1
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Vladyka O, Vrabcova P, Reiterova M, Parackova Z, Haesler R, Sediva A, Kalina T, Klocperk A. Th1/interferon-γ bias in 22q11.2 deletion syndrome is driven by memory T cells and exacerbated by IL-7. Clin Immunol 2023; 256:109793. [PMID: 37776967 DOI: 10.1016/j.clim.2023.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
The aim of this study was to investigate the impact of thymic dysplasia on the phenotypic and functional characteristics of T cells in patients with 22q11.2 deletion syndrome, including T-cell phenotype, transcriptional profile, cytokine production, as well as the possibility of utilizing IL-7 to recover their numbers and function. We found a strong bias towards Th1 response in pediatric and young adult 22q11.2DS patients, expansion of CXCR5+ follicular helper cells and CXCR3+CCR6- Th1 cells, increased production of cytokines IFN-γ, IL-10, IL-2, IL-21 and TNF-α. This Th1 skew was primarily driven by expanded terminally differentiated T cells. IL-7 further reduced naive T cells, increased cytokine production and caused an upregulation of exhaustion markers. Thus, Th1 bias in T cell populations persists from infancy into adolescence and is accompanied by accelerated maturation of T cells into memory stages. This phenotype is exacerbated by IL-7 which causes further decrease in naïve T cells in vitro.
Collapse
Affiliation(s)
- Ondrej Vladyka
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Michaela Reiterova
- CLIP - Childhood Leukaemia Investigation Prague, Czech Republic; Department of Pediatric Hematology, Charles University and Univ. Hospital Motol, Prague, Czech Republic
| | - Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Robert Haesler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Tomas Kalina
- CLIP - Childhood Leukaemia Investigation Prague, Czech Republic; Department of Pediatric Hematology, Charles University and Univ. Hospital Motol, Prague, Czech Republic
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic.
| |
Collapse
|
3
|
Borna S, Dejene B, Lakshmanan U, Schulze J, Weinberg K, Bacchetta R. Analyses of thymocyte commitment to regulatory T cell lineage in thymus of healthy subjects and patients with 22q11.2 deletion syndrome. Front Immunol 2023; 14:1088059. [PMID: 37006241 PMCID: PMC10062184 DOI: 10.3389/fimmu.2023.1088059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
The Chromosome 22q11.2 deletion syndrome (22q11.2DS) results in an inborn error of immunity due to defective thymic organogenesis. Immunological abnormalities in 22q11.2DS patients are thymic hypoplasia, reduced output of T lymphocytes by the thymus, immunodeficiency and increased incidence of autoimmunity. While the precise mechanism responsible for increased incidence of autoimmunity is not completely understood, a previous study suggested a defect in regulatory T cells (Treg) cell lineage commitment during T cell development in thymus. Here, we aimed to analyze this defect in more detail. Since Treg development in human is still ill-defined, we first analyzed where Treg lineage commitment occurs. We performed systematic epigenetic analyses of the Treg specific demethylation region (TSDR) of the FOXP3 gene in sorted thymocytes at different developmental stages. We defined CD3+CD4+CD8+ FOXP3+CD25+ as the T cell developmental stage in human where TSDR demethylation first occurs. Using this knowledge, we analyzed the intrathymic defect in Treg development in 22q11.2DS patients by combination of TSDR, CD3, CD4, CD8 locus epigenetics and multicolor flow cytometry. Our data showed no significant differences in Treg cell frequencies nor in their basic phenotype. Collectively, these data suggest that although 22q11.2DS patients present with reduced thymic size and T cell output, the frequencies and the phenotype of Treg cell at each developmental stage are surprisingly well preserved.
Collapse
Affiliation(s)
- Simon Borna
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Beruh Dejene
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Uma Lakshmanan
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA, United States
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Rosa Bacchetta,
| |
Collapse
|
4
|
Mustillo PJ, Sullivan KE, Chinn IK, Notarangelo LD, Haddad E, Davies EG, de la Morena MT, Hartog N, Yu JE, Hernandez-Trujillo VP, Ip W, Franco J, Gambineri E, Hickey SE, Varga E, Markert ML. Clinical Practice Guidelines for the Immunological Management of Chromosome 22q11.2 Deletion Syndrome and Other Defects in Thymic Development. J Clin Immunol 2023; 43:247-270. [PMID: 36648576 PMCID: PMC9892161 DOI: 10.1007/s10875-022-01418-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/04/2022] [Indexed: 01/18/2023]
Abstract
Current practices vary widely regarding the immunological work-up and management of patients affected with defects in thymic development (DTD), which include chromosome 22q11.2 microdeletion syndrome (22q11.2del) and other causes of DiGeorge syndrome (DGS) and coloboma, heart defect, atresia choanae, retardation of growth and development, genital hypoplasia, ear anomalies/deafness (CHARGE) syndrome. Practice variations affect the initial and subsequent assessment of immune function, the terminology used to describe the condition and immune status, the accepted criteria for recommending live vaccines, and how often follow-up is needed based on the degree of immune compromise. The lack of consensus and widely varying practices highlight the need to establish updated immunological clinical practice guidelines. These guideline recommendations provide a comprehensive review for immunologists and other clinicians who manage immune aspects of this group of disorders.
Collapse
Affiliation(s)
- Peter J Mustillo
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ivan K Chinn
- Division of Immunology, Allergy, and Retrovirology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Infectious Diseases and Immunology, CHU Sainte-Justine, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, WC1N 3HJ, UK
| | - Maria Teresa de la Morena
- Division of Immunology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, 98105, USA
| | - Nicholas Hartog
- Spectrum Health Helen DeVos Children's Hospital Department of Allergy and Immunology, Michigan State University College of Human Medicine, East Lansing, USA
| | - Joyce E Yu
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Winnie Ip
- Department of Immunology, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, WC1N 3JH, UK
| | - Jose Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Eleonora Gambineri
- Department of "NEUROFARBA", Section of Child's Health, University of Florence, Florence, Italy
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Scott E Hickey
- Division of Genetic & Genomic Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Elizabeth Varga
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - M Louise Markert
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
5
|
Pulvirenti F, Mortari EP, Putotto C, Terreri S, Fernandez Salinas A, Cinicola BL, Cimini E, Di Napoli G, Sculco E, Milito C, Versacci P, Agrati C, Marino B, Carsetti R, Quinti I. COVID-19 Severity, Cardiological Outcome, and Immunogenicity of mRNA Vaccine on Adult Patients With 22q11.2 DS. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:292-305.e2. [PMID: 36280136 PMCID: PMC9584833 DOI: 10.1016/j.jaip.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The contemporaneous presence of immune defects and heart diseases in patients with 22q11.2 deletion syndrome (22q11.3DS) might represent risk factors for severe coronavirus 2019 disease (COVID-19). OBJECTIVE To analyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outcome in 22q11.2DS patients and immunogenicity of different doses of mRNA SARS-CoV-2 vaccine. METHODS Longitudinal observational study on SARS-CoV-2 outcome in 60 adults with 22q11.2DS (March 2020-June 2022). Anti-Spike, and anti-receptor binding domain (RBD) antibody responses, generation of Spike-specific memory B cells (MBCs) and Spike-specific T cells at different time points before and after the mRNA BNT162b2 vaccination were evaluated in 16 22q11.2DS patients. RESULTS We recorded a 95% rate of vaccination, with almost all patients being immunized with the booster dose. Twenty-one patients had SARS-CoV-2 infection. Three patients were infected before vaccine availability, 6 after receiving 2 doses of vaccine, and 12 after one booster dose. The SARS-CoV-2- infection had a mild course, except in one unvaccinated patient with several comorbidities who died from acute respiratory distress syndrome (fatality rate 5%). Infected patients had more frequently moderate/severe intellectual disability, lymphopenia, and lower CD4+ count. Despite major congenital heart diseases, COVID-19 did not impact cardiological conditions. The BNT162b2 vaccine induced S1-immunoglobulin G (IgG) responses, low serum S1-IgA, and slightly impaired specific MBCs response. Specific T-cell responses observed were related to lymphocytes and CD4+ T cell counts. CONCLUSIONS The SARS-CoV-2 infection had a mild course in most patients with 22q11.2DS, even in patients with major cardiovascular diseases. Immunization induced Spike-specific IgG responses and generated specific MBCs and memory T cells. The weaker memory responses in patients with lymphopenia suggested the need for additional doses.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Center for Primary Immune Deficiencies, AOU Policlinico Umberto I, Rome, Italy.
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, Rome, Italy,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carolina Putotto
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Sara Terreri
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, Rome, Italy
| | - Ane Fernandez Salinas
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,Department of Maternal Sciences, Sapienza University of Rome, Italy Viale Regina Elena, 324 00161, Rome, Italy
| | - Eleonora Cimini
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Giulia Di Napoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Versacci
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Chiara Agrati
- Cellular Immunology Laboratory, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology Unit, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Raje NR, Noel-MacDonnell JR, Shortt KA, Gigliotti NM, Chan MA, Heruth DP. T Cell Transcriptome in Chromosome 22q11.2 Deletion Syndrome. THE JOURNAL OF IMMUNOLOGY 2022; 209:874-885. [DOI: 10.4049/jimmunol.2100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2022] [Indexed: 11/05/2022]
|
7
|
Smetanova J, Milota T, Rataj M, Bloomfield M, Sediva A, Klocperk A. Accelerated Maturation, Exhaustion, and Senescence of T cells in 22q11.2 Deletion Syndrome. J Clin Immunol 2021; 42:274-285. [PMID: 34716533 DOI: 10.1007/s10875-021-01154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE 22q11.2 deletion syndrome (22q11.2DS) is a primary immunodeficiency characterized chiefly by the hypoplasia of the thymus resulting in T cell lymphopenia, increased susceptibility to infections, and higher risk of autoimmune diseases. The irregular thymic niche of T cell development may contribute to autoimmune and atopic complications, whereas the compensatory mechanism of homeostatic T cell proliferation and continuous immune stimulation may result in T cell senescence and exhaustion, further aggravating the immune system dysregulation. METHODS We used flow cytometry to investigate T cell maturation, delineation, proliferation, activation, and expression of senescence and exhaustion-associated markers (PD1, KLRG1, CD57) in 17 pediatric and adolescent patients with 22q11.2DS and age-matched healthy donors. RESULTS 22q11.2DS patients aged 0-5 years had fewer naïve but more effector memory T cells with a tendency to approach normal values with increasing age. Young patients in particular had a higher percentage of proliferating T cells and increased expression of PD1, KLRG1, and CD57, as well as cells co-expressing several exhaustion-associated molecules (PD1, KLRG1, Tbet, Eomes, Helios). Additionally, high-risk 22q11.2DS patients with very low numbers of CD4 T cells had significantly higher percentage of Th1 and Th17 T cells, driven in part by higher proportion of mature T cell forms. CONCLUSION The low thymic output and accelerated T cell differentiation remain the principal features of 22q11.2DS patient immunity, especially in young patients of < 5 years. Later in life, homeostatic proliferation drives expression of T cell exhaustion and senescence-associated markers, suggesting functional aberrations in addition to numeric T cell deficiency.
Collapse
Affiliation(s)
- Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic.,Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czech Republic
| | - Michal Rataj
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Marketa Bloomfield
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic.,Department of Paediatrics, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic.
| |
Collapse
|
8
|
Kreins AY, Maio S, Dhalla F. Inborn errors of thymic stromal cell development and function. Semin Immunopathol 2020; 43:85-100. [PMID: 33257998 PMCID: PMC7925491 DOI: 10.1007/s00281-020-00826-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
Abstract
As the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stefano Maio
- Developmental Immunology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Developmental Immunology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. .,Department of Clinical Immunology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
9
|
Deshpande DR, Demirdag YY, Marsh RA, Sullivan KE, Orange JS. Relationship Between Severity of T Cell Lymphopenia and Immune Dysregulation in Patients with DiGeorge Syndrome (22q11.2 Deletions and/or Related TBX1 Mutations): a USIDNET Study. J Clin Immunol 2020; 41:29-37. [PMID: 32949294 DOI: 10.1007/s10875-020-00854-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE DiGeorge syndrome has substantial heterogeneity with variable immune deficiency and dysregulation. Implicated immunopathology includes reduced thymic output and increased peripheral homeostatic proliferation with Th2 skewing and expansion of self-reactive cells. We hypothesized that T cell lymphopenia severity will be associated with higher odds of autoimmunity and/or asthma. METHODS Using the US Immunodeficiency Network registry, we identified patients with 22q11.2 deletion (and/or TBX1). Initial absolute CD3+ T cell values were stratified: normal, 50-99% and below 50% of the lower limit of age-adjusted normal values. Patients with and without reported autoimmunity and asthma were compared using chi-square tests and multivariate logistic regression. RESULTS Among 415 patients, autoimmunity was reported in 17 (4.1%), and asthma was reported in 28 (6.7%). Compared with those with no reported autoimmunity, patients with reported autoimmunity more frequently had low CD19+ B cells [3.3% (12/364) vs 28.6% (4/14); p = 0.002] and low IgG [6.2% (20/321) vs 29.4% (5/17); p = 0.005] levels. There were no statistically significant differences in other immune characteristics among those with and without reported asthma. Patients with absolute CD3 levels below 50% of age-adjusted normal values had higher odds of reported autoimmunity (n = 319, OR = 7.56, 95% CI = 1.58-36.17, p = 0.01) and reported asthma (n = 319, OR = 4.5, 95% CI = 1.06-18.93, p = 0.04) as compared with those with normal CD3 values, adjusted for age and low IgG. CONCLUSIONS Absolute CD3+ T cell counts below 50% of age-adjusted normal values may be associated with higher odds of autoimmunity and/or asthma in patients with DiGeorge syndrome and be potentially useful to identify higher-risk patients.
Collapse
Affiliation(s)
- Deepti R Deshpande
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th Street, PH-17, New York, NY, 10032, USA.
| | - Yesim Y Demirdag
- Department of Medicine, University of California, Irvine, CA, USA
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th Street, PH-17, New York, NY, 10032, USA
| | | |
Collapse
|
10
|
Clinical and immunological features in a cohort of patients with partial DiGeorge syndrome followed at a single center. Blood 2019; 133:2586-2596. [PMID: 31015189 DOI: 10.1182/blood.2018885244] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
DiGeorge syndrome (DGS) is a primary immunodeficiency characterized by various degrees of T-cell deficiency. In partial DGS (pDGS), other risk factors could predispose to recurrent infections, autoimmunity, and allergy. The aim of this study was to assess the effect of different factors in the development of infections, autoimmunity, and/or allergy in patients with pDGS. We studied 467 pDGS patients in follow-up at Great Ormond Street Hospital. Using a multivariate approach, we observed that palatal anomalies represent a risk factor for the development of recurrent otitis media with effusion. Gastroesophageal reflux/dysphagia and asthma/rhinitis represent a risk factor for the development of recurrent upper respiratory tract infections. Allergy and autoimmunity were associated with persistently low immunoglobulin M levels and lymphopenia, respectively. Patients with autoimmunity showed lower levels of CD3+, CD3+CD4+, and naïve CD4+CD45RA+CD27+ T lymphocytes compared with pDGS patients without autoimmunity. We also observed that the physiological age-related decline of the T-cell number was slower in pDGS patients compared with age-matched controls. The age-related recovery of the T-cell number depended on a homeostatic peripheral proliferation of T cells, as suggested by an accelerated decline of the naïve T lymphocytes in pDGS as well as a more skewed T-cell repertoire in older pDGS patients. These evidences suggest that premature CD4+ T-cell aging and lymphopenia induced spontaneous peripheral T-cell proliferation might contribute to the pathogenesis of autoimmunity in patients with pDGS. Infections in these patients represent, in most of the cases, a complication of anatomical or gastroenterological anomalies rather than a feature of the underlying immunodeficiency.
Collapse
|
11
|
Fozza C, Barraqueddu F, Corda G, Contini S, Virdis P, Dore F, Bonfigli S, Longinotti M. Study of the T-cell receptor repertoire by CDR3 spectratyping. J Immunol Methods 2016; 440:1-11. [PMID: 27823906 DOI: 10.1016/j.jim.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/26/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
The T-cell receptor (TCR) is the key player within the so called immunological synapse and the analysis of its repertoire offers a picture of both versatility and wideness of the whole immune T-cell compartment. Among the different approaches applied to its study the so-called spectratyping identifies the pattern of the third complementarity determining region (CDR3) length distribution in each one of the beta variable (TRBV) subfamilies encoded by the corresponding genes. This technique consists in a CDR3 fragment analysis through capillary electrophoresis, performed after cell separation, RNA extraction and reverse transcriptase PCR. This review will run through the most relevant studies which have tried to dissect the TCR repertoire usage in patients with different immune-mediated and infective diseases as well as solid or haematologic malignancies.
Collapse
Affiliation(s)
- Claudio Fozza
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy.
| | - Francesca Barraqueddu
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Giovanna Corda
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Salvatore Contini
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Patrizia Virdis
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Fausto Dore
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Silvana Bonfigli
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Maurizio Longinotti
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| |
Collapse
|
12
|
Shabani M, Nichols KE, Rezaei N. Primary immunodeficiencies associated with EBV-Induced lymphoproliferative disorders. Crit Rev Oncol Hematol 2016; 108:109-127. [PMID: 27931829 DOI: 10.1016/j.critrevonc.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/10/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are a subgroup of inherited immunological disorders that increase susceptibility to viral infections. Among the range of viral pathogens involved, EBV remains a major threat because of its high prevalence of infection among the adult population and its tendency to progress to life-threatening lymphoproliferative disorders (LPDs) and/or malignancy. The high mortality in immunodeficient patients with EBV-driven LPDs, despite institution of diverse and often intensive treatments, prompts the need to better study these PIDs to identify and understand the affected molecular pathways that increase susceptibility to EBV infection and progression. In this article, we have provided a detailed literature review of the reported cases of EBV-driven LPDs in patients with PID. We discuss the PIDs associated with development of EBV-LPDs. Then, we review the nature and the therapeutic outcome of common EBV- driven LPDs in the PID patients and review the mechanisms common to the major PIDs. Deep study of these common pathways and gaining a better insight into the disease nature and outcomes, may lead to earlier diagnosis of the disease, choosing the best treatment modalities available and development of novel therapeutic strategies to decrease morbidity and mortality brought about by EBV infection.
Collapse
Affiliation(s)
- Mahsima Shabani
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; International Hematology/Oncology Of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
13
|
Williams KW, Milner JD, Freeman AF. Eosinophilia Associated with Disorders of Immune Deficiency or Immune Dysregulation. Immunol Allergy Clin North Am 2016. [PMID: 26209898 DOI: 10.1016/j.iac.2015.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased serum eosinophil levels have been associated with multiple disorders of immune deficiency or immune dysregulation. Although primary immunodeficiency diseases are rare, it is important to consider these in the differential diagnosis of patients with eosinophilia. In this review, the clinical features, laboratory findings, diagnosis, and genetic basis of disease of several disorders of immune deficiency or dysregulation are discussed. The article includes autosomal dominant hyper IgE syndrome, DOCK8 deficiency, phosphoglucomutase 3 deficiency, ADA-SCID, Omenn syndrome, Wiskott-Aldrich syndrome, Loeys-Dietz syndrome, autoimmune lymphoproliferative syndrome, immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, Comel-Netherton syndrome, and severe dermatitis, multiple allergies, and metabolic wasting syndrome.
Collapse
Affiliation(s)
- Kelli W Williams
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Building 33, Room 2W10A, Bethesda, MD 20892, USA
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 5-3950, Bethesda, MD 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 12C103, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Pandolfi F, Altamura S, Frosali S, Conti P. Key Role of DAMP in Inflammation, Cancer, and Tissue Repair. Clin Ther 2016; 38:1017-28. [PMID: 27021609 DOI: 10.1016/j.clinthera.2016.02.028] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE This review aimed to take stock of the current status of research on damage-associated molecular pattern (DAMP) protein. We discuss the Janus-faced role of DAMP molecules in inflammation, cancer, and tissue repair. The high-mobility group box (HMGB)-1 and adenosine triphosphate proteins are well-known DAMP molecules and have been primarily associated with inflammation. However, as we shall see, recent data have linked these molecules to tissue repair. HMGB1 is associated with cancer-related inflammation. It activates nuclear factor kB, which is involved in cancer regulation via its receptor for advanced glycation end-products (RAGE), Toll-like receptors 2 and 4. Proinflammatory activity and tissue repair may lead to pharmacologic intervention, by blocking DAMP RAGE and Toll like receptor 2 and 4 role in inflammation and by increasing their concentration in tissue repair, respectively. METHODS We conducted a MEDLINE search for articles pertaining to the various issues related to DAMP, and we discuss the most relevant articles especially (ie, not only those published in journals with a higher impact factor). FINDINGS A cluster of remarkable articles on DAMP have appeared in the literature in recent years. Regarding inflammation, several strategies have been proposed to target HMGB1, from antibodies to recombinant box A, which interacts with RAGE, competing with the full molecule. In tissue repair, it was reported that the overexpression of HMGB1 or the administration of exogenous HMGB1 significantly increased the number of vessels and promoted recovery in skin-wound, ischemic injury. IMPLICATIONS Due to the bivalent nature of DAMP, it is often difficult to explain the relative role of DAMP in inflammation versus its role in tissue repair. However, this point is crucial as DAMP-related treatments move into clinical practice.
Collapse
Affiliation(s)
- Franco Pandolfi
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy.
| | - Simona Altamura
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Simona Frosali
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Pio Conti
- Postgraduate Medical School, Chieti University, Chieti, Italy
| |
Collapse
|
15
|
B cell development in chromosome 22q11.2 deletion syndrome. Clin Immunol 2016; 163:1-9. [DOI: 10.1016/j.clim.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022]
|
16
|
Machnes-Maayan D, Lev A, Katz U, Mishali D, Vardi A, Simon AJ, Somech R. Insight into normal thymic activity by assessment of peripheral blood samples. Immunol Res 2015; 61:198-205. [PMID: 25294167 DOI: 10.1007/s12026-014-8558-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The thymus is a highly specialized organ for T cell receptor (TCR) rearrangement and selection mechanisms that ensure the formation of functional and self-tolerant cells. Little is known about how peripheral blood assessment of thymic function reflects thymus activity during infancy. We compared thymic function-related markers in the thymus with those in peripheral blood in order to check their correlations. We concomitantly blood samples from immunocompetent infants who underwent cardiac surgery that involved thymectomy. The studied thymic markers included TCR excision circles (TRECs), four different TCRD (TCR delta chain) gene rearrangements, the TCR repertoire, regulatory T cells (Tregs, defined as the CD4+CD25+FOXP3+ cell population) and real-time quantitative polymerase chain reaction (RQ-PCR) mRNA expression of forkhead box P3 (FOXP3). Twenty patients were enrolled in this study. Their mean age at the time of the surgery was 3 months/5 days ± 3 months/18 days. There was a significant correlation between thymic and peripheral blood levels of TREC, all four TCRD gene rearrangements and the amount of Tregs. The levels of these parameters were significantly higher in the thymus than those detected in the peripheral blood. The TCR repertoire distribution in both samples was similar. FOXP3 mRNA levels in the thymus and peripheral blood correlated well. Our findings demonstrated a strong and significant correlation between peripheral blood and intra-thymic activity parameters during infancy. Assessment of these parameters in peripheral blood can be used to accurately estimate different intra-thymic capacities for assessing T cell function in health and disease.
Collapse
Affiliation(s)
- Diti Machnes-Maayan
- Pediatric Department B, Pediatric Immunology Service, Jeffrey Modell Foundation (JMF) Center, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Neonatal Levels of T-cell Receptor Excision Circles (TREC) in Patients with 22q11.2 Deletion Syndrome and Later Disease Features. J Clin Immunol 2015; 35:408-15. [DOI: 10.1007/s10875-015-0153-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|
18
|
Froňková E, Klocperk A, Svatoň M, Nováková M, Kotrová M, Kayserová J, Kalina T, Keslová P, Votava F, Vinohradská H, Freiberger T, Mejstříková E, Trka J, Šedivá A. The TREC/KREC assay for the diagnosis and monitoring of patients with DiGeorge syndrome. PLoS One 2014; 9:e114514. [PMID: 25485546 PMCID: PMC4259354 DOI: 10.1371/journal.pone.0114514] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/10/2014] [Indexed: 12/03/2022] Open
Abstract
DiGeorge syndrome (DGS) presents with a wide spectrum of thymic pathologies. Nationwide neonatal screening programs of lymphocyte production using T-cell recombination excision circles (TREC) have repeatedly identified patients with DGS. We tested what proportion of DGS patients could be identified at birth by combined TREC and kappa-deleting element recombination circle (KREC) screening. Furthermore, we followed TREC/KREC levels in peripheral blood (PB) to monitor postnatal changes in lymphocyte production. Methods TREC/KREC copies were assessed by quantitative PCR (qPCR) and were related to the albumin control gene in dry blood spots (DBSs) from control (n = 56), severe immunodeficiency syndrome (SCID, n = 10) and DGS (n = 13) newborns. PB was evaluated in DGS children (n = 32), in diagnostic samples from SCID babies (n = 5) and in 91 controls. Results All but one DGS patient had TREC levels in the normal range at birth, albeit quantitative TREC values were significantly lower in the DGS cohort. One patient had slightly reduced KREC at birth. Postnatal DGS samples revealed reduced TREC numbers in 5 of 32 (16%) patients, whereas KREC copy numbers were similar to controls. Both TREC and KREC levels showed a more pronounced decrease with age in DGS patients than in controls (p<0.0001 for both in a linear model). DGS patients had higher percentages of NK cells at the expense of T cells (p<0.0001). The patients with reduced TREC levels had repeated infections in infancy and developed allergy and/or autoimmunity, but they were not strikingly different from other patients. In 12 DGS patients with paired DBS and blood samples, the TREC/KREC levels were mostly stable or increased and showed similar kinetics in respective patients. Conclusions The combined TREC/KREC approach with correction via control gene identified 1 of 13 (8%) of DiGeorge syndrome patients at birth in our cohort. The majority of patients had TREC/KREC levels in the normal range.
Collapse
Affiliation(s)
- Eva Froňková
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Adam Klocperk
- Department of Immunology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Michael Svatoň
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Michaela Nováková
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Michaela Kotrová
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Jana Kayserová
- Department of Immunology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Tomáš Kalina
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Petra Keslová
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Felix Votava
- Department of Pediatrics, 3rd Medical School, Charles University Prague and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Hana Vinohradská
- Department of Clinical Biochemistry, Children Hospital, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Tomáš Freiberger
- Department of Clinical Immunology and Allergology, Medical Faculty, and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Molecular Genetics Lab, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Ester Mejstříková
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Anna Šedivá
- Department of Immunology, 2nd Medical School, Charles University Prague and University Hospital Motol, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
19
|
Davies EG. Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia. Front Immunol 2013; 4:322. [PMID: 24198816 PMCID: PMC3814041 DOI: 10.3389/fimmu.2013.00322] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 11/13/2022] Open
Abstract
The commonest association of thymic stromal deficiency resulting in T-cell immunodeficiency is the DiGeorge syndrome (DGS). This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete athymia. In the most severe group, correction of the immunodeficiency can be achieved using thymus allografts which can support thymopoiesis even in the absence of donor-recipient matching at the major histocompatibility loci. This review focuses on the causes of DGS, the immunological features of the disorder, and the approaches to correction of the immunodeficiency including the use of thymus transplantation.
Collapse
Affiliation(s)
- E Graham Davies
- Centre for Immunodeficiency, Institute of Child Health, University College London and Great Ormond Street Hospital , London , UK
| |
Collapse
|
20
|
Maggadottir SM, Sullivan KE. The diverse clinical features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2013; 1:589-94. [PMID: 24565705 DOI: 10.1016/j.jaip.2013.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/24/2013] [Accepted: 08/06/2013] [Indexed: 01/15/2023]
Abstract
A 2-year-old boy with chromosome 22q11.2 deletion syndrome was referred for recurrent sinopulmonary infections. He was diagnosed shortly after birth by a fluorescence in situ hybridization test that was performed due to interrupted aortic arch type B. He had no hypocalcemia, and his recovery from cardiac repair was uneventful. He had difficulty feeding and gained weight slowly, but, otherwise, there were no concerns during his first year of life. At 15 months of age, he began to develop significant otitis media and bronchitis. He was hospitalized once for pneumonia at 18 months of age and has never been off antibiotics for more than 1 week since then. He has not had any previous immunologic evaluation. Recurrent sinopulmonary infections in a child with chromosome 22q11.2 deletion syndrome can have the same etiologies as in any other child. Atopy, anatomic issues, cystic fibrosis, and new environmental exposures could be considered in this setting. Early childhood can be problematic for patients with chromosome 22q11.2 deletion syndrome due to unfavorable drainage of the middle ear and sinuses. Atopy occurs at a higher frequency in 22q11.2 deletion syndrome, and these children also have a higher rate of gastroesophageal reflux and aspiration than the general population. As would be appropriate for any child who presents with recurrent infections at 2 years of age, an immunologic evaluation should be performed. In this review, we will highlight recent findings and new data on the management of children and adults with chromosome 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa.
| |
Collapse
|
21
|
Ip W, Zhan H, Gilmour KC, Davies EG, Qasim W. 22q11.2 deletion syndrome with life-threatening adenovirus infection. J Pediatr 2013; 163:908-10. [PMID: 23660376 DOI: 10.1016/j.jpeds.2013.03.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/14/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022]
Abstract
Adenovirus causes significant morbidity and mortality in immunocompromised children. We report how an infusion of HLA-matched sibling donor T lymphocytes rapidly eradicated life-threatening, high-level adenoviremia in a child with complete DiGeorge syndrome (22q11.2 deletion) who went on to reconstitute a diverse, donor-derived, postthymic T-cell repertoire.
Collapse
Affiliation(s)
- Winnie Ip
- Molecular Immunology Unit, Institute of Child Health, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
DiGeorge Syndrome Presenting as Hypocalcaemia-Induced Seizures in Adulthood. Case Rep Med 2013; 2013:923129. [PMID: 23762078 PMCID: PMC3671511 DOI: 10.1155/2013/923129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/09/2013] [Indexed: 11/17/2022] Open
Abstract
Introduction. DiGeorge syndrome is a developmental defect commonly caused by a microdeletion on the long arm of chromosome 22 or less frequently by a deletion of the short arm of chromosome 10. Case report. We report a case of a gentleman with mild dysmorphic features who presented with hypocalcaemia-induced seizures and an associated thyroid mass with a background of learning difficulties and abnormal immune function. Discussion. DiGeorge syndrome was initially described in 1967 by Angelo DiGeorge. The majority of cases are due to a novel mutation. The resulting learning difficulties, congenital heart disease, palatal abnormalities, hypoplasia/aplasia of the parathyroid and thymus glands, and immune deficiency generally lead to diagnosis in childhood. Presentation in adulthood is rare but must be borne in mind when dealing with cases of hypocalcaemia even in the absence of florid phenotypic features. A link with malignant disease has also been reported and should lead to prompt investigation of concerning masses.
Collapse
|
23
|
Vu QV, Wada T, Toma T, Tajima H, Maeda M, Tanaka R, Oh-Ishi T, Yachie A. Clinical and immunophenotypic features of atypical complete DiGeorge syndrome. Pediatr Int 2013; 55:2-6. [PMID: 22978387 DOI: 10.1111/j.1442-200x.2012.03722.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/10/2012] [Accepted: 08/29/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND DiGeorge syndrome is a congenital malformation characterized by variable defects of the thymus, heart and parathyroid glands. Athymic patients are classified as exhibiting complete DiGeorge syndrome. Some of these patients may also exhibit oligoclonal T-cell expansion, generalized rash and lymphadenopathy at some point after birth. This rare condition is known as atypical complete DiGeorge syndrome, resembles Omenn syndrome, and has not been fully characterized. METHODS The clinical and immunophenotypic features of atypical complete DiGeorge syndrome were assessed in two affected Japanese infants. T-cell receptor (TCR) Vβ repertoire was analyzed on flow cytometry and complementarity-determining region 3 spectratyping. RESULTS Both patients had no detectable thymus tissue and profound T-cell lymphopenia soon after birth. Progressive increase of activated T cells, however, as well as eosinophilia, high serum IgE level, generalized rash, and lymphadenopathy were observed during early infancy. A highly restricted TCR Vβ repertoire was demonstrated both in CD4(+) and CD8(+) T cells. CONCLUSIONS The Omenn syndrome-like manifestations might be associated with the oligoclonal proliferation of activated T cells. Analysis of the immunophenotype and TCR Vβ repertoire is helpful to establish the early diagnosis of atypical complete DiGeorge syndrome.
Collapse
Affiliation(s)
- Quang Van Vu
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Björk AH, Óskarsdóttir S, Andersson BA, Friman V. Antibody deficiency in adults with 22q11.2 deletion syndrome. Am J Med Genet A 2012; 158A:1934-40. [PMID: 22786729 DOI: 10.1002/ajmg.a.35484] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/26/2012] [Indexed: 11/11/2022]
Abstract
There are limited data on immunological disorders, infection profile, and autoimmunity among adults with the 22q11.2 deletion syndrome (22q11.2DS) in the literature. To expand this knowledge base, we evaluated immunoglobulin levels, lymphocyte subsets, and T-cell function in 26 adults, consecutively referred to our 22q11.2DS multidisciplinary team. Their medical records were also reviewed with respect to frequency and severity of infections and autoimmune disorders. Six patients had low immunoglobulin levels; among these patients, one had a combined IgA and IgG1 deficiency, one had an isolated IgG3 deficiency, and four had a profound antibody deficiency comparable to common variable immunodeficiency (CVID). Three of the patients with profound antibody deficiency showed signs of reduced T-cell function measured as a low response to mitogen and/or antigen stimulation. The four patients with profound antibody deficiency suffered from more severe infections than the rest of the patient group. Three of them also had a history of both immune thrombocytopenia (ITP) and autoimmune hemolytic anemia (AHA). Our results suggest that a subgroup of individuals with 22q11.2DS can develop a severe antibody deficiency associated with lower respiratory tract infections and autoimmune conditions. Early diagnosis of hypogammaglobulinemia among these individuals is important in order to provide optimal treatment. We therefore recommend an immunological evaluation and follow-up among adults with 22q11.2DS who have a history of autoimmune conditions or recurrent infections.
Collapse
Affiliation(s)
- Aron H Björk
- Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | |
Collapse
|
25
|
From murine to human nude/SCID: the thymus, T-cell development and the missing link. Clin Dev Immunol 2012; 2012:467101. [PMID: 22474479 PMCID: PMC3303720 DOI: 10.1155/2012/467101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/09/2011] [Indexed: 11/17/2022]
Abstract
Primary immunodeficiencies (PIDs) are disorders of the immune system, which lead to increased susceptibility to infections. T-cell defects, which may affect T-cell development/function, are approximately 11% of reported PIDs. The pathogenic mechanisms are related to molecular alterations not only of genes selectively expressed in hematopoietic cells but also of the stromal component of the thymus that represents the primary lymphoid organ for T-cell differentiation. With this regard, the prototype of athymic disorders due to abnormal stroma is the Nude/SCID syndrome, first described in mice in 1966. In man, the DiGeorge Syndrome (DGS) has long been considered the human prototype of a severe T-cell differentiation defect. More recently, the human equivalent of the murine Nude/SCID has been described, contributing to unravel important issues of the T-cell ontogeny in humans. Both mice and human diseases are due to alterations of the FOXN1, a developmentally regulated transcription factor selectively expressed in skin and thymic epithelia.
Collapse
|
26
|
Gennery AR. Immunological aspects of 22q11.2 deletion syndrome. Cell Mol Life Sci 2012; 69:17-27. [PMID: 21984609 PMCID: PMC11114664 DOI: 10.1007/s00018-011-0842-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Abstract
Chromosome 22q11 deletion is the most common chromosomal deletion syndrome and is found in the majority of patients with DiGeorge syndrome and velo-cardio-facial syndrome. Patients with CHARGE syndrome may share similar features. Cardiac malformations, speech delay, and immunodeficiency are the most common manifestations. The immunological phenotype may vary widely between patients. Severe T lymphocyte immunodeficiency is rare-thymic transplantation offers a new approach to treatment, as well as insights into thymic physiology and central tolerance. Combined partial immunodeficiency is more common, leading to recurrent sinopulmonary infection in early childhood. Autoimmunity is an increasingly recognized complication. New insights into pathophysiology are reviewed.
Collapse
Affiliation(s)
- A R Gennery
- Institute of Cellular Medicine, Old Children's Outpatients, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
27
|
Jawad AF, Prak EL, Boyer J, McDonald-McGinn DM, Zackai E, McDonald K, Sullivan KE. A prospective study of influenza vaccination and a comparison of immunologic parameters in children and adults with chromosome 22q11.2 deletion syndrome (digeorge syndrome/velocardiofacial syndrome). J Clin Immunol 2011; 31:927-35. [PMID: 21863400 DOI: 10.1007/s10875-011-9569-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/05/2011] [Indexed: 02/08/2023]
Abstract
Prior to the advent of cardiac bypass, most children with congenital cardiac anomalies and chromosome 22q11.2 deletion syndrome died. With improved technology, there is now a wave of young adults with chromosome 22q11.2 deletion syndrome requiring clinical care. Fifteen young children and 20 adults with chromosome 22q11.2 deletion had flow cytometry, functional T cell analyses, and functional B cell analyses to characterize their immune system. Subjects were vaccinated with the annual inactivated influenza vaccine, and responses were evaluated by hemagglutination inhibition titer assessment. The pattern of T cell subset abnormalities was markedly different between pediatric and adult patients. In spite of the cellular deficits observed in adults, titers produced after influenza vaccine administration were largely intact. We conclude that disruption to T cell production appears to have secondary consequences for T cell differentiation and B cell function although the clinical impact remains to be determined.
Collapse
Affiliation(s)
- Abbas F Jawad
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Mycobacterium tuberculosis culture filtrate protein 10-specific effector/memory CD4⁺ and CD8⁺ T cells in tubercular pleural fluid, with biased usage of T cell receptor Vβ chains. Infect Immun 2011; 79:3358-65. [PMID: 21606188 DOI: 10.1128/iai.00014-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell-mediated immunity is critical for the control of Mycobacterium tuberculosis infection. Identifying the precise immune mechanisms that lead to control of initial M. tuberculosis infection and preventing reactivation of latent infection are crucial for combating tuberculosis. However, a detailed understanding of the role of T cells in the immune response to infection has been hindered. In addition, there are few flow cytometry studies characterizing the Vβ repertoires of T cell receptors (TCRs) at local sites of M. tuberculosis infection in adult tuberculosis. In this study, we used culture filtrate protein 10 (CFP-10) from M. tuberculosis to characterize T cells at local sites of infection. We simultaneously analyzed the correlation of the production of cytokines with TCR Vβ repertoires in CFP-10-specific CD4(+) and CD8(+) T cell subsets. For the first time, we demonstrate that CFP-10-specific CD4(+) or CD8(+) T cells from tubercular pleural fluid can produce high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and upregulate the expression of CD107a/b on the cell surface. The CFP-10-specific cells were effector/memory cells with a CD45RO(+) CD62L(-) CCR7(-) CD27(-) expression profile. In addition, we found CFP-10-specific CD4(+) and CD8(+) T cells in tubercular pleural fluid, with biased usage of TCR Vβ9, Vβ12, or Vβ7.2. Our findings of CFP-10-specific CD4(+) and CD8(+) T cells in tubercular pleural fluid are critical for understanding the mechanisms of the local cellular immune response and developing more effective therapeutic interventions in cases of M. tuberculosis infection.
Collapse
|
29
|
McLean-Tooke A, Barge D, Spickett GP, Gennery AR. Flow Cytometric Analysis of TCR Vβ Repertoire in Patients with 22q11.2 Deletion Syndrome. Scand J Immunol 2011; 73:577-85. [DOI: 10.1111/j.1365-3083.2011.02527.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine (Baltimore) 2011; 90:1-18. [PMID: 21200182 DOI: 10.1097/md.0b013e3182060469] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosome 22q11.2 deletion syndrome is a common syndrome also known as DiGeorge syndrome and velocardiofacial syndrome. It occurs in approximately 1:4000 births, and the incidence is increasing due to affected parents bearing their own affected children. The manifestations of this syndrome cross all medical specialties, and care of the children and adults can be complex. Many patients have a mild to moderate immune deficiency, and the majority of patients have a cardiac anomaly. Additional features include renal anomalies, eye anomalies, hypoparathyroidism, skeletal defects, and developmental delay. Each child's needs must be tailored to his or her specific medical problems, and as the child transitions to adulthood, additional issues will arise. A holistic approach, addressing medical and behavioral needs, can be very helpful.
Collapse
|
31
|
Zemble R, Luning Prak E, McDonald K, McDonald-McGinn D, Zackai E, Sullivan K. Secondary immunologic consequences in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin Immunol 2010; 136:409-18. [PMID: 20472505 DOI: 10.1016/j.clim.2010.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/23/2010] [Accepted: 04/10/2010] [Indexed: 01/02/2023]
Abstract
Clinical evidence suggests that patients with Chromosome 22q11.2 deletion (Ch22q11.2D) have an increased prevalence of atopic and autoimmune disease and this has been without explanation. We hypothesized that the increase in atopy was due to homeostatic proliferation of T cells leading to a Th2 skew. We performed intracellular cytokine staining to define Th1/Th2 phenotypes in toddlers (early homeostatic proliferation) and adults (post homeostatic proliferation) with this syndrome. To attempt to understand the predisposition to autoimmunity we performed immunophenotyping analyses to define Th17 cells and B cell subsets. Adult Ch22q11.2D patients had a higher percentage of IL-4+CD4+ T cells than controls. Th17 cells were no different in patients and controls. In addition, adult Ch22q11.2D syndrome patients had significantly lower switched memory B cells, suggesting a dysregulated B cell compartment. These studies demonstrate that the decrement in T cell production has secondary consequences in the immune system, which could mold the patients' clinical picture.
Collapse
Affiliation(s)
- R Zemble
- The Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lima K, Abrahamsen TG, Foelling I, Natvig S, Ryder LP, Olaussen RW. Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles. Clin Exp Immunol 2010; 161:98-107. [PMID: 20491792 DOI: 10.1111/j.1365-2249.2010.04152.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thymic hypoplasia is a frequent feature of the 22q11.2 deletion syndrome, but we know little about patients' age-related thymic output and long-term consequences for their immune system. We measured the expression of T cell receptor rearrangement excision circles (TREC) and used flow cytometry for direct subtyping of recent thymic emigrant (RTE)-related T cells in 43 patients (aged 1-54 years; median 9 years) from all over Norway and in age-matched healthy controls. Thymic volumes were estimated by ultrasound in patients. TREC levels correlated well with RTE-related T cells defined by co-expression of CD3, CD45RA and CCR9 (r=0.84) as well as with the CD4+ and CD8+ T cell subtypes. RTE-related T cell counts also paralleled age-related TREC reductions. CD45RA+ T cells correlated well with absolute counts of CD4+ (r=0.87) and CD8+ (r=0.75) RTE-related T cells. Apart from CD45RA- T cells, all T cell subsets were lower in patients than in controls. Thymic volumes correlated better with RTE-related cells (r=0.46) than with TREC levels (r=0.38). RTE-related T cells and TREC levels also correlated well (r=0.88) in patients without an identifiable thymus. Production of RTEs is impaired in patients with a 22q11.2 deletion, and CCR9 appears to be a good marker for RTE-related T cells.
Collapse
Affiliation(s)
- K Lima
- Section of Endocrinology, Faculty Division Akershus University Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
33
|
Salameire D, Le Bris Y, Fabre B, Fauconnier J, Solly F, Pernollet M, Bonnefoix T, Leroux D, Plumas J, Jacob MC. Efficient characterization of the TCR repertoire in lymph nodes by flow cytometry. Cytometry A 2009; 75:743-51. [PMID: 19582873 DOI: 10.1002/cyto.a.20767] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Analysis of the T-cell receptor (TCR) repertoire by flow cytometry proved to be relevant for investigating T-cell diversity and detecting reactive cells in blood samples. We used this approach to characterize non-malignant T-lymphocytes in lymph nodes and give insights into their origin. The TCR repertoire of CD4+ and CD8+ T-cells from 81 lymph nodes was analyzed with a four-color flow cytometer using a wide panel of 25 anti-Vbeta monoclonal antibodies. Flow cytometry proved to be a useful and informative technique. We demonstrated a diversified TCR-Vbeta repertoire, and only low level expansions, in 53% of the samples. They involved nearly all Vbeta families, were more frequent in the CD8+ subset of older patients, but were not related to pathology. No evidence could be demonstrated in favor of stimulation by common antigens. Interestingly, the TCR-Vbeta repertoire proved to be very similar in lymph nodes and blood samples. Our results argue that in the cases studied, lymph node enlargement is mainly due to an increased homing of circulating T-cells. They also provide reference values for expression of 25 TCR-Vbeta in lymph nodes, which could serve as a basis for further applications in diagnosis of T-cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- D Salameire
- Université Joseph Fourier Grenoble 1, F-38000, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Eberle P, Berger C, Junge S, Dougoud S, Büchel EV, Riegel M, Schinzel A, Seger R, Güngör T. Persistent low thymic activity and non-cardiac mortality in children with chromosome 22q11.2 microdeletion and partial DiGeorge syndrome. Clin Exp Immunol 2008; 155:189-98. [PMID: 19040613 DOI: 10.1111/j.1365-2249.2008.03809.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A subgroup of patients with 22q11.2 microdeletion and partial DiGeorge syndrome (pDGS) appears to be susceptible to non-cardiac mortality (NCM) despite sufficient overall CD4(+) T cells. To detect these patients, 20 newborns with 22q11.2 microdeletion and congenital heart disease were followed prospectively for 6 years. Besides detailed clinical assessment, longitudinal monitoring of naive CD4(+) and cytotoxic CD3(+)CD8(+) T cells (CTL) was performed. To monitor thymic activity, we analysed naive platelet endothelial cell adhesion molecule-1 (CD31(+)) expressing CD45RA(+)RO(-)CD4(+) cells containing high numbers of T cell receptor excision circle (T(REC))-bearing lymphocytes and compared them with normal values of healthy children (n = 75). Comparing two age periods, low overall CD4(+) and naive CD4(+) T cell numbers were observed in 65%/75%, respectively, of patients in period A (< 1 year) declining to 22%/50%, respectively, of patients in period B (> 1/< 7 years). The percentage of patients with low CTLs (< P10) remained robust until school age (period A: 60%; period B: 50%). Low numbers of CTLs were associated with abnormally low naive CD45RA(+)RO(-)CD4(+) T cells. A high-risk (HR) group (n = 11) and a standard-risk (SR) (n = 9) group were identified. HR patients were characterized by low numbers of both naive CD4(+) and CTLs and were prone to lethal infectious and lymphoproliferative complications (NCM: four of 11; cardiac mortality: one of 11) while SR patients were not (NCM: none of nine; cardiac mortality: two of nine). Naive CD31(+)CD45RA(+)RO(-)CD4(+), naive CD45RA(+)RO(-)CD4(+) T cells as well as T(RECs)/10(6) mononuclear cells were abnormally low in HR and normal in SR patients. Longitudinal monitoring of naive CD4(+) and cytotoxic T cells may help to discriminate pDGS patients at increased risk for NCM.
Collapse
Affiliation(s)
- P Eberle
- Division of Immunology/Hematology/BMT, University Children's Hospital, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ballesta Martínez MJ, Guillén Navarro E, López Expósito I, Bafalliu Vidal JA, Domingo Jiménez R, Guía Torrent JM, Robles Sánchez F, Sánchez Solís de Querol M. [Review of 22 patients with 22q11.2 deletion syndrome: phenotype spectrum]. An Pediatr (Barc) 2008; 69:304-10. [PMID: 18928696 DOI: 10.1157/13126553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The 22q11.2 deletion syndrome is a contiguous gene deletion syndrome with an incidence rate of 1/4,000-6,000 live births. The most specific clinical features are: congenital conotruncal heart diseases, palate anomalies, hypocalcaemia, immunity and learning problems, and a characteristic facial phenotype. The objective of this work is to review the presenting phenotype and clinical features of children with 22q11.2 deletion syndrome as a guide for early diagnosis. PATIENTS AND METHODS Retrospective study of 22 patients with 22q11.2 deletion syndrome diagnosed at our hospital in the time period 2004-2007. Variables analyzed: incidence, sex, age at diagnosis, presenting phenotype, clinical features, positive family history, mortality and natural history. RESULTS From a total of 22 patients, 63 % were males, and the median age at diagnosis was of 4.5 years. Presenting pheno-type: congenital heart disease, milestones delay, velopharyngeal incompetence, hypocalcaemia, and mental retardation/psychiatric disturbances. CLINICAL FEATURES congenital heart disease (84 %), velopharyngeal incompetence (47 %), milestones delay and learning disabilities (79 %). All of the deletions were de novo, except in one case where the deletion was present as mosaicism in the father. Three patients died, due to congenital heart disease. CONCLUSIONS Clinical expression is widely variable, although a characteristic phenotype exists. Patients with heart disease are diagnosed earlier than other patients with unusual presenting phenotype such as congenital dysphagia. It is important to recognize less common phenotypes at early ages in order to provide multidisciplinary monitoring and accurate genetic counselling.
Collapse
Affiliation(s)
- M J Ballesta Martínez
- Unidad de Genética Médica, Servicio de Pediatría, Hospital Universitario Virgen de la Arrixaca, Murcia, España.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Davis CM, Kancherla VS, Reddy A, Chan W, Yeh HW, Noroski LM, Rosenblatt H, Shearer WT, Chinen J. Development of specific T-cell responses to Candida and tetanus antigens in partial DiGeorge syndrome. J Allergy Clin Immunol 2008; 122:1194-9. [PMID: 18789819 DOI: 10.1016/j.jaci.2008.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/13/2008] [Accepted: 06/17/2008] [Indexed: 11/16/2022]
Abstract
BACKGROUND Partial DiGeorge syndrome (pDGS) presents with thymic hypoplasia and a variable decrease in T-cell numbers. Although lymphocyte proliferation to mitogens is generally preserved, it is uncertain whether the development of specific cellular immunity in pDGS is similarly preserved. OBJECTIVE We sought to study the development of antigen-specific T-cell responses in patients with pDGS with regard to their initial CD3 T-cell counts. METHODS A retrospective review of 93 patients with pDGS followed at Texas Children's Hospital Allergy and Immunology Clinic from 1991 to 2006 was performed. Serial lymphocyte proliferation to Candida and tetanus antigens was longitudinally analyzed. Antigen-specific lymphoproliferation was compared with initial patient CD3 T-cell counts of less than the 10th percentile (n = 63), the 10th to 50th percentile (n = 20), and greater than the 50th percentile (n = 10) of age-matched normal control values. Tetanus-specific IgG levels and the number of tetanus immunizations were also studied. RESULTS The median CD3 T-cell counts at baseline in all 3 groups were as follows: 10th percentile, 1188 cells/mm(3) (range, 168-3272 cells/mm(3)); 10th to 50th percentile, 2816 cells/mm(3) (range, 1484-4155 cells/mm(3)); greater than 50th percentile, 4246 cells/mm(3) (range, 2573-6481 cells/mm(3)). Thirty-one (46%) of 68 patients with pDGS who received at least 3 tetanus vaccines had persistent Candida and tetanus-specific cellular immunity, and 24 (35%) did not have immunity to either antigen. Most (22/24) of these patients had CD3 T-cell counts at presentation of less than the 10th percentile of normal values. Protective tetanus-specific IgG titers (>0.10 IU/mL) were detected in all patients tested from the age of 2 to 85 months (n = 72). CONCLUSION Some patients with pDGS with low CD3 T-cell counts might not have specific Candida and tetanus cellular immunity.
Collapse
Affiliation(s)
- Carla M Davis
- Department of Pediatrics, Allergy and Immunology Section, Baylor College of Medicine, Houston, TX 77030-2399, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sullivan KE. Chromosome 22q11.2 deletion syndrome: DiGeorge syndrome/velocardiofacial Syndrome. Immunol Allergy Clin North Am 2008; 28:353-66. [PMID: 18424337 DOI: 10.1016/j.iac.2008.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DiGeorge syndrome, or chromosome 22q11.2 deletion syndrome, is a disorder affecting multiple organ systems. The immunologist may be called on to coordinate complex medical care tailored to the specific needs and unique clinical features of each patient. This article focuses on the immune system, but patients require a holistic approach. Attention to cardiac, nutritional, and developmental needs in early infancy is important, and it is critical to identify the rare infants who require either a lymphocyte or thymus transplant. Later, speech and school issues dominate the picture. Allergies and autoimmune disorders also may be troubling for some school-age children.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 34th and Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
38
|
Abstract
Velocardiofacial syndrome, DiGeorge syndrome, and some other clinical syndromes have in common a high frequency of hemizygous deletions of chromosome 22q11.2. This deletion syndrome is very common, affecting nearly one in 3000 children. Here, we focus on recent advances in cardiac assessment, speech, immunology, and pathophysiology of velocardiofacial syndrome. The complex medical care of patients needs a multidisciplinary approach, and every patient has his own unique clinical features that need a tailored approach. Patients with chromosome 22q11.2 deletion syndrome might have high level of functioning, but most often need interventions to improve the function of many organ systems.
Collapse
Affiliation(s)
- Lisa J Kobrynski
- Department of Pediatrics, Allergy and Immunology Section, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
39
|
Abstract
22q11.2 deletion syndrome is the commonest chromosome deletion syndrome. 22q11.2 deletion may result in variable clinical phenotypes which may differ even between patients with identical deletions. Abnormal pharyngeal arch development results in defects in the development of the parathyroid glands, thymus and conotruncal region of the heart. Defective thymic development is associated with impaired immune function. 'Complete' DiGeorge syndrome with total absence of the thymus and a severe T-cell immunodeficiency accounts for <0.5% of patients. The majority of patients with 22q11.2 deletion syndromes have 'partial' defects with impaired thymic development rather than complete absence with variable defects in T-cell numbers. Immunodeficiency in these patients is not solely due to T-cell deficiency and abnormalities of T-cell clonality or impairment of proliferative responses may play a role. Humoral deficiencies including defects in the B-cell compartment have also been identified in these patients. 22q11.2 deletion syndrome patients are at increased risk of a variety of autoimmune diseases. A number of immune defects may predispose to the development of autoimmunity in these patients including increased infection, impaired development of natural T-regulatory cells and impaired thymic central tolerance.
Collapse
Affiliation(s)
- A McLean-Tooke
- Department of Immunology, Royal Victoria InfirmaryDepartment of Paediatric Immunology, Newcastle General Hospital, Newcastle-Upon-Tyne, UK
| | - G P Spickett
- Department of Immunology, Royal Victoria InfirmaryDepartment of Paediatric Immunology, Newcastle General Hospital, Newcastle-Upon-Tyne, UK
| | - A R Gennery
- Department of Immunology, Royal Victoria InfirmaryDepartment of Paediatric Immunology, Newcastle General Hospital, Newcastle-Upon-Tyne, UK
| |
Collapse
|
40
|
Giovannetti A, Pierdominici M, Mazzetta F, Marziali M, Renzi C, Mileo AM, De Felice M, Mora B, Esposito A, Carello R, Pizzuti A, Paggi MG, Paganelli R, Malorni W, Aiuti F. Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. THE JOURNAL OF IMMUNOLOGY 2007; 178:3932-43. [PMID: 17339494 DOI: 10.4049/jimmunol.178.6.3932] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigated several phenotypic and functional parameters of T cell-mediated immunity in a large series of common variable immunodeficiency (CVID) patients. We demonstrated that the vast majority of CVID patients presented multiple T cell abnormalities intimately related among them, the severity of which was reflected in a parallel loss of CD4+ naive T cells. A strong correlation between the number of CD4+ naive T cells and clinical features was observed, supporting the subgrouping of patients according to their number of naive CD4+ T lymphocytes. A reduced thymic output and disrupted CD4+ and CD8+ TCR repertoires paralleled the contraction of CD4+ naive T cell pools. The evaluation of activation markers and cytokine production indicated a strong T cell activation that was significantly related to the increased levels of T cell turnover and apoptosis. Finally, discrete genetic profiles could be demonstrated in groups of patients showing extremely diverse T cell subset composition and function. Naive CD4+ T cell levels were significantly associated with the switched memory B cell-based classification, although the concordance between the respective subgroups did not exceed 58.8%. In conclusion, our data highlight the key role played by the T cell compartment in the pathogenesis of CVID, pointing to the need to consider this aspect for classification of this disease.
Collapse
Affiliation(s)
- Antonello Giovannetti
- Department of Clinical Medicine, Division of Allergy and Clinical Immunology, La Sapienza University, Viale dell'Università 37, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sullivan KE. The clinical, immunological, and molecular spectrum of chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Curr Opin Allergy Clin Immunol 2006; 4:505-12. [PMID: 15640691 DOI: 10.1097/00130832-200412000-00006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW New findings regarding the clinical manifestations and care of patients with DiGeorge syndrome or chromosome 22q11.2 deletion syndrome will be reviewed. Immunologists and primary care providers often are in a position to coordinate the complex care needs of these patients and an awareness of the clinical features is essential. RECENT FINDINGS DiGeorge syndrome typically occurs in association with a hemizygous deletion of chromosome 22q11.2. Approximately 5-10% of patients with the clinical entity of DiGeorge syndrome do not have the deletion. Recent evidence indicates that the T cell compartment in both patients with the deletion and patients with clinical DiGeorge syndrome without the deletion is less robust than is often indicated by standard T cell enumeration. SUMMARY This past year has seen a dramatic increase in our understanding of the clinical features of patients with the deletion. Advances in our understanding of the immunodeficiency have been particularly exciting and clinicians should be aware of the characteristics of the immunodeficiency and its changes with age.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
42
|
Kanaya Y, Ohga S, Ikeda K, Furuno K, Ohno T, Takada H, Kinukawa N, Hara T. Maturational alterations of peripheral T cell subsets and cytokine gene expression in 22q11.2 deletion syndrome. Clin Exp Immunol 2006; 144:85-93. [PMID: 16542369 PMCID: PMC1809624 DOI: 10.1111/j.1365-2249.2006.03038.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chromosome 22q11.2 deletion syndrome is a common disorder characterized by thymic hypoplasia, conotruncal cardiac defect and hypoparathyroidism. Patients have a risk of infections and autoimmunity associated with T lymphocytopenia. To assess the immunological constitution of patients, the numerical changes and cytokine profile of circulating T cells were analysed by flow cytometry and real-time polymerase chain reaction (PCR). CD3+, CD4+, T cell receptor (TCR)alphabeta+ or CD8alphaalpha+ cell counts were lower, and CD56+ cell counts were higher in patients than in controls during the period from birth to adulthood. The ageing decline of CD3+ or CD4+ cell counts was slower in patients than in controls. The proportion of CD8alphaalpha+ cells increased in controls, and the slope index was larger than in patients. On the other hand, both the number and proportion of Valpha24+ cells increased in patients, and the slope indexes tended to be larger than in controls. The positive correlation of the number of T cells with CD8alphaalpha+ cells was observed only in patients, and that with Valpha24+ cells was seen only in controls. No gene expression levels of interferon (IFN)-gamma, interleukin (IL)-10, transforming growth factor (TGF)-beta, cytotoxic T lymphocyte antigen 4 (CTLA4) or forkhead box p3 (Foxp3) in T cells differed between patients and controls. There was no significant association between the lymphocyte subsets or gene expression levels and clinical phenotype including the types of cardiac disease, hypocalcaemia and frequency of infection. These results indicated that T-lymphocytopenia in 22q11.2 deletion patients became less severe with age under the altered composition of minor subsets. The balanced cytokine profile in the limited T cell pool may represent a T cell homeostasis in thymic deficiency syndrome.
Collapse
MESH Headings
- Adolescent
- Adult
- Aging/genetics
- Aging/immunology
- Antigens, CD
- Antigens, Differentiation/analysis
- CD3 Complex/immunology
- CD4-Positive T-Lymphocytes
- CD8-Positive T-Lymphocytes/immunology
- CTLA-4 Antigen
- Child
- Child, Preschool
- Chromosome Deletion
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 22/immunology
- Cytokines/immunology
- DiGeorge Syndrome/genetics
- DiGeorge Syndrome/immunology
- Female
- Forkhead Transcription Factors/analysis
- Gene Expression/genetics
- Gene Expression/immunology
- Humans
- Infant
- Interferon-gamma/analysis
- Interleukin-10/analysis
- Lymphocyte Count
- Male
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- Transforming Growth Factor beta/analysis
Collapse
Affiliation(s)
- Y Kanaya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ogle BM, West LJ, Driscoll DJ, Strome SE, Razonable RR, Paya CV, Cascalho M, Platt JL. Effacing of the T Cell Compartment by Cardiac Transplantation in Infancy. THE JOURNAL OF IMMUNOLOGY 2006; 176:1962-7. [PMID: 16424228 DOI: 10.4049/jimmunol.176.3.1962] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For cardiac transplantation in infants, T cells are depleted and the thymus is removed. These manipulations should cause profound defects in the T cell compartment. To test this concept, 20 subjects who underwent cardiac transplantation in infancy and healthy age-matched subjects were studied. The number of T cells in the blood was nearly normal in all subjects 1-10 years after surgery. However, newly generated T cells were undetectable in 10 recipients and 10-fold less than controls in 10, suggesting absence of thymic function. TCRbeta chain diversity, measured by a novel technique, was approximately 100-fold lower than controls. T cell function, deduced from levels of human herpesvirus 7 and response to hepatitis B immunization, were notably impaired. Yet cardiac transplant recipients were generally free of opportunistic infections. Our findings demonstrate a novel approach to measuring lymphocyte diversity and suggest that understanding how these subjects resist infection could yield important insights into immune fitness.
Collapse
Affiliation(s)
- Brenda M Ogle
- Transplantation Biology Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pierdominici M, Giammarioli AM, Gambardella L, De Felice M, Quinti I, Iacobini M, Carbonari M, Malorni W, Giovannetti A. Pyrimethamine (2,4-diamino-5-p-chlorophenyl-6-ethylpyrimidine) induces apoptosis of freshly isolated human T lymphocytes, bypassing CD95/Fas molecule but involving its intrinsic pathway. J Pharmacol Exp Ther 2005; 315:1046-57. [PMID: 16157660 DOI: 10.1124/jpet.105.086736] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pyrimethamine (2,4-diamino-5-p-chlorophenyl-6-ethyl-pyrimidine), a folic acid antagonist, may exert, in addition to antiprotozoan effects, immunomodulating activities, including induction of peripheral blood lymphocyte apoptosis. However, the molecular mechanisms underlying this proapoptotic activity remain to be elucidated. Here we show that pyrimethamine, used at a pharmacologically relevant concentration, induced per se apoptosis of activated lymphocytes via the activation of the caspase-8- and caspase-10-dependent cascade and subsequent mitochondrial depolarization. Importantly, this seems to occur independently from CD95/Fas engagement. The proapoptotic activity of pyrimethamine was further confirmed in a patient with autoimmune lymphoproliferative syndrome, an immune disorder associated with a defect of Fas-induced apoptosis. In this patient, pyrimethamine treatment resulted in a "normalization" of lymphocyte apoptosis with a significant amelioration of laboratory parameters. Altogether, these results suggest a mechanism for pyrimethamine-mediated apoptosis that seems to bypass CD95/Fas engagement but fully overlaps CD95/Fas-induced subcellular pathway. On these bases, a reappraisal of the use of pyrimethamine in immune lymphoproliferative disorders characterized by defects in CD95/Fas-mediated apoptosis should be taken into account.
Collapse
Affiliation(s)
- Marina Pierdominici
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cancrini C, Romiti ML, Finocchi A, Di Cesare S, Ciaffi P, Capponi C, Pahwa S, Rossi P. Post-natal ontogenesis of the T-cell receptor CD4 and CD8 Vbeta repertoire and immune function in children with DiGeorge syndrome. J Clin Immunol 2005; 25:265-74. [PMID: 15981092 DOI: 10.1007/s10875-005-4085-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 01/20/2005] [Indexed: 12/27/2022]
Abstract
DiGeorge syndrome (DGS) is a congenital disorder characterized by typical facial features, hypoparatyroidism, conotruncal cardiac defects and thymic hypoplasia. Although there are some reports addressing lymphocytes counts and function in DGS children over time, few data have been reported on the T-cell receptor V beta (TCRBV) repertoire in relation to disease progression. The aim of this study was to evaluate the degree and nature of immunodeficiency and to investigate a possible correlation to clinical findings. We used third complementary region (CDR3) size spectratyping as a tool for monitoring T-cell repertoire diversity in 7 DGS's children. The rate of thymic output, the phenotype and function of peripheral T-cells and the humoral immunity were also investigated. At baseline a profound alteration of the TCR repertoire was noted, mainly in the CD8+ T-cells, in DGS patients when compared to a control group. Furthermore, analysis of thymic output showed a significant decrease in TCR rearrangement excision circles (TRECs) levels in the patient group. Immunoglobulin abnormalities were also detected. The observed TCR repertoire alterations, although not statistically significant, may suggest an increased susceptibility to infections. A parallel increase in the TCR repertoire diversity and clinical improvement occurred during the follow-up. Our results confirm that the extent of immunodeficiency is highly variable and could improve through childhood, and indicate that TCR repertoire may be a useful marker to clinically monitor thymic function in this primary immunodeficiency.
Collapse
|
46
|
Giovannetti A, Pierdominici M, Marziali M, Mazzetta F, Caprini E, Russo G, Bugarini R, Bernardi ML, Mezzaroma I, Aiuti F. Persistently Biased T-Cell Receptor Repertoires in HIV-1-Infected Combination Antiretroviral Therapy???Treated Patients Despite Sustained Suppression of Viral Replication. J Acquir Immune Defic Syndr 2003; 34:140-54. [PMID: 14526203 DOI: 10.1097/00126334-200310010-00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In most HIV-1-infected patients, highly active antiretroviral therapy (HAART) reduces plasma viral load to <50 copies/mL and increases CD4+ T-cell number and function. However, it is still unclear whether alterations of T-cell receptor (TCR) beta-chain variable region (BV) repertoire, tightly related to disease progression, can be fully recovered by long-term treatment with HAART. This study analyzed the evolution of both T-cell subset composition and TCRBV perturbations in chronically HIV-1-infected patients with moderate immunodeficiency during 36 months of HAART. Despite persistently suppressed HIV replication, the rate of CD4+ T-cell repopulation, after an initial burst, progressively declined throughout the study period, resulting in a mean CD4+ T-cell count at the end of follow-up that was still significantly lower in HIV patients than in HIV-seronegative controls. This was seen in association with an incomplete restitution of both CD4 and CD8 TCRBV repertoire disruptions and was also demonstrated by the appearance of new TCRBV oligoclonal expansions occurring during HAART. In conclusion, these data indicate that 3 years of fully suppressive HAART may be not adequate to normalize CD4 counts and TCRBV repertoires in patients starting HAART with moderately advanced disease.
Collapse
|