1
|
Wu H, Yang W, Dong G, Hu Q, Li D, Liu J. Construction of the super pan-genome for the genus Actinidia reveals structural variations linked to phenotypic diversity. HORTICULTURE RESEARCH 2025; 12:uhaf067. [PMID: 40303430 PMCID: PMC12038230 DOI: 10.1093/hr/uhaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/23/2025] [Indexed: 05/02/2025]
Abstract
Kiwifruits, belonging to the genus Actinidia, are acknowledged as one of the most successfully domesticated fruits in the twentieth century. Despite the rich wild resources and diverse phenotypes within this genus, insights into the genomic changes are still limited. Here, we conducted whole-genome sequencing on seven representative materials from highly diversified sections of Actinidia, leading to the assembly and annotation of 14 haplotype genomes with sizes spanning from 602.0 to 699.6 Mb. By compiling these haplotype genomes, we constructed a super pan-genome for the genus. We identified numerous structural variations (SVs, including variations in gene copy number) and highly diverged regions in these genomes. Notably, significant SV variability was observed within the intronic regions of the MED25 and TTG1 genes across different materials, suggesting their potential roles in influencing fruit size and trichome formation. Intriguingly, our findings indicated a high genetic divergence between two haplotype genomes, with one individual, tentatively named Actinidia × leiocacarpae, from sect. Leiocacarpae. This likely hybrid with a heterozygous genome exhibited notable genetic adaptations related to resistance against bacterial canker, particularly through the upregulation of the RPM1 gene, which contains a specific SV, after infection by Pseudomonas syringae pv. actinidiae. In addition, we also discussed the interlineage hybridizations and taxonomic treatments of the genus Actinidia. Overall, the comprehensive pan-genome constructed here, along with our findings, lays a foundation for examining genetic compositions and markers, particularly those related to SVs, to facilitate hybrid breeding aimed at developing desired phenotypes in kiwifruits.
Collapse
Affiliation(s)
- Haolin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 184 Xinqiao Street, Chongqing, 400037, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
| | - Guanyong Dong
- Technology Innovation Service Center, No.110 Jiangnan Road, Cangxi, 628400, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
| | - Dawei Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, No.1 Lumo Road, Wuhan, 430074, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 1st Ring Road, Chengdu, 610065, China
- State Key Laboratory of Grassland AgroEcosystem, College of Ecology, Lanzhou University, No.222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
2
|
Aguilar-Galaviz L, Cadena-Iñiguez J, García-Flores DA, Loera-Alvarado G, Rivera-Escareño D, Ortega-Amaro MA. Fungistatic and Bactericidal Activity of Hydroalcoholic Extracts of Root of Jatropha dioica Sessé. Microorganisms 2025; 13:1027. [PMID: 40431200 PMCID: PMC12114416 DOI: 10.3390/microorganisms13051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Jatropha dioica Sessé (JD) is a plant from arid and semiarid zones of Mexico related to local therapeutic uses and possible use in food and agriculture as a control agent of pest organisms that helps to reduce impacts on the environment, human health and resistance by phytopathogens. In vitro bactericidal activity was evaluated with the well diffusion method in doses of 1000, 2500, 5000, 7500, 10,000 and 20,000 µg mL-1, and fungistatic activity was evaluated with the agar dilution method (500, 1000, 1500, 2000 and 4000 µg mL-1) in Pseudomonas syringae, Botrytis cinerea and Fusarium oxysporum using hydroalcoholic extracts of J. dioica root in a completely randomized design with five replications. Total phenol and flavonoid contents were recorded by the Folin-Ciocalteu and aluminum chloride methods. Ethanol and methanol extracts showed fungistatic activity on B. cinerea, inhibiting from 42.27 ± 1.09 to 46.68 ± 0.98 mg mL-1, with an IC50 of 5.04 mg mL-1, with no differences by solvent type. In F. oxysporum, inhibition ranged from 14.77 ± 1.08 to 29.19 ± 0.89 mg mL-1, and the methanol extract was more efficient, generating a stress response to the ethanol extract. The bactericidal activity on P. syringae recorded inhibition zones of 17.66 ± 0.33 and 16.66 ± 0.33 mg mL-1, with ethanol being more efficient. The phenol content ranged from 8.92 ± 0.25 to 12.10 ± 0.34 mg EAG g-1 and flavonoid content ranged from 20.49 ± 0.33 to 28.21 ± 0.73 mg QE g-1 of sample dry weight. The results highlight the biological activity of J. dioica as an alternative to biopesticides that minimize agrochemical applications and generate pathogen resistance. These advances contribute to the revaluation and conservation of the species.
Collapse
Affiliation(s)
- Lizeth Aguilar-Galaviz
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - Jorge Cadena-Iñiguez
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - Dalia Abigail García-Flores
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - Gerardo Loera-Alvarado
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - Diego Rivera-Escareño
- Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales, Campus San Luis Potosí, Iturbide 73, Salinas de Hidalgo 78600, SLP, Mexico; (L.A.-G.); (D.A.G.-F.); (G.L.-A.); (D.R.-E.)
| | - María Azucena Ortega-Amaro
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Carretera Salinas-Santo Domingo 200, Salinas de Hidalgo 78600, SLP, Mexico;
| |
Collapse
|
3
|
Beizman-Magen Y, Orevi T, Kashtan N. Hydration conditions as a critical factor in antibiotic-mediated bacterial competition outcomes. Appl Environ Microbiol 2025; 91:e0200424. [PMID: 39714150 PMCID: PMC11784440 DOI: 10.1128/aem.02004-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Antibiotic secretion plays a pivotal role in bacterial interference competition; yet, the impact of environmental hydration conditions on such competition is not well understood. Here, we investigate how hydration conditions affect interference competition among bacteria, studying the interactions between the antibiotic-producing Bacillus velezensis FZB42 and two bacterial strains susceptible to its antibiotics: Xanthomonas euvesicatoria 85-10 and Pseudomonas syringae DC3000. Our results show that wet-dry cycles significantly modify the response of the susceptible bacteria to both the supernatant and cells of the antibiotic-producing bacteria, compared to constantly wet conditions. Notably, X. euvesicatoria shows increased protection against both the cells and supernatants of B. velezensis under wet-dry cycles, while P. syringae cells become more susceptible under wet-dry cycles. In addition, we observed a reciprocal interaction between P. syringae and B. velezensis, where P. syringae inhibits B. velezensis under wet conditions. Our findings highlight the important role of hydration conditions in shaping bacterial interference competition, providing valuable insights into the microbial ecology of water-unsaturated surfaces, with implications for applications such as biological control of plant pathogens and mitigating antibiotic resistance.IMPORTANCEOur study reveals that hydration conditions, particularly wet-dry cycles, significantly influence antibiotic-mediated competition between bacterial species. We revealed that the effectiveness of antibiotics produced by Bacillus velezensis against two susceptible bacterial species: Xanthomonas and Pseudomonas varies based on these hydration conditions. Unlike traditional laboratory environments, many real-world habitats, such as soil, plant surfaces, and even animal skin, undergo frequent wet-dry cycles. These conditions affect bacterial competition dynamics and outcomes, with wet-dry cycles providing increased protection for some bacteria while making others more susceptible. Our findings highlight the importance of considering environmental hydration when studying microbial interactions and developing biological control strategies. This research has important implications for improving agricultural practices and understanding natural microbial ecosystems.
Collapse
Affiliation(s)
- Yana Beizman-Magen
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel
| | - Tomer Orevi
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel
| | - Nadav Kashtan
- Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel
| |
Collapse
|
4
|
Debray R, Conover A, Koskella B. Phages indirectly maintain tomato plant pathogen defense through regulation of the commensal microbiome. ISME COMMUNICATIONS 2025; 5:ycaf065. [PMID: 40356878 PMCID: PMC12066413 DOI: 10.1093/ismeco/ycaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
As parasites of bacteria, phages can regulate microbiome diversity and composition and may therefore affect susceptibility to pathogens and disease. Many infectious diseases are associated with altered bacteriophage communities, but observational studies alone do not allow us to determine when altered phage community composition is a contributor to disease risk, a response to infection, or simply an indicator of dysbiosis. To address this question directly, we used size-selective filtration to deplete plant-associated microbial communities of phages, then challenged plants with the bacterial pathogen Pseudomonas syringae. Plants with phage-depleted microbiomes were more susceptible to infection, an effect that could not be explained by direct effects of the phage communities on either P. syringae or the plant host. Moreover, the presence of phages was most impactful when the phage communities were isolated from neighboring field locations rather than from the same host plant as the bacteria, possibly suggesting that moderate rates of lysis maintain a community structure that is most resistant to pathogen invasion. Overall, our results support the idea that phage communities contribute to plant defenses by modulating the microbiome.
Collapse
Affiliation(s)
- Reena Debray
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Integrative Biology, University of California, Berkeley, 94720 Berkeley, CA, United States
| | - Asa Conover
- Department of Integrative Biology, University of California, Berkeley, 94720 Berkeley, CA, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, 94720 Berkeley, CA, United States
| |
Collapse
|
5
|
Mesas FA, Mendieta JR, Torres Nicolini A, de Oliveira JL, Germano-Costa T, Bilesky-José N, De Lima R, Fernandes Fraceto L, Alvarez VA, Terrile MC. Deciphering physical and functional properties of chitosan-based particles for agriculture applications. Int J Biol Macromol 2024; 285:138153. [PMID: 39613074 DOI: 10.1016/j.ijbiomac.2024.138153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Traditional methods for controlling plant pathogens rely on toxic chemicals, posing environmental and health risks. Developing sustainable, eco-friendly alternatives is crucial. Chitosan (CS)-based materials offer promising solutions for sustainable agriculture. We aimed to synthesize and characterize CS-based microparticles with varying properties and assess their antimicrobial performance to establish correlations between variations in physicochemical characteristics and their impact on performance within biological systems. We adjusted the synthesis parameters, producing particles labeled P1, P2, and P3, which have sizes of 0.19 ± 0.07 μm, 0.45 ± 0.32 μm, and 1.22 ± 0.32 μm, and zeta potentials of +7.6 ± 4.25 mV, +22 ± 3.51 mV, and + 12.9 ± 4.54 mV, respectively. Extensive toxicological screenings showed that these CS-based microparticles were non-toxic across cell cultures, mouse red blood cells, soil microbiota, nitrogen-cycling bacteria, and plant toxicity assays. Encouraged by these results, we evaluated their antimicrobial potential against economically important crop pathogens. The CS-based microparticles exhibited antimicrobial effects against the bacterium Pseudomonas syringae pv. tomato DC3000 and the fungus Fusarium solani f. sp. eumartii. Higher zeta potentials correlated with greater antimicrobial efficacy, evidenced by lower IC50 and minimum inhibitory concentration (MIC) values. These findings indicate that all three microparticles analyzed displayed antimicrobial activity against two economically significant crop pathogens, with P2 showing solid performance attributed to its physicochemical characteristics. Therefore, CS-based microparticles represent a promising, nontoxic, and environmentally friendly alternative for modern agriculture, with their biological activities potentially predictable through careful selection of physicochemical properties before the synthesis process.
Collapse
Affiliation(s)
- Florencia Anabel Mesas
- Instituto de Investigaciones Biológicas, UE CONICET-Universidad Nacional de Mar del Plata (UNMdP), Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Argentina
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas, UE CONICET-Universidad Nacional de Mar del Plata (UNMdP), Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Argentina
| | - Andrés Torres Nicolini
- UNMdP, CONICET, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA, Grupo Materiales Compuestos Termoplásticos CoMP, UE CONICET-UNMdP, Mar del Plata, Argentina
| | - Jhones Luiz de Oliveira
- Departamento de Ingeniería Ambiental, Universidad Estatal de São Paulo, Sorocaba 18087-180, Brazil
| | - Tais Germano-Costa
- Departamento de Biotecnología, Universidad de Sorocaba, Sorocaba 18023-000, Brazil
| | - Natalia Bilesky-José
- Departamento de Biotecnología, Universidad de Sorocaba, Sorocaba 18023-000, Brazil
| | - Renata De Lima
- Departamento de Biotecnología, Universidad de Sorocaba, Sorocaba 18023-000, Brazil
| | | | - Vera Alejandra Alvarez
- UNMdP, CONICET, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA, Grupo Materiales Compuestos Termoplásticos CoMP, UE CONICET-UNMdP, Mar del Plata, Argentina
| | - Maria Cecilia Terrile
- Instituto de Investigaciones Biológicas, UE CONICET-Universidad Nacional de Mar del Plata (UNMdP), Facultad de Ciencias Exactas y Naturales, UNMdP, Mar del Plata, Argentina.
| |
Collapse
|
6
|
Marin MV, Carvalho R, Paret ML, Jones JB, Peres NA. Pseudomonas fragariae sp. nov., a novel bacterial species causing leaf spots on strawberry ( Fragaria× ananassa). Int J Syst Evol Microbiol 2024; 74:006476. [PMID: 39141420 PMCID: PMC11324255 DOI: 10.1099/ijsem.0.006476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
In Florida, angular leaf spot, caused by Xanthomonas fragariae, was the only known bacterial disease in strawberry, which is sporadic and affects the foliage and calyx. However, from the 2019-2020 to 2023-2024 Florida strawberry seasons, unusual bacterial-like symptoms were observed in commercial farms, with reports of up to 30 % disease incidence. Typical lesions were water-soaked and angular in early stages that later became necrotic with a circular-ellipsoidal purple halo, and consistently yielded colonies resembling Pseudomonas on culture media. Strains were pathogenic on strawberry, fluorescent, oxidase- and arginine-dihydrolase-negative, elicited a hypersensitive reaction on tobacco, and lacked pectolytic activity. Although phenotypic assays, such as fatty acid methyl profiles and Biolog protocols, placed the strains into the Pseudomonas group, there was a low similarity at the species level. Further analysis using 16S rRNA genes, housekeeping genes, and whole genome sequencing showed that the strains cluster into the Pseudomonas group but do not share more than 95 % average nucleotide identity compared to representative members. Therefore, the genomic and phenotypic analysis confirm that the strains causing bacterial spot in strawberry represent a new plant pathogenic bacterial species for which we propose the name Pseudomonas fragariae sp. nov. with 20-417T (17T=LMG 32456T=DSM 113340 T) as the type strain, in relation to Fragaria×ananassa, the plant species from which the pathogen was first isolated. Future work is needed to assess the epidemiology, cultivar susceptibility, chemical sensitivity, and disease management of this possible new emerging strawberry pathogen.
Collapse
Affiliation(s)
- Marcus Vinicius Marin
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598, USA
| | - Renato Carvalho
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Mathews L. Paret
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Natalia A. Peres
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598, USA
| |
Collapse
|
7
|
Grayton Q, Purvis ME, Schoenfisch MH. Antimicrobial Effects of Nitric Oxide against Plant Pathogens. ACS OMEGA 2024; 9:26066-26074. [PMID: 38911785 PMCID: PMC11190915 DOI: 10.1021/acsomega.4c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Pathogen infection represents the greatest challenge to agricultural crop production, resulting in significant economic loss. Conventional pesticides are used to control such infection but can result in antimicrobial resistance and detrimental effects on the plant, environment, and human health. Due to nitric oxide's (NO) endogenous roles in plant immune responses, treatment with exogenous NO represents an attractive nonpesticide approach for eradicating plant pathogens. In this work, the antimicrobial activity of small-molecule NO donors of varying NO-release kinetics was evaluated against Pseudomonas syringae and Botrytis cinerea, two prevalent plant pathogens. Intermediate NO-release kinetics proved to be most effective at eradicating these pathogens in vitro. A selected NO donor (methyl tris diazeniumdiolate; MD3) was capable of treating both bacterial infection of plant leaves and fungal infection of tomato fruit without exerting toxicity to earthworms. Taken together, these results demonstrate the potential for utilizing NO as a broad-spectrum, environmentally safe pesticide and may guide development of other NO donors for such application.
Collapse
Affiliation(s)
- Quincy
E. Grayton
- Department
of Chemistry and Eshelman School of Pharmacy, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Margery E. Purvis
- Department
of Chemistry and Eshelman School of Pharmacy, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department
of Chemistry and Eshelman School of Pharmacy, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Fodil S, De Zotti M, Tundo S, Gabbatore L, Vettorazzo I, Luti S, Musetti R, Sella L, Favaron F, Baccelli I. Multiple lysine substitutions in the peptaibol trichogin GA IV enhance the antibiotic activity against plant pathogenic Pseudomonas syringae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105901. [PMID: 38685232 DOI: 10.1016/j.pestbp.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Plant diseases caused by Pseudomonas syringae are essentially controlled in the field with the use of copper-based products and antibiotics, raising environmental and safety concerns. Antimicrobial peptides (AMPs) derived from fungi may represent a sustainable alternative to those chemicals. Trichogin GA IV, a non-ribosomal, 11-residue long AMP naturally produced by the fungus Trichoderma longibrachiatum has the ability to insert into phospholipidic membranes and form water-filled pores, thereby perturbing membrane integrity and permeability. In previous studies, peptide analogs modified at the level of specific residues were designed to be water-soluble and active against plant pathogens. Here, we studied the role of glycine-to-lysine substitutions and of the presence of a C-terminal leucine amide on bioactivity against Pseudomonas syringae bacteria. P. syringae diseases affect a wide range of crops worldwide, including tomato and kiwifruit. Our results show that trichogin GA IV analogs containing two or three Gly-to-Lys substitutions are highly effective in vitro against P. syringae pv. tomato (Pst), displaying minimal inhibitory and minimal bactericidal concentrations in the low micromolar range. The same analogs are also able to inhibit in vitro the kiwifruit pathogen P. syringae pv. actinidiae (Psa) biovar 3. When sprayed on tomato plants 24 h before Pst inoculation, only tri-lysine containing analogs were able to significantly reduce bacterial titers and symptom development in infected plants. Our results point to a positive correlation between the number of lysine substitutions and the antibacterial activity. This correlation was supported by microscopy analyses performed with mono-, di- and tri-Lys containing analogs that showed a different degree of interaction with Pst cells and ultrastructural changes that culminated in cell lysis.
Collapse
Affiliation(s)
- Sihem Fodil
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Marta De Zotti
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Viale Dell' Università 16, 35020 Legnaro, Italy; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell' Università 16, 35020 Legnaro, Italy
| | - Laura Gabbatore
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Irene Vettorazzo
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Simone Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | - Rita Musetti
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Viale Dell' Università 16, 35020 Legnaro, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Viale Dell' Università 16, 35020 Legnaro, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Viale Dell' Università 16, 35020 Legnaro, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Fautt C, Couradeau E, Hockett KL. Naïve Bayes Classifiers and accompanying dataset for Pseudomonas syringae isolate characterization. Sci Data 2024; 11:178. [PMID: 38326362 PMCID: PMC10850129 DOI: 10.1038/s41597-024-03003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The Pseudomonas syringae species complex (PSSC) is a diverse group of plant pathogens with a collective host range encompassing almost every food crop grown today. As a threat to global food security, rapid detection and characterization of epidemic and emerging pathogenic lineages is essential. However, phylogenetic identification is often complicated by an unclarified and ever-changing taxonomy, making practical use of available databases and the proper training of classifiers difficult. As such, while amplicon sequencing is a common method for routine identification of PSSC isolates, there is no efficient method for accurate classification based on this data. Here we present a suite of five Naïve bayes classifiers for PCR primer sets widely used for PSSC identification, trained on in-silico amplicon data from 2,161 published PSSC genomes using the life identification number (LIN) hierarchical clustering algorithm in place of traditional Linnaean taxonomy. Additionally, we include a dataset for translating classification results back into traditional taxonomic nomenclature (i.e. species, phylogroup, pathovar), and for predicting virulence factor repertoires.
Collapse
Affiliation(s)
- Chad Fautt
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA.
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA.
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA.
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA.
- Intercollege Graduate Degree Program in Ecology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
10
|
Casas-Román A, Lorite MJ, Sanjuán J, Gallegos MT. Two glyceraldehyde-3-phosphate dehydrogenases with distinctive roles in Pseudomonas syringae pv. tomato DC3000. Microbiol Res 2024; 278:127530. [PMID: 37890268 DOI: 10.1016/j.micres.2023.127530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH or Gap) is a ubiquitously distributed enzyme that plays an essential role in the glycolytic and gluconeogenic pathways. However, additional roles have been described unrelated to its enzymatic function in diverse organisms, often linked to its presence in the cell surface or as a secreted protein. Despite being a paradigm among multifunctional/moonlighting proteins, little is known about its possible roles in phytopathogenic bacteria. In the present work we have studied three putative gap paralogous genes identified in the genome of Pseudomonas syringae pv. tomato (Pto) DC3000, an important model in molecular plant pathology, with the aim of determining their physiological and possible non-canonical roles in this bacterium and in the plant infection process. We have established that the Gap1 protein has a predominantly glycolytic activity, whereas the NADPH-dependent Gap2 main activity is gluconeogenic. The third paralogue lacks GAPDH activity in Pto but is indispensable for vitamin B6 metabolism and displays erythrose-4-phosphate dehydrogenase activity, thus referred as epd. Both Gap enzymes exhibit distinct functional characteristics depending on the bacterium physiological state, with Gap1 presenting a substantial role in motility, biosurfactant production and biofilm formation. On the other hand, solely Gap2 appears to be essential for growth on tomato plant. Furthermore, Gap1 and Gap2 present a distinctive transcriptional regulation and both have been identified exported outside the cells with different definite media compositions. This serves as compelling evidence of additional roles beyond their central metabolic functions.
Collapse
Affiliation(s)
- Ariana Casas-Román
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-José Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.
| |
Collapse
|
11
|
Sophiarani Y, Chakraborty S. Synonymous sites for accessibility around microRNA binding sites in bacterial spot and speck disease resistance genes of tomato. Funct Integr Genomics 2023; 23:247. [PMID: 37468805 DOI: 10.1007/s10142-023-01178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
The major causes of mass tomato infections in both covered and open ground are agents of bacterial spot and bacterial speck diseases. MicroRNAs (miRNAs) are 16-21 nucleotides in length, non-coding RNAs that inhibit translation and trigger mRNA degradation. MiRNAs play a significant part in plant resistance to abiotic and biotic stresses by mediating gene regulation via post-transcriptional RNA silencing. In this study, we analyzed a collection of bacterial resistance genes of tomato and their binding sites for tomato miRNAs and Pseudomonas syringe pv. tomato miRNAs. Our study found that two genes, bacterial spot disease resistance gene (Bs4) and bacterial speck disease resistance gene (Prf), have a 7mer-m8 perfect seed match with miRNAs. Bs4 was targeted by one tomato miRNA (sly-miR9470-3p) and three Pseudomonas syringe pv. tomato miRNAs (PSTJ4_3p_27246, PSTJ4_3p_27246, and PSTJ4_3p_27246). Again, Prf gene was found to be targeted by two tomato miRNAs namely, sly-miR9469-5p and sly-miR9474-3p. The accessibility of the miRNA-target site and its flanking regions and the relationship between relative synonymous codon usage and tRNAs were compared. Strong access to miRNA targeting regions and decreased rate of translations suggested that miRNAs might be efficient in binding to their particular targets. We also found the existence of rare codons, which suggests that it could enhance miRNA targeting even more. The codon usage pattern analysis of the two genes revealed that both were AT-rich (Bs4 = 63.2%; Prf = 60.8%). We found a low codon usage bias in both genes, suggesting that selective restriction might regulate them. The silencing property of miRNAs would allow researchers to discover the involvement of plant miRNAs in pathogen invasion. However, the efficient validation of direct targets of miRNAs is an urgent need that might be highly beneficial in enhancing plant resistance to multiple pathogenic diseases.
Collapse
Affiliation(s)
- Yengkhom Sophiarani
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
12
|
Orfei B, Pothier JF, Fenske L, Blom J, Moretti C, Buonaurio R, Smits THM. Race-specific genotypes of Pseudomonas syringae pv. tomato are defined by the presence of mobile DNA elements within the genome. FRONTIERS IN PLANT SCIENCE 2023; 14:1197706. [PMID: 37476164 PMCID: PMC10354423 DOI: 10.3389/fpls.2023.1197706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Pseudomonas syringae pv. tomato is the causal agent of bacterial speck of tomato, an important disease that results in severe crop production losses worldwide. Currently, two races within phylogroup 01a (PG01a) are described for this pathogen. Race 0 strains have avirulence genes for the expression of type III system-associated effectors AvrPto1 and AvrPtoB, that are recognized and targeted by the effector-triggered immunity in tomato cultivars having the pto race-specific resistance gene. Race 1 strains instead lack the avrPto1 and avrPtoB genes and are therefore capable to aggressively attack all tomato cultivars. Here, we have performed the complete genome sequencing and the analysis of P. syringae pv. tomato strain DAPP-PG 215, which was described as a race 0 strain in 1996. Our analysis revealed that its genome comprises a 6.2 Mb circular chromosome and two plasmids (107 kb and 81 kb). The results indicate that the strain is phylogenetically closely related to strains Max13, K40, T1 and NYS-T1, all known race 1 strains. The chromosome of DAPP-PG 215 encodes race 1-associated genes like avrA and hopW1 and lacks race 0-associated genes like hopN1, giving it a race 1 genetic background. However, the genome harbors a complete ortholog of avrPto1, which allows the strain to display a race 0 phenotype. Comparative genomics with several PG01a genomes revealed that mobile DNA elements are rather involved in the evolution of the two different races.
Collapse
Affiliation(s)
- Benedetta Orfei
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Linda Fenske
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Chiaraluce Moretti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Roberto Buonaurio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| |
Collapse
|
13
|
Yang P, Zhao L, Gao YG, Xia Y. Detection, Diagnosis, and Preventive Management of the Bacterial Plant Pathogen Pseudomonas syringae. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091765. [PMID: 37176823 PMCID: PMC10181079 DOI: 10.3390/plants12091765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Plant diseases caused by the pathogen Pseudomonas syringae are serious problems for various plant species worldwide. Accurate detection and diagnosis of P. syringae infections are critical for the effective management of these plant diseases. In this review, we summarize the current methods for the detection and diagnosis of P. syringae, including traditional techniques such as culture isolation and microscopy, and relatively newer techniques such as PCR and ELISA. It should be noted that each method has its advantages and disadvantages, and the choice of each method depends on the specific requirements, resources of each laboratory, and field settings. We also discuss the future trends in this field, such as the need for more sensitive and specific methods to detect the pathogens at low concentrations and the methods that can be used to diagnose P. syringae infections that are co-existing with other pathogens. Modern technologies such as genomics and proteomics could lead to the development of new methods of highly accurate detection and diagnosis based on the analysis of genetic and protein markers of the pathogens. Furthermore, using machine learning algorithms to analyze large data sets could yield new insights into the biology of P. syringae and novel diagnostic strategies. This review could enhance our understanding of P. syringae and help foster the development of more effective management techniques of the diseases caused by related pathogens.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA
| | - Yu Gary Gao
- OSU South Centers, The Ohio State University, 1864 Shyville Road, Piketon, OH 45661, USA
- Department of Extension, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Skliros D, Papazoglou P, Gkizi D, Paraskevopoulou E, Katharios P, Goumas DE, Tjamos S, Flemetakis E. In planta interactions of a novel bacteriophage against Pseudomonas syringae pv. tomato. Appl Microbiol Biotechnol 2023; 107:3801-3815. [PMID: 37074382 PMCID: PMC10175458 DOI: 10.1007/s00253-023-12493-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
The biology and biotechnology of bacteriophages have been extensively studied in recent years to explore new and environmentally friendly methods of controlling phytopathogenic bacteria. Pseudomonas syringae pv. tomato (Pst) is responsible for bacterial speck disease in tomato plants, leading to decreased yield. Disease management strategies rely on the use of copper-based pesticides. The biological control of Pst with the use of bacteriophages could be an alternative environmentally friendly approach to diminish the detrimental effects of Pst in tomato cultivations. The lytic efficacy of bacteriophages can be used in biocontrol-based disease management strategies. Here, we report the isolation and complete characterization of a bacteriophage, named Medea1, which was also tested in planta against Pst, under greenhouse conditions. The application of Medea1 as a root drenching inoculum or foliar spraying reduced 2.5- and fourfold on average, respectively, Pst symptoms in tomato plants, compared to a control group. In addition, it was observed that defense-related genes PR1b and Pin2 were upregulated in the phage-treated plants. Our research explores a new genus of Pseudomonas phages and explores its biocontrol potential against Pst, by utilizing its lytic nature and ability to trigger the immune response of plants. KEY POINTS: • Medea1 is a newly reported bacteriophage against Pseudomonas syringae pv. tomato having genomic similarities with the phiPSA1 bacteriophage • Two application strategies were reported, one by root drenching the plants with a phage-based solution and one by foliar spraying, showing up to 60- and 6-fold reduction of Pst population and disease severity in some cases, respectively, compared to control • Bacteriophage Medea1 induced the expression of the plant defense-related genes Pin2 and PR1b.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Polyxeni Papazoglou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Danai Gkizi
- Department of Wine, Vine and Beverage Sciences, School of Food Sciences, University of West Attica, 12243, Athens, Greece
| | - Eleni Paraskevopoulou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Dimitrios E Goumas
- Laboratory of Plant Pathology-Bacteriology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, 71004, Heraklio, Estavromenos, Greece
| | - Sotirios Tjamos
- Laboratory of Plant Pathology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 1855, Athens, Greece.
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
15
|
Martínez-Rodríguez L, López-Sánchez A, García-Alcaide A, Govantes F, Gallegos MT. FleQ, FleN and c-di-GMP coordinately regulate cellulose production in Pseudomonas syringae pv. tomato DC3000. Front Mol Biosci 2023; 10:1155579. [PMID: 37051327 PMCID: PMC10083355 DOI: 10.3389/fmolb.2023.1155579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The second messenger cyclic di-GMP (c-di-GMP) controls the transition between motility and sessility in many bacterial species by a variety of mechanisms, including the production of multiple exopolysaccharides. Pseudomonas syringae pv. tomato (Pto) DC3000 is a plant pathogenic bacteria able to synthesize acetylated cellulose under high c-di-GMP levels thanks to the expression of the wssABCDEFGHI operon. Increased cellulose production enhances air-liquid biofilm formation and generates a wrinkled colony phenotype on solid media. We previously showed that under low levels of c-di-GMP, the regulators FleQ and AmrZ bound to adjacent sequences at the wss promoter inhibiting its expression, but only FleQ responded to the presence of c-di-GMP by activating cellulose production. In the present work, we advance in the knowledge of this complex regulation in Pto DC3000 by shedding light over the role of FleN in this process. The distinctive features of this system are that FleN and FleQ are both required for repression and activation of the wss operon under low and high c-di-GMP levels, respectively. We have also identified three putative FleQ binding sites at the wss promoter and show that FleQ/FleN-ATP binds at those sites under low c-di-GMP levels, inducing a distortion of DNA, impairing RNA polymerase binding, and repressing wss transcription. However, binding of c-di-GMP induces a conformational change in the FleQ/FleN-ATP complex, which relieves the DNA distortion, allows promoter access to the RNA polymerase, and leads to activation of wss transcription. On the other hand, AmrZ is always bound at the wss promoter limiting its expression independently of FleQ, FleN and c-di-GMP levels.
Collapse
Affiliation(s)
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Andrea García-Alcaide
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Granada, Spain
- *Correspondence: María-Trinidad Gallegos,
| |
Collapse
|
16
|
Almeida OAC, de Araujo NO, Dias BHS, de Sant’Anna Freitas C, Coerini LF, Ryu CM, de Castro Oliveira JV. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Front Microbiol 2023; 13:951130. [PMID: 36687575 PMCID: PMC9845590 DOI: 10.3389/fmicb.2022.951130] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
Plant diseases caused by phytopathogens result in huge economic losses in agriculture. In addition, the use of chemical products to control such diseases causes many problems to the environment and to human health. However, some bacteria and fungi have a mutualistic relationship with plants in nature, mainly exchanging nutrients and protection. Thus, exploring those beneficial microorganisms has been an interesting and promising alternative for mitigating the use of agrochemicals and, consequently, achieving a more sustainable agriculture. Microorganisms are able to produce and excrete several metabolites, but volatile organic compounds (VOCs) have huge biotechnology potential. Microbial VOCs are small molecules from different chemical classes, such as alkenes, alcohols, ketones, organic acids, terpenes, benzenoids and pyrazines. Interestingly, volatilomes are species-specific and also change according to microbial growth conditions. The interaction of VOCs with other organisms, such as plants, insects, and other bacteria and fungi, can cause a wide range of effects. In this review, we show that a large variety of plant pathogens are inhibited by microbial VOCs with a focus on the in vitro and in vivo inhibition of phytopathogens of greater scientific and economic importance in agriculture, such as Ralstonia solanacearum, Botrytis cinerea, Xanthomonas and Fusarium species. In this scenario, some genera of VOC-producing microorganisms stand out as antagonists, including Bacillus, Pseudomonas, Serratia and Streptomyces. We also highlight the known molecular and physiological mechanisms by which VOCs inhibit the growth of phytopathogens. Microbial VOCs can provoke many changes in these microorganisms, such as vacuolization, fungal hyphal rupture, loss of intracellular components, regulation of metabolism and pathogenicity genes, plus the expression of proteins important in the host response. Furthermore, we demonstrate that there are aspects to investigate by discussing questions that are still not very clear in this research area, especially those that are essential for the future use of such beneficial microorganisms as biocontrol products in field crops. Therefore, we bring to light the great biotechnological potential of VOCs to help make agriculture more sustainable.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno Henrique Silva Dias
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla de Sant’Anna Freitas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,*Correspondence: Juliana Velasco de Castro Oliveira,
| |
Collapse
|
17
|
Vicente TFL, Félix C, Félix R, Valentão P, Lemos MFL. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar Drugs 2022; 21:23. [PMID: 36662196 PMCID: PMC9867177 DOI: 10.3390/md21010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Collapse
Affiliation(s)
- Tânia F. L. Vicente
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Carina Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
18
|
Carvalho R, Albu S, Timilsina S, Minsavage GV, Paret ML, Jones JB. Pseudomonas californiensis sp. nov. and Pseudomonas quasicaspiana sp. nov., isolated from ornamental crops in California. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Five bacterial strains were isolated from symptomatic leaves of Achillea millefolium, Delphinium sp. and Hydrangea sp. in California. Colonies isolated on King’s medium B (KMB) appeared white, mucoid and round, similar to
Pseudomonas
species. Phylogenetic analyses based on 16S rRNA, rpoB, rpoD and gyrB genes placed the bacteria into three distinct groups within
Pseudomonas
that were most closely related to
Pseudomonas viridiflava
,
Pseudomonas cichorii
or
Pseudomonas caspiana
. To further characterize the strains, phenotypic analyses and the following tests were performed: fatty acid methyl ester composition, LOPAT, fluorescence on KMB, Biolog assay, and transmission electron microscopy. Finally, whole genome sequencing of the strains was conducted, and the sequences were compared with reference genomes of
Pseudomonas
species based on average nucleotide identity (ANI). The first group, which consists of three strains isolated from delphinium, hydrangea and achillea, had 95.6–96.9 % pairwise ANI between each other; the second group consists of two strains isolated from delphinium that had 100 % pairwise ANI. Although comparisons of the two groups with publicly available genomes revealed closest relationships with
P. viridiflava
(91.6 %),
P. caspiana
(88.3 %) and
P. asturiensis
(86.7 %), ANI values were less than 95 % compared to all validly published pseudomonads. Combining genomic and phenotypic data, we conclude that these strains represent two new species and the names proposed are Pseudomonas quasicaspiana sp. nov. (type strain DSMZ 11 30 42T=LMG 32 434T) for the strains isolated from delphinium, achillea and hydrangea and Pseudomonas californiensis sp. nov. (DSMZ 11 30 43T=LMG 32 432T) for the two strains isolated from delphinium. The specific epithets quasicaspiana and californiensis were selected based on the close phylogenetic relationship of strains with
P. caspiana
and on the geographic location of isolation, respectively.
Collapse
Affiliation(s)
- Renato Carvalho
- North Florida Research and Education Center, University of Florida, Quincy, FL 32251, USA
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Sebastian Albu
- California Department of Food and Agriculture, Plant Pest Diagnostics Laboratory, Sacramento, CA 95832-1448, USA
| | - Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Gerald V. Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Mathews L. Paret
- North Florida Research and Education Center, University of Florida, Quincy, FL 32251, USA
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
19
|
Russo E, Spallarossa A, Comite A, Pagliero M, Guida P, Belotti V, Caviglia D, Schito AM. Valorization and Potential Antimicrobial Use of Olive Mill Wastewater (OMW) from Italian Olive Oil Production. Antioxidants (Basel) 2022; 11:antiox11050903. [PMID: 35624767 PMCID: PMC9137489 DOI: 10.3390/antiox11050903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022] Open
Abstract
The production of olive oil generates olive mill wastewater (OMW) which essentially derives from the processing, treatment and pressing of olives in mills. Traditional milling processes require a quantity of water varying between 40 and 120 L per quintal of pressed olives, generating a considerable amount of wastewater. It is thus necessary to reduce process water and enhance its use to implement the concept of a circular economy. To this end, our preliminary work was dedicated to water purification by means of suitable and efficient filtration systems. The microfiltered OMW was firstly concentrated through reverse osmosis. Then, an additional concentration step was carried out via vacuum membrane distillation using hydrophobic hollow fiber membranes. The application of the membrane-based processes allowed the recovery of a purified water and the concentration of valuable polyphenols in a smaller volume. The different fractions obtained from the purification have been tested for the determination of the antioxidant power (DPPH assay) and dosage of polyphenols (Folin–Ciocalteu assay) and were characterized using IR spectroscopy. All samples showed relevant antioxidant activity (percentage range: 10–80%) and total phenolic content in the 1.5–15 g GAE/L range. The obtained fractions were tested for their antimicrobial effect on numerous clinical isolates of Gram-positive and Gram-negative species, resistant and multi-resistant to current antibiotic drugs. OMW samples showed widespread activity against the considered (phyto)pathogens (MIC range 8–16 mg/mL) thus supporting the value of this waste material in the (phyto)pharmaceutical field.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Correspondence:
| | - Andrea Spallarossa
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
| | - Antonio Comite
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso, 31, 16146 Genoa, Italy; (A.C.); (M.P.)
| | - Marcello Pagliero
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso, 31, 16146 Genoa, Italy; (A.C.); (M.P.)
| | - Patrizia Guida
- Department of Phisics, University of Genova, Via Dodecaneso, 31, 16146 Genoa, Italy;
| | - Vittorio Belotti
- Department of Mechanical, Energy, Management and Transport Engineering, University of Genova, Via alla Opera Pia, 15, 16100 Genoa, Italy;
| | - Debora Caviglia
- Department of Integrated Surgical and Diagnostic Sciences, University of Genova, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (A.M.S.)
| | - Anna Maria Schito
- Department of Integrated Surgical and Diagnostic Sciences, University of Genova, Viale Benedetto XV, 6, 16132 Genoa, Italy; (D.C.); (A.M.S.)
| |
Collapse
|
20
|
Korniienko N, Kharina A, Zrelovs N, Jindřichová B, Moravec T, Budzanivska I, Burketová L, Kalachova T. Isolation and Characterization of Two Lytic Phages Efficient Against Phytopathogenic Bacteria From Pseudomonas and Xanthomonas Genera. Front Microbiol 2022; 13:853593. [PMID: 35547140 PMCID: PMC9083414 DOI: 10.3389/fmicb.2022.853593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas syringae is a bacterial pathogen that causes yield losses in various economically important plant species. At the same time, P. syringae pv. tomato (Pst) is one of the best-studied bacterial phytopathogens and a popular model organism. In this study, we report on the isolation of two phages from the market-bought pepper fruit showing symptoms of bacterial speck. These Pseudomonas phages were named Eir4 and Eisa9 and characterized using traditional microbiological methods and whole-genome sequencing followed by various bioinformatics approaches. Both of the isolated phages were capable only of the lytic life cycle and were efficient against several pathovars from Pseudomonas and Xanthomonas genera. With the combination of transmission electron microscopy (TEM) virion morphology inspection and comparative genomics analyses, both of the phages were classified as members of the Autographiviridae family with different degrees of novelty within the known phage diversity. Eir4, but not Eisa9, phage application significantly decreased the propagation of Pst in the leaf tissues of Arabidopsis thaliana plants. The biological properties of Eir4 phage allow us to propose it as a potential biocontrol agent for use in the prevention of Pst-associated bacterioses and also as a model organism for the future research of mechanisms of phage-host interactions in different plant systems.
Collapse
Affiliation(s)
- Nataliia Korniienko
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Educational and Scientific Center (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Alla Kharina
- Educational and Scientific Center (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Rīga, Latvia
| | - Barbora Jindřichová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Tomaš Moravec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Iryna Budzanivska
- Educational and Scientific Center (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Lenka Burketová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
21
|
Boyer M, Wisniewski-Dyé F, Combrisson J, Bally R, Duponnois R, Costechareyre D. Nettle manure: an unsuspected source of bacteriophages active against various phytopathogenic bacteria. Arch Virol 2022; 167:1099-1110. [DOI: 10.1007/s00705-022-05391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
|
22
|
Djitro N, Roach R, Mann R, Rodoni B, Gambley C. Characterization of Pseudomonas syringae Isolated from Systemic Infection of Zucchini in Australia. PLANT DISEASE 2022; 106:541-548. [PMID: 34645305 DOI: 10.1094/pdis-05-21-1039-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zucchini plants with symptoms including twisted petioles, necrotic leaves, crown rot, and internal fruit rot were found in Bundaberg, Australia, at a commercial field for the first time during late autumn 2016, resulting in direct yield losses of 70 to 80%. Three Pseudomonas syringae strains isolated from symptomatic leaf (KL004-k1), crown (77-4C), and fruit (KFR003-1) were characterized and their pathogenicity evaluated on pumpkin, rockmelon, squash, and zucchini. Biochemical assays showed typical results for P. syringae. The three isolates differed, however, in that two produced fluorescent pigment (KFR003-1 and 77-4C) whereas the third, KL004-k1, was nonfluorescent. Multilocus sequence analysis classified the isolates to phylogroup 2b. The single-nucleotide polymorphism analysis of core genome from the Australian and closely related international isolates of P. syringae showed two separate clusters. The Australian isolates were clustered based on fluorescent phenotype. Pathogenicity tests demonstrated that all three isolates moved systemically within the inoculated plants and induced necrotic leaf symptoms in zucchini plants. Their identities were confirmed with specific PCR assays for P. syringae and phylogroup 2. Pathogenicity experiments also showed that the Eva variety of zucchini was more susceptible than the Rosa variety for all three isolates. Isolate KL004-k1 was more virulent than 77-4C on pumpkin, rockmelon, squash, and zucchini. This study expands the knowledge of P. syringae isolates that infect cucurbits and provides useful information for growers about the relative susceptibility of a range of cucurbit species.
Collapse
Affiliation(s)
- Noel Djitro
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Rebecca Roach
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia
| | - Rachel Mann
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3086, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Cherie Gambley
- Department of Agriculture and Fisheries, Maroochy Research Facility, Nambour, Queensland 4560, Australia
| |
Collapse
|
23
|
Sophiarani Y, Chakraborty S. Prediction of microRNAs in Pseudomonas syringae pv. tomato DC3000 and their potential target prediction in Solanum lycopersicum. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Robb EJ, Nazar RN. Tomato Ve-resistance locus: resilience in the face of adversity? PLANTA 2021; 254:126. [PMID: 34811576 DOI: 10.1007/s00425-021-03783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The Ve-resistance locus in tomato acts as a resilience gene by affecting both the stress/defense cascade and growth, constituting a signaling intercept with a competitive regulatory mechanism. For decades, the tomato Ve-gene has been recognized as a classical resistance R-gene, inherited as a dominant Mendelian trait and encoding a receptor protein that binds with a fungal effector to provide defense against Verticillium dahliae and V. albo-atrum. However, recent molecular studies suggest that the function and role(s) of the Ve-locus and the two proteins that it encodes are more complex than previously understood. This review summarizes both the background and recent molecular evidence and provides a reinterpretation of the function and role(s) of the Ve1- and Ve2-genes and proteins that better accommodates existing data. It is proposed that these two plasma membrane proteins interact to form a signaling intercept that directly links defense and growth. The induction of Ve1 by infection or wounding promotes growth but also downregulates Ve2 signaling, resulting in a decreased biosynthesis of PR proteins. In this context, the Ve1 R-gene acts as a Resilience gene rather than a Resistance gene, promoting taller more robust tomato plants with reduced symptoms (biotic and abiotic) and Verticillium concentration.
Collapse
Affiliation(s)
- E Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Ross N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
25
|
Ferreiro MD, Behrmann LV, Corral A, Nogales J, Gallegos MT. Exploring the expression and functionality of the rsm sRNAs in Pseudomonas syringae pv. tomato DC3000. RNA Biol 2021; 18:1818-1833. [PMID: 33406981 PMCID: PMC8583166 DOI: 10.1080/15476286.2020.1871217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The Gac-rsm pathway is a global regulatory network that governs mayor lifestyle and metabolic changes in gamma-proteobacteria. In a previous study, we uncovered the role of CsrA proteins promoting growth and repressing motility, alginate production and virulence in the model phytopathogen Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we focus on the expression and regulation of the rsm regulatory sRNAs, since Pto DC3000 exceptionally has seven variants (rsmX1-5, rsmY and rsmZ). The presented results offer further insights into the functioning of the complex Gac-rsm pathway and the interplay among its components. Overall, rsm expressions reach maximum levels at high cell densities, are unaffected by surface detection, and require GacA for full expression. The rsm levels of expression and GacA-dependence are determined by the sequences found in their -35/-10 promoter regions and GacA binding boxes, respectively. rsmX5 stands out for being the only rsm in Pto DC3000 whose high expression does not require GacA, constituting the main component of the total rsm pool in a gacA mutant. The deletion of rsmY and rsmZ had minor effects on Pto DC3000 motility and virulence phenotypes, indicating that rsmX1-5 can functionally replace them. On the other hand, rsmY or rsmZ overexpression in a gacA mutant did not revert its phenotype. Additionally, a negative feedback regulatory loop in which the CsrA3 protein promotes its own titration by increasing the levels of several rsm RNAs in a GacA-dependent manner has been disclosed as part of this work.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Lara Vanessa Behrmann
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Ana Corral
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Joaquina Nogales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
26
|
Identification of IAA-regulated genes in Pseudomonas syringae pv. tomato strain DC3000. J Bacteriol 2021; 204:e0038021. [PMID: 34662236 DOI: 10.1128/jb.00380-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The auxin indole-3-acetic acid (IAA) is a plant hormone that not only regulates plant growth and development but also plays important roles in plant-microbe interactions. We previously reported that IAA alters expression of several virulence-related genes in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000). To learn more about the impact of IAA on regulation of PtoDC3000 gene expression we performed a global transcriptomic analysis of bacteria grown in culture, in the presence or absence of exogenous IAA. We observed that IAA repressed expression of genes involved in the Type III secretion (T3S) system and motility and promoted expression of several known and putative transcriptional regulators. Several of these regulators are orthologs of factors known to regulate stress responses and accordingly expression of several stress response-related genes was also upregulated by IAA. Similar trends in expression for several genes were also observed by RT-qPCR. Using an Arabidopsis thaliana auxin receptor mutant that accumulates elevated auxin, we found that many of the P. syringae genes regulated by IAA in vitro were also regulated by auxin in planta. Collectively the data indicate that IAA modulates many aspects of PtoDC3000 biology, presumably to promote both virulence and survival under stressful conditions, including those encountered in or on plant leaves. IMPORTANCE Indole-3-acetic acid (IAA), a form of the plant hormone auxin, is used by many plant-associated bacteria as a cue to sense the plant environment. Previously, we showed that IAA can promote disease in interactions between the plant pathogen Pseudomonas syringae strain PtoDC000 and one of its hosts, Arabidopsis thaliana. However, the mechanisms by which IAA impacts the biology of PtoDC3000 and promotes disease are not well understood. Here we demonstrate that IAA is a signal molecule that regulates gene expression in PtoDC3000. The presence of exogenous IAA affects expression of over 700 genes in the bacteria, including genes involved in Type III secretion and genes involved in stress response. This work offers insight into the roles of auxin promoting pathogenesis.
Collapse
|
27
|
Double agent indole-3-acetic acid (IAA): Mechanistic analysis of indole-3-acetaldehyde dehydrogenase AldA that synthesizes IAA, an auxin that aids bacterial virulence. Biosci Rep 2021; 41:229488. [PMID: 34369556 PMCID: PMC8385190 DOI: 10.1042/bsr20210598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
The large diversity of organisms inhabiting various environmental niches on our planet are engaged in a lively exchange of biomolecules, including nutrients, hormones, and vitamins. In a quest to survive, organisms that we define as pathogens employ innovative methods to extract valuable resources from their host leading to an infection. One such instance is where plant-associated bacterial pathogens synthesize and deploy hormones or their molecular mimics to manipulate the physiology of the host plant. This commentary describes one such specific example—the mechanism of the enzyme AldA, an aldehyde dehydrogenase (ALDH) from the bacterial plant pathogen Pseudomonas syringae which produces the plant auxin hormone indole-3-acetic acid (IAA) by oxidizing the substrate indole-3-acetaldehyde (IAAld) using the cofactor nicotinamide adenine dinucleotide (NAD+) (Bioscience Reports (2020) 40(12), https://doi.org/10.1042/BSR20202959). Using mutagenesis, enzyme kinetics, and structural analysis, Zhang et al. established that the progress of the reaction hinges on the formation of two distinct conformations of NAD(H) during the reaction course. Additionally, a key mutation in the AldA active site ‘aromatic box’ changes the enzyme’s preference for an aromatic substrate to an aliphatic one. Our commentary concludes that such molecular level investigations help to establish the nature of the dynamics of NAD(H) in ALDH-catalyzed reactions, and further show that the key active site residues control substrate specificity. We also contemplate that insights from the present study can be used to engineer novel ALDH enzymes for environmental, health, and industrial applications.
Collapse
|
28
|
Schiavi D, Balbi R, Giovagnoli S, Camaioni E, Botticella E, Sestili F, Balestra GM. A Green Nanostructured Pesticide to Control Tomato Bacterial Speck Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1852. [PMID: 34361238 PMCID: PMC8308196 DOI: 10.3390/nano11071852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Bacterial speck disease, caused by Pseudomonas syringae pv. tomato (Pst), is one of the most pervasive biological adversities in tomato cultivation, in both industrial and in table varieties. In this work synthesis, biochemical and antibacterial properties of a novel organic nanostructured pesticide composed of chitosan hydrochloride (CH) as active ingredient, cellulose nanocrystals (CNC) as nanocarriers and starch as excipient were evaluated. In order to study the possibility of delivering CH, the effects of two different types of starches, extracted from a high amylose bread wheat (high amylose starch-HA Starch) and from a control genotype (standard starch-St Starch), were investigated. Nanostructured microparticles (NMP) were obtained through the spray-drying technique, revealing a CH loading capacity proximal to 50%, with a CH release of 30% for CH-CNC-St Starch NMP and 50% for CH-CNC-HA Starch NMP after 24 h. Both NMP were able to inhibit bacterial growth in vitro when used at 1% w/v. Moreover, no negative effects on vegetative growth were recorded when NMP were foliar applied on tomato plants. Proposed nanostructured pesticides showed the capability of diminishing Pst epiphytical survival during time, decreasing disease incidence and severity (from 45% to 49%), with results comparable to one of the most used cupric salt (hydroxide), pointing out the potential use of CH-CNC-Starch NMP as a sustainable and innovative ally in Pst control strategies.
Collapse
Affiliation(s)
- Daniele Schiavi
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
| | - Rosa Balbi
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (R.B.); (S.G.); (E.C.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (R.B.); (S.G.); (E.C.)
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences (DSF), University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (R.B.); (S.G.); (E.C.)
| | - Ermelinda Botticella
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
- CNR-Institute of Sciences of Food Production (ISPA), Unit of Lecce, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Francesco Sestili
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
| | - Giorgio Mariano Balestra
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (E.B.); (F.S.)
| |
Collapse
|
29
|
Bacteria associated with vascular wilt of poplar. Arch Microbiol 2021; 203:4829-4838. [PMID: 34213597 PMCID: PMC8502120 DOI: 10.1007/s00203-021-02464-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 10/31/2022]
Abstract
In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. Leaves appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died. Bark was sunken and discolored, often loosened and split. Trunks decayed from the base. Phloem and xylem showed brown necrosis. Ten per cent of trees died in 1-2 months. None of these symptoms was typical for known poplar diseases. Bacteria in soil and in the necrotic base of poplar trunk were analyzed with Illumina sequencing. Soil and wood were colonized by at least 615 and 249 taxa. The majority of bacteria were common to soil and wood. The most common taxa in soil were: Acidobacteria (14.76%), Actinobacteria (14.58%), Proteobacteria (36.87) with Betaproteobacteria (6.52%), (6.10%), Comamonadaceae (2.79%), and Verrucomicrobia (5.31%).The most common taxa in wood were: Bacteroidetes (22.72%) including Chryseobacterium (5.07%), Flavobacteriales (10.87%), Sphingobacteriales (9.40%) with Pedobacter cryoconitis (7.31%), Proteobacteria (73.79%) with Enterobacteriales (33.25%) including Serratia (15.30%) and Sodalis (6.52%), Pseudomonadales (9.83%) including Pseudomonas (9.02%), Rhizobiales (6.83%), Sphingomonadales (5.65%), and Xanthomonadales (11.19%). Possible pathogens were Pseudomonas, Rhizobium and Xanthomonas. The potential initial, endophytic character of bacteria is discussed. Soil and possibly planting material might be the reservoir of pathogen inoculum.
Collapse
|
30
|
Bernal E, Deblais L, Rajashekara G, Francis DM. Bioluminescent Xanthomonas hortorum pv. gardneri as a Tool to Quantify Bacteria in Planta, Screen Germplasm, and Identify Infection Routes on Leaf Surfaces. FRONTIERS IN PLANT SCIENCE 2021; 12:667351. [PMID: 34211486 PMCID: PMC8239390 DOI: 10.3389/fpls.2021.667351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Imaging technology can provide insight into biological processes governing plant-pathogen interactions. We created and used a bioluminescent strain of Xanthomonas hortorum pv. gardneri (Xgb) to quantify infection processes in plants using tomato as a model. An X. hortorum pv. gardneri is one of the four Xanthomonas species that causes bacterial spots in tomatoes. We used Xgb to quantify bacterial growth in planta, to assess disease severity in resistant and susceptible tomato lines, and to observe infection routes in leaves. A positive and significant linear correlation r (67) = 0.57, p ≤ 0.0001 was observed between bioluminescence signals emitted by Xgb in planta and bacterial populations determined through dilution plating. Based on bioluminescence imaging, resistant and susceptible tomato lines had significantly different average radiances. In addition, there was a positive and significant correlation r = 0.45, p = 0.024 between X. hortorum pv. gardneri-inoculated tomato lines evaluated by bioluminescence imaging and tomatoes rated in the field using the Horsfall-Barrat Scale. Heritability was calculated to compare the genetic variance for disease severity using bioluminescence imaging and classical field ratings. The genetic variances were 25 and 63% for bioluminescence imaging and field ratings, respectively. The disadvantage of lower heritability attained by bioluminescence imaging may be offset by the ability to complete germplasm evaluation experiments within 30 days rather than 90-120 days in field trials. We further explored X. hortorum pv. gardneri infection routes on leaves using spray and dip inoculation techniques. Patterns of bioluminescence demonstrated that the inoculation technique affected the distribution of bacteria, an observation verified using scanning electron microscopy (SEM). We found significant non-random distributions of X. hortorum pv. gardneri on leaf surfaces with the method of inoculation affecting bacterial distribution on leaf surfaces at 4 h postinoculation (hpi). At 18 hpi, regardless of inoculation method, X. hortorum pv. gardneri localized on leaf edges near hydathodes based on bioluminescence imaging and confirmed by electron microscopy. These findings demonstrated the utility of bioluminescent X. hortorum pv. gardneri to estimate bacterial populations in planta, to select for resistant germplasm, and to detect likely points of infection.
Collapse
Affiliation(s)
- Eduardo Bernal
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Loïc Deblais
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - David M. Francis
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
31
|
Foix L, Nadal A, Zagorščak M, Ramšak Ž, Esteve-Codina A, Gruden K, Pla M. Prunus persica plant endogenous peptides PpPep1 and PpPep2 cause PTI-like transcriptome reprogramming in peach and enhance resistance to Xanthomonas arboricola pv. pruni. BMC Genomics 2021; 22:360. [PMID: 34006221 PMCID: PMC8132438 DOI: 10.1186/s12864-021-07571-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rosaceae species are economically highly relevant crops. Their cultivation systems are constrained by phytopathogens causing severe losses. Plants respond to invading pathogens through signaling mechanisms, a component of which are of them being plant elicitor peptides (Peps). Exogenous application of Peps activates defense mechanisms and reduces the symptoms of pathogen infection in various pathosystems. We have previously identified the Rosaceae Peps and showed, in an ex vivo system, that their topical application efficiently enhanced resistance to the bacterial pathogen Xanthomonas arboricola pv. pruni (Xap). RESULTS Here we demonstrate the effectiveness of Prunus persica peptides PpPep1 and PpPep2 in protecting peach plants in vivo at nanomolar doses, with 40% reduction of the symptoms following Xap massive infection. We used deep sequencing to characterize the transcriptomic response of peach plants to preventive treatment with PpPep1 and PpPep2. The two peptides induced highly similar massive transcriptomic reprogramming in the plant. One hour, 1 day and 2 days after peptide application there were changes in expression in up to 8% of peach genes. We visualized the transcriptomics dynamics in a background knowledge network and detected the minor variations between plant responses to PpPep1 and PpPep2, which might explain their slightly different protective effects. By designing a P. persica Pep background knowledge network, comparison of our data and previously published immune response datasets was possible. CONCLUSIONS Topical application of P. persica Peps mimics the PTI natural response and protects plants against massive Xap infection. This makes them good candidates for deployment of natural, targeted and environmental-friendly strategies to enhance resistance in Prunus species and prevent important biotic diseases.
Collapse
Affiliation(s)
- Laura Foix
- Institute for Agricultural and Food Technology, Universitat de Girona, Campus Montilivi (EPS-1), 17003, Girona, Spain
| | - Anna Nadal
- Institute for Agricultural and Food Technology, Universitat de Girona, Campus Montilivi (EPS-1), 17003, Girona, Spain
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Maria Pla
- Institute for Agricultural and Food Technology, Universitat de Girona, Campus Montilivi (EPS-1), 17003, Girona, Spain.
| |
Collapse
|
32
|
Rodrigues JM, Coutinho FS, Dos Santos DS, Vital CE, Ramos JRLS, Reis PB, Oliveira MGA, Mehta A, Fontes EPB, Ramos HJO. BiP-overexpressing soybean plants display accelerated hypersensitivity response (HR) affecting the SA-dependent sphingolipid and flavonoid pathways. PHYTOCHEMISTRY 2021; 185:112704. [PMID: 33640683 DOI: 10.1016/j.phytochem.2021.112704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/09/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Biotic and abiotic environmental stresses have limited the increase in soybean productivity. Overexpression of the molecular chaperone BiP in transgenic plants has been associated with the response to osmotic stress and drought tolerance by maintaining cellular homeostasis and delaying hypersensitive cell death. Here, we evaluated the metabolic changes in response to the hypersensitivity response (HR) caused by the non-compatible bacteria Pseudomonas syringae pv. tomato in BiP-overexpressing plants. The HR-modified metabolic profiles in BiP-overexpressing plants were significantly distinct from the wild-type untransformed. The transgenic plants displayed a lower abundance of HR-responsive metabolites as amino acids, sugars, carboxylic acids and signal molecules, including p-aminobenzoic acid (PABA) and dihydrosphingosine (DHS), when compared to infected wild-type plants. In contrast, salicylic acid (SA) biosynthetic and signaling pathways were more stimulated in transgenic plants, and both pathogenesis-related genes (PRs) and transcriptional factors controlling the SA pathway were more induced in the BiP-overexpressing lines. Furthermore, the long-chain bases (LCBs) and ceramide biosynthetic pathways showed alterations in gene expression and metabolite abundance. Thus, as a protective pathway against pathogens, HR regulation by sphingolipids and SA may account at least in part by the enhanced resistance of transgenic plants. GmNAC32 transcriptional factor was more induced in the transgenic plants and it has also been reported to regulate flavonoid synthesis in response to SA. In fact, the BiP-overexpressing plants showed an increase in flavonoids, mainly prenylated isoflavones, as precursors for phytoalexins. Our results indicate that the BiP-mediated acceleration in the hypersensitive response may be a target for metabolic engineering of plant resistance against pathogens.
Collapse
Affiliation(s)
- Juliano Mendonça Rodrigues
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Flaviane Silva Coutinho
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Danilo Silva Dos Santos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Camilo Elber Vital
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Juliana Rocha Lopes Soares Ramos
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Pedro Braga Reis
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Maria Goreti Almeida Oliveira
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Brasília, DF, Brazil
| | - Elizabeth Pacheco Batista Fontes
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Humberto Josué Oliveira Ramos
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil; Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil; Núcleo de Análise de Biomoléculas, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
33
|
Vogel MA, Mason OU, Miller TE. Composition of seagrass phyllosphere microbial communities suggests rapid environmental regulation of community structure. FEMS Microbiol Ecol 2021; 97:6119907. [PMID: 33493257 DOI: 10.1093/femsec/fiab013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Recent studies have revealed that seagrass blade surfaces, also known as the phyllosphere, are rich habitats for microbes; however, the primary drivers of composition and structure in these microbial communities are largely unknown. This study utilized a reciprocal transplant approach between two sites with different environmental conditions combined with 16S rRNA gene sequencing (iTag) to examine the relative influence of environmental conditions and host plant on phyllosphere community composition of the seagrass Thalassia testudinum. After 30 days, identity of phyllosphere microbial community members was more similar within the transplant sites than between despite differences in the source of host plant. Additionally, the diversity and evenness of these communities was significantly different between the two sites. These results indicated that local environmental conditions can be a primary driver in structuring seagrass phyllosphere microbial communities over relatively short time scales. Composition of microbial community members in this study also deviated from those in previous seagrass phyllosphere studies with a higher representation of candidate bacterial phyla and archaea than previously observed. The capacity for seagrass phyllosphere microbial communities to shift dramatically with environmental conditions, including ecosystem perturbations, could significantly affect seagrass-microbe interactions in ways that may influence the health of the seagrass host.
Collapse
Affiliation(s)
- Margaret A Vogel
- Florida State University, Department of Biological Science, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Olivia U Mason
- Florida State University, Department of Earth, Ocean, and Atmospheric Science, 1011 Academic Way, Tallahassee, FL 32306, USA
| | - Thomas E Miller
- Florida State University, Department of Biological Science, 319 Stadium Drive, Tallahassee, FL 32306, USA
| |
Collapse
|
34
|
Draft Genome Sequences of Pseudomonas syringae pv. tomato Strains J4 and J6, Isolated in Florida. Microbiol Resour Announc 2021; 10:10/15/e00127-21. [PMID: 33858923 PMCID: PMC8050965 DOI: 10.1128/mra.00127-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. Tomato causes bacterial speck in tomato. We report the genome sequences of two P. syringae pv. Tomato strains, J4 and J6, that are genetically closely related, with >99.9 average nucleotide identity (ANI), but vary in the presence of coronatine-associated genes. Pseudomonas syringae pv. tomato causes bacterial speck in tomato. We report the genome sequences of two P. syringae pv. tomato strains, J4 and J6, that are genetically closely related, with >99.9 average nucleotide identity (ANI), but vary in the presence of coronatine-associated genes.
Collapse
|
35
|
Xie Y, Liu W, Shao X, Zhang W, Deng X. Signal transduction schemes in Pseudomonas syringae. Comput Struct Biotechnol J 2020; 18:3415-3424. [PMID: 33294136 PMCID: PMC7691447 DOI: 10.1016/j.csbj.2020.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/11/2022] Open
Abstract
To cope with their continually fluctuating surroundings, pathovars of the unicellular phytopathogen Pseudomonas syringae have developed rapid and sophisticated signalling networks to sense extracellular stimuli, which allow them to adjust their cellular composition to survive and cause diseases in host plants. Comparative genomic analyses of P. syringae strains have identified various genes that encode several classes of signalling proteins, although how this bacterium directly perceives these environmental cues remains elusive. Recent work has revealed new mechanisms of a cluster of bacterial signal transduction systems that mainly include two-component systems (such as RhpRS, GacAS, CvsRS and AauRS), extracytoplasmic function sigma factors (such as HrpL and AlgU), nucleotide-based secondary messengers, methyl-accepting chemotaxis sensor proteins and several other intracellular surveillance systems. In this review, we compile a list of the signal transduction mechanisms that P. syringae uses to monitor and respond in a timely manner to intracellular and external conditions. Further understanding of these surveillance processes will provide new perspectives from which to combat P. syringae infections.
Collapse
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Wenbao Liu
- College of Agricultural Sciences and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Weihua Zhang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong 999077, Hong Kong Special Administrative Region.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
36
|
Hulin MT, Jackson RW, Harrison RJ, Mansfield JW. Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. PLANT PATHOLOGY 2020; 69:962-978. [PMID: 32742023 PMCID: PMC7386918 DOI: 10.1111/ppa.13189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
Bacterial canker disease is a major limiting factor in the growing of cherry and other Prunus species worldwide. At least five distinct clades within the bacterial species complex Pseudomonas syringae are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of P. syringae pv. syringae possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as hopAB, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.
Collapse
Affiliation(s)
| | - Robert W. Jackson
- Birmingham Institute of Forest Research (BIFoR), University of BirminghamBirminghamUK
- School of Biosciences, University of BirminghamBirminghamUK
| | | | | |
Collapse
|
37
|
Pontes JGDM, Fernandes LS, Dos Santos RV, Tasic L, Fill TP. Virulence Factors in the Phytopathogen-Host Interactions: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7555-7570. [PMID: 32559375 DOI: 10.1021/acs.jafc.0c02389] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytopathogens are responsible for great losses in agriculture, once they are able to subvert or elude the host defense mechanisms through virulence factors secretion for their dissemination. Herein, it is reviewed phytotoxins that act as virulence factors and are produced by bacterial phytopathogens (Candidatus Liberibacter spp., Erwinia amylovora, Pseudomonas syringae pvs and Xanthomonas spp.) and fungi (Alternaria alternata, Botrytis cinerea, Cochliobolus spp., Fusarium spp., Magnaporthe spp., and Penicillium spp.), which were selected in accordance to their worldwide importance due to the biochemical and economical aspects. In the current review, it is sought to understand the role of virulence factors in the pathogen-host interactions that result in plant diseases.
Collapse
Affiliation(s)
| | - Laura Soler Fernandes
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
| | | | - Ljubica Tasic
- Laboratório de Quı́mica Biológica (LQB), IQ-UNICAMP, Campinas, SP, Brazil
| | - Taicia Pacheco Fill
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), P.O. Box 6154, 13083970 Campinas, SP, Brazil
| |
Collapse
|
38
|
Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. BMC Genomics 2020; 21:296. [PMID: 32272893 PMCID: PMC7146990 DOI: 10.1186/s12864-020-6701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pseudomonas syringae is an important plant pathogen, which could adapt many different environmental conditions. Under the nutrient-limited and other stress conditions, P. syringae produces nucleotide signal molecules, i.e., guanosine tetra/pentaphosphate ((p)ppGpp), to globally regulate gene expression. Previous studies showed that (p) ppGpp played an important role in regulating virulence factors in P. syringae pv. tomato DC3000 (PstDC3000) and P. syringae pv. syringae B728a (PssB728a). Here we present a comparative transcriptomic analysis to uncover the overall effects of (p)ppGpp-mediated stringent response in P. syringae. RESULTS In this study, we investigated global gene expression profiles of PstDC3000 and PssB728a and their corresponding (p)ppGpp0 mutants in hrp-inducing minimal medium (HMM) using RNA-seq. A total of 1886 and 1562 differentially expressed genes (DEGs) were uncovered between the (p)ppGpp0 mutants and the wild-type in PstDC3000 and PssB728a, respectively. Comparative transcriptomics identified 1613 common DEGs, as well as 444 and 293 unique DEGs in PstDC3000 and PssB728a, respectively. Functional cluster analysis revealed that (p) ppGpp positively regulated a variety of virulence-associated genes, including type III secretion system (T3SS), type VI secretion system (T6SS), cell motility, cell division, and alginate biosynthesis, while negatively regulated multiple basic physiological processes, including DNA replication, RNA processes, nucleotide biosynthesis, fatty acid metabolism, ribosome protein biosynthesis, and amino acid metabolism in both PstDC3000 and PssB728a. Furthermore, (p) ppGpp had divergent effects on other processes in PstDC3000 and PssB728a, including phytotoxin, nitrogen regulation and general secretion pathway (GSP). CONCLUSION In this study, comparative transcriptomic analysis reveals common regulatory networks in both PstDC3000 and PssB728a mediated by (p) ppGpp in HMM. In both P. syringae systems, (p) ppGpp re-allocate cellular resources by suppressing multiple basic physiological activities and enhancing virulence gene expression, suggesting a balance between growth, survival and virulence. Our research is important in that due to similar global gene expression mediated by (p) ppGpp in both PstDC3000 and PssB728a, it is reasonable to propose that (p) ppGpp could be used as a target to develop novel control measures to fight against important plant bacterial diseases.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Yanli Tian
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Baishi Hu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
39
|
Ferelli AMC, Bolten S, Szczesny B, Micallef SA. Salmonella enterica Elicits and Is Restricted by Nitric Oxide and Reactive Oxygen Species on Tomato. Front Microbiol 2020; 11:391. [PMID: 32231649 PMCID: PMC7082413 DOI: 10.3389/fmicb.2020.00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
The enteric pathogen Salmonella enterica can interact with parts of the plant immune system despite not being a phytopathogen. Previous transcriptomic profiling of S. enterica associating with tomato suggested that Salmonella was responding to oxidative and nitrosative stress in the plant niche. We aimed to investigate whether Salmonella was eliciting generation of reactive oxygen species (ROS) and nitric oxide (NO), two components of the microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) of plants. We also sought to determine whether this interaction had any measurable effects on Salmonella colonization of plants. Biochemical, gene expression and on-plant challenge assays of tomato vegetative and fruit organs were conducted to assess the elicitation of ROS and NO in response to Salmonella Newport association. The counter bacterial response and the effect of NO and ROS on Salmonella colonization was also investigated. We detected H2O2 in leaves and fruit following challenge with live S. Newport (p < 0.05). Conversely, NO was detected on leaves but not on fruit in response to S. Newport (p < 0.05). We found no evidence of plant defense attenuation by live S. Newport. Bacterial gene expression of S. Newport associating with leaves and fruit were indicative of adaptation to biotic stress in the plant niche. The nitrosative stress response genes hmpA and yoaG were significantly up-regulated in S. Newport on leaves and fruit tissue compared to tissue scavenged of NO or ROS (p < 0.05). Chemical modulation of these molecules in the plant had a restrictive effect on bacterial populations. Significantly higher S. Newport titers were retrieved from H2O2 scavenged leaves and fruit surfaces compared to controls (p < 0.05). Similarly, S. Newport counts recovered from NO-scavenged leaves, but not fruit, were higher compared to control (p < 0.05), and significantly lower on leaves pre-elicited to produce endogenous NO. We present evidence of Salmonella elicitation of ROS and NO in tomato, which appear to have a restricting effect on the pathogen. Moreover, bacterial recognition of ROS and NO stress was detected. This work shows that tomato has mechanisms to restrict Salmonella populations and ROS and NO detoxification may play an important role in Salmonella adaptation to the plant niche.
Collapse
Affiliation(s)
- Angela Marie C Ferelli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Samantha Bolten
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Brooke Szczesny
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States.,Centre for Food Safety and Security Systems, University of Maryland, College Park, MD, United States
| |
Collapse
|
40
|
Moyano L, Lopéz-Fernández MP, Carrau A, Nannini JM, Petrocelli S, Orellano EG, Maldonado S. Red light delays programmed cell death in non-host interaction between Pseudomonas syringae pv tomato DC3000 and tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110361. [PMID: 31928670 DOI: 10.1016/j.plantsci.2019.110361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 05/29/2023]
Abstract
Light modulates almost every aspect of plant physiology, including plant-pathogen interactions. Among these, the hypersensitive response (HR) of plants to pathogens is characterized by a rapid and localized programmed cell death (PCD), which is critical to restrict the spread of pathogens from the infection site. The aim of this work was to study the role of light in the interaction between Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and non-host tobacco plants. To this end, we examined the HR under different light treatments (white and red light) by using a range of well-established markers of PCD. The alterations found at the cellular level included: i) loss of membrane integrity and nuclei, ii) RuBisCo and DNA degradation, and iii) changes in nuclease profiles and accumulation of cysteine proteinases. Our results suggest that red light plays a role during the HR of tobacco plants to Pto DC3000 infection, delaying the PCD process.
Collapse
Affiliation(s)
- Laura Moyano
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| | - María P Lopéz-Fernández
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina.
| | - Analía Carrau
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Julián M Nannini
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Silvana Petrocelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elena G Orellano
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sara Maldonado
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| |
Collapse
|
41
|
Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants. PLoS One 2020; 15:e0227559. [PMID: 31910230 PMCID: PMC6946519 DOI: 10.1371/journal.pone.0227559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
A multiplex real-time PCR method based on fluorescent TaqMan® probes was developed for the simultaneous detection of the tomato pathogenic bacteria Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and bacterial spot-causing xanthomonads. The specificity of the multiplex assay was validated on 44 bacterial strains, including 32 target pathogen strains as well as closely related species and nontarget tomato pathogenic bacteria. The designed multiplex real-time PCR showed high sensitivity when positive amplification was observed for one pg of bacterial DNA in the cases of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato bacteria and 100 pg for bacterial spot-causing xanthomonads. The reliability of the developed multiplex real-time PCR assay for in planta detection was verified by recognition of the target pathogens in 18 tomato plants artificially inoculated by each of the target bacteria and tomato samples from production greenhouses.
Collapse
|
42
|
Hupp S, Rosenkranz M, Bonfig K, Pandey C, Roitsch T. Noninvasive Phenotyping of Plant-Pathogen Interaction: Consecutive In Situ Imaging of Fluorescing Pseudomonas syringae, Plant Phenolic Fluorescence, and Chlorophyll Fluorescence in Arabidopsis Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:1239. [PMID: 31681362 PMCID: PMC6803544 DOI: 10.3389/fpls.2019.01239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/05/2019] [Indexed: 05/26/2023]
Abstract
Plant-pathogen interactions have been widely studied, but mostly from the site of the plant secondary defense. Less is known about the effects of pathogen infection on plant primary metabolism. The possibility to transform a fluorescing protein into prokaryotes is a promising phenotyping tool to follow a bacterial infection in plants in a noninvasive manner. In the present study, virulent and avirulent Pseudomonas syringae strains were transformed with green fluorescent protein (GFP) to follow the spread of bacteria in vivo by imaging Pulse-Amplitude-Modulation (PAM) fluorescence and conventional binocular microscopy. The combination of various wavelengths and filters allowed simultaneous detection of GFP-transformed bacteria, PAM chlorophyll fluorescence, and phenolic fluorescence from pathogen-infected plant leaves. The results show that fluorescence imaging allows spatiotemporal monitoring of pathogen spread as well as phenolic and chlorophyll fluorescence in situ, thus providing a novel means to study complex plant-pathogen interactions and relate the responses of primary and secondary metabolism to pathogen spread and multiplication. The study establishes a deeper understanding of imaging data and their implementation into disease screening.
Collapse
Affiliation(s)
- Sabrina Hupp
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Maaria Rosenkranz
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Katharina Bonfig
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Chandana Pandey
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Roitsch
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia
| |
Collapse
|
43
|
Cerutti A, Jauneau A, Laufs P, Leonhardt N, Schattat MH, Berthomé R, Routaboul JM, Noël LD. Mangroves in the Leaves: Anatomy, Physiology, and Immunity of Epithemal Hydathodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:91-116. [PMID: 31100996 DOI: 10.1146/annurev-phyto-082718-100228] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydathodes are organs found on aerial parts of a wide range of plant species that provide almost direct access for several pathogenic microbes to the plant vascular system. Hydathodes are better known as the site of guttation, which is the release of droplets of plant apoplastic fluid to the outer leaf surface. Because these organs are only described through sporadic allusions in the literature, this review aims to provide a comprehensive view of hydathode development, physiology, and immunity by compiling a historic and contemporary bibliography. In particular, we refine the definition of hydathodes.We illustrate their important roles in the maintenance of plant osmotic balance, nutrient retrieval, and exclusion of deleterious chemicals from the xylem sap. Finally, we present our current understanding of the infection of hydathodes by adapted vascular pathogens and the associated plant immune responses.
Collapse
Affiliation(s)
- Aude Cerutti
- LIPM, Université de Toulouse, INRA and CNRS and Université Paul Sabatier, F-31326 Castanet-Tolosan, France;
| | - Alain Jauneau
- Plateforme Imagerie, Institut Fédératif de Recherche 3450, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France
| | - Patrick Laufs
- Institut Jean-Pierre Bourgin, INRA and AgroParisTech and CNRS, Université Paris-Saclay, F-78000 Versailles, France
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université and Commissariat à l'Energie Atomique et aux Energies Alternatives and CNRS, UMR 7265, F-13108 Saint Paul-Les-Durance, France
| | - Martin H Schattat
- Department of Plant Physiology, Institute for Biology, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Richard Berthomé
- LIPM, Université de Toulouse and INRA and CNRS, F-31326 Castanet-Tolosan, France;
| | - Jean-Marc Routaboul
- LIPM, Université de Toulouse and INRA and CNRS, F-31326 Castanet-Tolosan, France;
| | - Laurent D Noël
- LIPM, Université de Toulouse and INRA and CNRS, F-31326 Castanet-Tolosan, France;
| |
Collapse
|
44
|
Casas-Flores S, Domínguez-Espíndola RB, Camposeco-Solis R, Patrón-Soberano OA, Rodríguez-González V. Unraveling the photoactive annihilation mechanism of nanostructures as effective green tools for inhibiting the proliferation of the phytopathogenic bacterium Pseudomonas syringae. NANOSCALE ADVANCES 2019; 1:2258-2267. [PMID: 36131969 PMCID: PMC9416894 DOI: 10.1039/c8na00307f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/14/2019] [Indexed: 05/11/2023]
Abstract
The infectious proliferation of phytopathogenic microorganisms depends on a complex sequence of biological events involving host defense, environmental conditions, and chemical and physical interactions between the surface of a plant and microorganisms, which in numerous cases display resistance to conventional microbicides. Among these microorganisms, Pseudomonas syringae (P. syringae) is a Gram-negative bacterium that attacks wounded parts of plants before invading healthy tissues. In order to control P. syringae, considering it to be a phytopathogenic model, an effective method featuring silver nanoparticles (AgNPs) functionalized on titanate nanotubes (Nts) used as photoactive antibacterial agents was investigated to understand the effective photoactive annihilation mechanism. The high dispersion of AgNPs over the Nts boosted charge carrier separation by generating reactive oxygen species (ROS) under visible-light, which stressed the bacteria and enhanced the biocidal effect by quickly preventing the rod-shaped P. syringae bacteria from proliferating. Biological transmission and scanning electron microscopy revealed damaged P. syringae cells that underwent the formation of outer membrane vesicles, caused by photo-assisted annihilation, which is considered to be an indication of a critical defense mechanism. The unusual synergistic properties of the Nts, and their low cost and practical synthesis, made these nanocomposites promising green tools that can positively and swiftly photokill P. syringae within 30 min.
Collapse
Affiliation(s)
- Sergio Casas-Flores
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Division de Biologia Molecular, División de Materiales Avanzados Camino a la Presa San José 2055, Lomas 4a. sección 78216 San Luis Potosí S.L.P. México
| | - Ruth B Domínguez-Espíndola
- Posgrado en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos Cuernavaca Morelos C.P. 62209 Mexico
| | - Roberto Camposeco-Solis
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Division de Biologia Molecular, División de Materiales Avanzados Camino a la Presa San José 2055, Lomas 4a. sección 78216 San Luis Potosí S.L.P. México
| | - Olga A Patrón-Soberano
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Division de Biologia Molecular, División de Materiales Avanzados Camino a la Presa San José 2055, Lomas 4a. sección 78216 San Luis Potosí S.L.P. México
| | - Vicente Rodríguez-González
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, Division de Biologia Molecular, División de Materiales Avanzados Camino a la Presa San José 2055, Lomas 4a. sección 78216 San Luis Potosí S.L.P. México
| |
Collapse
|
45
|
Pérez-Mendoza D, Felipe A, Ferreiro MD, Sanjuán J, Gallegos MT. AmrZ and FleQ Co-regulate Cellulose Production in Pseudomonas syringae pv. Tomato DC3000. Front Microbiol 2019; 10:746. [PMID: 31057500 PMCID: PMC6478803 DOI: 10.3389/fmicb.2019.00746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 carries the wssABCDEFGHI operon for the synthesis of acetylated cellulose, whose production is stimulated by increasing the intracellular levels of the second messenger c-di-GMP. This enhances air-liquid biofilm formation and generates a wrinkly colony morphotype in solid media. In the present study we show that cellulose production is a complex process regulated at multiple levels and involving different players in this bacterium. Using different in vitro approaches, including Electrophoretic Mobility Shift Assay (EMSA) and footprint analysis, we demonstrated the interrelated role of two transcriptional regulators, AmrZ and FleQ, over cellulose production in Pto DC3000 and the influence of c-di-GMP in this process. Under physiological c-di-GMP levels, both regulators bind directly to adjacent regions at the wss promoter inhibiting its expression. However, just FleQ responds to c-di-GMP releasing from its wss operator site and converting from a repressor to an activator of cellulose production. The additive effect of the double amrZ/fleQ mutation on the expression of wss, together with the fact that they are not cross-regulated at the transcriptional level, suggest that FleQ and AmrZ behave as independent regulators, unlike what has been described in other Pseudomonas species. Furthermore, this dual co-regulation exerted by AmrZ and FleQ is not limited to cellulose production, but also affects other important phenotypes in Pto DC3000, such as motility and virulence.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Antonia Felipe
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Juan Sanjuán
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
46
|
Farias GA, Olmedilla A, Gallegos MT. Visualization and characterization of Pseudomonas syringae pv. tomato DC3000 pellicles. Microb Biotechnol 2019; 12:688-702. [PMID: 30838765 PMCID: PMC6559019 DOI: 10.1111/1751-7915.13385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/10/2023] Open
Abstract
Cellulose, whose production is controlled by c-di-GMP, is a commonly found exopolysaccharide in bacterial biofilms. Pseudomonas syringae pv. tomato (Pto) DC3000, a model organism for molecular studies of plant-pathogen interactions, carries the wssABCDEFGHI operon for the synthesis of acetylated cellulose. The high intracellular levels of the second messenger c-di-GMP induced by the overexpression of the heterologous diguanylate cyclase PleD stimulate cellulose production and enhance air-liquid biofilm (pellicle) formation. To characterize the mechanisms involved in Pto DC3000 pellicle formation, we studied this process using mutants lacking flagella, biosurfactant or different extracellular matrix components, and compared the pellicles produced in the absence and in the presence of PleD. We have discovered that neither alginate nor the biosurfactant syringafactin are needed for their formation, whereas cellulose and flagella are important but not essential. We have also observed that the high c-di-GMP levels conferred more cohesion to Pto cells within the pellicle and induced the formation of intracellular inclusion bodies and extracellular fibres and vesicles. Since the pellicles were very labile and this greatly hindered their handling and processing for microscopy, we have also developed new methods to collect and process them for scanning and transmission electron microscopy. These techniques open up new perspectives for the analysis of fragile biofilms in other bacterial strains.
Collapse
Affiliation(s)
- Gabriela A Farias
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.,Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Adela Olmedilla
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
47
|
A Phylogenetic and Functional Perspective on Volatile Organic Compound Production by Actinobacteria. mSystems 2019; 4:mSystems00295-18. [PMID: 30863793 PMCID: PMC6401417 DOI: 10.1128/msystems.00295-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/08/2019] [Indexed: 01/01/2023] Open
Abstract
Soil microbes produce a diverse array of natural products, including volatile organic compounds (VOCs). Volatile compounds are important molecules in soil habitats, where they mediate interactions between bacteria, fungi, insects, plants, and animals. We measured the VOCs produced by a broad diversity of soil- and dust-dwelling Actinobacteria in vitro. We detected a total of 126 unique volatile compounds, and each strain produced a unique combination of VOCs. While some of the compounds were produced by many strains, most were strain specific. Importantly, VOC profiles were more similar between closely related strains, indicating that evolutionary and ecological processes generate predictable patterns of VOC production. Finally, we observed that actinobacterial VOCs had both stimulatory and inhibitory effects on the growth of bacteria that represent a plant-beneficial symbiont and a plant-pathogenic strain, information that may lead to the development of novel strategies for plant disease prevention. Soil microbes produce an immense diversity of metabolites, including volatile organic compounds (VOCs), which can shape the structure and function of microbial communities. VOCs mediate a multitude of microbe-microbe interactions, including antagonism. Despite their importance, the diversity and functional relevance of most microbial volatiles remain uncharacterized. We assembled a taxonomically diverse collection of 48 Actinobacteria isolated from soil and airborne dust and surveyed the VOCs produced by these strains on two different medium types in vitro using gas chromatography-mass spectrometry (GC-MS). We detected 126 distinct VOCs and structurally identified approximately 20% of these compounds, which were predominately C1 to C5 hetero-VOCs, including (oxygenated) alcohols, ketones, esters, and nitrogen- and sulfur-containing compounds. Each strain produced a unique VOC profile. While the most common VOCs were likely by-products of primary metabolism, most of the VOCs were strain specific. We observed a strong taxonomic and phylogenetic signal for VOC profiles, suggesting their role in finer-scale patterns of ecological diversity. Finally, we investigated the functional potential of these VOCs by assessing their effects on growth rates of both pathogenic and nonpathogenic pseudomonad strains. We identified sets of VOCs that correlated with growth inhibition and stimulation, information that may facilitate the development of microbial VOC-based pathogen control strategies. IMPORTANCE Soil microbes produce a diverse array of natural products, including volatile organic compounds (VOCs). Volatile compounds are important molecules in soil habitats, where they mediate interactions between bacteria, fungi, insects, plants, and animals. We measured the VOCs produced by a broad diversity of soil- and dust-dwelling Actinobacteria in vitro. We detected a total of 126 unique volatile compounds, and each strain produced a unique combination of VOCs. While some of the compounds were produced by many strains, most were strain specific. Importantly, VOC profiles were more similar between closely related strains, indicating that evolutionary and ecological processes generate predictable patterns of VOC production. Finally, we observed that actinobacterial VOCs had both stimulatory and inhibitory effects on the growth of bacteria that represent a plant-beneficial symbiont and a plant-pathogenic strain, information that may lead to the development of novel strategies for plant disease prevention.
Collapse
|
48
|
Nazar RN, Xu X, Kurosky A, Robb J. Antagonistic function of the Ve R-genes in tomato. PLANT MOLECULAR BIOLOGY 2018; 98:67-79. [PMID: 30121732 DOI: 10.1007/s11103-018-0764-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/02/2018] [Indexed: 05/06/2023]
Abstract
Key message In Verticillium wilt, gene silencing indicates that tomato Ve2-gene expression can have a dramatic effect on many defense/stress protein levels while Ve1-gene induction modulates these effects in a negative fashion. In tomato, Verticillium resistance is dependent on the Ve R-gene locus, which encodes two leucine-rich repeat receptor-like proteins, Ve1 and Ve2. During fungal wilt, Ve1 protein is sharply induced while Ve2 appears expressed constitutively throughout disease development; the disease resistance function usually is attributed to the Ve1 receptor alone. To study Ve2 function, levels of Ve2 mRNA were suppressed using RNAi in both susceptible and resistant Craigella tomato near-isolines and protein changes were evaluated at both the mRNA and protein levels. The results indicate that Ve2-gene expression can have dramatic effects on many defense/stress protein levels while the presence of intact Ve1 protein minimizes these effects in a negative fashion. The data suggest an antagonistic relationship between the Ve proteins in which Ve1 modulates the induction of defense/stress proteins by Ve2.
Collapse
Affiliation(s)
- Ross N Nazar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Xin Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
49
|
Physiological and genetic characterization of calcium phosphate precipitation by Pseudomonas species. Sci Rep 2018; 8:10156. [PMID: 29976945 PMCID: PMC6033914 DOI: 10.1038/s41598-018-28525-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Microbial biomineralization is a widespread phenomenon. The ability to induce calcium precipitation around bacterial cells has been reported in several Pseudomonas species but has not been thoroughly tested. We assayed 14 Pseudomonas strains representing five different species for the ability to precipitate calcium. Calcium phosphate precipitated adjacent to the colonies of all the Pseudomonas strains tested and also precipitated on the surface of colonies for several of the Pseudomonas strains assayed. The precipitate was commonly precipitated as amorphous calcium phosphate, however seven of the 14 Pseudomonas strains tested precipitated amorphous apatite in agar adjacent to the colonies. Out of the seven Pseudomonas strains that precipitated amorphous apatite, six are plant pathogenic. The formation of amorphous apatite was commonly observed in the area of the agar where amorphous calcium phosphate had previously formed. A transposon mutagenesis screen in Pseudomonas syringae pv. tomato DC3000 revealed genes involved in general metabolism, lipopolysaccharide and cell wall biogenesis, and in regulation of virulence play a role in calcium precipitation. These results shed light on the common ability of Pseudomonas species to perform calcium precipitation and the underlying genetic regulation involved in biomineralization.
Collapse
|
50
|
Cela J, Tweed JKS, Sivakumaran A, Lee MRF, Mur LAJ, Munné-Bosch S. An altered tocopherol composition in chloroplasts reduces plant resistance to Botrytis cinerea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:200-210. [PMID: 29609176 DOI: 10.1016/j.plaphy.2018.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 05/23/2023]
Abstract
Tocopherols are lipid-soluble antioxidants that contribute to plant resistance to abiotic stresses. However, it is still unknown to what extent alterations in tocopherol composition can affect the plant response to biotic stresses. The response to bacterial and fungal attack of the vte1 mutant of Arabidopsis thaliana, which lacks both α- and γ-tocopherol, was compared to that of the vte4 mutant (which lacks α- but accumulates γ-tocopherol) and the wild type (with accumulates α-tocopherol in leaves). Both mutants exhibited similar kinetics of cell death and resistance in response to Pseudomonas syringae. In contrast, both mutants exhibited delayed resistance when infected with Botrytis cinerea. Lipid and hormonal profiling was employed with the aim of assessing the underlying cause of this differential phenotype. Although an altered tocopherol composition in both mutants strongly influenced fatty acid composition, and strongly altered jasmonic acid and cytokinin contents upon infection with B. cinerea, differences between genotypes in these phytohormones were observed during late stages of infection only. By contrast, genotype-related effects on lipid peroxidation, as indicated by malondialdehyde accumulation, were observed early upon infection with B. cinerea. We conclude that an altered tocopherol composition in chloroplasts may negatively influence the plant response to biotic stress in Arabidopsis thaliana through changes in the membrane fatty acid composition, enhanced lipid peroxidation and delayed defence activation when challenged with B. cinerea.
Collapse
Affiliation(s)
- Jana Cela
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal, 643, E-08028, Barcelona, Spain
| | - John K S Tweed
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, SY23 3EB, UK
| | - Anushen Sivakumaran
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, SY23 3DA, UK
| | - Michael R F Lee
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, SY23 3EB, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, SY23 3DA, UK
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal, 643, E-08028, Barcelona, Spain.
| |
Collapse
|