1
|
Vera-Siguenza E, Escribano-Gonzalez C, Serrano-Gonzalo I, Eskla KL, Spill F, Tennant D. Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model. PLoS Comput Biol 2023; 19:e1011374. [PMID: 37713666 PMCID: PMC10503963 DOI: 10.1371/journal.pcbi.1011374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/19/2023] [Indexed: 09/17/2023] Open
Abstract
It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture models could prove to be limited for uncovering novel metabolic targets able to translate into clinical therapies. Although this is increasingly recognised, and work towards addressing the issue is becoming routinary much remains poorly understood. For instance, knowledge regarding the biochemical mechanisms through which cancer cells manipulate non-cancerous cell metabolism, and the subsequent impact on their survival and proliferation remains limited. Additionally, the variations in these processes across different cancer types and progression stages, and their implications for therapy, also remain largely unexplored. This study employs an interdisciplinary approach that leverages the predictive power of mathematical modelling to enrich experimental findings. We develop a functional multicellular in-silico model that facilitates the qualitative and quantitative analysis of the metabolic network spawned by an in-vitro co-culture model of bone marrow mesenchymal stem- and myeloma cell lines. To procure this model, we devised a bespoke human genome constraint-based reconstruction workflow that combines aspects from the legacy mCADRE & Metabotools algorithms, the novel redHuman algorithm, along with 13C-metabolic flux analysis. Our workflow transforms the latest human metabolic network matrix (Recon3D) into two cell-specific models coupled with a metabolic network spanning a shared growth medium. When cross-validating our in-silico model against the in-vitro model, we found that the in-silico model successfully reproduces vital metabolic behaviours of its in-vitro counterpart; results include cell growth predictions, respiration rates, as well as support for observations which suggest cross-shuttling of redox-active metabolites between cells.
Collapse
Affiliation(s)
- Elias Vera-Siguenza
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Watson School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Escribano-Gonzalez
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Irene Serrano-Gonzalo
- Instituto de Investigación Sanitaria Aragón, Fundación Española para el Estudio y Terapéutica de la enfermedad de Gaucher y otras Lisosomales, Zaragoza, España
| | - Kattri-Liis Eskla
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Fabian Spill
- Watson School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Gámez B, Morris EV, Olechnowicz SWZ, Webb S, Edwards JR, Sowman A, Turner CJ, Edwards CM. The antidiabetic drug metformin acts on the bone microenvironment to promote myeloma cell adhesion to preosteoblasts and increase myeloma tumour burden in vivo. Transl Oncol 2022; 15:101301. [PMID: 34890968 PMCID: PMC8665410 DOI: 10.1016/j.tranon.2021.101301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 01/25/2023] Open
Abstract
Multiple myeloma is a haematological malignancy that is dependent upon interactions within the bone microenvironment to drive tumour growth and osteolytic bone disease. Metformin is an anti-diabetic drug that has attracted attention due to its direct antitumor effects, including anti-myeloma properties. However, the impact of the bone microenvironment on the response to metformin in myeloma is unknown. We have employed in vitro and in vivo models to dissect out the direct effects of metformin in bone and the subsequent indirect myeloma response. We demonstrate how metformin treatment of preosteoblasts increases myeloma cell attachment. Metformin-treated preosteoblasts increased osteopontin (OPN) expression that upon silencing, reduced subsequent myeloma cell adherence. Proliferation markers were reduced in myeloma cells cocultured with metformin-treated preosteoblasts. In vivo, mice were treated with metformin for 4 weeks prior to inoculation of 5TGM1 myeloma cells. Metformin-pretreated mice had an increase in tumour burden, associated with an increase in osteolytic bone lesions and elevated OPN expression in the bone marrow. Collectively, we show that metformin increases OPN expression in preosteoblasts, increasing myeloma cell adherence. In vivo, this translates to an unexpected indirect pro-tumourigenic effect of metformin, highlighting the importance of the interdependence between myeloma cells and cells of the bone microenvironment.
Collapse
Affiliation(s)
- Beatriz Gámez
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Emma V Morris
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK
| | - Sam W Z Olechnowicz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Siobhan Webb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - James R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Aneka Sowman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Christina J Turner
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, UK; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Ishihara K, Kaneyasu M, Fukazawa K, Zhang R, Teramura Y. Induction of mesenchymal stem cell differentiation by co-culturing with mature cells in double-layered 2-methacryloyloxyethyl phosphorylcholine polymer hydrogel matrices. J Mater Chem B 2021; 10:2561-2569. [PMID: 34878485 DOI: 10.1039/d1tb01817e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The effects of differentiated cells on stem cell differentiation were analyzed via co-culturing using a cell-encapsulated double-layered hydrogel system. As a polymer hydrogel matrix, a water-soluble zwitterionic polymer having both a 2-methacryloyloxyethyl phosphorylcholine unit and a p-vinylphenylboronic acid unit (PMBV), was complexed spontaneously with poly(vinyl alcohol) (PVA) under mild cell culture conditions. The creep modulus of the hydrogel was controlled by changing the composition of the polymer in the solution. Mouse mesenchymal stem cells (MSCs), C3H10T1/2 cells, were encapsulated into PMBV/PVA hydrogels and cultured. In the PMBV/PVA hydrogel with a lower creep modulus (0.40 kPa), proliferation of C3H10T1/2 cells occurred, and the formation of cell aggregates was observed. On the other hand, a higher creep modulus (1.7 kPa) of the hydrogel matrix prevented cell proliferation. Culturing C3H10T1/2 cells encapsulated in the PMBV/PVA hydrogel in the presence of bone morphogenetic protein-2 increased the activity of intracellular alkaline phosphatase (ALP). This indicated that C3H10T1/2 cells differentiated into mature osteoblasts. When the C3H10T1/2 cells encapsulated in the PMBV/PVA hydrogel were cultured in combination with the mature osteoblasts in the hydrogel by a close contacting double-layered hydrogel structure, higher ALP activity was observed compared with the cells cultured separately. It was considered that the differentiation of C3H10T1/2 cells in the hydrogel layer was induced by cytokines diffused from mature osteoblasts encapsulated in another hydrogel layer. It could be concluded that the PMBV/PVA hydrogel system provides a good way to observe the effects of the surrounding cells on cell function in three-dimensional culture.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. .,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miu Kaneyasu
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Mitochondria and the Tumour Microenvironment in Blood Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:181-203. [PMID: 34664240 DOI: 10.1007/978-3-030-73119-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The bone marrow (BM) is a complex organ located within the cavities of bones. The main function of the BM is to produce all the blood cells required for a normal healthy blood system. As with any major organ, many diseases can arise from errors in bone marrow function, including non-malignant disorders such as anaemia and malignant disorders such as leukaemias. This article will explore the role of the bone marrow, in normal and diseased haematopoiesis, with an emphasis on the requirement for intercellular mitochondrial transfer in leukaemia.
Collapse
|
5
|
Damen MPF, van Rheenen J, Scheele CLGJ. Targeting dormant tumor cells to prevent cancer recurrence. FEBS J 2020; 288:6286-6303. [PMID: 33190412 DOI: 10.1111/febs.15626] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Over the years, developments in oncology led to significantly improved clinical outcome for cancer patients. However, cancer recurrence after initial treatment response still poses a major challenge, as it often involves more aggressive, metastatic disease. The presence of dormant cancer cells is associated with recurrence, metastasis, and poor clinical outcome, suggesting that these cells may play a crucial role in the process of disease relapse. Cancer cell dormancy typically presents as growth arrest while retaining proliferative capacity and can be induced or reversed by a wide array of cell-intrinsic and cell-extrinsic factors. Conventional therapies preferentially target fast-dividing cells, leaving dormant cancer cells largely insensitive to these treatments. In this review, we discuss the role of dormant cancer cells in cancer recurrence and highlight how novel therapy strategies based on cell-cycle modulation, modifications of existing drugs, or enhanced drug-delivery vehicles may be used to specifically target this subpopulation of tumor cells, and thereby have the potential to prevent disease recurrence.
Collapse
Affiliation(s)
- Maartje P F Damen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Carreras P, Gonzalez I, Gallardo M, Ortiz-Ruiz A, Martinez-Lopez J. Droplet Microfluidics for the ex Vivo Expansion of Human Primary Multiple Myeloma Cells. MICROMACHINES 2020; 11:E261. [PMID: 32121351 PMCID: PMC7143882 DOI: 10.3390/mi11030261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/04/2022]
Abstract
We previously reported a new approach for micromanipulation and encapsulation of human stem cells using a droplet-based microfluidic device We demonstrated the possibility of encapsulating and culturing difficult-to-preserve primary human hematopoietic stem cells using an engineered double layered bead composed by an inner layer of alginate and an outer layer of puramatrix constructed using a soft technology without the use of any external force. In this work, we use this micro manipulation technique to build a 3D scaffold as a biomimetic model to recapitulate the niche of patient-derived multiple myeloma cells (MM cell) using a multilayered 3D tissue scaffold constructed in a microfluidic device and cultured in 10% FBS culture medium. In the current study, we included the use of this biomimetic model comprising supporting human Mesenchymal stem cells to show the mid-term survival of MM cells in the proposed structures. We found that the generated microniches were suitable for the maintenance of MM cells with and without supporting cells. Additionally, cultured MM cells in droplets were exposed to both Bortezomib and Lenalidomide to test their toxicity in the cultured patient derived cells. Results indicate that the maintained MM cells were consistently responding to the applied medication, opening a wide field of possibilities to use the presented micro device as an ex vivo platform for drug screening.
Collapse
Affiliation(s)
- Pilar Carreras
- CSIC, Spanish National Research Council, 28006 Madrid, Spain;
- Hospital 12 Octubre, Hematology Department, Research institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (J.M.-L.)
| | - Iciar Gonzalez
- CSIC, Spanish National Research Council, 28006 Madrid, Spain;
| | - Miguel Gallardo
- Hospital 12 Octubre, Hematology Department, Research institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (J.M.-L.)
- CNIO, Spanish national cancer research Centre, Hematological malignancies research unit, 28029 Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- Hospital 12 Octubre, Hematology Department, Research institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (J.M.-L.)
- CNIO, Spanish national cancer research Centre, Hematological malignancies research unit, 28029 Madrid, Spain
| | - Joaquin Martinez-Lopez
- Hospital 12 Octubre, Hematology Department, Research institute i+12, 28040 Madrid, Spain; (M.G.); (A.O.-R.); (J.M.-L.)
- CNIO, Spanish national cancer research Centre, Hematological malignancies research unit, 28029 Madrid, Spain
- UCM, Complutense University Madrid, Medical faculty, 28040 Madrid, Spain
| |
Collapse
|
7
|
Schürch CM, Rasche L, Frauenfeld L, Weinhold N, Fend F. A review on tumor heterogeneity and evolution in multiple myeloma: pathological, radiological, molecular genetics, and clinical integration. Virchows Arch 2019; 476:337-351. [PMID: 31848687 DOI: 10.1007/s00428-019-02725-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 01/03/2023]
Abstract
Recent research has dramatically advanced our understanding of the genetic basis of multiple myeloma (MM). MM displays enormous inter- and intratumoral heterogeneity, and underlies a clonal evolutionary process driven and shaped by diverse factors such as clonal competition, tumor microenvironment, host immunity, and therapy. Two main cytogenetic groups are distinguished: MM with recurrent translocations involving the immunoglobulin heavy chain locus and MM with hyperdiploidy involving the odd chromosomes. The disease virtually always starts with a preneoplastic prodromal phase-monoclonal gammopathy of undetermined significance-that variably progresses to symptomatic MM within a few months or many years. Tumor heterogeneity and its evolution in space and time have important consequences for the clinical management and outcome of MM patients. At diagnosis, spatial intratumoral heterogeneity poses a challenge for classification and risk stratification. During maintenance therapy, clonal evolution may complicate disease monitoring and promote drug resistance. Upon progression or transformation, identifying the dominant disease-driving neoplastic clones and elucidating their properties are key to tailor personalized therapy. In this review, we discuss tumor heterogeneity and clonal evolution in MM, integrating pathological, radiological, molecular genetics, and clinical data. Current and prospective classification schemes and prognostic parameters, incorporating new genetic and proteomic discoveries and advances in imaging, are highlighted. In addition, the roles of the tumor microenvironment, host immunity, and resistance mutations, and their effects on therapy, are discussed. An improved understanding of high-risk disease, tumor heterogeneity, and clonal evolution will guide future therapies and may ultimately lead towards a cure for MM.
Collapse
Affiliation(s)
- Christian M Schürch
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Leonie Frauenfeld
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, Huang S, Chen X, Lai Y, Du H, Lin C, Peng X, Song L. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med 2018; 216:428-449. [PMID: 30593464 PMCID: PMC6363426 DOI: 10.1084/jem.20180661] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Wnt5a from osteoblastic niche induces and maintains the dormancy of prostate cancer cells in bone and inhibits bone metastasis in a preventive manner, uncovering a potential therapeutic utility of Wnt5a in the treatment of bone metastatic prostate cancer. In a substantial fraction of prostate cancer (PCa) patients, bone metastasis appears after years or even decades of latency. Canonical Wnt/β-catenin signaling has been proposed to be implicated in dormancy of cancer cells. However, how these tumor cells are kept dormant and recur under control of Wnt/β-catenin signaling derived from bone microenvironment remains unknown. Here, we report that Wnt5a from osteoblastic niche induces dormancy of PCa cells in a reversible manner in vitro and in vivo via inducing Siah E3 Ubiquitin Protein Ligase 2 (SIAH2) expression, which represses Wnt/β-catenin signaling. Furthermore, this effect of Wnt5a-induced dormancy of PCa cells depends on receptor tyrosine kinase-like orphan receptor 2 (ROR2), and a negative correlation of ROR2 expression with bone metastasis–free survival is observed in PCa patients. Therefore, these results demonstrate that Wnt5a/ROR2/SIAH2 signaling axis plays a crucial role in inducing and maintaining PCa cells dormancy in bone, suggesting a potential therapeutic utility of Wnt5a via inducing dormancy of PCa cells in bone.
Collapse
Affiliation(s)
- Dong Ren
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Yuhu Dai
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Qing Yang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xin Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Wei Guo
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Liping Ye
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuai Huang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xu Chen
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingrong Lai
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Du
- Department of Pathology, the First People's Hospital of Guangzhou City, Guangzhou, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinsheng Peng
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Riggi N, Aguet M, Stamenkovic I. Cancer Metastasis: A Reappraisal of Its Underlying Mechanisms and Their Relevance to Treatment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 13:117-140. [DOI: 10.1146/annurev-pathol-020117-044127] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolo Riggi
- Experimental Pathology Service, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Michel Aguet
- Experimental Pathology Service, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Centre Hospitalier Universitaire Vaudois, University of Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
10
|
Terpos E, Christoulas D, Gavriatopoulou M, Dimopoulos MA. Mechanisms of bone destruction in multiple myeloma. Eur J Cancer Care (Engl) 2017; 26. [PMID: 28940410 DOI: 10.1111/ecc.12761] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 02/02/2023]
Abstract
Osteolytic bone disease is a frequent complication of multiple myeloma, resulting in skeletal complications that are a significant cause of morbidity and mortality. It is the result of an increased activity of osteoclasts, which is not followed by reactive bone formation by osteoblasts. Recent studies have revealed novel molecules and pathways that are implicated in osteoclast activation and osteoblast inhibition. Among them, the most important include the receptor activator of nuclear factor-kappa B ligand/osteoprotegerin pathway, the macrophage inflammatory proteins and the activin-A that play a crucial role in osteoclast stimulation in myeloma, while the wingless-type (Wnt) signalling inhibitors (sclerostin and dickkopf-1) along with the growth factor independence-1 are considered the most important factors for the osteoblast dysfunction of myeloma patients. Finally, the role of osteocytes, which is the key cell for normal bone remodelling, has also revealed during the last years through their interaction with myeloma cells that leads to their apoptosis and the release of RANKL and sclerostin maintaining bone loss in these patients. This review focuses on the latest available data for the mechanisms of bone destruction in multiple myeloma.
Collapse
Affiliation(s)
- E Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - D Christoulas
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - M Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - M A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
11
|
Matthes T, Manfroi B, Huard B. Revisiting IL-6 antagonism in multiple myeloma. Crit Rev Oncol Hematol 2016; 105:1-4. [DOI: 10.1016/j.critrevonc.2016.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/14/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022] Open
|
12
|
Effects of IL-8 Up-Regulation on Cell Survival and Osteoclastogenesis in Multiple Myeloma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2171-2182. [PMID: 27301357 DOI: 10.1016/j.ajpath.2016.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/14/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023]
Abstract
IL-8 promotes cancer cell growth, survival, angiogenesis, and metastasis in several tumors. Herein, we investigated the sources of IL-8 production in multiple myeloma (MM) and its potential roles in MM pathogenesis. We found that bone marrow cells from patients with MM secreted higher amounts of IL-8 than healthy donors. IL-8 production was detected in cultures of CD138(+) plasma cells and CD138(-) cells isolated from bone marrows of MM patients, and in three of seven human myeloma cell lines (HMCLs) analyzed. Interactions between MM and stromal cells increased IL-8 secretion by stromal cells through cell-cell adhesion and soluble factors. Interestingly, IL8 expression also increased in HMCLs, stromal cells, and osteoclasts after treatment with the antimyeloma drugs melphalan and bortezomib. In fact, the effect of bortezomib on IL-8 production was higher than that exerted by stromal-MM cell interactions. Addition of exogenous IL-8 did not affect growth of HMCLs, although it protected cells from death induced by serum starvation through a caspase-independent mechanism. Furthermore, IL-8 induced by stromal-MM cell interactions strongly contributed to osteoclast formation in vitro, because osteoclastogenesis was markedly reduced by IL-8-specific neutralizing antibodies. In conclusion, our results implicate IL-8 in myeloma bone disease and point to the potential utility of an anti-IL-8 therapy to prevent unwanted effects of IL-8 up-regulation on survival, angiogenesis, and osteolysis in MM.
Collapse
|
13
|
Abstract
During the past decade preclinical studies have defined many of the mechanisms used by tumours to hijack the skeleton and promote bone metastasis. This has led to the development and widespread clinical use of bone-targeted drugs to prevent skeletal-related events. This understanding has also identified a critical dependency between colonizing tumour cells and the cells of bone. This is particularly important when tumour cells first arrive in bone, adapt to their new microenvironment and enter a long-lived dormant state. In this Review, we discuss the role of different bone cell types in supporting disseminated tumour cell dormancy and reactivation, and highlight the new opportunities this provides for targeting the bone microenvironment to control dormancy and bone metastasis.
Collapse
Affiliation(s)
- Peter I Croucher
- Division of Bone Biology, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Australia, Sydney, New South Wales 2052, Australia
| | - Michelle M McDonald
- Division of Bone Biology, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2052, Australia
| | - T John Martin
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, Victoria 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
14
|
Abstract
Unprecedented advances in multiple myeloma (MM) therapy during the last 15 years are predominantly based on our increasing understanding of the pathophysiologic role of the bone marrow (BM) microenvironment. Indeed, new treatment paradigms, which incorporate thalidomide, immunomodulatory drugs (IMiDs), and proteasome inhibitors, target the tumor cell as well as its BM microenvironment. Ongoing translational research aims to understand in more detail how disordered BM-niche functions contribute to MM pathogenesis and to identify additional derived targeting agents. One of the most exciting advances in the field of MM treatment is the emergence of immune therapies including elotuzumab, daratumumab, the immune checkpoint inhibitors, Bispecific T-cell engagers (BiTes), and Chimeric antigen receptor (CAR)-T cells. This chapter will review our knowledge on the pathophysiology of the BM microenvironment and discuss derived novel agents that hold promise to further improve outcome in MM.
Collapse
Affiliation(s)
- Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
15
|
Kawano Y, Moschetta M, Manier S, Glavey S, Görgün GT, Roccaro AM, Anderson KC, Ghobrial IM. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev 2015; 263:160-72. [PMID: 25510276 DOI: 10.1111/imr.12233] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow (BM). Despite the significant advances in treatment, MM is still a fatal malignancy. This is mainly due to the supportive role of the BM microenvironment in differentiation, migration, proliferation, survival, and drug resistance of the malignant plasma cells. The BM microenvironment is composed of a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothelial cells, and immune cells) and a non-cellular compartment. In this review, we discuss the interaction between the malignant plasma cell and the BM microenvironment and the strategy to target them.
Collapse
Affiliation(s)
- Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Matthes T, Manfroi B, Zeller A, Dunand-Sauthier I, Bogen B, Huard B. Autocrine amplification of immature myeloid cells by IL-6 in multiple myeloma-infiltrated bone marrow. Leukemia 2015; 29:1882-90. [DOI: 10.1038/leu.2015.145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/13/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023]
|
17
|
Zhang W, Gu Y, Sun Q, Siegel DS, Tolias P, Yang Z, Lee WY, Zilberberg J. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche. PLoS One 2015; 10:e0125995. [PMID: 25973790 PMCID: PMC4431864 DOI: 10.1371/journal.pone.0125995] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022] Open
Abstract
We previously reported a new approach for culturing difficult-to-preserve primary patient-derived multiple myeloma cells (MMC) using an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment and a culture medium supplemented with patient plasma. In the current study, we used this biomimetic model to show, for the first time, that the long-term survival of OSB is the most critical factor in maintaining the ex vivo viability and proliferative capacity of MMC. We found that the adhesion and retention of MMC to the tissue scaffold was meditated by osteoblastic N-cadherin, as one of potential mechanisms that regulate MMC-OSB interactions. However, in the presence of MMC and patient plasma, the viability and osteogenic activity of OSB became gradually compromised, and consequently MMC could not remain viable over 3 weeks. We demonstrated that the long-term survival of both OSB and MMC could be enhanced by: (1) optimizing perfusion flow rate and patient-derived plasma composition in the culture medium and (2) replenishing OSB during culture as a practical means of prolonging MMC's viability beyond several weeks. These findings were obtained using a high-throughput well plate-based perfusion device from the perspective of optimizing the ex vivo preservation of patient-derived MM biospecimens for downstream use in biological studies and chemosensitivity analyses.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey, 07030, United States of America
| | - Yexin Gu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey, 07030, United States of America
| | - Qiaoling Sun
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey, 07030, United States of America
| | - David S. Siegel
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, 07601, United States of America
| | - Peter Tolias
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States of America
- Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States of America
| | - Zheng Yang
- Research Department, Hackensack University Medical Center, Hackensack, New Jersey, 07601, United States of America
| | - Woo Y. Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey, 07030, United States of America
| | - Jenny Zilberberg
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, 07601, United States of America
- Research Department, Hackensack University Medical Center, Hackensack, New Jersey, 07601, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kuroda J, Kobayashi T, Taniwaki M. Prognostic indicators of lenalidomide for multiple myeloma: consensus and controversy. Expert Rev Anticancer Ther 2015; 15:787-804. [PMID: 25947283 DOI: 10.1586/14737140.2015.1044249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The long-term outcome of multiple myeloma (MM) has been greatly improved through new agents, one being lenalidomide (LEN). Based upon the findings of in vitro experiments, its mode of action against MM occurs through a combination of direct tumoricidal effects on myeloma cells, modulatory effects on tumor immunity and tumor microenvironment-regulatory effects. However, it has not been clearly defined whether the clinical response and long-term outcome of MM with LEN treatment truly reflect the mechanisms of action of LEN proposed by in vitro studies. To ascertain what is known and what remains to be elucidated with LEN, we review the current literature on the mode of action of LEN in association with myeloma pathophysiology, and discuss the prognostic indicators in the treatment of MM with LEN.
Collapse
Affiliation(s)
- Junya Kuroda
- Department of Medicine, Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | | | | |
Collapse
|
19
|
Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015; 125:3049-58. [PMID: 25838343 DOI: 10.1182/blood-2014-11-568881] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
Over the past 4 decades, basic research has provided crucial information regarding the cellular and molecular biology of cancer. In particular, the relevance of cancer microenvironment (including both cellular and noncellular elements) and the concept of clonal evolution and heterogeneity have emerged as important in cancer pathogenesis, immunologic escape, and resistance to therapy. Multiple myeloma (MM), a cancer of terminally differentiated plasma cells, is emblematic of the impact of cancer microenvironment and the role of clonal evolution. Although genetic and epigenetic aberrations occur in MM and evolve over time under the pressure of exogenous stimuli, they are also largely present in premalignant plasma cell dyscrasia such as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM), suggesting that genetic mutations alone are necessary, but not sufficient, for myeloma transformation. The role of bone marrow microenvironment in mediating survival, proliferation, and resistance to therapy in myeloma is well established; and although an appealing speculation, its role in fostering the evolution of MGUS or SMM into MM is yet to be proven. In this review, we discuss MM pathogenesis with a particular emphasis on the role of bone marrow microenvironment.
Collapse
|
20
|
Hengeveld PJ, Kersten MJ. B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy? Blood Cancer J 2015; 5:e282. [PMID: 25723853 PMCID: PMC4349256 DOI: 10.1038/bcj.2015.3] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/02/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023] Open
Abstract
Multiple myeloma (MM) is a currently incurable malignancy of plasma cells. Malignant myeloma cells (MMCs) are heavily dependent upon the bone marrow (BM) microenvironment for their survival. One component of this tumor microenvironment, B-Cell Activating Factor (BAFF), has been implicated as a key player in this interaction. This review discusses the role of BAFF in the pathophysiology of MM, and the potential of BAFF-inhibitory therapy for the treatment of MM. Multiple studies have shown that BAFF functions as a survival factor for MMCs. Furthermore, MMCs express several BAFF-binding receptors. Of these, only Transmembrane Activator and CAML Interactor (TACI) correlates with the MMC's capability to ligate BAFF. Additionally, the level of expression of TACI correlates with the level of the MMC's BM dependency. Ligation of BAFF receptors on MMCs causes activation of the Nuclear Factor of κ-B (NF-κB) pathway, a crucial pathway for the pathogenesis of many B-cell malignancies. Serum BAFF levels are significantly elevated in MM patients when compared to healthy controls, and correlate inversely with overall survival. BAFF signaling is thus an interesting target for the treatment of MM. Several BAFF-inhibitory drugs are currently under evaluation for the treatment of MM. These include BAFF-monoclonal antibodies (tabalumab) and antibody-drug conjugates (GSK2857916).
Collapse
Affiliation(s)
- P J Hengeveld
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - M J Kersten
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Saltarella I, Lamanuzzi A, Reale A, Vacca A, Ria R. Identify multiple myeloma stem cells: Utopia? World J Stem Cells 2015; 7:84-95. [PMID: 25621108 PMCID: PMC4300939 DOI: 10.4252/wjsc.v7.i1.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/14/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.
Collapse
|
22
|
Ribatti D, Nico B, Vacca A. Multiple myeloma as a model for the role of bone marrow niches in the control of angiogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:259-82. [PMID: 25619720 DOI: 10.1016/bs.ircmb.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone marrow (BM) contains hematopoietic stem cells (HSCs) and nonhematopoietic cells. HSCs give rise to all types of mature blood cells, while the nonhematopoietic component includes osteoblasts/osteoclasts, endothelial cells (ECs), endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). These cells form specialized "niches" which are close to the vasculature ("vascular niche") or to the endosteum ("osteoblast niche"). The "vascular niche", rich in blood vessels where ECs and mural cells (pericytes and smooth muscle cells), create a microenvironment affecting the behavior of several stem and progenitor cells. The vessel wall acts as an independent niche for the recruitment of EPCs and MSCs. This chapter will focus on the description of the role of BM niches in the control of angiogenesis occurring during multiple myeloma progression.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Internal Medicine and Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
23
|
Cellular mechanisms of multiple myeloma bone disease. Clin Dev Immunol 2013; 2013:289458. [PMID: 23818912 PMCID: PMC3681224 DOI: 10.1155/2013/289458] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy of differentiated plasma cells that accumulates and proliferates in the bone marrow. MM patients often develop bone disease that results in severe bone pain, osteolytic lesions, and pathologic fractures. These skeletal complications have not only a negative impact on quality of life but also a possible effect in overall survival. MM osteolytic bone lesions arise from the altered bone remodeling due to both increased osteoclast activation and decreased osteoblast differentiation. A dysregulated production of numerous cytokines that can contribute to the uncoupling of bone cell activity is well documented in the bone marrow microenvironment of MM patients. These molecules are produced not only by malignant plasma cells, that directly contribute to MM bone disease, but also by bone, immune, and stromal cells interacting with each other in the bone microenvironment. This review focuses on the current knowledge of MM bone disease biology, with particular regard on the role of bone and immune cells in producing cytokines critical for malignant plasma cell proliferation as well as in osteolysis development. Therefore, the understanding of MM pathogenesis could be useful to the discovery of novel agents that will be able to both restore bone remodelling and reduce tumor burden.
Collapse
|
24
|
Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol 2012; 2012:157496. [PMID: 23093834 PMCID: PMC3471001 DOI: 10.1155/2012/157496] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/18/2012] [Indexed: 12/28/2022] Open
Abstract
Substantial advances have been made in understanding the biology of multiple myeloma (MM) through the study of the bone marrow (BM) microenvironment. Indeed, the BM niche appears to play an important role in differentiation, migration, proliferation, survival, and drug resistance of the malignant plasma cells. The BM niche is composed of a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothelial cells, and immune cells) and a noncellular compartment including the extracellular matrix (ECM) and the liquid milieu (cytokines, growth factors, and chemokines). In this paper we discuss how the interaction between the malignant plasma cell and the BM microenvironment allowed myeloma progression through cell homing and the new concept of premetastatic niche.
Collapse
|
25
|
Kim J, Denu RA, Dollar BA, Escalante LE, Kuether JP, Callander NS, Asimakopoulos F, Hematti P. Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br J Haematol 2012; 158:336-46. [PMID: 22583117 DOI: 10.1111/j.1365-2141.2012.09154.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/27/2012] [Indexed: 02/05/2023]
Abstract
Multiple myeloma (MM) is characterized by almost exclusive tropism of malignant cells for the bone marrow (BM) milieu. The survival and proliferation of malignant plasma cells have been shown to rely on interactions with nonmalignant stromal cells, in particular mesenchymal stromal cells (MSCs), in the BM microenvironment. However, the BM microenvironment is composed of a diverse array of cell types. This study examined the role of macrophages, an abundant component of BM stroma, as a potential niche component that supports malignant plasma cells. We investigated the proliferation of MM tumour cell lines when cultured alone or together with MSCs, macrophages, or a combination of MSCs and macrophages, using the carboxyfluorescein succinimidyl ester assay. Consistently, we observed increased proliferation of MM cell lines in the presence of either MSCs or macrophages compared to cell line-only control. Furthermore, the combined co-culture of MSCs plus macrophages induced the greatest degree of proliferation of myeloma cells. In addition to increased proliferation, MSCs and macrophages decreased the rate of apoptosis of myeloma cells. Our in vitro studies provide evidence that highlights the role of macrophages as a key component of the BM microenvironment facilitating the growth of malignant plasma cells in MM.
Collapse
Affiliation(s)
- Jaehyup Kim
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Christoulas D, Terpos E, Dimopoulos MA. Pathogenesis and management of myeloma bone disease. Expert Rev Hematol 2011; 2:385-98. [PMID: 21082944 DOI: 10.1586/ehm.09.36] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteolytic bone disease is a frequent complication of multiple myeloma, resulting in skeletal complications that are a significant cause of morbidity and mortality. It is the result of increased activity of osteoclasts that is not followed by reactive bone formation by osteoblasts. Recent studies have revealed novel molecules and pathways that are implicated in osteoclast activation and osteoblast inhibition, including the RANKL/osteoprotegerin pathway, macrophage inflammatory proteins and the wingless type signaling pathway. These molecules also appear to interfere with tumor growth and survival, providing possible targets for the development of novel drugs for the management of lytic disease in myeloma. Currently, bisphosphonates are the mainstay of treatment for myeloma bone disease, although several novel agents appear promising. This review focuses on recent advances in understanding the biology of bone disease in multiple myeloma, diagnosis and recent progress in treatment options.
Collapse
Affiliation(s)
- Dimitrios Christoulas
- Department of Clinical Therapeutics, University of Athens School of Medicine, Alexandra General Hospital, 80 Vas. Sofias Avenue, Athens, Greece.
| | | | | |
Collapse
|
27
|
Minter AR, Simpson H, Weiss BM, Landgren O. Bone disease from monoclonal gammopathy of undetermined significance to multiple myeloma: pathogenesis, interventions, and future opportunities. Semin Hematol 2011; 48:55-65. [PMID: 21232659 PMCID: PMC6863044 DOI: 10.1053/j.seminhematol.2010.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Manifestations of bone disease-osteopenia, osteolytic lesions, and fractures-are the hallmark of multiple myeloma (MM) and occur clinically in the vast majority of patients. These abnormalities can have devastating clinical effects by increasing both the morbidity and mortality of patients. Bone disease is usually found when patients are diagnosed with active MM; however, recent data suggest that it is present in early myelomagenesis, including patients with myeloma precursor disease, monoclonal gammopathy of undetermined significance (MGUS). The primary mechanisms of abnormal bone remodeling are increased osteoclastic activity, which occurs in close proximity to active myeloma cells, and decreased activity of the surrounding osteoblasts. Better understanding of the pathogenesis of bone disease in MM will allow us to enhance our current therapeutic options in the treatment of bone disease. In patients with active MM and at least one lytic lesion, intravenous bisphosphonates have been shown to decrease skeletal-related events and pain, improve performance status, and maintain quality of life. Emerging evidence suggests that intervention at earlier stages of disease may prevent skeletal-related events at time of progression, but there is no evidence that bisphosphonates in this setting change the natural history of the disease.
Collapse
Affiliation(s)
- Alex R. Minter
- Medical Oncology Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, MD
- Walter Reed Army Medical Center, Washington, DC
| | - Haley Simpson
- Medical Oncology Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Brendan M. Weiss
- Medical Oncology Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, MD
- Walter Reed Army Medical Center, Washington, DC
| | - Ola Landgren
- Medical Oncology Branch, Center for Cancer Research,
National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Abeltino M, Bonomini S, Bolzoni M, Storti P, Colla S, Todoerti K, Agnelli L, Neri A, Rizzoli V, Giuliani N. The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol 2011; 39:55-65. [DOI: 10.1016/j.exphem.2010.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/16/2010] [Accepted: 10/18/2010] [Indexed: 11/25/2022]
|
29
|
Abstract
Many patients with solid tumors, especially breast and prostate cancers, and with multiple myeloma will develop bone metastases or other skeletal complications. The management of bone loss and symptomatic bone metastases is an important issue in the care and maintenance of quality of life for these patients. Morbidity caused by skeletal complications include pain (bone metastases are known as the most common cause of cancer-related pain), hypercalcemia, pathologic fracture, compression of the spinal cord or cauda equine, and spinal instability. Currently, the only Food and Drug Administration-approved therapy for metastatic bone disease is bisphosphonate therapy. A greater understanding of the biomolecular pathways that govern the bone continuum of cancer has helped identify novel targets for drug development. New therapeutic options are currently being investigated for the treatments of bone loss and symptomatic bone metastases. Some of these new drugs and modalities are in advanced stages of clinical development and may soon reach the clinic.
Collapse
|
30
|
Roodman GD. Targeting the bone microenvironment in multiple myeloma. J Bone Miner Metab 2010; 28:244-50. [PMID: 20127498 DOI: 10.1007/s00774-009-0154-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 11/25/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by the frequent development of osteolytic lesions, osteopenia, pathological fractures, and/or severe bone pain. In the past few years several potential factors involved in this process have been identified and, with the increased knowledge of the signaling pathways involved in the regulation of normal osteoblast and osteoclast function, have provided us with a better understanding of the contributions of the marrow microenvironment to MM bone disease. These studies have identified several potential novel targets for treating MM bone disease in addition to the current standard treatment of bisphosphonates. In this article, we discuss several potential targets for treating MM bone disease as well as novel therapies that are in clinical trials for these patients.
Collapse
Affiliation(s)
- G David Roodman
- Department of Medicine/Hematology-Oncology, Veterans Affairs Pittsburgh Healthcare System, University of Pittsburgh School of Medicine, Pittsburgh, PA 15240, USA.
| |
Collapse
|
31
|
|
32
|
Abstract
Bone disease in multiple myeloma (MM) is characterized by lytic bone lesions, which can cause severe bone pain, pathologic fractures and hypercalcemia. However, the lytic bone disease in MM differs from that in other cancer patients who have lytic bone metastases. Although increased osteoclastic bone destruction is involved in MM and other tumors involving bone, in contrast to other tumors, once the MM tumor burden exceeds 50% in a local area, osteoblast activity is either suppressed or absent. The basis for this severe imbalance between increased osteoclastic bone resorption and decreased bone formation has been a topic of intensive investigation over the last several years and will be reviewed in this article.
Collapse
Affiliation(s)
- G D Roodman
- Veterans Affairs Pittsburgh Healthcare System, Department of Medicine/Hematology-Oncology, University of Pittsburgh, Pittsburgh, PA 15240, USA.
| |
Collapse
|
33
|
Li X, Pennisi A, Yaccoby S. Role of decorin in the antimyeloma effects of osteoblasts. Blood 2008; 112:159-68. [PMID: 18436739 PMCID: PMC2435686 DOI: 10.1182/blood-2007-11-124164] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 03/27/2008] [Indexed: 01/12/2023] Open
Abstract
Building on our previous report that osteoblasts and increased bone formation have a negative impact on myeloma cell growth in a subset of patients, we investigated the role of decorin, the main small leucine-rich proteoglycan (SLRP) expressed and produced by osteoblasts, in the antimyeloma effects of osteoblasts. In coculture experiments with osteoblasts, primary myeloma cell survival was significantly higher when decorin expression in osteoblasts was knocked down by short-hairpin RNA. Coculture experiments of myeloma cells and supporting osteoclasts in the presence of osteoblast-conditioned medium showed reduced myeloma cell survival, an effect that was attenuated by decorin-neutralizing antibody. Decorin overexpression in mesenchymal stem cells or use of recombinant decorin in coculture with osteoclasts reduced the ability of osteoclasts to support primary myeloma cell survival. The antimyeloma effect of decorin involved direct induction of apoptosis and activation of p21(WAF). Decorin also inhibited myeloma cell-induced tube formation and osteoclast differentiation. Decorin expression was insignificantly lower in patients' than donors' osteoblasts and slightly increased by bortezomib. Certain SLRPs are involved in the antimyeloma effect of osteoblasts directly and indirectly through inhibition of angiogenesis and osteoclastogenesis; therefore, increasing endogenous or exogenous SLRPs in myelomatous bone may help control myeloma.
Collapse
Affiliation(s)
- Xin Li
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
34
|
Abstract
Multiple myeloma is a tumor of terminally differentiated plasma cells that home to and expand in the bone marrow. It is the second most common hematologic malignancy, with approximately 16,000 new cases per year, and accounts for an estimated 11,000 deaths in the USA. It is the most common cancer to metastasize to bone, with up to 90% of patients developing bone lesions. The bone lesions are purely osteolytic in nature, and up to 60% of patients develop a pathologic fracture over the course of their disease. Bone disease is a hallmark of multiple myeloma, and the bone disease differs from other bone metastasis caused by other tumors. Although both myeloma and other osteolytic metastasis induce increased osteoclastic bone resorption, in contrast to other tumors, osteoblast activity in myeloma is either severely decreased or absent. The basis for this severe imbalance between increased osteoclastic bone resorption and decreased bone formation resulting from suppressed osteoblastic activity has been a topic of extensive investigation during the last several years. The clinical consequences of this extensive accelerated and imbalanced bone destruction process include bone pain, pathologic fractures, hypercalcemia and spinal cord compression syndromes, which can be devastating for patients and significantly impact overall quality of life and expected survival. In this chapter, we will discuss the pathophysiology underlying bone disease in myeloma. This results from the uncoupling of bone remodeling and is characterized by markedly increased activity of osteoclasts and profound decreased activity of osteoblasts. In addition, we also review the emerging data on novel targeted therapies aimed at ameliorating myeloma bone disease.
Collapse
Affiliation(s)
- Flavia R Esteve
- University of Pittsburgh, Medicine/Hematology-Oncology, 5150 Centre Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
35
|
Giuliani N, Rizzoli V. Myeloma cells and bone marrow osteoblast interactions: role in the development of osteolytic lesions in multiple myeloma. Leuk Lymphoma 2008; 48:2323-9. [PMID: 18067006 DOI: 10.1080/10428190701648281] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone destruction is the hallmark of multiple myeloma (MM) due to the high capacity of malignant plasma cells to induce a severe imbalance of bone remodeling. Growing evidences suggest that MM cell interactions with bone marrow (BM) osteoblast have a critical role in the pathophysiology of osteolytic lesions. Indeed histomorphometric studies have demonstrated that MM patients with osteolytic bone lesions have lower numbers of osteoblasts and decreased bone formation together with osteoclast activation. Recently, the biological mechanisms involved in the osteoblast inhibition induced by MM cells have begun to be elucidated, underlying the main role of the block of osteoblast differentiation in the development of bone lesions. In this article, we summarize the main mechanisms regulating MM cell and osteoblast interactions.
Collapse
Affiliation(s)
- Nicola Giuliani
- Cattedra di Ematologia e CTMO, Universita Degli Studi di Parma, Parma, Italy.
| | | |
Collapse
|
36
|
Abstract
The advent of new therapies for multiple myeloma brings new hope for patients but also new side effects. Emerging information about the risks of supportive care therapies, including long-term, high-intensity bisphosphonate use and erythropoiesis-stimulating agents, is examined. As the number of drugs in the myeloma armamentarium grows, so does the list of possible side effects and interactions. With current progress, not only are there more complications to consider but patients are also living longer and the risk for delayed complications is becoming more relevant. The author provides perspective about the risks for the most active and commonly used single-agent and combination myeloma therapies.
Collapse
Affiliation(s)
- Angela Dispenzieri
- Division of Hematology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|
37
|
Karadag A, Fisher LW. Bone sialoprotein enhances migration of bone marrow stromal cells through matrices by bridging MMP-2 to alpha(v)beta3-integrin. J Bone Miner Res 2006; 21:1627-36. [PMID: 16995818 DOI: 10.1359/jbmr.060710] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UNLABELLED BMSCs migrate through matrix barriers and differentiate into osteoblasts. BSP enhances osteogenic cell migration through basement membrane and collagen matrices in vitro by localizing MMP-2 on the cell surface through alpha(v)beta(3)-integrin. INTRODUCTION The specific mechanisms by which bone marrow stromal cells (BMSCs) leave their primary sites, move through matrices encountered during homing to their site of final differentiation, and remove preexisting matrices in preparation for bone matrix production are not well understood. MATERIALS AND METHODS The enhanced migration of human osteoblast precursor cells through matrix barriers by bone sialoprotein (BSP) was studied by a modified Boyden-chamber assay. The bridging of normally soluble matrix metalloproteinase 2 (MMP-2) to the cell surface receptor, alpha(v)beta(3)-integrin, by BSP was analyzed by flow cytometry. RESULTS BSP enhanced the in vitro passage of BMSCs and pre-osteoblasts through matrix barriers (Matrigel and denatured type I collagen) in a dose-dependent manner. An intact ArgGlyAsp (RGD) was required in the BSP for enhanced migration through the barriers but was not sufficient, as shown by the inactivity of two other SIBLING (Small Integrin-Binding LIgand, N-linked Glycoprotein) family members, osteopontin and dentin matrix protein-1. The specificity of the BSP enhancement activity was apparently caused by this molecule's ability to bridge MMP-2 to the cell surfaces. CONCLUSIONS Pre-osteoblasts and their BMSC precursors may use MMP-2/BSP/integrin complexes to disrupt matrix barriers during migration to their final destinations in vivo.
Collapse
Affiliation(s)
- Abdullah Karadag
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-4320, USA
| | | |
Collapse
|
38
|
Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: Pathophysiology of osteoblast inhibition. Blood 2006; 108:3992-6. [PMID: 16917004 DOI: 10.1182/blood-2006-05-026112] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by a high capacity to induce osteolytic bone lesions. Bone destruction in MM results from increased osteoclast formation and activity that occur in close proximity to myeloma cells. However, histomorphometric studies have demonstrated that MM patients with osteolytic bone lesions have lower numbers of osteoblasts and decreased bone formation. This impaired bone formation plays a critical role in the bone-destructive process. Recently, the biologic mechanisms involved in the osteoblast inhibition induced by MM cells have begun to be elucidated. In this article, the pathophysiology underlying osteoblast inhibition in MM is reviewed.
Collapse
Affiliation(s)
- Nicola Giuliani
- Cattedra e Unità Operativa (UO) di Ematologia-Centro Trapianti Midollo Osseo (CTMO), Università Degli Studi di Parma, Italy.
| | | | | |
Collapse
|
39
|
Ehrlich LA, Roodman GD. The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma. Immunol Rev 2006; 208:252-66. [PMID: 16313353 DOI: 10.1111/j.0105-2896.2005.00323.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The osteoclast (OCL) is the primary cell involved in the pathogenesis of Paget's disease (PD) and the destructive bone process in multiple myeloma (MM). Both of these diseases are characterized by increased numbers of OCLs actively resorbing bone, but they differ in that bone formation is greatly increased in PD and is suppressed in MM. The marrow microenvironment plays a critical role in both disease processes, through the increased expression of inflammatory cytokines that enhance osteoclastogenesis and, in the case of MM, also suppress osteoblast (OBL) activity. In addition, the OCLs in PD are intrinsically abnormal, are markedly increased in number and size, and are hyper-responsive to inflammatory cytokines and 1,25-(OH)2D3. This article discusses the role of immune cells and inflammatory cytokines and chemokines in the increased OCL activity in PD and MM bone disease, as well as the potential role of interleukin-3 in the suppression of OBL activity in MM.
Collapse
Affiliation(s)
- Lori A Ehrlich
- Department of Medicine/Hematology-Oncology, University of Pittsburgh, Pittsburgh, PA 15240, USA
| | | |
Collapse
|
40
|
Karadag A, Zhou M, Croucher PI. ADAM-9 (MDC-9/meltrin-gamma), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell-induced interleukin-6 production in osteoblasts by direct interaction with the alpha(v)beta5 integrin. Blood 2005; 107:3271-8. [PMID: 16373656 PMCID: PMC1895758 DOI: 10.1182/blood-2005-09-3830] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADAM-9, a member of the a disintegrin and metalloproteinase family, contains both metalloproteinase and disintegrin domains. Myeloma cell lines express ADAM-9; however, its function and role in the pathophysiology of multiple myeloma is unknown. The aim of this study was to establish whether primary myeloma cells express ADAM-9, whether ADAM-9 regulates IL-6 production in human osteoblasts (hOBs), whether ADAM-9 interacts with specific integrin heterodimers, and the identity of downstream signaling pathways. Primary myeloma cells demonstrated increased expression of ADAM-9 (P < .01). ADAM-9 promoted a 5-fold increase in IL-6, but not IL-1beta mRNA, and a dose- and time-dependent increase in IL-6 production by hOBs (P < .01). IL-6 induction was inhibited by an antibody to the alpha(v)beta5 integrin (P < .01) but not by antibodies to other integrin heterodimers. ADAM-9 was shown to bind directly to the alpha(v)beta5 integrin on hOBs. Antibodies to ADAM-9 and alpha(v)beta5 integrin inhibited myeloma cell-induced IL-6 production by hOBs (P < .01). Furthermore, inhibitors of p38 MAPK and cPLA2, but not NF-kappaB and JAK2, signaling pathways inhibited ADAM-9-induced IL-6 production by hOBs (P < .01). These data demonstrate that ADAM-9, expressed by myeloma cells, stimulates IL-6 production in hOBs by binding the alpha(v)beta5 integrin. This may have important consequences for the growth and survival of myeloma cells in bone.
Collapse
Affiliation(s)
- Abdullah Karadag
- Division of Clinical Sciences, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | | | | |
Collapse
|
41
|
Yaccoby S, Pearse RN, Johnson CL, Barlogie B, Choi Y, Epstein J. Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity. Br J Haematol 2002; 116:278-90. [PMID: 11841428 DOI: 10.1046/j.1365-2141.2002.03257.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myeloma tumour growth, except in the most advanced stages of the disease, is restricted to the bone marrow. We used the severe combined immunodeficient-human (SCID-hu) host system, in which primary human myeloma cells grow in, disseminate to and interact with a human microenvironment, to study the interactions between myeloma cells and cells in the bone marrow microenvironment. We used inhibitors of osteoclast activity to determine the role of osteoclasts and their products in supporting myeloma cell growth. Treatment of myelomatous SCID-hu hosts with an inhibitor of osteoclast activity (pamidronate or zoledronate) or with a specific inhibitor of the receptor activator of NF-kappaB ligand (RANKL) halted myeloma-induced bone resorption, when present, and resulted in inhibition of myeloma cell growth and survival. In contrast, myeloma cells from patients with extramedullary disease had a different growth pattern in the SCID-hu hosts and were not inhibited by these interventions, indicating that, while still dependent on a human microenvironment, these cells no longer required the bone marrow microenvironment for survival. This study demonstrates the dependence of myeloma cells on osteoclast activity and their products, and highlights the importance of the myeloma-osteoclast-myeloma loop for sustaining the disease process. Breaking this loop may help control myeloma.
Collapse
Affiliation(s)
- Shmuel Yaccoby
- Myeloma and Transplantation Research Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
42
|
Peng KW, Ahmann GJ, Pham L, Greipp PR, Cattaneo R, Russell SJ. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 2001; 98:2002-7. [PMID: 11567982 DOI: 10.1182/blood.v98.7.2002] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conditionally replicating viruses are promising agents for the treatment of malignancy. Here it is shown that the live attenuated Edmonston-B vaccine strain of measles virus (MV-Edm) replicates selectively in human myeloma cells and has potent antitumor activity. In vitro, replication of MV-Edm was restricted in phytohemagglutinin (PHA)-stimulated peripheral blood lymphocytes (PBLs) but proceeded efficiently in a panel of 6 myeloma cell lines-ARH-77, RPMI 8226, JJN-3, MM1, KAS-6/1, and KMS-11-and in primary myeloma cells isolated by CD138 sorting from the bone marrow aspirates of 6 patients. MV-Edm infection induced potent cytopathic effects in these myeloma cells, resulting in the formation of multinucleated syncytia that eventually became nonviable. In contrast, syncytial formation in PHA-stimulated PBLs was minimal after MV-Edm infection. In vivo, MV-Edm was antitumorigenic and inhibited the establishment of myeloma cells as xenografts in immunocompromised mice. When injected directly into ARH-77 myeloma xenografts in the mice, MV-Edm caused complete regression of these xenografts. MV-Edm administered intravenously into the tail veins of mice also showed significant antineoplastic activity against established RPMI 8226 and ARH-77 xenografts. In particular, the ARH-77 myeloma xenografts were exquisitely sensitive to MV-Edm therapy, and tumors in all mice regressed completely. In light of its selectivity for myeloma cells and its potent antineoplastic activity against myeloma xenografts in vivo, MV-Edm merits further development for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- K W Peng
- Molecular Medicine Program and the Department of Hematology, Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
43
|
Deyama Y, Takeyama S, Suzuki K, Yoshimura Y, Nishikata M, Matsumoto A. Inactivation of NF-kappaB involved in osteoblast development through interleukin-6. Biochem Biophys Res Commun 2001; 282:1080-4. [PMID: 11302724 DOI: 10.1006/bbrc.2001.4693] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoblasts undergo a process of proliferation and differentiation and are responsible for bone formation. In this study, we examined the relation between NF-kappaB, a key transcription factor in bone metabolism, and osteoblast maturation. NF-kappaB activity and expression of p50, a subunit of NF-kappaB, decreased during development of osteoblastic MC3T3-E1 cells. The secretion of IL-6 by osteoblast, which in combination with soluble IL-6 receptor induces conversion of fibroblasts to alkaline phosphatase-positive cells, also increased. p50 antisense oligonucleotide increased IL-6 mRNA expression. These results suggest that p50 regulates transcription of IL-6 and indirectly controls osteoblast maturation.
Collapse
Affiliation(s)
- Y Deyama
- Dental Pharmacology, Hokkaido University, Sapporo, 060-8586, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 2001; 91:1219-30. [PMID: 11283920 DOI: 10.1002/1097-0142(20010401)91:7<1219::aid-cncr1122>3.0.co;2-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The importance of the bone marrow microenvironment in multiple myeloma is receiving increasing attention. Recent studies have suggested the importance of cytokine production and cell-cell contact by bone marrow stromal cells in the survival of myeloma cells. METHODS In the current study, the authors examined bone marrow mesenchymal progenitor cell (MPC) cultures derived from eight multiple myeloma patients (mean age, 58 years) and nine normal donors (mean age, 61 years), with emphasis on cell surface antigens, cytokine, and growth factor expression. RESULTS The authors have found, based on analysis of cellular receptors, growth factors, and cytokine expression, that myeloma MPCs are phenotypically and functionally distinguishable from normal donor MPCs. Immunofluorescence analysis of MPC monolayers shows that myeloma MPC cultures expressed reduced cell surface vascular cell adhesion molecule-1 and fibronectin, in contrast with the strong expression found on normal donor MPCs. Furthermore, a subset of myeloma MPCs strongly express intracellular receptor for hyaluronan-mediated motility, whereas normal MPCs do not. Cytokine expression in bone marrow MPC cultures was examined by reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay. Bone marrow MPCs constitutively express interleukin (IL)-1beta, IL-6, granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage (GM)-CSF, stem cell factor (SCF), and tumor necrosis factor (TNF)-alpha. In comparison to normal MPCs, multiple myeloma MPCs express increased basal levels of IL-1beta and TNF-alpha. In vitro exposure of MPC cultures to dexamethasone resulted in the down-regulation of IL-6, G-CSF, and GM-CSF in both normal and myeloma MPC cultures. However, dexamethasone treatment significantly increased expression of SCF-1 in myeloma MPCs. CONCLUSIONS In myeloma, bone marrow stromal cells provide paracrine factors, through cytokine production and cell-cell contact, which play a role in plasma cell growth and survival. The authors' data indicate differences in bone marrow MPCs, which may be biologically relevant to the growth and survival of myeloma plasma cells.
Collapse
Affiliation(s)
- S R Wallace
- Virginia Piper Cancer Institute, Abbott Northwestern Hospital, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
45
|
Berenson JR, Sjak-Shie NN, Vescio RA. The role of human and viral cytokines in the pathogenesis of multiple myeloma. Semin Cancer Biol 2000; 10:383-91. [PMID: 11100886 DOI: 10.1006/scbi.2000.0332] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple myeloma (MM) is characterized by the accumulation of monoclonal plasma cells, a terminally differentiated form of B lymphocyte, in the bone marrow. This disease is most often associated with bone destruction, anemia and renal failure. Besides the malignant plasma cells, it has become clear that nonmalignant cells in the bone marrow also contribute to the development of this malignancy by the release of cytokines. Further support for the importance of the supporting cells comes from our recent finding of the human herpesvirus 8 (HHV-8) in the nonmalignant bone marrow stromal cells from these patients.
Collapse
Affiliation(s)
- J R Berenson
- Division of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | |
Collapse
|
46
|
Kastrinakis NG, Gorgoulis VG, Foukas PG, Dimopoulos MA, Kittas C. Molecular aspects of multiple myeloma. Ann Oncol 2000; 11:1217-28. [PMID: 11106109 DOI: 10.1023/a:1008331714186] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell neoplasm characterized by bone marrow infiltration with malignant plasma cells, which synthesize and secrete monoclonal immunoglobulin (Ig) fragments. Despite the considerable progress in the understanding of MM biology, the molecular basis of the disease remains elusive. The initial transformation is thought to occur in a postgerminal center B-lineage cell, carrying a somatically hypermutated Ig heavy chain (IGH) gene. This plasmablastic precursor cell colonizes the bone marrow, propagates clonally and differentiates into a slowly proliferating myeloma cell population, all under the influence of specific cell adhesion molecules and cytokines. Production of interleukin-6 by stromal cells, osteoblasts and, in some cases, neoplastic cells is an essential element of myeloma cell growth, with the cytokine stimulus being delivered intracellularly via the Jack-STAT and ras signaling pathways. While karyotypic changes have been identified in up to 50% of MM patients, recent molecular cytogenetic techniques have revealed chromosomal abnormalities in the vast majority of examined cases. Translocations mostly involve illegal switch rearrangements of the IGH locus with various partner genes (CCND1, FGFR3, c-maf). Such events have been assigned a critical role in MM development. Mutations in coding and regulatory regions, as well as aberrant expression patterns of several oncogenes (c-myc, ras) and tumor suppressor genes (p16, p15) have been reported. Key regulators of programmed cell death (BCL-2, Fas), tumor expansion (metalloproteinases) and drug responsiveness (topoisomerase II alpha) have also been implicated in the pathogenesis of this hematologic malignancy. A tumorigenic role for human herpesvirus 8 (HHV8) was postulated recently, following the detection of viral sequences in bone marrow dendritic cells of MM patients. However, since several research groups were unable to confirm this observation, the role of HHV8 remains unclear. Translation of the advances in MM molecular biology into novel therapeutic strategies is essential in order to improve disease prognosis.
Collapse
Affiliation(s)
- N G Kastrinakis
- Department of Histology, School of Medicine, University of Athens, Greece
| | | | | | | | | |
Collapse
|
47
|
Karadag A, Scutt AM, Croucher PI. Human myeloma cells promote the recruitment of osteoblast precursors: mediation by interleukin-6 and soluble interleukin-6 receptor. J Bone Miner Res 2000; 15:1935-43. [PMID: 11028445 DOI: 10.1359/jbmr.2000.15.10.1935] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multiple myeloma is associated with the development of osteolytic bone disease characterized by a disruption to normal bone resorption and bone formation. Although studies have shown that myeloma cells produce factors that promote bone resorption little data are available examining the mechanism of decreased bone formation or the factors that mediate this effect. In the present study we describe a novel in vitro coculture system in which to investigate the effect of myeloma cells on osteoblast recruitment and differentiation. Under appropriate conditions mesenchymal stem cells were shown to differentiate into colonies of cells, a proportion of which show characteristics of osteoblasts, in that they express alkaline phosphatase activity and stain positively for collagen and calcium. The addition of the human myeloma cells JJN-3, RPMI-8226, or NCI-H929 to these cultures stimulated a significant increase in the total number of colonies (p < 0.005) and the proportion of osteoblastic colonies (p < 0.005). Media conditioned by these cells also were able to promote the formation of both total and osteoblastic colonies (p < 0.005). The addition of an antibody against the interleukin-6 receptor (IL-6R) blocked myeloma cell and myeloma cell-conditioned media induced osteoblast recruitment (p < 0.01). Furthermore, media conditioned by myeloma cells incubated with phorbol ester, which promotes IL-6R shedding, or a metalloproteinase inhibitor, which inhibits IL-6R shedding, were able to stimulate (p < 0.005) and inhibit osteoblast recruitment (p < 0.005), respectively. In addition, soluble IL-6R (sIL-6R) and IL-6 together, but not alone, were able to promote osteoblastic colony formation (p < 0.01). Taken together these data show that myeloma cells promote osteoblast recruitment by release of sIL-6R from myeloma cells.
Collapse
Affiliation(s)
- A Karadag
- Division of Biochemical and Musculoskeletal Medicine, University of Sheffield Medical School, United Kingdom
| | | | | |
Collapse
|
48
|
Abstract
Abstract
This review discusses the evolution of novel diagnostic and treatment strategies for multiple myeloma based upon increased understanding of basic disease pathogenesis. Although myeloma has remained an incurable illness to date, these new developments will derive treatments to improve outcome and achieve eventual cure.
In Section I, Dr. Kyle reviews the results of current therapy for multiple myeloma, including high dose therapy and stem cell transplantation which have proven to achieve improved response rates, event-free, and overall survival. Supportive therapy, such as erythropoietin to treat disease-related anemia, and methods of prophylaxis against infection, which both lessen toxicities of treatment and improve quality of life for patients, are also addressed.
In Section II, Dr. Dalton with Drs. Landowski, Shain, Jove and Hazlehurst discusses mechanisms of drug resistance in myeloma, with emphasis on novel treatment approaches to prevent development of drug resistance and to overcome drug resistance. Laboratory studies delineating mechanisms whereby myeloma cells resist drug-induced apoptosis provide the framework for related treatment protocols for patients with refractory disease.
In Section III, Dr. Berenson reviews the management of complications in bone, which occur in the majority of patients with myeloma and are the major cause of decreased quality of life. New insights into the mediators of bone resorption and new bone formation in the marrow milieu have already derived effective bisphosphonate therapy. These drugs not only reduce bone complications and related pain, thereby improving quality of life, but also may have intrinsic anti-tumor activity by virtue of inducing tumor cell adherence to marrow, reducing interleukin-6 secretion, inducing tumor cell apoptosis, or inhibiting angiogenesis.
In the last section, Dr. Anderson explores the potential for future therapies which offer great promise to improve patient outcomes. First, drugs which alter the marrow microenvironment include thalidomide and its derivative immunomodulatory drugs, which act directly on tumor cells to induce apoptosis or G1 growth arrest, alter tumor cell adhesion to marrow stroma, inhibit angiogenesis, and trigger a cellular anti-tumor response. The proteasome inhibitors both act directly on tumor cells and also inhibit the transcription factor NFκB-dependent upregulation of IL-6 secretion triggered by tumor cell adhesion. Second, delineation of both growth and apoptotic pathways has derived novel treatment strategies. Third, the preclinical basis and early clinical trial results using vaccination and adoptive immunotherapy to harness autoimmune and alloimmune anti-myeloma responses are presented. This review sets the stage for an evolving new biologically based treatment paradigm in myeloma targeting both the tumor and its microenvironment to improve outcome and achieve eventual cure.
Collapse
|
49
|
Abstract
This review discusses the evolution of novel diagnostic and treatment strategies for multiple myeloma based upon increased understanding of basic disease pathogenesis. Although myeloma has remained an incurable illness to date, these new developments will derive treatments to improve outcome and achieve eventual cure.
In Section I, Dr. Kyle reviews the results of current therapy for multiple myeloma, including high dose therapy and stem cell transplantation which have proven to achieve improved response rates, event-free, and overall survival. Supportive therapy, such as erythropoietin to treat disease-related anemia, and methods of prophylaxis against infection, which both lessen toxicities of treatment and improve quality of life for patients, are also addressed.
In Section II, Dr. Dalton with Drs. Landowski, Shain, Jove and Hazlehurst discusses mechanisms of drug resistance in myeloma, with emphasis on novel treatment approaches to prevent development of drug resistance and to overcome drug resistance. Laboratory studies delineating mechanisms whereby myeloma cells resist drug-induced apoptosis provide the framework for related treatment protocols for patients with refractory disease.
In Section III, Dr. Berenson reviews the management of complications in bone, which occur in the majority of patients with myeloma and are the major cause of decreased quality of life. New insights into the mediators of bone resorption and new bone formation in the marrow milieu have already derived effective bisphosphonate therapy. These drugs not only reduce bone complications and related pain, thereby improving quality of life, but also may have intrinsic anti-tumor activity by virtue of inducing tumor cell adherence to marrow, reducing interleukin-6 secretion, inducing tumor cell apoptosis, or inhibiting angiogenesis.
In the last section, Dr. Anderson explores the potential for future therapies which offer great promise to improve patient outcomes. First, drugs which alter the marrow microenvironment include thalidomide and its derivative immunomodulatory drugs, which act directly on tumor cells to induce apoptosis or G1 growth arrest, alter tumor cell adhesion to marrow stroma, inhibit angiogenesis, and trigger a cellular anti-tumor response. The proteasome inhibitors both act directly on tumor cells and also inhibit the transcription factor NFκB-dependent upregulation of IL-6 secretion triggered by tumor cell adhesion. Second, delineation of both growth and apoptotic pathways has derived novel treatment strategies. Third, the preclinical basis and early clinical trial results using vaccination and adoptive immunotherapy to harness autoimmune and alloimmune anti-myeloma responses are presented. This review sets the stage for an evolving new biologically based treatment paradigm in myeloma targeting both the tumor and its microenvironment to improve outcome and achieve eventual cure.
Collapse
|