicate that E2 action on metabolic health was not dependent on time since ovariectomy for the parameters analyzed.
Collapse
Affiliation(s)
| | | | - Ester dos Santos Alves
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | | | - Bruna Fantini Trinca
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Felipe Nunes de Camargo
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | | | - João Paulo Camporez
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| |
Collapse
|
8
|
Ibañez AM, Godoy Coto J, Martínez VR, Del Milagro Yeves A, Dolcetti FJC, Cervellini S, Echavarría L, Velez-Rueda JO, Lofeudo JM, Portiansky EL, Bellini MJ, Aiello EA, Ennis IL, De Giusti VC. Cardioprotection and neurobehavioral impact of swimming training in ovariectomized rats. GeroScience 2025; 47:2317-2334. [PMID: 39527177 PMCID: PMC11979057 DOI: 10.1007/s11357-024-01422-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular (CV) disease is the major cause of mortality. Estrogens (E) exert multiple CV and neuroprotective effects. During menopause, CV and cognitive pathologies increase dramatically. At present, it is known that E exert many of their beneficial effects through the G protein-coupled estrogen receptor (GPER). Exercise reduces the risk of developing CV diseases. Sodium/proton exchanger (NHE-1) is overexpressed in ovariectomized (OVX) rats, probably due to the increase in reactive oxidative species (ROS). Insulin-like growth factor 1 (IGF-1), the main humoral mediator of exercise, inhibits the NHE-1. We aim to explore the subcellular mechanisms involved in the heart and brain impact of physiological exercise in OVX rats. We speculate that physical training, via IGF-1, prevents the increase in ROS, improving heart and brain physiological functions during menopause. Exercise diminished cardiac ROS production and increased catalase (CAT) activity in OVX rats. In concordance, IGF-1 treatment reduces brain ROS, surely contributing to the improvement in brain behavior. Moreover, the aerobic routine was able to prevent, and IGF-1 therapy to revert, NHE-1 hyperactivity in OVX rats. Finally, our results confirm the proposed signaling pathway as IGF-1/PI3K-AKT/NO. Surprisingly, GPER inhibitor (G36) was able to abolish the IGF-1 effect, suggesting that directly or indirectly GPER is part of the IGF-1 pathway. We propose that IGF-1 is the main responsible for the protective effect of aerobic training both in the heart and brain in OVX rats. Moreover, we showed that not only it is possible to prevent but also to revert the menopause-induced NHE-1 hyperactivity by exercise/IGF-1 cascade.
Collapse
Affiliation(s)
- Alejandro Martín Ibañez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Valeria Romina Martínez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Alejandra Del Milagro Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Franco Juan Cruz Dolcetti
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Sofía Cervellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Lucía Echavarría
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Jorge Omar Velez-Rueda
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Juan Manuel Lofeudo
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Enrique Leo Portiansky
- Cátedra de Patología General- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata- CONICET, La Plata, Argentina
| | - María José Bellini
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"- Facultad de Ciencias Médicas, Universidad Nacionalde LaPlata-CONICET, La Plata, Argentina
| | - Ernesto Alejandro Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina
| | - Verónica Celeste De Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" La Plata- Facultad de Ciencias Médicas, Universidad Nacional de La Plata-CONICET, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
9
|
Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L. The role of estrogen in Alzheimer's disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 2025; 480:1983-1998. [PMID: 39088186 DOI: 10.1007/s11010-024-05071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Estrogens are pivotal regulators of brain function throughout the lifespan, exerting profound effects from early embryonic development to aging. Extensive experimental evidence underscores the multifaceted protective roles of estrogens on neurons and neurotransmitter systems, particularly in the context of Alzheimer's disease (AD) pathogenesis. Studies have consistently revealed a greater risk of AD development in women compared to men, with postmenopausal women exhibiting heightened susceptibility. This connection between sex factors and long-term estrogen deprivation highlights the significance of estrogen signaling in AD progression. Estrogen's influence extends to key processes implicated in AD, including amyloid precursor protein (APP) processing and neuronal health maintenance mediated by brain-derived neurotrophic factor (BDNF). Reduced BDNF expression, often observed in AD, underscores estrogen's role in preserving neuronal integrity. Notably, hormone replacement therapy (HRT) has emerged as a sex-specific and time-dependent strategy for primary cardiovascular disease (CVD) prevention, offering an excellent risk profile against aging-related disorders like AD. Evidence suggests that HRT may mitigate AD onset and progression in postmenopausal women, further emphasizing the importance of estrogen signaling in AD pathophysiology. This review comprehensively examines the physiological and pathological changes associated with estrogen in AD, elucidating the therapeutic potential of estrogen-based interventions such as HRT. By synthesizing current knowledge, it aims to provide insights into the intricate interplay between estrogen signaling and AD pathogenesis, thereby informing future research directions and therapeutic strategies for this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Li Q, Xiao N, Zhang H, Liang G, Lin Y, Qian Z, Yang X, Yang J, Fu Y, Zhang C, Liu A. Systemic aging and aging-related diseases. FASEB J 2025; 39:e70430. [PMID: 40022602 DOI: 10.1096/fj.202402479rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Aging is a biological process along with systemic and multiple organ dysfunction. It is more and more recognized that aging is a systemic disease instead of a single-organ functional disorder. Systemic aging plays a profound role in multiple diseases including neurodegenerative diseases, cardiovascular diseases, and malignant diseases. Aged organs communicate with other organs and accelerate aging. Skeletal muscle, heart, bone marrow, skin, and liver communicate with each other through organ-organ crosstalk. The crosstalk can be mediated by metabolites including lipids, glucose, short-chain fatty acids (SCFA), inflammatory cytokines, and exosomes. Metabolic disorders including hyperglycemia, hyperinsulinemia, and hypercholesterolemia caused by chronic diseases accelerate hallmarks of aging. Systemic aging leads to the destruction of systemic hemostasis, causes the release of inflammatory cytokines, senescence-associated secretory phenotype (SASP), and the imbalance of microbiota composition. Released inflammatory factors further aggregate senescence, which promotes the aging of multiple solid organs. Targeting senescence or delaying aging is emerging as a critical health strategy for solving age-related diseases, especially in the old population. In the current review, we will delineate the mechanisms of organ crosstalk in systemic aging and age-related diseases to provide therapeutic targets for delaying aging.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
11
|
Lee S, McAfee JC, Lee J, Gomez A, Ledford AT, Clarke D, Min H, Gerstein MB, Boyle AP, Sullivan PF, Beltran AS, Won H. Massively parallel reporter assay investigates shared genetic variants of eight psychiatric disorders. Cell 2025; 188:1409-1424.e21. [PMID: 39848247 PMCID: PMC11890967 DOI: 10.1016/j.cell.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/08/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025]
Abstract
A meta-genome-wide association study across eight psychiatric disorders has highlighted the genetic architecture of pleiotropy in major psychiatric disorders. However, mechanisms underlying pleiotropic effects of the associated variants remain to be explored. We conducted a massively parallel reporter assay to decode the regulatory logic of variants with pleiotropic and disorder-specific effects. Pleiotropic variants differ from disorder-specific variants by exhibiting chromatin accessibility that extends across diverse cell types in the neuronal lineage and by altering motifs for transcription factors with higher connectivity in protein-protein interaction networks. We mapped pleiotropic and disorder-specific variants to putative target genes using functional genomics approaches and CRISPR perturbation. In vivo CRISPR perturbation of a pleiotropic and a disorder-specific gene suggests that pleiotropy may involve the regulation of genes expressed broadly across neuronal cell types and with higher network connectivity.
Collapse
Affiliation(s)
- Sool Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica C McAfee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiseok Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro Gomez
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Austin T Ledford
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Declan Clarke
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| | - Hyunggyu Min
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark B Gerstein
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| | - Alan P Boyle
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Adriana S Beltran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Human Pluripotent Cell Core, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Wu Y, Chen Y, Liu F, Li K. The Immunomodulatory Role of Estrogen in Malaria: A Review of Sex Differences and Therapeutic Implications. Immun Inflamm Dis 2025; 13:e70148. [PMID: 39898752 PMCID: PMC11789271 DOI: 10.1002/iid3.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Malaria remains a significant global health challenge, with substantial mortality rates, particularly in tropical and subtropical regions. A notable sexual dimorphism exists in malaria, with males often experiencing higher infection and mortality rates compared to females. OBJECTIVE This review explores the role of estrogen in modulating immune responses to malaria, potentially explaining the observed sex differences. Estrogen, through its receptors, influences immune cell activation and cytokine production, which are critical in the immune response to malaria. RESULTS Utilizing data from the Global Burden of Disease (GBD) study, we analyzed sex differences in malaria burden in Central Sub-Saharan Africa from 2000 to 2021, revealing a significantly lower mortality burden for females compared to males. Epidemiological data and animal model results support the notion that estrogen plays a significant role in modulating immune responses to malaria. Estrogen receptors are widely expressed in immune cells, and estrogen can influence the activation, proliferation, and differentiation of these cells, thereby affecting cytokine production and immune response type. Additionally, selective estrogen receptor modulators (SERMs) show potential as therapeutic agents, with some studies demonstrating their efficacy in reducing parasitemia and improving malaria outcomes. CONCLUSION Understanding the sex differences in the pathogenesis of malaria is crucial for its prevention, treatment, and vaccine development. Estrogen's role in immune regulation highlights the need for sex-specific approaches in disease management.
Collapse
Affiliation(s)
- Ye Wu
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Ying‐Chun Chen
- Department of Laboratory Medicine, The Sixth Hospital of WuhanAffiliated Hospital of Jianghan UniversityWuhanPeople's Republic of China
| | - Fang‐Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| |
Collapse
|
13
|
Lin X, Zhou X, Liu X, Xia L, Cai J, Huang N, Luo Y, Wu W. Icaritin alleviates motor impairment and osteoporosis in Parkinson's disease mice via the ER-PI3K/Akt pathway. Sci Rep 2025; 15:3190. [PMID: 39863664 PMCID: PMC11762315 DOI: 10.1038/s41598-025-87429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests. Serum estradiol, FSH, LH levels were measured by ELISA, and the expression of PI3K/Akt signaling and apoptosis proteins was analyzed by Western blot. Bone mineral density was assessed via dual-energy X-ray absorption, and histology of the uterus and femur was performed. Results showed that ICT alleviated MPTP-induced motor deficits, increased serum estradiol, and improved uterine atrophy. At the molecular level, ICT activated the PI3K/Akt pathway, reduced apoptosis, and mitigated PD symptoms and osteoporosis induced by OVX. These findings suggest ICT may offer therapeutic potential in managing OVX-induced motor dysfunction and PD.
Collapse
Affiliation(s)
- Xianmei Lin
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Xinyu Zhou
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China
| | - Xingman Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Lingqiong Xia
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China
| | - Jing Cai
- Department of Neurology, First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Nanqu Huang
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China.
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi, Guizhou, China.
- Department of Geriatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 56300, Guizhou, China.
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi, Guizhou, China.
- Department of Geriatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Weidong Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
14
|
Alsaleem MA, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alrouji M, Yassen ASA, Alexiou A, Papadakis M, Batiha GES. Molecular Signaling Pathways of Quercetin in Alzheimer's Disease: A Promising Arena. Cell Mol Neurobiol 2024; 45:8. [PMID: 39719518 PMCID: PMC11668837 DOI: 10.1007/s10571-024-01526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment and memory deficit. Even with extensive research and studies, presently, there is no effective treatment for the management of AD. Besides, most of drugs used in the treatment of AD did not avert the AD neuropathology, and the disease still in a progressive status. For example, acetyl cholinesterase inhibitors are associated with many adverse effects, such as insomnia and nightmares. As well, acetylcholinesterase inhibitors augment cholinergic neurotransmission leading to the development of adverse effects related to high acetylcholine level, such as salivation, rhinorrhea, vomiting, loss of appetite, and seizure. Furthermore, tacrine has poor bioavailability and causes hepatotoxicity. These commonly used drugs do not manage the original causes of AD. For those reasons, natural products were repurposed for the treatment of AD and neurodegenerative diseases. It has been shown that phytochemicals produce neuroprotective effects against the development and progression of neurodegenerative diseases by different mechanisms, including antioxidant and anti-inflammatory effects. Quercetin (QCN) has been reported to exert an effective neuroprotective effect against AD and other neurodegenerative diseases by lessening oxidative stress. In this review, electronic databases such as PubMed, Scopus, and Web of Science were searched for possible relevant studies and article linking the effect of QCN on AD. Findings from this review highlighted that many studies highlighted different mechanistic signaling pathways regarding the neuroprotective effect of QCN in AD. Nevertheless, the precise molecular mechanism of QCN in AD was not completely clarified. Consequently, this review aims to discuss the molecular mechanism of QCN in AD.
Collapse
Affiliation(s)
- Mansour A Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir Ibn Hayyan Medical University, Kufa, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Asmaa S A Yassen
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- Department of Research and Development, Funogen, 11741, Athens, Greece
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
15
|
do Nascimento Silva J, Rodrigues BA, Kawamoto EM. Aged mice show a reduction in 5-HT neurons and decreased cellular activation in the dentate gyrus when exposed to acute running. Brain Struct Funct 2024; 230:7. [PMID: 39688729 DOI: 10.1007/s00429-024-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024]
Abstract
Serotonin (5-HT) is an important neurotransmitter for cognition and neurogenesis in the dentate gyrus (DG), which occurs via movement stimulation such as physical activity. Brain 5-HT function changes secondary to aging require further investigation. We evaluated whether aged animals would present changes in the number of 5-HT neurons in regions such as the dorsal (DRN) and median (MRN) raphe nuclei and possible changes in the rate of cellular activation in the DG in response to acute running, as a reduction in 5-HT neurons could contribute to a decline in neuronal activation in the DG in response to physical activity in aged mice. This study was conducted on adult (3 months old) and aged (19 months old) male and female mice. Immunohistochemistry, microscopic analysis, and treadmill-running tests were also performed. The data revealed that in aged mice, a reduction in the number of 5-HT neurons in the DRN and MRN of male and female mice was observed. The reduction in the DRN was greater in females. Furthermore, aged animals demonstrate a lower rate of c-Fos labeling in the DG when stimulated by physical exercise. These data indicate that aging may be associated with a reduction in the number of 5-HT neurons in the DRN and MRN, which may lead to a decline in 5-HT availability in the target regions, including the DG. The reduced c-Fos expression in the DG after running in aged mice indicates a decreased response to physical activity, which is potentially linked to serotonergic deficits.
Collapse
Affiliation(s)
- Josiane do Nascimento Silva
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Bianca Andrade Rodrigues
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
16
|
Losinski GM, Key MN, Vidoni ED, Clutton J, Morris JK, Burns JM, Watts A. APOE4 and Chronic Health Risk Factors are Associated with Sex-Specific Preclinical Alzheimer's Disease Neuroimaging Biomarkers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.21.24317732. [PMID: 39606325 PMCID: PMC11601779 DOI: 10.1101/2024.11.21.24317732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Introduction Two thirds of Alzheimer's disease (AD) patients are female. Genetic and chronic health risk factors for AD affect females more negatively compared to males. Objective This exploratory multimodal neuroimaging study aimed to examine sex differences in cognitively unimpaired older adults on: (1) amyloid-β via 18F-AV-45 Florbetapir PET imaging, (2) neurodegeneration via T1 weighted MRI volumetrics, (3) cerebral blood flow via ASL-MRI. We identified AD risk factors including genetic (APOE genotype status) and health markers (fasting glucose, mean arterial pressure, waist-to-hip ratio, and android and gynoid body fat) associated with neuroimaging outcomes for which we observed sex differences. Methods Participants were sedentary, amyloid-β positive older adults (N = 112, ages 65-87 years) without evidence of cognitive impairment (CDR = 0). Results Multivariate analysis of covariance models adjusted for intracranial volume, age, and years of education demonstrated lower volume (F (7, 102) = 2.67, p = 0.014) and higher blood flow F (6, 102) = 4.25, p =<0.001) among females compared to males in regions of interest connected to AD pathology and the estrogen receptor network. We did not observe sex differences in amyloid-β levels. Higher than optimal waist to hip ratio was most strongly associated with lower volume, while higher android fat percentage and APOE ε4 carrier status were most strongly associated with higher blood flow among female participants. Discussion Findings suggest genetic and chronic health risk factors are associated with sex-specific AD neuroimaging biomarkers. Underlying sex-specific biological pathways may explain these findings. Our results highlight the importance of considering sex differences in neuroimaging studies and when developing effective interventions for AD prevention and risk reduction.
Collapse
Affiliation(s)
| | - Mickeal N. Key
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Eric D. Vidoni
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Jonathan Clutton
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| | - Amber Watts
- Department of Psychology, University of Kansas
- University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center
| |
Collapse
|
17
|
Sanz-Martos AB, Roca M, Plaza A, Merino B, Ruiz-Gayo M, Olmo ND. Long-term saturated fat-enriched diets impair hippocampal learning and memory processes in a sex-dependent manner. Neuropharmacology 2024; 259:110108. [PMID: 39128582 DOI: 10.1016/j.neuropharm.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Consumption of saturated fat-enriched diets during adolescence has been closely associated with the reduction of hippocampal synaptic plasticity and the impairment of cognitive function. Nevertheless, the effect of long-term intake of these foods has not yet been studied. In the present study, we have investigated the effect of a treatment, lasting for 40 weeks, with a diet enriched in saturated fat (SOLF) on i) spatial learning and memory, ii) hippocampal synaptic transmission and plasticity, and iii) hippocampal gene expression levels in aged male and female mice. Our findings reveal that SOLF has a detrimental impact on spatial memory and synaptic plasticity mechanisms, such as long-term potentiation (LTP), and downregulates Gria1 expression specifically in males. In females, SOLF downregulates the gene expression of Gria1/2/3 and Grin1/2A/2B glutamate receptor subunits as well as some proinflammatory interleukins. These findings highlight the importance of considering sex-specific factors when assessing the long-term effects of high-fat diets on cognition and brain plasticity.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain.
| | - María Roca
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain
| | - Adrián Plaza
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, 28668, Madrid, Spain
| | - Nuria Del Olmo
- Department of Psychobiology, School of Psychology, UNED, C/ Juan del Rosal 10, 28040, Madrid, Spain
| |
Collapse
|
18
|
Gozlan E, Lewit-Cohen Y, Frenkel D. Sex Differences in Astrocyte Activity. Cells 2024; 13:1724. [PMID: 39451242 PMCID: PMC11506538 DOI: 10.3390/cells13201724] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are essential for maintaining brain homeostasis. Alterations in their activity have been associated with various brain pathologies. Sex differences were reported to affect astrocyte development and activity, and even susceptibility to different neurodegenerative diseases. This review aims to summarize the current knowledge on the effects of sex on astrocyte activity in health and disease.
Collapse
Affiliation(s)
- Elisa Gozlan
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Yarden Lewit-Cohen
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Dan Frenkel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Giona L, Musillo C, De Cristofaro G, Ristow M, Zarse K, Siems K, Tait S, Cirulli F, Berry A. Western diet-induced cognitive and metabolic dysfunctions in aged mice are prevented by rosmarinic acid in a sex-dependent fashion. Clin Nutr 2024; 43:2236-2248. [PMID: 39182436 DOI: 10.1016/j.clnu.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS Unhealthy lifestyles, such as chronic consumption of a Western Diet (WD), have been associated with increased systemic inflammation and oxidative stress (OS), a condition that may favour cognitive dysfunctions during aging. Polyphenols, such as rosmarinic acid (RA) may buffer low-grade inflammation and OS, characterizing the aging brain that is sustained by WD, promoting healthspan. The aim of this study was to evaluate the ability of RA to prevent cognitive decline in a mouse model of WD-driven unhealthy aging and to gain knowledge on the specific molecular pathways modulated within the brain. METHODS Aged male and female C57Bl/6N mice were supplemented either with RA or vehicle for 6 weeks. Following 2 weeks on RA they started being administered either with WD or control diet (CD). Successively all mice were tested for cognitive abilities in the Morris water maze (MWM) and emotionality in the elevated plus maze (EPM). Glucose and lipid homeostasis were assessed in trunk blood while the hippocampus was dissected out for RNAseq transcriptomic analysis. RESULTS RA prevented insulin resistance in males while protecting both males and females from WD-dependent memory impairment. In the hippocampus, RA modulated OS pathways in males and immune- and sex hormones-related signalling cascades (Lhb and Lhcgr genes) in females. Moreover, RA overall resulted in an upregulation of Glp1r, recently identified as a promising target to prevent metabolic derangements. In addition, we also found an RA-dependent enrichment in nuclear transcription factors, such as NF-κB, GR and STAT3, that have been recently suggested to promote healthspan and longevity by modulating inflammatory and cell survival pathways. CONCLUSIONS Oral RA supplementation may promote brain and metabolic plasticity during aging through antioxidant and immune-modulating properties possibly affecting the post-reproductive hormonal milieu in a sex-dependent fashion. Thus, its supplementation should be considered in the context of precision medicine as a possible strategy to preserve cognitive functions and to counteract metabolic derangements.
Collapse
Affiliation(s)
- Letizia Giona
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Program in Science of Nutrition, Metabolism, Ageing and Gender-Related Diseases, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Chiara Musillo
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Gaia De Cristofaro
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Michael Ristow
- Institute of Experimental Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin D-10117, Germany.
| | - Kim Zarse
- Institute of Experimental Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin D-10117, Germany.
| | | | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Alessandra Berry
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
20
|
Mading A, Chotritthirong Y, Chulikhit Y, Daodee S, Boonyarat C, Khamphukdee C, Sukketsiri W, Kwankhao P, Pitiporn S, Monthakantirat O. Effectiveness of Tri-Kaysorn-Mas Extract in Ameliorating Cognitive-like Behavior Deficits in Ovariectomized Mice via Activation of Multiple Mechanisms. Pharmaceuticals (Basel) 2024; 17:1182. [PMID: 39338344 PMCID: PMC11435318 DOI: 10.3390/ph17091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Postmenopausal women have a higher probability of experiencing cognitive alterations compared to men, suggesting that the decline in female hormones may contribute to cognitive deterioration. Thailand traditionally uses Tri-Kaysorn-Mas (TKM), a blend of three medicinal herbs, as a tonic to stimulate appetite and relieve dyspepsia. Due to its antioxidant and anti-acetylcholinesterase activities, we investigated the effects of TKM (50 and 100 mg/kg/day, p.o., for 8 weeks) on cognitive deficits and their underlying causes in an ovariectomized (OVX) mouse model of menopause. OVX mice showed cognitive impairment in the Y-maze, novel object recognition task (NORT), and Morris water maze (MWM) behavioral tests, along with atrophic changes to the uterus, altered levels of serum 17β-estradiol, and down-regulated expression of estrogen receptors (ERα and ERβ). These behavioral effects were reversed by TKM. TKM decreased malondialdehyde (MDA) levels and mitigated oxidative stress in the brain by enhancing the activity of superoxide dismutase (SOD) and catalase (CAT) and by up-regulating the antioxidant-related gene Nrf2 while down-regulating Keap1. TKM also counteracted OVX-induced neurodegeneration by enhancing the expression of the neurogenesis-related genes BDNF and CREB. The results indicate that TKM extract alleviates oxidative brain damage and neurodegeneration while enhancing cognitive behavior in OVX mice, significantly improving cognitive deficiencies related to menopause/ovariectomy through multiple targets.
Collapse
Affiliation(s)
- Abdulwaris Mading
- Graduate School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.M.); (Y.C.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Yutthana Chotritthirong
- Graduate School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.M.); (Y.C.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Supawadee Daodee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Chantana Boonyarat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| | - Charinya Khamphukdee
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Kaen University, Khon Kaen 40002, Thailand;
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Pakakrong Kwankhao
- Department of Pharmacy, Chao Phya Abhaibhubejhr Hospital, Ministry of Public Health, Prachinburi 25000, Thailand; (P.K.); (S.P.)
| | - Supaporn Pitiporn
- Department of Pharmacy, Chao Phya Abhaibhubejhr Hospital, Ministry of Public Health, Prachinburi 25000, Thailand; (P.K.); (S.P.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (Y.C.); (S.D.); (C.B.)
| |
Collapse
|
21
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
22
|
López-Cerdán A, Andreu Z, Hidalgo MR, Soler-Sáez I, de la Iglesia-Vayá M, Mikozami A, Guerini FR, García-García F. An integrated approach to identifying sex-specific genes, transcription factors, and pathways relevant to Alzheimer's disease. Neurobiol Dis 2024; 199:106605. [PMID: 39009097 DOI: 10.1016/j.nbd.2024.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Age represents a significant risk factor for the development of Alzheimer's disease (AD); however, recent research has documented an influencing role of sex in several features of AD. Understanding the impact of sex on specific molecular mechanisms associated with AD remains a critical challenge to creating tailored therapeutic interventions. METHODS The exploration of the sex-based differential impact on disease (SDID) in AD used a systematic review to first select transcriptomic studies of AD with data regarding sex in the period covering 2002 to 2021 with a focus on the primary brain regions affected by AD - the cortex (CT) and the hippocampus (HP). A differential expression analysis for each study and two tissue-specific meta-analyses were then performed. Focusing on the CT due to the presence of significant SDID-related alterations, a comprehensive functional characterization was conducted: protein-protein network interaction and over-representation analyses to explore biological processes and pathways and a VIPER analysis to estimate transcription factor activity. RESULTS We selected 8 CT and 5 HP studies from the Gene Expression Omnibus (GEO) repository for tissue-specific meta-analyses. We detected 389 significantly altered genes in the SDID comparison in the CT. Generally, female AD patients displayed more affected genes than males; we grouped said genes into six subsets according to their expression profile in female and male AD patients. Only subset I (repressed genes in female AD patients) displayed significant results during functional profiling. Female AD patients demonstrated more significant impairments in biological processes related to the regulation and organization of synapsis and pathways linked to neurotransmitters (glutamate and GABA) and protein folding, Aβ aggregation, and accumulation compared to male AD patients. These findings could partly explain why we observe more pronounced cognitive decline in female AD patients. Finally, we detected 23 transcription factors with different activation patterns according to sex, with some associated with AD for the first time. All results generated during this study are readily available through an open web resource Metafun-AD (https://bioinfo.cipf.es/metafun-ad/). CONCLUSION Our meta-analyses indicate the existence of differences in AD-related mechanisms in female and male patients. These sex-based differences will represent the basis for new hypotheses and could significantly impact precision medicine and improve diagnosis and clinical outcomes in AD patients.
Collapse
Affiliation(s)
- Adolfo López-Cerdán
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain; Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Irene Soler-Sáez
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Akiko Mikozami
- Oral Health/Brain Health/Total health (OBT) Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Francisco García-García
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.
| |
Collapse
|
23
|
Cipriano GL, Mazzon E, Anchesi I. Estrogen Receptors: A New Frontier in Alzheimer's Disease Therapy. Int J Mol Sci 2024; 25:9077. [PMID: 39201762 PMCID: PMC11354998 DOI: 10.3390/ijms25169077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is a long-term neurodegenerative condition that leads to the deterioration of neurons and synapses in the cerebral cortex, resulting in severe dementia. AD is significantly more prevalent in postmenopausal women, suggesting a neuroprotective role for estrogen. Estrogen is now known to regulate a wide array of physiological functions in the body by interacting with three known estrogen receptors (ERs) and with the β-amyloid precursor protein, a key factor in AD pathogenesis. Recent experimental evidence indicates that new selective ER modulators and phytoestrogens may be promising treatments for AD for their neuroprotective and anti-apoptotic properties. These alternatives may offer fewer side effects compared to traditional hormone therapies, which are associated with risks such as cardiovascular diseases, cancer, and metabolic dysfunctions. This review sheds light on estrogen-based treatments that may help to partially prevent or control the neurodegenerative processes characteristic of AD, paving the way for further investigation in the development of estrogen-based treatments.
Collapse
Affiliation(s)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.L.C.); (I.A.)
| | | |
Collapse
|
24
|
Le Menuet D, Charalampopoulos IN, Cunningham RL, Kalafatakis K, Nalvarte I. Editorial: Steroid receptors in neuron and glia. Front Endocrinol (Lausanne) 2024; 15:1472908. [PMID: 39205689 PMCID: PMC11349705 DOI: 10.3389/fendo.2024.1472908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Damien Le Menuet
- INSERM UMRS 1124 (T3S), Faculty of Basic and Biomedical Sciences, Université Paris Cité, Paris, France
| | - Ioannis N. Charalampopoulos
- Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Crete, Greece
| | - Rebecca L. Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Konstantinos Kalafatakis
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- School of Medicine, University of Crete, Heraklion, Greece
| | - Ivan Nalvarte
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
25
|
Sbrini G, Mutti V, Bono F, Tomasoni Z, Fadel D, Missale C, Fiorentini C. 17-β-estradiol potentiates the neurotrophic and neuroprotective effects mediated by the dopamine D3/acetylcholine nicotinic receptor heteromer in dopaminergic neurons. Eur J Pharmacol 2024; 976:176678. [PMID: 38821163 DOI: 10.1016/j.ejphar.2024.176678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Dopaminergic neurons express a heteromer composed of the dopamine D3 receptor and the α4β2 nicotinic acetylcholine receptor, the D3R-nAChR heteromer, activated by both nicotine and dopamine D2 and D3 receptors agonists, such as quinpirole, and crucial for dopaminergic neuron homeostasis. We now report that D3R-nAChR heteromer activity is potentiated by 17-β-estradiol which acts as a positive allosteric modulator by binding a specific domain on the α4 subunit of the nicotinic receptor protomer. In mouse dopaminergic neurons, in fact, 17-β-estradiol significantly increased the ability of nicotine and quinpirole in promoting neuron dendritic remodeling and in protecting neurons against the accumulation of α-synuclein induced by deprivation of glucose, with a mechanism that does not involve the classical estrogen receptors. The potentiation induced by 17-β-estradiol required the D3R-nAChR heteromer since either nicotinic receptor or dopamine D3 receptor antagonists and interfering TAT-peptides, but not the estrogen receptor antagonist fulvestrant, specifically prevented 17-β-estradiol effects. Evidence of estrogens neuroprotection, mainly mediated by genomic mechanisms, have been provided, which is in line with epidemiological data reporting that females are less likely to develop Parkinson's Disease than males. Therefore, potentiation of D3R-nAChR heteromer activity may represent a further mechanism by which 17-β-estradiol reduces dopaminergic neuron vulnerability.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Veronica Mutti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Zaira Tomasoni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Dounia Fadel
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
26
|
Arjmand S, Ilaghi M, Sisakht AK, Guldager MB, Wegener G, Landau AM, Gjedde A. Regulation of mitochondrial dysfunction by estrogens and estrogen receptors in Alzheimer's disease: A focused review. Basic Clin Pharmacol Toxicol 2024; 135:115-132. [PMID: 38801027 DOI: 10.1111/bcpt.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily manifests itself by progressive memory loss and cognitive decline, thus significantly affecting memory functions and quality of life. In this review, we proceed from the understanding that the canonical amyloid-β hypothesis, while significant, has faced setbacks, highlighting the need to adopt a broader perspective considering the intricate interplay of diverse pathological pathways for effective AD treatments. Sex differences in AD offer valuable insights into a better understanding of its pathophysiology. Fluctuation of the levels of ovarian sex hormones during perimenopause is associated with changes in glucose metabolism, as a possible window of opportunity to further understand the roles of sex steroid hormones and their associated receptors in the pathophysiology of AD. We review these dimensions, emphasizing the potential of estrogen receptors (ERs) to reveal mitochondrial functions in the search for further research and therapeutic strategies for AD pharmacotherapy. Understanding and addressing the intricate interactions of mitochondrial dysfunction and ERs potentially pave the way for more effective approaches to AD therapy.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karimi Sisakht
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Matti Bock Guldager
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
28
|
Demetriou A, Lindqvist B, Ali HG, Shamekh MM, Maioli S, Inzunza J, Varshney M, Nilsson P, Nalvarte I. ERβ mediates sex-specific protection in the App-NL-G-F mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604543. [PMID: 39091856 PMCID: PMC11291054 DOI: 10.1101/2024.07.22.604543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Menopausal loss of neuroprotective estrogen is thought to contribute to the sex differences in Alzheimer's disease (AD). Activation of estrogen receptor beta (ERβ) can be clinically relevant since it avoids the negative systemic effects of ERα activation. However, very few studies have explored ERβ-mediated neuroprotection in AD, and no information on its contribution to the sex differences in AD exists. In the present study we specifically explored the role of ERβ in mediating sex-specific protection against AD pathology in the clinically relevant App NL-G-F knock-in mouse model of amyloidosis, and if surgical menopause (ovariectomy) modulates pathology in this model. We treated male and female App NL-G-F mice with the selective ERβ agonist LY500307 and subset of the females was ovariectomized prior to treatment. Memory performance was assessed and a battery of biochemical assays were used to evaluate amyloid pathology and neuroinflammation. Primary microglial cultures from male and female wild-type and ERβ-knockout mice were used to assess ERβ's effect on microglial activation and phagocytosis. We find that ERβ activation protects against amyloid pathology and cognitive decline in male and female App NL-G-F mice. Ovariectomy increased soluble amyloid beta (Aβ) in cortex and insoluble Aβ in hippocampus, but had otherwise limited effects on pathology. We further identify that ERβ does not alter APP processing, but rather exerts its protection through amyloid scavenging that at least in part is mediated via microglia in a sex-specific manner. Combined, we provide new understanding to the sex differences in AD by demonstrating that ERβ protects against AD pathology differently in males and females, warranting reassessment of ERβ in combating AD.
Collapse
Affiliation(s)
- Aphrodite Demetriou
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Birgitta Lindqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Heba G. Ali
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
- Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Mohamed M. Shamekh
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
- Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
29
|
Pai SK. Why women may be more prone to Alzheimer's disease. AGING BRAIN 2024; 6:100121. [PMID: 39044776 PMCID: PMC11263948 DOI: 10.1016/j.nbas.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Sadashiva K Pai
- Science Mission LLC, Founder & CEO, 3424 Canyon Lake Dr, Little Elm, TX 75068, United States
| |
Collapse
|
30
|
Swanson KA, Nguyen KL, Gupta S, Ricard J, Bethea JR. TNFR1/p38αMAPK signaling in Nex + supraspinal neurons regulates estrogen-dependent chronic neuropathic pain. Brain Behav Immun 2024; 119:261-271. [PMID: 38570102 PMCID: PMC11162907 DOI: 10.1016/j.bbi.2024.03.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024] Open
Abstract
Upregulation of soluble tumor necrosis factor (sTNF) cytokine signaling through TNF receptor 1 (TNFR1) and subsequent neuronal hyperexcitability are observed in both animal models and human chronic neuropathic pain (CNP). Previously, we have shown that estrogen modulates sTNF/TNFR1 signaling in CNP, which may contribute to female prevalence of CNP. The estrogen-dependent role of TNFR1-mediated supraspinal neuronal circuitry in CNP remains unknown. In this study, we interrogated the intersect between supraspinal TNFR1 mediated neuronal signaling and sex specificity by selectively removing TNFR1 in Nex + neurons in adult mice (NexCreERT2::TNFR1f/f). We determined that mechanical hypersensitivity induced by chronic constriction injury (CCI) decreases over time in males, but not in females. Subsequently, we investigated two downstream pathways, p38MAPK and NF-κB, important in TNFR1 signaling and injury response. We detected p38MAPK and NF-κB activation in male cortical tissue; however, p38MAPK phosphorylation was reduced in NexCreERT2::TNFR1f/f males. We observed a similar recovery from acute pain in male mice following CCI when p38αMAPK was knocked out of supraspinal Nex + neurons (NexCreERT2::p38αMAPKf/f), while chronic pain developed in female mice. To explore the intersection between estrogen and inflammation in CNP we used a combination therapy of an estrogen receptor β (ER β) inhibitor with a sTNF/TNFR1 or general p38MAPK inhibitor. We determined both combination therapies lends therapeutic relief to females following CCI comparable to the response evaluated in male mice. These data suggest that TNFR1/p38αMAPK signaling in Nex + neurons in CNP is male-specific and lack of therapeutic efficacy following sTNF inhibition in females is due to ER β interference. These studies highlight sex-specific differences in pathways important to pain chronification and elucidate potential therapeutic strategies that would be effective in both sexes.
Collapse
Affiliation(s)
- Kathryn A Swanson
- Department of Biology, Drexel University, Papadakis Integrated Science Building, Philadelphia, PA 19104, USA
| | - Kayla L Nguyen
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA.
| | - Shruti Gupta
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA
| | - Jerome Ricard
- Department of Biology, Drexel University, Papadakis Integrated Science Building, Philadelphia, PA 19104, USA
| | - John R Bethea
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Ross Hall, 2300 I (Eye) St NW, Rm.530A, Washington, D.C 20052, USA.
| |
Collapse
|
31
|
Rishabh, Rohilla M, Bansal S, Bansal N, Chauhan S, Sharma S, Goyal N, Gupta S. Estrogen signalling and Alzheimer's disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci 2024; 60:3466-3490. [PMID: 38726764 DOI: 10.1111/ejn.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024]
Abstract
In females, Alzheimer's disease (AD) incidences increases as compared to males due to estrogen deficiency after menopause. Estrogen therapy is the mainstay therapy for menopause and associated complications. Estrogen, a hormone with multifaceted physiological functions, has been implicated in AD pathophysiology. Estrogen plays a crucial role in amyloid precursor protein (APP) processing and overall neuronal health by regulating various factors such as brain-derived neurotrophic factor (BDNF), intracellular calcium signalling, death domain-associated protein (Daxx) translocation, glutamatergic excitotoxicity, Voltage-Dependent Anion Channel, Insulin-Like Growth Factor 1 Receptor, estrogen-metabolising enzymes and apolipoprotein E (ApoE) protein polymorphisms. All these factors impact the physiology of postmenopausal women. Estrogen replacement therapies play an important treatment strategy to prevent AD after menopause. However, use of these therapies may lead to increased risks of breast cancer, venous thromboembolism and cardiovascular disease. Various therapeutic approaches have been used to mitigate the effects of estrogen on AD. These include hormone replacement therapy, Selective Estrogen Receptor Modulators (SERMs), Estrogen Receptor Beta (ERβ)-Selective Agonists, Transdermal Estrogen Delivery, Localised Estrogen Delivery, Combination Therapies, Estrogen Metabolism Modulation and Alternative Estrogenic Compounds like genistein from soy, a notable phytoestrogen from plant sources. However, mechanism via which these approaches modulate AD in postmenopausal women has not been explained earlier thoroughly. Present review will enlighten all the molecular mechanisms of estrogen and estrogen replacement therapies in AD. Along-with this, the association between estrogen, estrogen-metabolising enzymes and ApoE protein polymorphisms will also be discussed in postmenopausal AD.
Collapse
Affiliation(s)
- Rishabh
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sheenam Sharma
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Navjyoti Goyal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| |
Collapse
|
32
|
Mosconi L, Nerattini M, Matthews DC, Jett S, Andy C, Williams S, Yepez CB, Zarate C, Carlton C, Fauci F, Ajila T, Pahlajani S, Andrews R, Pupi A, Ballon D, Kelly J, Osborne JR, Nehmeh S, Fink M, Berti V, Dyke JP, Brinton RD. In vivo brain estrogen receptor density by neuroendocrine aging and relationships with cognition and symptomatology. Sci Rep 2024; 14:12680. [PMID: 38902275 PMCID: PMC11190148 DOI: 10.1038/s41598-024-62820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
17β-estradiol, the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo brain 18F-fluoroestradiol (18F-FES) Positron Emission Tomography (PET) study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age, plasma estradiol and sex hormone binding globulin, and were highly consistent, correctly classifying all women as being postmenopausal or premenopausal. Higher ER density in target regions was associated with poorer memory performance for both postmenopausal and perimenopausal groups, and predicted presence of self-reported mood and cognitive symptoms after menopause. These findings provide novel insights on brain ER density modulation by female neuroendocrine aging, with clinical implications for women's health.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Francesca Fauci
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Trisha Ajila
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Alberto Pupi
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Douglas Ballon
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - James Kelly
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Valentina Berti
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Roberta Diaz Brinton
- Department of Pharmacology and Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
33
|
Yoo J, Hur J, Yoo J, Jurivich D, Lee KJ. A novel approach to quantifying individual's biological aging using Korea's national health screening program toward precision public health. GeroScience 2024; 46:3387-3403. [PMID: 38302843 PMCID: PMC11009216 DOI: 10.1007/s11357-024-01079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Accurate prediction of biological age can inform public health measures to extend healthy lifespans and reduce chronic conditions. Multiple theoretical models and methods have been developed; however, their applicability and accuracy are still not extensive. Here, we report Differential Aging and Health Index (DAnHI), a novel measure of age deviation, developed using physical and serum biomarkers from four million individuals in Korea's National Health Screening Program. Participants were grouped into aging statuses (< 26 vs. ≥ 26, < 27 vs. ≥ 27, …, < 75 vs. ≥ 75 years) as response variables in a binary logistic regression model with thirteen biomarkers as independent variables. DAnHI for each individual was calculated as the weighted mean of their relative probabilities of being classified into each older age status, based on model ages ranging from 26 to 75. DAnHI in our large study population showed a steady increase with the increase in age and was positively associated with death after adjusting for chronological age. However, the effect size of DAnHI on the risk of death varied according to the age group and sex. The hazard ratio was highest in the 50-59-year age group and then decreased as the individuals aged. This study demonstrates that routine health check-up biomarkers can be integrated into a quantitative measure for predicting aging-related health status and death via appropriate statistical models and methodology. Our DAnHI-based results suggest that the same level of aging-related health status does not indicate the same degree of risk for death.
Collapse
Affiliation(s)
- Jinho Yoo
- YooJin BioSoft, 24, Jeongbalsan-Ro Ilsandong-Gu, Goyang-Si Gyeonggi-Do, 10402, Korea
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Jintae Yoo
- YooJin BioSoft, 24, Jeongbalsan-Ro Ilsandong-Gu, Goyang-Si Gyeonggi-Do, 10402, Korea
| | - Donald Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Kyung Ju Lee
- Department of Women's Rehabilitation, National Rehabilitation Center, 58, Samgaksan-Ro, Gangbuk-Gu, Seoul, 01022, Korea.
- Institute for Occupational & Environmental Health, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
34
|
Lv L, Jia F, Deng M, Di S, Chu T, Wang Y. Toxic mechanisms of imazalil, azoxystrobin and their mixture to hook snout carp (Opsariichthys bidens). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172022. [PMID: 38552970 DOI: 10.1016/j.scitotenv.2024.172022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
While combinations of pesticides better represent actual conditions within aquatic ecosystems, the specific toxic effects of these combinations have not been determined yet. The objective of this research was to assess the combined impact of imazalil and azoxystrobin on the hook snout carp (Opsariichthys bidens) and delve into the underlying causes. Our findings indicated that the 4-day LC50 value for imazalil (1.85 mg L-1) was greater than that for azoxystrobin (0.90 mg L-1). When imazalil and azoxystrobin were combined, they presented a heightened effect on the species. Enzyme activities like SOD, CAT, GST, and CarE, along with androgen and estrogen levels, displayed marked differences in most single and combined treatments in comparison to the baseline group. Moreover, four genes (mn-sod, cu-sod, il-1, and esr) related to oxidative stress, immunity, and the endocrine system exhibited more pronounced expression changes when exposed to combined pesticides rather than individual ones. Our tests revealed that the combined use of imazalil and azoxystrobin had more detrimental effect on aquatic vertebrates than when evaluated individually. This finding suggested that future ecological hazard analyses based only on individual tests might not sufficiently safeguard our aquatic ecosystems.
Collapse
Affiliation(s)
- Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Fangzhao Jia
- Zunyi City Company Suiyang Branch, Guizhou Province Tobacco Company, Suiyang, 563300, Guizhou, China
| | - Meihua Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Tianfen Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
35
|
Caldarelli M, Rio P, Marrone A, Ocarino F, Chiantore M, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Gut-Brain Axis: Focus on Sex Differences in Neuroinflammation. Int J Mol Sci 2024; 25:5377. [PMID: 38791415 PMCID: PMC11120930 DOI: 10.3390/ijms25105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
36
|
Goldberg C, Greenberg MR, Noveihed A, Agrawal L, Omene C, Toppmeyer D, George MA. Ovarian Suppression: Early Menopause, Late Effects. Curr Oncol Rep 2024; 26:427-438. [PMID: 38305992 DOI: 10.1007/s11912-023-01491-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE OF REVIEW Pre-menopausal women diagnosed with hormone receptor (HR) breast cancer are candidates for prolonged hypoestrogenism to improve cancer outcomes. However, the disease benefit eclipses the toxicities associated with ovarian function suppression (OFS), which are often under-reported. RECENT FINDINGS Increased risk of mortality from cardiovascular disease, bone disorders, and metabolic disorders is well reported in women with no history of cancer, after surgical oophorectomy or premature ovarian failure. Vasomotor symptoms, urogenital atrophy, weight gain, sexual dysfunction, cognitive decline, and sleep disturbances contribute to the increased non-compliance associated with OFS, especially in younger women. Balancing the toxicities of prolonged OFS with its benefits should be critically analyzed by providers when making recommendations for their patients. Supportive care to manage multi-system toxicities and to counteract the long-term impact on all-cause mortality should be emphasized by every cancer program. Future studies with OFS should incorporate patient outcomes and strategies for symptom management in addition to focusing on improving disease outcomes.
Collapse
Affiliation(s)
- Chaya Goldberg
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | | - Coral Omene
- Rutgers Cancer Institute of New Jersey, Rutgers, 195 Little Albany Street, New Brunswick, NJ, 08901, USA
| | - Deborah Toppmeyer
- Rutgers Cancer Institute of New Jersey, Rutgers, 195 Little Albany Street, New Brunswick, NJ, 08901, USA
| | - Mridula A George
- Rutgers Cancer Institute of New Jersey, Rutgers, 195 Little Albany Street, New Brunswick, NJ, 08901, USA.
- The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
37
|
Wang H, Sun Y, Wang W, Wang X, Zhang J, Bai Y, Wang K, Luan L, Yan J, Qin L. Mapping the 5-HTergic neural pathways in perimenopausal mice and elucidating the role of oestrogen receptors in 5-HT neurotransmission. Heliyon 2024; 10:e27976. [PMID: 38510058 PMCID: PMC10951590 DOI: 10.1016/j.heliyon.2024.e27976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Perimenopausal syndrome (PMS) encompasses neuropsychiatric symptoms, such as hot flashes and depression, which are associated with alterations in the 5-HTergic neural pathway in the brain. However, the specific changes and mechanisms underlying these alterations remain unclear. In this study, ovariectomized mice were used to successfully establish a perimenopause model, and the changes in the expression of 5-HT and its receptors (5-HT1AR and 5-HT2AR) across 72 brain regions in these ovariectomized mice were assessed by immunohistochemistry. Although both 5-HT and 5-HT1AR were widely expressed throughout the brain, only a limited number of regions expressed 5-HT2AR. Notably, decreased expression of 5-HT was observed across almost all brain regions in the ovariectomy (OVX) group compared with the Sham group. Altered expression of both receptors was found within areas related to hot flashes (the preoptic area) or mood disorders (the amygdala). Additionally, reduced oestrogen receptor (ER)α/β expression was detected in cells in the raphe nucleus (RN), an area known to regulate body temperature. Results showed that ERα/β positively regulate the transcriptional activity of the enzymes TPH2/MAOA, which are involved in serotonin metabolism during perimenopause. This study revealed the changes in 5-HT neuropathways (5-HT, 5-HT1AR and 5-HT2AR) in perimenopausal mice, mainly in brain regions related to regulation of the body temperature, mood, sleep and memory. This study clarified that the expression of oestrogen receptor decreased in perimenopause, which regulated the transcription levels of TPH2 and MAOA, and ultimately led to the reduction of 5-HT content, providing a new target for clinical diagnosis and treatment of perimenopausal diseases.
Collapse
Affiliation(s)
- Hanfei Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanrong Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wenjuan Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiangqiu Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jinglin Zhang
- Department of Dental Medicine, School of Dental Medicine, Yuncheng Vocational Nursing College, Yuncheng, 044000, China
| | - Yu Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ke Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liju Luan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Junhao Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lihua Qin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
38
|
Uchida K, Sugimoto T, Tange C, Nishita Y, Shimokata H, Saji N, Kuroda Y, Matsumoto N, Kishino Y, Ono R, Akisue T, Otsuka R, Sakurai T. Association between abdominal adiposity and cognitive decline in older adults: a 10-year community-based study. J Nutr Health Aging 2024; 28:100175. [PMID: 38308924 DOI: 10.1016/j.jnha.2024.100175] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVES This study aimed to investigate the association between abdominal adiposity and change in cognitive function in community-dwelling older adults. DESIGN, SETTING, AND PARTICIPANTS This longitudinal study included older adults aged ≥60 years without cognitive impairment who participated in the National Institute for Longevity Sciences - Longitudinal Study of Aging. MEASUREMENTS Cognitive function was evaluated biennially using the Mini-Mental State Examination (MMSE) over 10 years. Waist circumference (WC) was measured at the naval level, and subcutaneous fat area (SFA) and visceral fat area (VFA) were assessed using baseline computed tomography scans. WC, SFA, and VFA areas were stratified into sex-adjusted tertiles. A linear mixed model was applied separately for men and women. RESULTS This study included 873 older adults. In men, the groups with the highest levels of WC, SFA, and VFA exhibited a greater decline in MMSE score than the groups with the lowest levels (β [95% confidence interval]: WC, -0.12 [-0.23 to -0.01]; SFA, -0.13 [-0.24 to -0.02]; VFA, -0.11 [-0.22 to -0.01]). In women, the group with the highest level of WC and SFA showed a greater decline in MMSE score than the group with the lowest level (WC, -0.12 [-0.25 to -0.01]; SFA, -0.18 [-0.30 to -0.06]), but VFA was not associated with cognitive decline. CONCLUSION Higher WC, SFA, and VFA in men and higher WC and SFA in women were identified as risk factors for cognitive decline in later life, suggesting that abdominal adiposity involved in cognitive decline may differ according to sex.
Collapse
Affiliation(s)
- Kazuaki Uchida
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo 654-0142, Japan
| | - Taiki Sugimoto
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Chikako Tange
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Yukiko Nishita
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Hiroshi Shimokata
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi 470-0196, Japan
| | - Naoki Saji
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Yujiro Kuroda
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Nanae Matsumoto
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Yoshinobu Kishino
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Cognitive and Behavioral Science, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-855, Japan
| | - Rei Ono
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Osaka 566-0002, Japan; Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo 654-0142, Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo 654-0142, Japan
| | - Rei Otsuka
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Takashi Sakurai
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Cognitive and Behavioral Science, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-855, Japan; Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| |
Collapse
|
39
|
Yaldız B, Erdoğan O, Rafatov S, Iyigün C, Aydın Son Y. Revealing third-order interactions through the integration of machine learning and entropy methods in genomic studies. BioData Min 2024; 17:3. [PMID: 38291454 PMCID: PMC10826120 DOI: 10.1186/s13040-024-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Non-linear relationships at the genotype level are essential in understanding the genetic interactions of complex disease traits. Genome-wide association Studies (GWAS) have revealed statistical association of the SNPs in many complex diseases. As GWAS results could not thoroughly reveal the genetic background of these disorders, Genome-Wide Interaction Studies have started to gain importance. In recent years, various statistical approaches, such as entropy-based methods, have been suggested for revealing these non-additive interactions between variants. This study presents a novel prioritization workflow integrating two-step Random Forest (RF) modeling and entropy analysis after PLINK filtering. PLINK-RF-RF workflow is followed by an entropy-based 3-way interaction information (3WII) method to capture the hidden patterns resulting from non-linear relationships between genotypes in Late-Onset Alzheimer Disease to discover early and differential diagnosis markers. RESULTS Three models from different datasets are developed by integrating PLINK-RF-RF analysis and entropy-based three-way interaction information (3WII) calculation method, which enables the detection of the third-order interactions, which are not primarily considered in epistatic interaction studies. A reduced SNP set is selected for all three datasets by 3WII analysis by PLINK filtering and prioritization of SNP with RF-RF modeling, promising as a model minimization approach. Among SNPs revealed by 3WII, 4 SNPs out of 19 from GenADA, 1 SNP out of 27 from ADNI, and 4 SNPs out of 106 from NCRAD are mapped to genes directly associated with Alzheimer Disease. Additionally, several SNPs are associated with other neurological disorders. Also, the genes the variants mapped to in all datasets are significantly enriched in calcium ion binding, extracellular matrix, external encapsulating structure, and RUNX1 regulates estrogen receptor-mediated transcription pathways. Therefore, these functional pathways are proposed for further examination for a possible LOAD association. Besides, all 3WII variants are proposed as candidate biomarkers for the genotyping-based LOAD diagnosis. CONCLUSION The entropy approach performed in this study reveals the complex genetic interactions that significantly contribute to LOAD risk. We benefited from the entropy-based 3WII as a model minimization step and determined the significant 3-way interactions between the prioritized SNPs by PLINK-RF-RF. This framework is a promising approach for disease association studies, which can also be modified by integrating other machine learning and entropy-based interaction methods.
Collapse
Affiliation(s)
- Burcu Yaldız
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| | - Onur Erdoğan
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| | - Sevda Rafatov
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| | - Cem Iyigün
- Department of Industrial Engineering, METU, Ankara, Turkey
| | - Yeşim Aydın Son
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey.
- Graduate School of Informatics, ODTU-NOROM, METU, Ankara, Turkey.
| |
Collapse
|
40
|
Latorre-Leal M, Rodriguez-Rodriguez P, Franchini L, Nikolidakis O, Daniilidou M, Delac L, Varshney MK, Arroyo-García LE, Eroli F, Winblad B, Blennow K, Zetterberg H, Kivipelto M, Pacciarini M, Wang Y, Griffiths WJ, Björkhem I, Matton A, Nalvarte I, Merino-Serrais P, Cedazo-Minguez A, Maioli S. CYP46A1-mediated cholesterol turnover induces sex-specific changes in cognition and counteracts memory loss in ovariectomized mice. SCIENCE ADVANCES 2024; 10:eadj1354. [PMID: 38266095 PMCID: PMC10807813 DOI: 10.1126/sciadv.adj1354] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
- María Latorre-Leal
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Luca Franchini
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Orestis Nikolidakis
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Makrina Daniilidou
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ljerka Delac
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Mukesh K. Varshney
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Luis E. Arroyo-García
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Eroli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Miia Kivipelto
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Yuqin Wang
- Swansea University Medical School, SA2 8PP Swansea, UK
| | | | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Matton
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Paula Merino-Serrais
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, Madrid, Spain
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Yoon S, Kim YK. Endocrinological Treatment Targets for Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:3-25. [PMID: 39261421 DOI: 10.1007/978-981-97-4402-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Depressive disorder exhibits heterogeneity in clinical presentation, progression, and treatment outcomes. While conventional antidepressants based on the monoamine hypothesis benefit many patients, a significant proportion remains unresponsive or fails to fully recover. An individualized integrative treatment approach, considering diverse pathophysiologies, holds promise for these individuals. The endocrine system, governing physiological regulation and organ homeostasis, plays a pivotal role in central nervous system functions. Dysregulations in endocrine system are major cause of depressive disorder due to other medical conditions. Subtle endocrine abnormalities, such as subclinical hypothyroidism, are associated with depression. Conversely, depressive disorder correlates with endocrine-related biomarkers. Fluctuations in sex hormone levels related to female reproduction, elevate depression risk in susceptible subjects. Consequently, extensive research has explored treatment strategies involving the endocrine system. Treatment guidelines recommend tri-iodothyronine augmentation for resistant depression, while allopregnanolone analogs have gained approval for postpartum depression, with ongoing investigations for broader depressive disorders. This book chapter will introduce the relationship between the endocrine system and depressive disorders, presenting clinical findings on neuroendocrinological treatments for depression.
Collapse
Affiliation(s)
- Seoyoung Yoon
- Department of Psychiatry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Schwarz KG, Vicencio SC, Inestrosa NC, Villaseca P, Del Rio R. Autonomic nervous system dysfunction throughout menopausal transition: A potential mechanism underpinning cardiovascular and cognitive alterations during female ageing. J Physiol 2024; 602:263-280. [PMID: 38064358 DOI: 10.1113/jp285126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular diseases (CVD) and neurodegenerative disorders, such as Alzheimer's disease (AD), are highly prevalent conditions in middle-aged women that severely impair quality of life. Recent evidence suggests the existence of an intimate cross-talk between the heart and the brain, resulting from a complex network of neurohumoral circuits. From a pathophysiological perspective, the higher prevalence of AD in women may be explained, at least in part, by sex-related differences in the incidence/prevalence of CVD. Notably, the autonomic nervous system, the main heart-brain axis physiological orchestrator, has been suggested to play a role in the incidence of adverse cardiovascular events in middle-aged women because of decreases in oestrogen-related signalling during transition into menopause. Despite its overt relevance for public health, this hypothesis has not been thoroughly tested. Accordingly, in this review, we aim to provide up to date evidence supporting how changes in circulating oestrogen levels during transition to menopause may trigger autonomic dysfunction, thus promoting cardiovascular and cognitive decline in women. A main focus on the effects of oestrogen-mediated signalling at CNS structures related to autonomic regulation is provided, particularly on the role of oestrogens in sympathoexcitation. Improving the understanding of the contribution of the autonomic nervous system on the development, maintenance and/or progression of both cardiovascular and cognitive dysfunction during the transition to menopause should help improve the clinical management of elderly women, with the outcome being an improved life quality during the natural ageing process.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sinay C Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Paulina Villaseca
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
43
|
Zhou M, Zhang J, Zhao J, Liao M, Wang S, xu D, Zhao B, Yang C, Hou G, Tan J, Liu J, Zhang W, Yin L. Sex difference in cardiac performance in individuals with irregular shift work. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2023; 19:200219. [PMID: 37841448 PMCID: PMC10569979 DOI: 10.1016/j.ijcrp.2023.200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Background: sex differences existed in animal behavioral adaption and activity rhythms when exposed to chronic disruption of the circadian rhythm. Whether these differences extend to cardiac performance has not been fully investigated by cardiac imaging technology. Methods One hundred and thirty patients enrolled in this study. Patients were divided into the day shift (DS) group and the irregular shift (IRS) group based on whether involved in the night shift and the frequency of the night shift. Comparisons of clinical data and cardiac imaging parameters were performed to identify the sex difference in cardiac function in the participants with day shift work or irregular shifts. Results The absolute value of GLS was significantly lower in male IRS group than in male DS group. In females, no significant difference was tested in left ventricular function between the two groups. In male participants, Weekly work hours (WWH) was positively correlated with HR (r = 0.51, p = 0.02) and QTc duration (r = 0.68, p < 0.00), and weakly negatively correlated with the GLS (r = -0.38, p = 0.05). Amongst patients, there was a 2.67-fold higher relative risk (RR) for impaired GLS in males than in females, with a 95 % confidence interval (CI) of 1.20-5.61. Moreover, there was an increased risk in the male IRS group compared to the female IRS group to develop impaired GLS (RR:3.14, 95 % CI 1.20-7.84). Conclusions The present study suggests that chronic circadian disruption brings cardiac dysfunction in people with night-shift work. Gender differences exist in the impact of circadian rhythmicity on cardiac function and may help to guide the work schedule and breaks in shift workers and bring forward prevention strategies in response to chronic circadian disruption.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Junqing Zhang
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Jinyi Zhao
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Mingjiao Liao
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Siming Wang
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Da xu
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Bingyan Zhao
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Chuan Yang
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Guoqing Hou
- Department of Cardiology, Sichuan Provincial People's Hospital Wenjiang Hospital, China
| | - Jing Tan
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Jun Liu
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital, China
| | - Wenjun Zhang
- Department of Ultrasound in Medicine, Sichuan Provincial People's Hospital Wenjiang Hospital, Chengdu, China
| | - Lixue Yin
- Cardiovascular Ultrasound and Non-Invasive Cardiology Department, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
44
|
Maslahati T, Schultebraucks K, Galve Gómez M, Hellmann-Regen J, Otte C, Wingenfeld K, Roepke S. Effects of oral contraceptives on intrusive memories: a secondary analysis of two studies using the trauma film paradigm in healthy women. Eur J Psychotraumatol 2023; 14:2282003. [PMID: 38039055 PMCID: PMC10990444 DOI: 10.1080/20008066.2023.2282003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Women are more likely to develop post-traumatic stress disorder (PTSD) than men. Recent research suggests an impact of oral contraceptive (OC) intake on PTSD and intrusive memories, a hallmark symptom of PTSD. Although a majority of women use OCs at some point in their lives, the effects on PTSD pathogenesis are only poorly understood.Objective: In the current paper, we aimed to investigate the impact of OC intake on the acquisition and consolidation of intrusive memories in healthy women after watching a trauma film paradigm.Methods: We performed a secondary analysis of a pooled dataset (N = 437) of two previously conducted and published studies investigating the effect of oxytocin on the development of intrusive memories.Results: Women taking OCs showed an attenuated decline of intrusive memories over time after having watched the trauma film compared to naturally cycling women (F(2.75, 1167) = 3.79, p = .03, η p 2 = .01).Conclusion: These findings indicate that the intake of OCs is associated with the development of intrusive memories after a trauma film paradigm. This indication emphasizes the need to further investigate the complex impact of OCs and gonadal hormones on fear learning processes and PTSD.
Collapse
Affiliation(s)
- Tolou Maslahati
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Katharina Schultebraucks
- Department of Psychiatry, NYU Grossman School of Medicine, New York City, NY, USA
- Division of Healthcare Delivery Science, Department of Population Health, NYU Grossman School of Medicine, New York City, NY, USA
| | - Milagros Galve Gómez
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Julian Hellmann-Regen
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christian Otte
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Germany
| | - Katja Wingenfeld
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Germany
| | - Stefan Roepke
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
45
|
Youngblood H, Schoenlein PV, Pasquale LR, Stamer WD, Liu Y. Estrogen dysregulation, intraocular pressure, and glaucoma risk. Exp Eye Res 2023; 237:109725. [PMID: 37956940 PMCID: PMC10842791 DOI: 10.1016/j.exer.2023.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Characterized by optic nerve atrophy due to retinal ganglion cell (RGC) death, glaucoma is the leading cause of irreversible blindness worldwide. Of the major risk factors for glaucoma (age, ocular hypertension, and genetics), only elevated intraocular pressure (IOP) is modifiable, which is largely regulated by aqueous humor outflow through the trabecular meshwork. Glucocorticoids such as dexamethasone have long been known to elevate IOP and lead to glaucoma. However, several recent studies have reported that steroid hormone estrogen levels inversely correlate with glaucoma risk, and that variants in estrogen signaling genes have been associated with glaucoma. As a result, estrogen dysregulation may contribute to glaucoma pathogenesis, and estrogen signaling may protect against glaucoma. The mechanism for estrogen-related protection against glaucoma is not completely understood but likely involves both regulation of IOP homeostasis and neuroprotection of RGCs. Based upon its known activities, estrogen signaling may promote IOP homeostasis by affecting extracellular matrix turnover, focal adhesion assembly, actin stress fiber formation, mechanosensation, and nitric oxide production. In addition, estrogen receptors in the RGCs may mediate neuroprotective functions. As a result, the estrogen signaling pathway may offer a therapeutic target for both IOP control and neuroprotection. This review examines the evidence for a relationship between estrogen and IOP and explores the possible mechanisms by which estrogen maintains IOP homeostasis.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Patricia V Schoenlein
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; Department of Radiology and Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Surgery, Augusta University, Augusta, GA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Daniel Stamer
- Department of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
| |
Collapse
|
46
|
Umbayev B, Saliev T, Safarova (Yantsen) Y, Yermekova A, Olzhayev F, Bulanin D, Tsoy A, Askarova S. The Role of Cdc42 in the Insulin and Leptin Pathways Contributing to the Development of Age-Related Obesity. Nutrients 2023; 15:4964. [PMID: 38068822 PMCID: PMC10707920 DOI: 10.3390/nu15234964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related obesity significantly increases the risk of chronic diseases such as type 2 diabetes, cardiovascular diseases, hypertension, and certain cancers. The insulin-leptin axis is crucial in understanding metabolic disturbances associated with age-related obesity. Rho GTPase Cdc42 is a member of the Rho family of GTPases that participates in many cellular processes including, but not limited to, regulation of actin cytoskeleton, vesicle trafficking, cell polarity, morphology, proliferation, motility, and migration. Cdc42 functions as an integral part of regulating insulin secretion and aging. Some novel roles for Cdc42 have also been recently identified in maintaining glucose metabolism, where Cdc42 is involved in controlling blood glucose levels in metabolically active tissues, including skeletal muscle, adipose tissue, pancreas, etc., which puts this protein in line with other critical regulators of glucose metabolism. Importantly, Cdc42 plays a vital role in cellular processes associated with the insulin and leptin signaling pathways, which are integral elements involved in obesity development if misregulated. Additionally, a change in Cdc42 activity may affect senescence, thus contributing to disorders associated with aging. This review explores the complex relationships among age-associated obesity, the insulin-leptin axis, and the Cdc42 signaling pathway. This article sheds light on the vast molecular web that supports metabolic dysregulation in aging people. In addition, it also discusses the potential therapeutic implications of the Cdc42 pathway to mitigate obesity since some new data suggest that inhibition of Cdc42 using antidiabetic drugs or antioxidants may promote weight loss in overweight or obese patients.
Collapse
Affiliation(s)
- Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Aislu Yermekova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Denis Bulanin
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| |
Collapse
|
47
|
Brouillard A, Davignon LM, Turcotte AM, Marin MF. Morphologic alterations of the fear circuitry: the role of sex hormones and oral contraceptives. Front Endocrinol (Lausanne) 2023; 14:1228504. [PMID: 38027091 PMCID: PMC10661904 DOI: 10.3389/fendo.2023.1228504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Endogenous sex hormones and oral contraceptives (OCs) have been shown to influence key regions implicated in fear processing. While OC use has been found to impact brain morphology, methodological challenges remain to be addressed, such as avoiding selection bias between OC users and non-users, as well as examining potential lasting effects of OC intake. Objective We investigated the current and lasting effects of OC use, as well as the interplay between the current hormonal milieu and history of hormonal contraception use on structural correlates of the fear circuitry. We also examined the role of endogenous and exogenous sex hormones within this network. Methods We recruited healthy adults aged 23-35 who identified as women currently using (n = 62) or having used (n = 37) solely combined OCs, women who never used any hormonal contraceptives (n = 40), or men (n = 41). Salivary endogenous sex hormones and current users' salivary ethinyl estradiol (EE) were assessed using liquid chromatography - tandem mass spectrometry. Using structural magnetic resonance imaging, we extracted surface-based gray matter volumes (GMVs) and cortical thickness (CT) for regions of interest of the fear circuitry. Exploratory whole-brain analyses were conducted with surface-based and voxel-based morphometry methods. Results Compared to men, all three groups of women exhibited a larger GMV of the dorsal anterior cingulate cortex, while only current users showed a thinner ventromedial prefrontal cortex. Irrespective of the menstrual cycle phase, never users exhibited a thicker right anterior insular cortex than past users. While associations with endogenous sex hormones remain unclear, we showed that EE dosage in current users had a greater influence on brain anatomy compared to salivary EE levels and progestin androgenicity, with lower doses being associated with smaller cortical GMVs. Discussion Our results highlight a sex difference for the dorsal anterior cingulate cortex GMV (a fear-promoting region), as well as a reduced CT of the ventromedial prefrontal cortex (a fear-inhibiting region) specific to current OC use. Precisely, this finding was driven by lower EE doses. These findings may represent structural vulnerabilities to anxiety and stress-related disorders. We showed little evidence of durable anatomical effects, suggesting that OC intake can (reversibly) affect fear-related brain morphology.
Collapse
Affiliation(s)
- Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | - Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| | | | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal, QC, Canada
| |
Collapse
|
48
|
Brimienė I, Šiaudinytė M, Burokas A, Grikšienė R. Exploration of the association between menopausal symptoms, gastrointestinal symptoms, and perceived stress: survey-based analysis. Menopause 2023; 30:1124-1131. [PMID: 37788428 DOI: 10.1097/gme.0000000000002259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
OBJECTIVE The study aimed to evaluate the relationship between menopausal symptoms, gastrointestinal symptoms, and experienced stress in women from premenopause to postmenopause. METHODS We conducted a cross-sectional study using an anonymous survey that included questions on demographics, health (gynecological, gastrointestinal), and lifestyle (physical activity, sleep, etc) factors, the Perceived Stress Scale (PSS), and the Menopause-Specific Quality of Life Questionnaire (MENQOL). RESULTS Data of 693 participants aged 50.1 ± 3.2 years were analyzed. We found that the MENQOL total score increased depending on the stages of reproductive aging ( P < 0.001) and positively correlated with PSS scores ( r = 0.47, P < 0.001). Age, reproductive stage, body mass index (BMI), PSS score, diagnosis of depression or anxiety disorder, physical activity, and frequency of defecation appeared to have significant association with the total MENQOL score ( P < 0.05). The analysis within separate MENQOL domains revealed that PSS score and diagnosis of depression or anxiety disorder were associated with higher scores in all MENQOL domains ( P < 0.05) except sexual. Physical activity and the values of the Bristol stool form scale were related to the vasomotor items ( P < 0.05). The frequency of defecation was an independent contributor to the psychosocial and sexual domains ( P < 0.05). BMI, physical activity, and frequency of defecation were associated with physical symptoms ( P < 0.05). CONCLUSIONS Perceived stress and some gastrointestinal symptoms in women were associated with menopausal symptoms. Reproductive stages, physical activity, BMI, and previously diagnosed depression or anxiety disorder were related to the intensity of menopausal symptoms. However, further research is needed to confirm the relationship between stress, gastrointestinal, and menopausal symptoms.
Collapse
Affiliation(s)
| | | | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ramunė Grikšienė
- From the Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
49
|
Deng Z, Xie D, Cai J, Jiang J, Pan D, Liao H, Liu X, Xu Y, Li H, Shen Q, Lattanzi S, Xiao S, Tang Y. Different types of milk consumption and the risk of dementia: Analysis from a large-scale cohort study. Clin Nutr 2023; 42:2058-2067. [PMID: 37677911 DOI: 10.1016/j.clnu.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND & AIMS Previous studies have investigated whether milk consumption has a role in preventing the development of cognitive impairment, but the results were inconsistent. Importantly, most of them have disregarded the role of different types of milk. This study aimed to examine the associations between different types of milk consumption and the risk of dementia. METHODS In this large-scale cohort study, participants without cognitive impairment at baseline were included from the UK Biobank. The type of milk mainly used was self-reported at baseline, including full-cream milk, skimmed-milk, soy milk, other milk, and no milk. The primary outcome was all-cause dementia. Secondary outcomes included Alzheimer's disease and vascular dementia. RESULTS Of the 307,271 participants included in the study (mean age 56.3 [SD 8.1] years), 3789 (1.2%) incident all-cause dementia cases were observed over a median follow-up of 12.3 years. After adjustment for potential confounders, only soy milk consumers had a statistically significantly lower risk of all-cause dementia compared with no milk consumers (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.54 to 0.90). When compared with soy milk non-consumers consisting of full-cream milk, skimmed-milk, and other milk consumers, soy milk consumers still showed a lower risk of all-cause dementia (HR, 0.76; 95% CI, 0.63 to 0.92), and there was no significant interaction with genetic risk for dementia (P for interaction = 0.15). Soy milk consumers showed a lower risk of Alzheimer's disease (HR, 0.70; 95% CI, 0.51 to 0.94; P = 0.02), while the association was not significant for vascular dementia (HR, 0.72; 95% CI, 0.47 to 1.12; P = 0.14). CONCLUSIONS The main consumption of soy milk was associated with a lower risk of dementia, particularly non-vascular dementia. Additional studies are needed to investigate how this association varies with the dose or frequency of the consumption of soy milk and to examine the generalizability of these findings in different populations.
Collapse
Affiliation(s)
- Zhenhong Deng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dongshu Xie
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dong Pan
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Huanquan Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xingyi Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qingyu Shen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
50
|
Arjmand S, Bender D, Jakobsen S, Wegener G, Landau AM. Peering into the Brain's Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules 2023; 13:1405. [PMID: 37759805 PMCID: PMC10526964 DOI: 10.3390/biom13091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Estrogen receptors (ERs) play a multitude of roles in brain function and are implicated in various brain disorders. The use of positron emission tomography (PET) tracers for the visualization of ERs' intricate landscape has shown promise in oncology but remains limited in the context of brain disorders. Despite recent progress in the identification and development of more selective ligands for various ERs subtypes, further optimization is necessary to enable the reliable and efficient imaging of these receptors. In this perspective, we briefly touch upon the significance of estrogen signaling in the brain and raise the setbacks associated with the development of PET tracers for identification of specific ERs subtypes in the brain. We then propose avenues for developing efficient PET tracers to non-invasively study the dynamics of ERs in the brain, as well as neuropsychiatric diseases associated with their malfunction in a longitudinal manner. This perspective puts several potential candidates on the table and highlights the unmet needs and areas requiring further research to unlock the full potential of PET tracers for ERs imaging, ultimately aiding in deepening our understanding of ERs and forging new avenues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Dirk Bender
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
| | - Anne M. Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| |
Collapse
|