1
|
Brekke RS, Gravdal A, El Jellas K, Curry GE, Lin J, Wilhelm SJ, Steine SJ, Mas E, Johansson S, Lowe ME, Johansson BB, Xiao X, Fjeld K, Molven A. Common single-base insertions in the VNTR of the carboxyl ester lipase (CEL) gene are benign and also likely to arise somatically in the exocrine pancreas. Hum Mol Genet 2024; 33:1001-1014. [PMID: 38483348 PMCID: PMC11102595 DOI: 10.1093/hmg/ddae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 05/20/2024] Open
Abstract
The CEL gene encodes carboxyl ester lipase, a pancreatic digestive enzyme. CEL is extremely polymorphic due to a variable number tandem repeat (VNTR) located in the last exon. Single-base deletions within this VNTR cause the inherited disorder MODY8, whereas little is known about VNTR single-base insertions in pancreatic disease. We therefore mapped CEL insertion variants (CEL-INS) in 200 Norwegian patients with pancreatic neoplastic disorders. Twenty-eight samples (14.0%) carried CEL-INS alleles. Most common were insertions in repeat 9 (9.5%), which always associated with a VNTR length of 13 repeats. The combined INS allele frequency (0.078) was similar to that observed in a control material of 416 subjects (0.075). We performed functional testing in HEK293T cells of a set of CEL-INS variants, in which the insertion site varied from the first to the 12th VNTR repeat. Lipase activity showed little difference among the variants. However, CEL-INS variants with insertions occurring in the most proximal repeats led to protein aggregation and endoplasmic reticulum stress, which upregulated the unfolded protein response. Moreover, by using a CEL-INS-specific antibody, we observed patchy signals in pancreatic tissue from humans without any CEL-INS variant in the germline. Similar pancreatic staining was seen in knock-in mice expressing the most common human CEL VNTR with 16 repeats. CEL-INS proteins may therefore be constantly produced from somatic events in the normal pancreatic parenchyma. This observation along with the high population frequency of CEL-INS alleles strongly suggests that these variants are benign, with a possible exception for insertions in VNTR repeats 1-4.
Collapse
Affiliation(s)
- Ranveig S Brekke
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Anny Gravdal
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Khadija El Jellas
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Grace E Curry
- Department of Pediatrics, Washington University School of Medicine, Campus Box 8208, 660 South Euclid Ave, St. Louis, MO 63110, USA
| | - Jianguo Lin
- Department of Pediatrics, Washington University School of Medicine, Campus Box 8208, 660 South Euclid Ave, St. Louis, MO 63110, USA
| | - Steven J Wilhelm
- Department of Pediatrics, Washington University School of Medicine, Campus Box 8208, 660 South Euclid Ave, St. Louis, MO 63110, USA
| | - Solrun J Steine
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Eric Mas
- Cancer Research Center of Marseille, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, 27 Bd Leï Roure, 13273 Marseille Cedex 09, France
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Mark E Lowe
- Department of Pediatrics, Washington University School of Medicine, Campus Box 8208, 660 South Euclid Ave, St. Louis, MO 63110, USA
| | - Bente B Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Xunjun Xiao
- Department of Pediatrics, Washington University School of Medicine, Campus Box 8208, 660 South Euclid Ave, St. Louis, MO 63110, USA
| | - Karianne Fjeld
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
- Department of Pathology and Section for Cancer Genomics, Haukeland University Hospital, Jonas Lies vei 83, Bergen, Norway
| |
Collapse
|
2
|
Gravdal A, Xiao X, Cnop M, El Jellas K, Johansson S, Njølstad PR, Lowe ME, Johansson BB, Molven A, Fjeld K. The position of single-base deletions in the VNTR sequence of the carboxyl ester lipase (CEL) gene determines proteotoxicity. J Biol Chem 2021; 296:100661. [PMID: 33862081 PMCID: PMC8692231 DOI: 10.1016/j.jbc.2021.100661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Variable number of tandem repeat (VNTR) sequences in the genome can have functional consequences that contribute to human disease. This is the case for the CEL gene, which is specifically expressed in pancreatic acinar cells and encodes the digestive enzyme carboxyl ester lipase. Rare single-base deletions (DELs) within the first (DEL1) or fourth (DEL4) VNTR segment of CEL cause maturity-onset diabetes of the young, type 8 (MODY8), an inherited disorder characterized by exocrine pancreatic dysfunction and diabetes. Studies on the DEL1 variant have suggested that MODY8 is initiated by CEL protein misfolding and aggregation. However, it is unclear how the position of single-base deletions within the CEL VNTR affects pathogenic properties of the protein. Here, we investigated four naturally occurring CEL variants, arising from single-base deletions in different VNTR segments (DEL1, DEL4, DEL9, and DEL13). When the four variants were expressed in human embryonic kidney 293 cells, only DEL1 and DEL4 led to significantly reduced secretion, increased intracellular aggregation, and increased endoplasmic reticulum stress compared with normal CEL protein. The level of O-glycosylation was affected in all DEL variants. Moreover, all variants had enzymatic activity comparable with that of normal CEL. We conclude that the longest aberrant protein tails, resulting from single-base deletions in the proximal VNTR segments, have highest pathogenic potential, explaining why DEL1 and DEL4 but not DEL9 and DEL13 have been observed in patients with MODY8. These findings further support the view that CEL mutations cause pancreatic disease through protein misfolding and proteotoxicity, leading to endoplasmic reticulum stress and activation of the unfolded protein response.
Collapse
Affiliation(s)
- Anny Gravdal
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Xunjun Xiao
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Khadija El Jellas
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Mark E Lowe
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St Louis, Missouri, USA
| | - Bente B Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Karianne Fjeld
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Linthorst J, Meert W, Hestand MS, Korlach J, Vermeesch JR, Reinders MJT, Holstege H. Extreme enrichment of VNTR-associated polymorphicity in human subtelomeres: genes with most VNTRs are predominantly expressed in the brain. Transl Psychiatry 2020; 10:369. [PMID: 33139705 PMCID: PMC7608644 DOI: 10.1038/s41398-020-01060-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome harbors numerous structural variants (SVs) which, due to their repetitive nature, are currently underexplored in short-read whole-genome sequencing approaches. Using single-molecule, real-time (SMRT) long-read sequencing technology in combination with FALCON-Unzip, we generated a de novo assembly of the diploid genome of a 115-year-old Dutch cognitively healthy woman. We combined this assembly with two previously published haploid assemblies (CHM1 and CHM13) and the GRCh38 reference genome to create a compendium of SVs that occur across five independent human haplotypes using the graph-based multi-genome aligner REVEAL. Across these five haplotypes, we detected 31,680 euchromatic SVs (>50 bp). Of these, ~62% were comprised of repetitive sequences with 'variable number tandem repeats' (VNTRs), ~10% were mobile elements (Alu, L1, and SVA), while the remaining variants were inversions and indels. We observed that VNTRs with GC-content >60% and repeat patterns longer than 15 bp were 21-fold enriched in the subtelomeric regions (within 5 Mb of the ends of chromosome arms). VNTR lengths can expand to exceed a critical length which is associated with impaired gene transcription. The genes that contained most VNTRs, of which PTPRN2 and DLGAP2 are the most prominent examples, were found to be predominantly expressed in the brain and associated with a wide variety of neurological disorders. Repeat-induced variation represents a sizeable fraction of the genetic variation in human genomes and should be included in investigations of genetic factors associated with phenotypic traits, specifically those associated with neurological disorders. We make available the long and short-read sequence data of the supercentenarian genome, and a compendium of SVs as identified across 5 human haplotypes.
Collapse
Affiliation(s)
- Jasper Linthorst
- grid.484519.5Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands ,grid.5292.c0000 0001 2097 4740Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Wim Meert
- grid.5596.f0000 0001 0668 7884Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Matthew S. Hestand
- grid.5596.f0000 0001 0668 7884Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jonas Korlach
- grid.423340.20000 0004 0640 9878Pacific Biosciences, Menlo Park, CA USA
| | | | - Marcel J. T. Reinders
- grid.5292.c0000 0001 2097 4740Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Henne Holstege
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands. .,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands. .,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Dalva M, Lavik IK, El Jellas K, Gravdal A, Lugea A, Pandol SJ, Njølstad PR, Waldron RT, Fjeld K, Johansson BB, Molven A. Pathogenic Carboxyl Ester Lipase (CEL) Variants Interact with the Normal CEL Protein in Pancreatic Cells. Cells 2020; 9:cells9010244. [PMID: 31963687 PMCID: PMC7017060 DOI: 10.3390/cells9010244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the gene encoding the digestive enzyme carboxyl ester lipase (CEL) are linked to pancreatic disease. The CEL variant denoted CEL-HYB predisposes to chronic pancreatitis, whereas the CEL-MODY variant causes MODY8, an inherited disorder of endocrine and exocrine pancreatic dysfunction. Both pathogenic variants exhibit altered biochemical and cellular properties compared with the normal CEL protein (CEL-WT, wild type). We here aimed to investigate effects of CEL variants on pancreatic acinar and ductal cell lines. Following extracellular exposure, CEL-HYB, CEL-MODY, and CEL-WT were endocytosed. The two pathogenic CEL proteins significantly reduced cell viability compared with CEL-WT. We also found evidence of CEL uptake in primary human pancreatic acinar cells and in native ductal tissue. Moreover, coexpression of CEL-HYB or CEL-MODY with CEL-WT affected secretion of the latter, as CEL-WT was observed to accumulate intracellularly to a higher degree in the presence of either pathogenic variant. Notably, in coendocytosis experiments, both pathogenic variants displayed a modest effect on cell viability when CEL-WT was present, indicating that the normal protein might diminish toxic effects conferred by CEL-HYB and CEL-MODY. Taken together, our findings provide valuable insight into how the pathogenic CEL variants predispose to pancreatic disease and why these disorders develop slowly over time.
Collapse
Affiliation(s)
- Monica Dalva
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway; (M.D.); (I.K.L.); (K.E.J.); (A.G.); (K.F.); (A.M.)
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway;
- Department of Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Ida K. Lavik
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway; (M.D.); (I.K.L.); (K.E.J.); (A.G.); (K.F.); (A.M.)
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway;
| | - Khadija El Jellas
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway; (M.D.); (I.K.L.); (K.E.J.); (A.G.); (K.F.); (A.M.)
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway;
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Anny Gravdal
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway; (M.D.); (I.K.L.); (K.E.J.); (A.G.); (K.F.); (A.M.)
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway;
- Department of Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Aurelia Lugea
- Pancreatic Research Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.L.); (S.J.P.); (R.T.W.)
| | - Stephen J. Pandol
- Pancreatic Research Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.L.); (S.J.P.); (R.T.W.)
| | - Pål R. Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway;
- Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Richard T. Waldron
- Pancreatic Research Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.L.); (S.J.P.); (R.T.W.)
| | - Karianne Fjeld
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway; (M.D.); (I.K.L.); (K.E.J.); (A.G.); (K.F.); (A.M.)
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway;
- Department of Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Bente B. Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway;
- Correspondence: ; Tel.: +47-55971263
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway; (M.D.); (I.K.L.); (K.E.J.); (A.G.); (K.F.); (A.M.)
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway;
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
5
|
El Jellas K, Johansson BB, Fjeld K, Antonopoulos A, Immervoll H, Choi MH, Hoem D, Lowe ME, Lombardo D, Njølstad PR, Dell A, Mas E, Haslam SM, Molven A. The mucinous domain of pancreatic carboxyl-ester lipase (CEL) contains core 1/core 2 O-glycans that can be modified by ABO blood group determinants. J Biol Chem 2018; 293:19476-19491. [PMID: 30315106 DOI: 10.1074/jbc.ra118.001934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Carboxyl-ester lipase (CEL) is a pancreatic fat-digesting enzyme associated with human disease. Rare mutations in the CEL gene cause a syndrome of pancreatic exocrine and endocrine dysfunction denoted MODY8, whereas a recombined CEL allele increases the risk for chronic pancreatitis. Moreover, CEL has been linked to pancreatic ductal adenocarcinoma (PDAC) through a postulated oncofetal CEL variant termed feto-acinar pancreatic protein (FAPP). The monoclonal antibody mAb16D10 was previously reported to detect a glycotope in the highly O-glycosylated, mucin-like C terminus of CEL/FAPP. We here assessed the expression of human CEL in malignant pancreatic lesions and cell lines. CEL was not detectably expressed in neoplastic cells, implying that FAPP is unlikely to be a glycoisoform of CEL in pancreatic cancer. Testing of the mAb16D10 antibody in glycan microarrays then demonstrated that it recognized structures containing terminal GalNAc-α1,3(Fuc-α1,2)Gal (blood group A antigen) and also repeated protein sequences containing GalNAc residues linked to Ser/Thr (Tn antigen), findings that were supported by immunostainings of human pancreatic tissue. To examine whether the CEL glycoprotein might be modified by blood group antigens, we used high-sensitivity MALDI-TOF MS to characterize the released O-glycan pool of CEL immunoprecipitated from human pancreatic juice. We found that the O-glycome of CEL consisted mainly of core 1/core 2 structures with a composition depending on the subject's FUT2 and ABO gene polymorphisms. Thus, among digestive enzymes secreted by the pancreas, CEL is a glycoprotein with some unique characteristics, supporting the view that it could serve additional biological functions to its cholesteryl esterase activity in the duodenum.
Collapse
Affiliation(s)
- Khadija El Jellas
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Center for Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Aristotelis Antonopoulos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Heike Immervoll
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Ålesund Hospital, N-6017 Ålesund, Norway
| | - Man H Choi
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Dag Hoem
- Department of Gastrointestinal Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mark E Lowe
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Dominique Lombardo
- INSERM, CRO2, Center for Research in Biological Oncology and Oncopharmacology, Aix-Marseille University, 13284 Marseille Cedex 07, France
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Eric Mas
- INSERM, CRO2, Center for Research in Biological Oncology and Oncopharmacology, Aix-Marseille University, 13284 Marseille Cedex 07, France
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Anders Molven
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway, .,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
6
|
Lombardo D, Silvy F, Crenon I, Martinez E, Collignon A, Beraud E, Mas E. Pancreatic adenocarcinoma, chronic pancreatitis, and MODY-8 diabetes: is bile salt-dependent lipase (or carboxyl ester lipase) at the crossroads of pancreatic pathologies? Oncotarget 2018; 9:12513-12533. [PMID: 29552330 PMCID: PMC5844766 DOI: 10.18632/oncotarget.23619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases. The purpose of this review is to shed light on connections between chronic pancreatitis, diabetes, and pancreatic adenocarcinomas by gaining an insight into BSDL and its variants. This enzyme is normally secreted by the exocrine pancreas, and is diverted within the intestinal lumen to participate in the hydrolysis of dietary lipids. However, BSDL is also expressed by other cells and tissues, where it participates in lipid homeostasis. Variants of BSDL resulting from germline and/or somatic mutations (nucleotide insertion/deletion or nonallelic homologous recombination) are expressed in the pancreas of patients with pancreatic pathologies such as chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We discuss the possible link between the expression of BSDL variants and these dramatic pancreatic pathologies, putting forward the suggestion that BSDL and its variants are implicated in the cell lipid metabolism/reprogramming that leads to the dyslipidemia observed in chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We also propose potential strategies for translation to therapeutic applications.
Collapse
Affiliation(s)
- Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Emmanuelle Martinez
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Evelyne Beraud
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
7
|
Martinez E, Crenon I, Silvy F, Del Grande J, Mougel A, Barea D, Fina F, Bernard JP, Ouaissi M, Lombardo D, Mas E. Expression of truncated bile salt-dependent lipase variant in pancreatic pre-neoplastic lesions. Oncotarget 2017; 8:536-551. [PMID: 27602750 PMCID: PMC5352176 DOI: 10.18632/oncotarget.11777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/13/2016] [Indexed: 01/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a dismal disease. The lack of specific symptoms still leads to a delay in diagnosis followed by death within months for most patients. Exon 11 of the bile salt-dependent lipase (BSDL) gene encoding variable number of tandem repeated (VNTR) sequences has been involved in pancreatic pathologies. We hypothesized that BSDL VNTR sequences may be mutated in PDAC. The amplification of BSDL VNTR from RNA extracted from pancreatic SOJ-6 cells allowed us to identify a BSDL amplicon in which a cytosine residue is inserted in a VNTR sequence. This insertion gives rise to a premature stop codon, resulting in a truncated protein and to a modification of the C-terminal amino-acid sequence; that is PRAAHG instead of PAVIRF. We produced antibodies directed against these sequences and examined pancreatic tissues from patients with PDAC and PanIN. Albeit all tissues were positive to anti-PAVIRF antibodies, 72.2% of patient tissues gave positive reaction with anti-PRAAHG antibodies, particularly in dysplastic areas of the tumor. Neoplastic cells with ductal differentiation were not reactive to anti-PRAAHG antibodies. Some 70% of PanIN tissues were also reactive to anti-PRAAHG antibodies, suggesting that the C insertion occurs early during pancreatic carcinogenesis. Data suggest that anti-PRAAHG antibodies were uniquely reactive with a short isoform of BSDL specifically expressed in pre-neoplastic lesions of the pancreas. The detection of truncated BSDL reactive to antibodies against the PRAAHG C-terminal sequence in pancreatic juice or in pancreatic biopsies may be a new tool in the early diagnosis of PDAC.
Collapse
Affiliation(s)
- Emmanuelle Martinez
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Isabelle Crenon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Françoise Silvy
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Jean Del Grande
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service d'Anatomopathologie, Marseille, France
| | - Alice Mougel
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Dolores Barea
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Frederic Fina
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
- LBM- Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Service de transfert d'Oncologie Biologique, Marseille, France
| | - Jean-Paul Bernard
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service de Gastroentérologie 2, Marseille, France
| | - Mehdi Ouaissi
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service de Chirurgie Digestive et Viscérale, Marseille, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Eric Mas
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| |
Collapse
|
8
|
Fjeld K, Beer S, Johnstone M, Zimmer C, Mössner J, Ruffert C, Krehan M, Zapf C, Njølstad PR, Johansson S, Bugert P, Miyajima F, Liloglou T, Brown LJ, Winn SA, Davies K, Latawiec D, Gunson BK, Criddle DN, Pirmohamed M, Grützmann R, Michl P, Greenhalf W, Molven A, Sutton R, Rosendahl J. Length of Variable Numbers of Tandem Repeats in the Carboxyl Ester Lipase (CEL) Gene May Confer Susceptibility to Alcoholic Liver Cirrhosis but Not Alcoholic Chronic Pancreatitis. PLoS One 2016; 11:e0165567. [PMID: 27802312 PMCID: PMC5089759 DOI: 10.1371/journal.pone.0165567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Carboxyl-ester lipase (CEL) contributes to fatty acid ethyl ester metabolism, which is implicated in alcoholic pancreatitis. The CEL gene harbours a variable number of tandem repeats (VNTR) region in exon 11. Variation in this VNTR has been linked to monogenic pancreatic disease, while conflicting results were reported for chronic pancreatitis (CP). Here, we aimed to investigate a potential association of CEL VNTR lengths with alcoholic CP. METHODS Overall, 395 alcoholic CP patients, 218 patients with alcoholic liver cirrhosis (ALC) serving as controls with a comparable amount of alcohol consumed, and 327 healthy controls from Germany and the United Kingdom (UK) were analysed by determination of fragment lengths by capillary electrophoresis. Allele frequencies and genotypes of different VNTR categories were compared between the groups. RESULTS Twelve repeats were overrepresented in UK ACP patients (P = 0.04) compared to controls, whereas twelve repeats were enriched in German ALC compared to alcoholic CP patients (P = 0.03). Frequencies of CEL VNTR lengths of 14 and 15 repeats differed between German ALC patients and healthy controls (P = 0.03 and 0.008, respectively). However, in the genotype and pooled analysis of VNTR lengths no statistical significant association was depicted. Additionally, the 16-16 genotype as well as 16 repeats were more frequent in UK ALC than in alcoholic CP patients (P = 0.034 and 0.02, respectively). In all other calculations, including pooled German and UK data, allele frequencies and genotype distributions did not differ significantly between patients and controls or between alcoholic CP and ALC. CONCLUSIONS We did not obtain evidence that CEL VNTR lengths are associated with alcoholic CP. However, our results suggest that CEL VNTR lengths might associate with ALC, a finding that needs to be clarified in larger cohorts.
Collapse
Affiliation(s)
- Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sebastian Beer
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Marianne Johnstone
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Constantin Zimmer
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Joachim Mössner
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Claudia Ruffert
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Mario Krehan
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Christian Zapf
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Pål Rasmus Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany
| | - Fabio Miyajima
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Laura J. Brown
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Simon A. Winn
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kelly Davies
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Diane Latawiec
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bridget K. Gunson
- NIHR Birmingham Liver Biomedical Research Unit, Queen Elizabeth Hospital and University of Birmingham, Birmingham, United Kingdom
| | - David N. Criddle
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert Grützmann
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - William Greenhalf
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Robert Sutton
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| |
Collapse
|
9
|
Dalva M, El Jellas K, Steine SJ, Johansson BB, Ringdal M, Torsvik J, Immervoll H, Hoem D, Laemmerhirt F, Simon P, Lerch MM, Johansson S, Njølstad PR, Weiss FU, Fjeld K, Molven A. Copy number variants and VNTR length polymorphisms of the carboxyl-ester lipase (CEL) gene as risk factors in pancreatic cancer. Pancreatology 2016; 17:83-88. [PMID: 27773618 DOI: 10.1016/j.pan.2016.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/05/2016] [Accepted: 10/09/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES We have recently described copy number variants (CNVs) of the human carboxyl-ester lipase (CEL) gene, including a recombined deletion allele (CEL-HYB) that is a genetic risk factor for chronic pancreatitis. Associations with pancreatic disease have also been reported for the variable number of tandem repeat (VNTR) region located in CEL exon 11. Here, we examined if CEL CNVs and VNTR length polymorphisms affect the risk for developing pancreatic cancer. METHODS CEL CNVs and VNTR were genotyped in a German family with non-alcoholic chronic pancreatitis and pancreatic cancer, in 265 German and 197 Norwegian patients diagnosed with pancreatic adenocarcinoma, and in 882 controls. CNV screening was performed using PCR assays followed by agarose gel electrophoresis whereas VNTR lengths were determined by DNA fragment analysis. RESULTS The investigated family was CEL-HYB-positive. However, an association of CEL-HYB or a duplication CEL allele with pancreatic cancer was not seen in our two patient cohorts. The frequency of the 23-repeat VNTR allele was borderline significant in Norwegian cases compared to controls (1.2% vs. 0.3%; P = 0.05). For all other VNTR lengths, no statistically significant difference in frequency was observed. Moreover, no association with pancreatic cancer was detected when CEL VNTR lengths were pooled into groups of short, normal or long alleles. CONCLUSIONS We could not demonstrate an association between CEL CNVs and pancreatic cancer. An association is also unlikely for CEL VNTR lengths, although analyses in larger materials are necessary to completely exclude an effect of rare VNTR alleles.
Collapse
Affiliation(s)
- Monica Dalva
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Khadija El Jellas
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Solrun J Steine
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Monika Ringdal
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Janniche Torsvik
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heike Immervoll
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Dag Hoem
- Department of Gastrointestinal Surgery, Haukeland University Hospital, Bergen, Norway
| | - Felix Laemmerhirt
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Peter Simon
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Frank U Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
10
|
Xiao X, Jones G, Sevilla WA, Stolz DB, Magee KE, Haughney M, Mukherjee A, Wang Y, Lowe ME. A Carboxyl Ester Lipase (CEL) Mutant Causes Chronic Pancreatitis by Forming Intracellular Aggregates That Activate Apoptosis. J Biol Chem 2016; 291:23224-23236. [PMID: 27650499 DOI: 10.1074/jbc.m116.734384] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/23/2022] Open
Abstract
Patients with chronic pancreatitis (CP) frequently have genetic risk factors for disease. Many of the identified genes have been connected to trypsinogen activation or trypsin inactivation. The description of CP in patients with mutations in the variable number of tandem repeat (VNTR) domain of carboxyl ester lipase (CEL) presents an opportunity to study the pathogenesis of CP independently of trypsin pathways. We tested the hypothesis that a deletion and frameshift mutation (C563fsX673) in the CEL VNTR causes CP through proteotoxic gain-of-function activation of maladaptive cell signaling pathways including cell death pathways. HEK293 or AR42J cells were transfected with constructs expressing CEL with 14 repeats in the VNTR (CEL14R) or C563fsX673 CEL (CEL maturity onset diabetes of youth with a deletion mutation in the VNTR (MODY)). In both cell types, CEL MODY formed intracellular aggregates. Secretion of CEL MODY was decreased compared with that of CEL14R. Expression of CEL MODY increased endoplasmic reticulum stress, activated the unfolded protein response, and caused cell death by apoptosis. Our results demonstrate that disorders of protein homeostasis can lead to CP and suggest that novel therapies to decrease the intracellular accumulation of misfolded protein may be successful in some patients with CP.
Collapse
Affiliation(s)
- Xunjun Xiao
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Gabrielle Jones
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Wednesday A Sevilla
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Kelsey E Magee
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Margaret Haughney
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Amitava Mukherjee
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Yan Wang
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| | - Mark E Lowe
- From the Department of Pediatrics, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224 and
| |
Collapse
|
11
|
Molven A, Fjeld K, Lowe ME. Lipase Genetic Variants in Chronic Pancreatitis: When the End Is Wrong, All's Not Well. Gastroenterology 2016; 150:1515-1518. [PMID: 27133394 DOI: 10.1053/j.gastro.2016.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Mark E Lowe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Fjeld K, Weiss FU, Lasher D, Rosendahl J, Chen JM, Johansson BB, Kirsten H, Ruffert C, Masson E, Steine SJ, Bugert P, Cnop M, Grützmann R, Mayerle J, Mössner J, Ringdal M, Schulz HU, Sendler M, Simon P, Sztromwasser P, Torsvik J, Scholz M, Tjora E, Férec C, Witt H, Lerch MM, Njølstad PR, Johansson S, Molven A. A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis. Nat Genet 2015; 47:518-522. [PMID: 25774637 PMCID: PMC5321495 DOI: 10.1038/ng.3249] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
Carboxyl-ester lipase is a digestive pancreatic enzyme encoded by the highly polymorphic CEL gene1. Mutations in CEL cause maturity-onset diabetes of the young (MODY) with pancreatic exocrine dysfunction2. Here we identified a hybrid allele (CEL-HYB), originating from a crossover between CEL and its neighboring pseudogene CELP. In a discovery cohort of familial chronic pancreatitis cases, the carrier frequency of CEL-HYB was 14.1% (10/71) compared with 1.0% (5/478) in controls (odds ratio [OR] = 15.5, 95% confidence interval [CI] = 5.1-46.9, P = 1.3 × 10−6). Three replication studies in non-alcoholic chronic pancreatitis cohorts identified CEL-HYB in a total of 3.7% (42/1,122) cases and 0.7% (30/4,152) controls (OR = 5.2, 95% CI = 3.2-8.5, P = 1.2 × 10−11; formal meta-analysis). The allele was also enriched in alcoholic chronic pancreatitis. Expression of CEL-HYB in cellular models revealed reduced lipolytic activity, impaired secretion, prominent intracellular accumulation and induced autophagy. The hybrid variant of CEL is the first chronic pancreatitis gene identified outside the protease/antiprotease system of pancreatic acinar cells.
Collapse
Affiliation(s)
- Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Frank Ulrich Weiss
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Denise Lasher
- Pediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany.,Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Technische Universität München (TUM), Freising, Germany
| | - Jonas Rosendahl
- Department for Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
| | - Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Holger Kirsten
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Universität Leipzig, Leipzig, Germany
| | - Claudia Ruffert
- Department for Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany.,Department of Internal Medicine, Neurology and Dermatology, Division of Endocrinology, University of Leipzig, Leipzig, Germany.,Integrated Research and Treatment Centre (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Emmanuelle Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Solrun J Steine
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Brussels, Belgium
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Dresden, Dresden, Germany
| | - Julia Mayerle
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Joachim Mössner
- Department for Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Monika Ringdal
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hans-Ulrich Schulz
- Department of Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Sendler
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Peter Simon
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Paweł Sztromwasser
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.,Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Janniche Torsvik
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Markus Scholz
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Universität Leipzig, Leipzig, Germany
| | - Erling Tjora
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Heiko Witt
- Pediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany.,Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Technische Universität München (TUM), Freising, Germany
| | - Markus M Lerch
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Torsvik J, Johansson BB, Dalva M, Marie M, Fjeld K, Johansson S, Bjørkøy G, Saraste J, Njølstad PR, Molven A. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem 2014; 289:29097-111. [PMID: 25160620 PMCID: PMC4200264 DOI: 10.1074/jbc.m114.574244] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/21/2014] [Indexed: 12/17/2022] Open
Abstract
Maturity-onset diabetes of the young, type 8 (MODY8) is characterized by a syndrome of autosomal dominantly inherited diabetes and exocrine pancreatic dysfunction. It is caused by deletion mutations in the last exon of the carboxyl ester lipase (CEL) gene, resulting in a CEL protein with increased tendency to aggregate. In this study we investigated the intracellular distribution of the wild type (WT) and mutant (MUT) CEL proteins in cellular models. We found that both CEL-WT and CEL-MUT were secreted via the endoplasmic reticulum and Golgi compartments. However, their subcellular distributions differed, as only CEL-MUT was observed as an aggregate at the cell surface and inside large cytoplasmic vacuoles. Many of the vacuoles were identified as components of the endosomal system, and after its secretion, the mutant CEL protein was re-internalized, transported to the lysosomes, and degraded. Internalization of CEL-MUT also led to reduced viability of pancreatic acinar and beta cells. These findings may have implications for the understanding of how the acinar-specific CEL-MUT protein causes both exocrine and endocrine pancreatic disease.
Collapse
Affiliation(s)
- Janniche Torsvik
- From the KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bente B Johansson
- From the KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Monica Dalva
- From the KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway, Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Karianne Fjeld
- From the KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- From the KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Geir Bjørkøy
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway, Department of Technology, University College of Sør-Trøndelag, Trondheim, Norway
| | - Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Pål R Njølstad
- From the KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway, Department of Pediatrics, Haukeland University Hospital, Bergen, Norway, and
| | - Anders Molven
- From the KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway, Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway, Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Senderskiy IV, Timofeev SA, Seliverstova EV, Pavlova OA, Dolgikh VV. Secretion of Antonospora (Paranosema) locustae proteins into infected cells suggests an active role of microsporidia in the control of host programs and metabolic processes. PLoS One 2014; 9:e93585. [PMID: 24705470 PMCID: PMC3976299 DOI: 10.1371/journal.pone.0093585] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/05/2014] [Indexed: 01/02/2023] Open
Abstract
Molecular tools of the intracellular protozoan pathogens Apicomplexa and Kinetoplastida for manipulation of host cell machinery have been the focus of investigation for approximately two decades. Microsporidia, fungi-related microorganisms forming another large group of obligate intracellular parasites, are characterized by development in direct contact with host cytoplasm (the majority of species), strong minimization of cell machinery, and acquisition of unique transporters to exploit host metabolic system. All the aforementioned features are suggestive of the ability of microsporidia to modify host metabolic and regulatory pathways. Seven proteins of the microsporidium Antonospora (Paranosema) locustae with predicted signal peptides but without transmembrane domains were overexpressed in Escherichia coli. Western-blot analysis with antibodies against recombinant products showed secretion of parasite proteins from different functional categories into the infected host cell. Secretion of parasite hexokinase and α/β-hydrolase was confirmed by immunofluorescence microscopy. In addition, this method showed specific accumulation of A. locustae hexokinase in host nuclei. Expression of hexokinase, trehalase, and two leucine-rich repeat proteins without any exogenous signal peptide led to their secretion in the yeast Pichia pastoris. In contrast, α/β-hydrolase was not found in the culture medium, though a significant amount of this enzyme accumulated in the yeast membrane fraction. These results suggest that microsporidia possess a broad set of enzymes and regulatory proteins secreted into infected cells to control host metabolic processes and molecular programs.
Collapse
Affiliation(s)
- Igor V. Senderskiy
- Laboratory of Microbiological Control, All-Russian Institute for Plant Protection, St. Petersburg, Pushkin, Russia
| | - Sergey A. Timofeev
- Laboratory of Microbiological Control, All-Russian Institute for Plant Protection, St. Petersburg, Pushkin, Russia
| | - Elena V. Seliverstova
- Laboratory of Renal Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Olga A. Pavlova
- Laboratory of Microbiological Control, All-Russian Institute for Plant Protection, St. Petersburg, Pushkin, Russia
| | - Viacheslav V. Dolgikh
- Laboratory of Microbiological Control, All-Russian Institute for Plant Protection, St. Petersburg, Pushkin, Russia
- * E-mail:
| |
Collapse
|
15
|
Ragvin A, Fjeld K, Weiss FU, Torsvik J, Aghdassi A, Mayerle J, Simon P, Njølstad PR, Lerch MM, Johansson S, Molven A. The number of tandem repeats in the carboxyl-ester lipase (CEL) gene as a risk factor in alcoholic and idiopathic chronic pancreatitis. Pancreatology 2012; 13:29-32. [PMID: 23395566 DOI: 10.1016/j.pan.2012.12.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS The variable number of tandem repeats (VNTR) in the last exon of the carboxyl-ester lipase (CEL) gene has been reported to associate with alcohol-induced chronic pancreatitis (ACP) in a Japanese study. Here, we have investigated the association between the number of CEL VNTR repeats and ACP or idiopathic chronic pancreatitis (ICP) in a cohort of German patients. METHODS Patients diagnosed with ACP (n = 203) or ICP (n = 64) were genotyped using a screening method consisting of PCR followed by DNA fragment analysis. The allele frequencies of different CEL VNTR lengths were compared to the frequencies in healthy controls (n = 390). RESULTS We observed no statistical significant associations between CEL VNTR allele frequencies and ACP or ICP. CONCLUSION This study did not find evidence that supported an association between the common length variations of the CEL VNTR and chronic pancreatitis.
Collapse
Affiliation(s)
- Anja Ragvin
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Johansson BB, Torsvik J, Bjørkhaug L, Vesterhus M, Ragvin A, Tjora E, Fjeld K, Hoem D, Johansson S, Ræder H, Lindquist S, Hernell O, Cnop M, Saraste J, Flatmark T, Molven A, Njølstad PR. Diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl ester lipase gene-maturity onset diabetes of the young (CEL-MODY): a protein misfolding disease. J Biol Chem 2011; 286:34593-605. [PMID: 21784842 PMCID: PMC3186416 DOI: 10.1074/jbc.m111.222679] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/15/2011] [Indexed: 01/09/2023] Open
Abstract
CEL-maturity onset diabetes of the young (MODY), diabetes with pancreatic lipomatosis and exocrine dysfunction, is due to dominant frameshift mutations in the acinar cell carboxyl ester lipase gene (CEL). As Cel knock-out mice do not express the phenotype and the mutant protein has an altered and intrinsically disordered tandem repeat domain, we hypothesized that the disease mechanism might involve a negative effect of the mutant protein. In silico analysis showed that the pI of the tandem repeat was markedly increased from pH 3.3 in wild-type (WT) to 11.8 in mutant (MUT) human CEL. By stably overexpressing CEL-WT and CEL-MUT in HEK293 cells, we found similar glycosylation, ubiquitination, constitutive secretion, and quality control of the two proteins. The CEL-MUT protein demonstrated, however, a high propensity to form aggregates found intracellularly and extracellularly. Different physicochemical properties of the intrinsically disordered tandem repeat domains of WT and MUT proteins may contribute to different short and long range interactions with the globular core domain and other macromolecules, including cell membranes. Thus, we propose that CEL-MODY is a protein misfolding disease caused by a negative gain-of-function effect of the mutant proteins in pancreatic tissues.
Collapse
Affiliation(s)
- Bente B. Johansson
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Janniche Torsvik
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Lise Bjørkhaug
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mette Vesterhus
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Departments of Pediatrics and
| | - Anja Ragvin
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Erling Tjora
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Departments of Pediatrics and
| | - Karianne Fjeld
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Dag Hoem
- Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
- the Section for Pathology, the Gade Institute, University of Bergen, N-5021 Bergen, Norway
| | - Stefan Johansson
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Helge Ræder
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Departments of Pediatrics and
| | - Susanne Lindquist
- the Department of Clinical Sciences, Pediatrics, Umeå University, SE-901 87 Umeå, Sweden
| | - Olle Hernell
- the Department of Clinical Sciences, Pediatrics, Umeå University, SE-901 87 Umeå, Sweden
| | - Miriam Cnop
- the Laboratory of Experimental Medicine, Université Libre de Bruxelles, B-1070 Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, B-1070 Brussels, Belgium
| | - Jaakko Saraste
- the Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway, and
| | - Torgeir Flatmark
- the Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway, and
| | - Anders Molven
- the Section for Pathology, the Gade Institute, University of Bergen, N-5021 Bergen, Norway
- the Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Pål R. Njølstad
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Departments of Pediatrics and
| |
Collapse
|
17
|
Stax MJ, Naarding MA, Tanck MWT, Lindquist S, Hernell O, Lyle R, Brandtzaeg P, Eggesbø M, Pollakis G, Paxton WA. Binding of human milk to pathogen receptor DC-SIGN varies with bile salt-stimulated lipase (BSSL) gene polymorphism. PLoS One 2011; 6:e17316. [PMID: 21386960 PMCID: PMC3046167 DOI: 10.1371/journal.pone.0017316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/27/2011] [Indexed: 11/22/2022] Open
Abstract
Objective Dendritic cells bind an array of antigens and DC-SIGN has been postulated to act as a receptor for mucosal pathogen transmission. Bile salt-stimulated lipase (BSSL) from human milk potently binds DC-SIGN and blocks DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with HIV-1. Objective was to study variation in DC-SIGN binding properties and the relation between DC-SIGN binding capacity of milk and BSSL gene polymorphisms. Study Design ELISA and PCR were used to study DC-SIGN binding properties and BSSL exon 11 size variation for human milk derived from 269 different mothers distributed over 4 geographical regions. Results DC-SIGN binding properties were highly variable for milks derived from different mothers and between samplings from different geographical regions. Differences in DC-SIGN binding were correlated with a genetic polymorphism in BSSL which is related to the number of 11 amino acid repeats at the C-terminus of the protein. Conclusion The observed variation in DC-SIGN binding properties among milk samples may have implications for the risk of mucosal transmission of pathogens during breastfeeding.
Collapse
Affiliation(s)
- Martijn J. Stax
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marloes A. Naarding
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael W. T. Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne Lindquist
- Pediatrics Unit, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Olle Hernell
- Pediatrics Unit, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Per Brandtzaeg
- LIIPAT, Centre for Immune Regulation, University of Oslo, and Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Merete Eggesbø
- Division of Epidemiology, Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes. Hum Genet 2009; 127:55-64. [DOI: 10.1007/s00439-009-0740-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/30/2009] [Indexed: 10/20/2022]
|
19
|
Saeland E, de Jong MAWP, Nabatov AA, Kalay H, Geijtenbeek TBH, van Kooyk Y. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells. Mol Immunol 2009; 46:2309-16. [PMID: 19406479 DOI: 10.1016/j.molimm.2009.03.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 03/28/2009] [Indexed: 11/30/2022]
Abstract
Mother-to-child transmission of human immunodeficiency virus-1 (HIV-1) occurs frequently via breast-feeding. HIV-1 targets DC-SIGN+ dendritic cells (DCs) in mucosal areas that allow efficient transmission of the virus to T cells. Here, we demonstrate that the epithelial mucin MUC1, abundant in milk, efficiently bound to DC-SIGN on DC. The O-linked glycans within the mucin domain contained Lewis X structures, that were specifically recognized by the receptor. Interestingly, MUC1 prevented DC-SIGN-mediated transmission of HIV-1 from DCs to CD4+ T cells. We hypothesize that repetitive units of Lewis X, within the mucin domain, play an important role in inhibiting transmission of HIV-1 from mother to child.
Collapse
Affiliation(s)
- Eirikur Saeland
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The review evaluates current knowledge of the different lipases catalyzing triglyceride lipolysis in the human digestive tract, focusing on their mode of action - information useful for developing strategies to regulate the bioavailability of fatty acid. RECENT FINDINGS Optimal levels of digestive lipases promote efficient triglyceride lipolysis in healthy humans. Management of fatty acid bioavailability during pancreatic insufficiencies, however, requires enzyme replacement therapy. Such therapy entails gastro-protected porcine pancreatic powder, associated with antacid treatment when duodenal pH is too acidic; recently, enteric-coated high-buffered pancrelipase or recombinant gastric lipase have been used. Another promising strategy is to focus on lipid substrate to optimize lipid-water interface properties. Research on obesity treatment focuses on inhibitors. Orlistat is the first inhibitor to be used extensively. Others treatments are in development, including human pancreatic lipase C-terminal, polyphenols, specific proteins and peptides; however, their relevance has not yet been tested in humans. SUMMARY A better knowledge of lipase structure and mode of action will help the development of new natural inhibitors with fewer secondary effects. More intensive research in protein engineering for recombinant lipase production and in clinical nutrition, together with careful evaluation of patients' individual needs is necessary.
Collapse
Affiliation(s)
- Martine Armand
- INSERM, U476 'Nutrition Humaine et Lipides', INRA, UMR1260, Université Méditerranée Aix-Marseille 2, Faculté de Médecine, IPHM-IFR 125, Marseille, France.
| |
Collapse
|
21
|
Naarding MA, Dirac AM, Ludwig IS, Speijer D, Lindquist S, Vestman EL, Stax MJ, Geijtenbeek TBH, Pollakis G, Hernell O, Paxton WA. Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells. Antimicrob Agents Chemother 2006; 50:3367-74. [PMID: 17005819 PMCID: PMC1610064 DOI: 10.1128/aac.00593-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A wide range of pathogens, including human immunodeficiency virus type 1 (HIV-1), hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, Mycobacterium, Leishmania, and Helicobacter pylori, can interact with dendritic cell (DC)-specific ICAM3-grabbing nonintegrin (DC-SIGN), expressed on DCs and a subset of B cells. More specifically, the interaction of the gp120 envelope protein of HIV-1 with DC-SIGN can facilitate the transfer of virus to CD4+ T lymphocytes in trans and enhance infection. We have previously demonstrated that a multimeric LeX component in human milk binds to DC-SIGN, preventing HIV-1 from interacting with this receptor. Biochemical analysis reveals that the compound is heat resistant, trypsin sensitive, and larger than 100 kDa, indicating a specific glycoprotein as the inhibitory compound. By testing human milk from three different mothers, we found the levels of DC-SIGN binding and viral inhibition to vary between samples. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and matrix-assisted laser desorption ionization analysis, we identified bile salt-stimulated lipase (BSSL), a Lewis X (LeX)-containing glycoprotein found in human milk, to be the major variant protein between the samples. BSSL isolated from human milk bound to DC-SIGN and inhibited the transfer of HIV-1 to CD4+ T lymphocytes. Two BSSL isoforms isolated from the same human milk sample showed differences in DC-SIGN binding, illustrating that alterations in the BSSL forms explain the differences observed. These results indicate that variations in BSSL lead to alterations in LeX expression by the protein, which subsequently alters the DC-SIGN binding capacity and the inhibitory effect on HIV-1 transfer. Identifying the specific molecular interaction between the different forms may aid in the future design of antimicrobial agents.
Collapse
Affiliation(s)
- Marloes A Naarding
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Palmer DJ, Kelly VC, Smit AM, Kuy S, Knight CG, Cooper GJ. Human colostrum: Identification of minor proteins in the aqueous phase by proteomics. Proteomics 2006; 6:2208-16. [PMID: 16502470 DOI: 10.1002/pmic.200500558] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human colostrum is an important source of protective, nutritional and developmental factors for the newborn. We have investigated the low abundance proteins in the aqueous phase of human colostrum, after depletion of the major proteins secretory IgA, lactoferrin, alpha-lactalbumin and HSA by immunoabsorption, using 2-D LC and gel-based proteomic methods. One hundred and fifty-one proteins were identified, 83 of which have not been previously reported in human colostrum, or milk. This is the first comprehensive proteomic analysis of human colostrum produced during the first 48 h of lactation.
Collapse
Affiliation(s)
- David J Palmer
- LactoPharma, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
23
|
Ruvoën-Clouet N, Mas E, Marionneau S, Guillon P, Lombardo D, Le Pendu J. Bile-salt-stimulated lipase and mucins from milk of 'secretor' mothers inhibit the binding of Norwalk virus capsids to their carbohydrate ligands. Biochem J 2006; 393:627-34. [PMID: 16266293 PMCID: PMC1360715 DOI: 10.1042/bj20050898] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breast-feeding-associated protection against calicivirus diarrhoea is associated with the presence of high levels of 2-linked oligosaccharides in mother's milk, and human calicivirus strains including the NV (Norwalk virus) use gut 2-linked fucosylated glycans as receptors, suggesting the presence of decoy receptors in milk. Our aim was to analyse the ability of human milk to inhibit the attachment of rNV VLPs (recombinant NV-like particles) to their carbohydrate ligands and to characterize potential inhibitors found in milk. Milk from women with the secretor phenotype was strongly inhibitory, unlike milk from women that are non-secretors, which is devoid of 2-linked fucosylated structures. At least two fractions in human milk acted as inhibitors for the NV capsid attachment. The first fraction corresponded to BSSL (bile-salt-stimulated lipase) and the second to associated mucins MUC1 and MUC4. These proteins present tandem repeat O-glycosylated sequences that should act as decoy receptors for the NV, depending on the combined mother/child secretor status.
Collapse
Affiliation(s)
- Nathalie Ruvoën-Clouet
- *INSERM U601, Institute of Biology, 9 Quai Moncousu, 44093 Nantes Cedex 01, France
- †National Veterinary School of Nantes, Route de Gachet, BP 40706, 44307 Nantes Cedex 03, France
| | - Eric Mas
- ‡INSERM U559, IPHM Faculté de Médecine, 27 Blv Jean Moulin, 13385 Marseille Cedex 05, France
| | - Séverine Marionneau
- *INSERM U601, Institute of Biology, 9 Quai Moncousu, 44093 Nantes Cedex 01, France
| | - Patrice Guillon
- *INSERM U601, Institute of Biology, 9 Quai Moncousu, 44093 Nantes Cedex 01, France
| | - Dominique Lombardo
- ‡INSERM U559, IPHM Faculté de Médecine, 27 Blv Jean Moulin, 13385 Marseille Cedex 05, France
| | - Jacques Le Pendu
- *INSERM U601, Institute of Biology, 9 Quai Moncousu, 44093 Nantes Cedex 01, France
- To whom correspodence should be addressed (email )
| |
Collapse
|
24
|
Raeder H, Johansson S, Holm PI, Haldorsen IS, Mas E, Sbarra V, Nermoen I, Eide SA, Grevle L, Bjørkhaug L, Sagen JV, Aksnes L, Søvik O, Lombardo D, Molven A, Njølstad PR. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet 2005; 38:54-62. [PMID: 16369531 DOI: 10.1038/ng1708] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/27/2005] [Indexed: 01/19/2023]
Abstract
Dysfunction of the exocrine pancreas is observed in diabetes, but links between concurrent exocrine and endocrine pancreatic disease and contributing genetic factors are poorly characterized. We studied two families with diabetes and exocrine pancreatic dysfunction by genetic, physiological and in vitro functional studies. A genome-wide screen in Family 1 linked diabetes to chromosome 9q34 (maximal lod score 5.07). Using fecal elastase deficiency as a marker of exocrine pancreatic dysfunction refined the critical chromosomal region to 1.16 Mb (maximal lod score 11.6). Here, we identified a single-base deletion in the variable number of tandem repeats (VNTR)-containing exon 11 of the carboxyl ester lipase (CEL) gene, a major component of pancreatic juice and responsible for the duodenal hydrolysis of cholesterol esters. Screening subjects with maturity-onset diabetes of the young identified Family 2, with another single-base deletion in CEL and a similar phenotype with beta-cell failure and pancreatic exocrine disease. The in vitro catalytic activities of wild-type and mutant CEL protein were comparable. The mutant enzyme was, however, less stable and secreted at a lower rate. Furthermore, we found some evidence for an association between common insertions in the CEL VNTR and exocrine dysfunction in a group of 182 unrelated subjects with diabetes (odds ratio 4.2 (1.6, 11.5)). Our findings link diabetes to the disrupted function of a lipase in the pancreatic acinar cells.
Collapse
Affiliation(s)
- Helge Raeder
- Section for Pediatrics, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miyasaka K, Ohta M, Takano S, Hayashi H, Higuchi S, Maruyama K, Tando Y, Nakamura T, Takata Y, Funakoshi A. Carboxylester lipase gene polymorphism as a risk of alcohol-induced pancreatitis. Pancreas 2005; 30:e87-91. [PMID: 15841033 DOI: 10.1097/01.mpa.0000160960.21580.ml] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Alcohol abuse causes pancreatic damage in humans. However, only 5% of alcoholic patients have a clinical manifestation of pancreatitis, and the genetic predisposition of alcohol-associated pancreatitis remains elusive. Nonoxidative metabolites of ethanol, fatty acid ethyl esters (FAEEs), might play an important role in pancreatic damage. Carboxylester lipase (CEL) has been known to catalyze FAEE synthesis from fatty acids and ethanol. METHODS The variable number of tandem repeat (VNTR) polymorphism in the coding region of the CEL gene was studied in patients with alcoholic pancreatitis (n = 100), in alcoholics without pancreatitis (n = 52), in patients with nonalcoholic pancreatitis (n = 50), in hyperlipidemia patients (n = 96), and control subjects (n = 435). RESULTS The frequency of the NN-type (wild-type) gene was significantly decreased in patients with alcoholic pancreatitis than in other groups. The frequency of subjects who had the L allele in patients with alcoholic pancreatitis was significantly higher than in other groups. The distribution of the CEL gene polymorphism was not different among the control subjects, alcoholics without pancreatitis, patients with nonalcoholic pancreatitis, and patients with hyperlipidemia. CONCLUSIONS The CEL gene polymorphism, especially an increase in the frequency of the L allele, was found to be associated with alcohol-induced pancreatitis.
Collapse
Affiliation(s)
- Kyoko Miyasaka
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bengtsson-Ellmark SH, Nilsson J, Orho-Melander M, Dahlenborg K, Groop L, Bjursell G. Association between a polymorphism in the carboxyl ester lipase gene and serum cholesterol profile. Eur J Hum Genet 2004; 12:627-32. [PMID: 15114370 DOI: 10.1038/sj.ejhg.5201204] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Carboxyl ester lipase (CEL) is involved in the hydrolysis and absorption of dietary lipids, but it is largely unknown to what extent CEL could be involved in determining the serum lipid levels. The C-terminal part of CEL consists of a unique structure with proline-rich O-glycosylated repeats of 11 amino-acid residues each. The common variant of the human CEL gene contains 16 proline-rich repeats, but there is a high degree of polymorphism in the repeated region. While the biological function of the polymorphic repeat region is unknown, it has been suggested that it may be important for protein stability and/or secretion of the enzyme. Given that the polymorphism in the repeated region may affect the functionality of the protein, this study aimed to investigate whether the number of repeated units is correlated to serum lipid phenotype. Comparison of CEL repeat genotype and serum lipid phenotype revealed an association between the number of repeats and serum cholesterol profile. Individuals carrying at least one allele with fewer than the common 16 repeats had significantly lower total and low-density lipoprotein (LDL) cholesterol levels compared to individuals carrying two common alleles. This gives support to the notion that CEL may be involved in determining the plasma lipid composition.
Collapse
|
27
|
Hui DY, Howles PN. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res 2002; 43:2017-30. [PMID: 12454261 DOI: 10.1194/jlr.r200013-jlr200] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Carboxyl ester lipase (CEL), previously named cholesterol esterase or bile salt-stimulated (or dependent) lipase, is a lipolytic enzyme capable of hydrolyzing cholesteryl esters, tri-, di-, and mono-acylglycerols, phospholipids, lysophospholipids, and ceramide. The active site catalytic triad of serine-histidine-aspartate is centrally located within the enzyme structure and is partially covered by a surface loop. The carboxyl terminus of the protein regulates enzymatic activity by forming hydrogen bonds with the surface loop to partially shield the active site. Bile salt binding to the loop domain frees the active site for accessibility by water-insoluble substrates. CEL is synthesized primarily in the pancreas and lactating mammary gland, but the enzyme is also expressed in liver, macrophages, and in the vessel wall. In the gastrointestinal tract, CEL serves as a compensatory protein to other lipolytic enzymes for complete digestion and absorption of lipid nutrients. Importantly, CEL also participates in chylomicron assembly and secretion, in a mechanism mediated through its ceramide hydrolytic activity. Cell culture studies suggest a role for CEL in lipoprotein metabolism and oxidized LDL-induced atherosclerosis. Thus, this enzyme, which has a wide substrate reactivity and diffuse anatomic distribution, may have multiple functions in lipid and lipoprotein metabolism, and atherosclerosis.
Collapse
Affiliation(s)
- David Y Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | |
Collapse
|