1
|
Khan Z, Messiri NE, Iqbal E, Hassan H, Tanweer MS, Sadia SR, Taj M, Zaidi U, Yusuf K, Syed NI, Zaidi M. On the role of epigenetic modifications of HPA axis in posttraumatic stress disorder and resilience. J Neurophysiol 2025; 133:742-759. [PMID: 39842807 DOI: 10.1152/jn.00345.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Stress is a fundamental adaptive response that invokes amygdala and hypothalamus-pituitary-adrenal (HPA) axis along with other brain regions. Extreme or chronic stress, however, can result in a multitude of neuropsychiatric disorders, including anxiety, paranoia, bipolar disorder (BP), major depressive disorder (MDD), and posttraumatic stress disorder (PTSD). Despite widespread exposure to trauma (70.4%), the incidence of PTSD is relatively low (6.8%), suggesting that either individual susceptibility or adaptability driven by epigenetic and genetic mechanisms are likely at play. PTSD takes hold from exposure to traumatic events, such as death threats or severe abuse, with its severity being impacted by the magnitude of trauma, its frequency, and the nature. This comprehensive review examines how traumatic experiences and epigenetic modifications in hypothalamic-pituitary axis (HPA), such as DNA methylation, histone modifications, noncoding RNAs, and chromatin remodeling, are transmitted across generations, and impact genes such as FKBP prolyl isomerase 5 (FKBP5), nuclear receptor subfamily 3 group C member 1 (NR3C1), brain-derived neurotrophic factor (BDNF), and solute carrier family 6 member 4 (SLC6A4). It also provides a comprehensive overview on trauma reversal, resilience mechanisms, and pro-resilience factors such as histone acetyltransferases (HATs)/histone deacetylases (HDACs) ratio, dehydroepiandrosterone (DHEA)/cortisol ratio, testosterone levels, and neuropeptide Y, thus highlighting potential therapeutic approaches for trauma-related disorders. The studies highlighted here underscore the narrative, for the first time, that the examination and treatment of PTSD and other depressive disorders must invoke a multitude of approaches to seek out the most effective and personalized strategies. We also hope that the discussion emanating from this review will also inform government policies directed toward intergenerational trauma and PTSD.
Collapse
Affiliation(s)
- Zainab Khan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nour El Messiri
- Department of Epidemiology, The University of Texas Health Science Center at Houston, Houston, Texas, United States
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Emann Iqbal
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Hadi Hassan
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mohammad S Tanweer
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Syeda R Sadia
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Moizzuddin Taj
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| | - Umar Zaidi
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
- Department of Natural Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kamran Yusuf
- Section of Neonatology, Department of Pediatrics, School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Mukarram Zaidi
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Earnhardt-San AL, Baker EC, Cilkiz KZ, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Riley DG, Welsh TH. Evaluation of Prenatal Transportation Stress on DNA Methylation (DNAm) and Gene Expression in the Hypothalamic-Pituitary-Adrenal (HPA) Axis Tissues of Mature Brahman Cows. Genes (Basel) 2025; 16:191. [PMID: 40004522 PMCID: PMC11855312 DOI: 10.3390/genes16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The experience of prenatal stress results in various physiological disorders due to an alteration of an offspring's methylome and transcriptome. The objective of this study was to determine whether PNS affects DNA methylation (DNAm) and gene expression in the stress axis tissues of mature Brahman cows. Methods: Samples were collected from the paraventricular nucleus (PVN), anterior pituitary (PIT), and adrenal cortex (AC) of 5-year-old Brahman cows that were prenatally exposed to either transportation stress (PNS, n = 6) or were not transported (Control, n = 8). The isolated DNA and RNA samples were, respectively, used for methylation and RNA-Seq analyses. A gene ontology and KEGG pathway enrichment analysis of each data set within each sample tissue was conducted with the DAVID Functional Annotation Tool. Results: The DNAm analysis revealed 3, 64, and 99 hypomethylated and 2, 93, and 90 hypermethylated CpG sites (FDR < 0.15) within the PVN, PIT, and AC, respectively. The RNA-Seq analysis revealed 6, 25, and 5 differentially expressed genes (FDR < 0.15) in the PVN, PIT, and AC, respectively, that were up-regulated in the PNS group relative to the Control group, as well as 24 genes in the PIT that were down-regulated. Based on the enrichment analysis, several developmental and cellular processes, such as maintenance of the actin cytoskeleton, cell motility, signal transduction, neurodevelopment, and synaptic function, were potentially modulated. Conclusions: The methylome and transcriptome were altered in the stress axis tissues of mature cows that had been exposed to prenatal transportation stress. These findings are relevant to understanding how prenatal experiences may affect postnatal neurological functions.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| |
Collapse
|
3
|
Deflorin N, Ehlert U, Amiel Castro RT. Associations of Maternal Salivary Cortisol and Psychological Symptoms With Human Milk's Microbiome Composition. BIOPSYCHOSOCIAL SCIENCE AND MEDICINE 2025; 87:33-45. [PMID: 39701568 DOI: 10.1097/psy.0000000000001351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Human milk (HM) is considered the best source of infant nutrition with many benefits for the infant. However, pregnancy changes can lead to increased stress in some women, which might affect HM composition. Although studies have demonstrated a link between maternal psychopathology and child development, it remains unclear how maternal psychobiological changes can be intergenerationally transmitted. We aimed to investigate the associations of maternal stress, depressive symptoms, and anxiety symptoms with the HM microbiome; to analyze these parameters in relation to HM glucocorticoid concentrations; and to explore the influence of HM glucocorticoids on HM bacterial composition. METHODS One hundred women completed psychological questionnaires (e.g., EPDS, STAI, GAS) at 34-36 weeks' gestation and in the early postpartum period and provided saliva at 34-36 and 38 weeks' gestation. HM samples were collected in the early postpartum. Microbiota were analyzed using 16S rRNA amplicon sequencing. RESULTS Birth anxiety was negatively correlated with Alphaproteobacteria (τ = -0.20, FDR = 0.01), whereas in the postpartum period, anxiety symptoms were negatively correlated with different taxa. The sum of postpartum-related symptoms was linked to lower Propionibacteriales. Salivary cortisol AUCg at 34-36 weeks was negatively correlated with Stenotrophomonas (τ = -0.24, FDR = 0.05), whereas HM cortisol was positively correlated with Streptococcus mitis (τ = 0.26, FDR = 0.03) and Gemella haemolysans (τ = 0.24, FDR = 0.02). No associations emerged between psychobiological parameters and HM glucocorticoids. CONCLUSIONS Higher perinatal psychological symptoms and prenatal salivary cortisol AUCg were associated with lower relative abundances of different bacteria, whereas higher HM cortisol was linked to higher Gemella and Streptococcus. These findings suggest a negative association between high maternal psychobiological symptoms and relative abundances of the milk microbiota.
Collapse
Affiliation(s)
- Nadia Deflorin
- From the Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Vetrovoy O, Potapova S, Stratilov V, Tyulkova E. Comparative Analysis of the Effects of Maternal Hypoxia and Placental Ischemia on HIF1-Dependent Metabolism and the Glucocorticoid System in the Embryonic and Newborn Rat Brain. Int J Mol Sci 2024; 25:13342. [PMID: 39769106 PMCID: PMC11727977 DOI: 10.3390/ijms252413342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Prenatal hypoxia, often accompanied by maternal glucocorticoid stress, can predispose offspring to neurological disorders in adulthood. If placental ischemia (PI) primarily reduces fetal oxygen supply, the maternal hypoxia (MH) model also elicits a pronounced fetal glucocorticoid exposure. Here, we compared MH and PI in rats to distinguish their unique and overlapping effects on embryonic and newborn brain development. We analyzed glucocorticoid transport into the developing brain, glucocorticoid receptor (GR) expression, and GR-dependent transcription, along with key enzymes regulating glucocorticoid metabolism in maternal (MP) and fetal placentas (FP) and in the brain. Additionally, we examined hypoxia-inducible factor 1-alpha (HIF1α) and its downstream genes, as well as glycolysis and the pentose phosphate pathway, both associated with the transport of substrates essential for glucocorticoid synthesis and degradation. Both MH and PI induced HIF1-dependent metabolic alterations, enhancing glycolysis and transiently disrupting redox homeostasis. However, only MH caused a maternal glucocorticoid surge that altered early fetal brain glucocorticoid responsiveness. Over time, these differences may lead to distinct long-term outcomes in neuronal structure and function. This work clarifies the individual contributions of hypoxic and glucocorticoid stresses to fetal brain development, suggesting that combining the MH and PI models could provide valuable insights for future investigations into the mechanisms underlying developmental brain pathologies, including non-heritable psychoneurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034 Saint-Petersburg, Russia (V.S.)
| | | | | | | |
Collapse
|
5
|
Herzberg MP, Smyser CD. Prenatal Social Determinants of Health: Narrative review of maternal environments and neonatal brain development. Pediatr Res 2024; 96:1417-1428. [PMID: 38961164 PMCID: PMC12013378 DOI: 10.1038/s41390-024-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
The Social Determinants of Health, a set of social factors including socioeconomic status, community context, and neighborhood safety among others, are well-known predictors of mental and physical health across the lifespan. Recent research has begun to establish the importance of these social factors at the earliest points of brain development, including during the prenatal period. Prenatal socioeconomic status, perceived stress, and neighborhood safety have all been reported to impact neonatal brain structure and function, with exploratory work suggesting subsequent effects on infant and child behavior. Secondary effects of the Social Determinants of Health, such as maternal sleep and psychopathology during pregnancy, have also been established as important predictors of infant brain development. This research not only establishes prenatal Social Determinants of Health as important predictors of future outcomes but may be effectively applied even before birth. Future research replicating and extending the effects in this nascent literature has great potential to produce more specific and mechanistic understanding of the social factors that shape early neurobehavioral development. IMPACT: This review synthesizes the research to date examining the effects of the Social Determinants of Health during the prenatal period and neonatal brain outcomes. Structural, functional, and diffusion-based imaging methodologies are included along with the limited literature assessing subsequent infant behavior. The degree to which results converge between studies is discussed, in combination with the methodological and sampling considerations that may contribute to divergence in study results. Several future directions are identified, including new theoretical approaches to assessing the impact of the Social Determinants of Health during the perinatal period.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, Saint Louis, MO, USA
| | - Christopher D Smyser
- Department of Neurology, Pediatrics, and Radiology, Washington University in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Meakin AS, Gatford KL, Lien YC, Wiese MD, Simmons RA, Morrison JL. Characterisation of ciclesonide metabolism in human placentae across gestation. Placenta 2024; 154:42-48. [PMID: 38875771 DOI: 10.1016/j.placenta.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Current clinical management of pregnancies at risk of preterm delivery includes maternal antenatal corticosteroid (ACS) treatment. ACS activate the glucocorticoid receptor (GR) in all fetal tissues, maturing the lungs at the cost of impaired brain development, creating a need for novel treatments. The prodrug ciclesonide (CIC) activates the GR only when converted to des-CIC by specific enzymes, including acetylcholinesterase (ACHE) and carboxylesterase 1 and 2 (CES1, CES2). Importantly, the human placenta expresses ACHE and CES, and could potentially produce des-CIC, resulting in systemic fetal exposure and GR activation in all fetal tissues. We therefore investigated CES gene expression and conversion of CIC to des-CIC in human placentae collected during the second trimester (Tri2), and at preterm and term birth. METHODS Differential expression analysis was performed in Tri2 (n = 27), preterm (n = 34), and term (n = 40) placentae using the DESeq2 R-package. Conversion of CIC to des-CIC was measured in a subset of placenta samples (Tri2 n = 7, preterm n = 26, term n = 20) using functional assays. RESULTS ACHE mRNA expression was higher in Tri2 male than preterm and term male placentae only, whereas CES1 mRNA expression was higher in Tri2 than preterm or term placentae of both sexes. Conversion of CIC to des-CIC did not differ between gestational ages. DISCUSSION Conversion of CIC to des-CIC by the human placenta may preclude its use as a novel GR-agonist in threatened preterm birth. In vivo studies are required to confirm the extent to which placental activation occurs after maternal treatment.
Collapse
Affiliation(s)
- Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Yu-Chin Lien
- Centre for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health Sciences University of South Australia, Adelaide, SA, Australia
| | - Rebecca A Simmons
- Centre for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
7
|
Eichenauer H, Fischer S, Gardini E, Onsongo S, Ehlert U. Effects of improved on-farm crop storage on DNA methylation of mothers and their infants: evidence from a randomized controlled trial in Kenya. Clin Epigenetics 2024; 16:90. [PMID: 38978139 PMCID: PMC11232227 DOI: 10.1186/s13148-024-01693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Stress during pregnancy can lead to adverse maternal and infant health outcomes through epigenetic changes in the hypothalamic-pituitary-adrenal axis. Among farmers in low-income countries, one important stressor is food insecurity, which can be reduced using hermetic storage bags. This study aimed to determine, for the first time, whether a hermetic storage bag intervention during pregnancy positively affects maternal and infant DNA methylation of the hypothalamic-pituitary-adrenal axis-related genes FKBP5 and NR3C1. We further analyzed whether anthropometrics, stress, and mental health were associated with DNA methylation. METHODS This study was part of a larger matched-pair randomized controlled trial focusing on the impact of improved on-farm storage on food security, poverty, and net income of smallholder farming households. A total of N = 149 mothers were recruited by telephone and invited to attend a study appointment at health facilities in Kakamega County, Western Kenya, with their infants in April or May 2021. During the appointment, anthropometric measurements were taken, questionnaires on stress and mental health were administered, and saliva samples were collected. Logistic and multiple linear regression were used to examine the effect of the intervention and related measures on DNA methylation. RESULTS Mothers in the intervention group showed higher mean NR3C1 methylation levels than those in the control group, corrected for multiple testing. Maternal postpartum body mass index was positively associated with infant NR3C1 CpG3 DNA methylation. The more stressful life events a mother had experienced in the previous 12 months (including during pregnancy), the lower her FKBP5 CpG3 methylation levels. CONCLUSIONS Food insecurity and stressful life events during pregnancy seem to exert significant effects on maternal DNA methylation. While these stressors did not appear to impact infant DNA methylation in the present study, maternal postpartum body mass index was significantly related to infant methylation. These findings suggest that while infants may be protected from excessive maternal glucocorticoids by placental barrier activity, maternal metabolic status is still reflected in their epigenetic make-up. Trial registration This study was part of a larger matched-pair randomized controlled trial on the impact of improved on-farm crop storage on welfare, nutrition, and human health. Registration can be found in the American Economic Association (AEA) RCT Registry, RCT ID: AEARCTR-0005845.
Collapse
Affiliation(s)
- Heike Eichenauer
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | - Susanne Fischer
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | - Elena Gardini
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | | | - Ulrike Ehlert
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland.
| |
Collapse
|
8
|
Bankole A, Nwaonu J. A review of neonatal lupus syndrome. Sci Prog 2024; 107:368504241278476. [PMID: 39285783 PMCID: PMC11418246 DOI: 10.1177/00368504241278476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This review article discusses neonatal lupus syndrome (NLS), an immune-mediated disease caused by maternal antibodies. Maternal antibodies in the fetal circulation are mostly but not always protective. NLS is a disease caused by pathogenic maternal autoantibodies in the fetal circulation. The passive immunization of the fetus by NLS-causing maternal antibodies may occur in the absence of a previously known maternal systemic autoimmune rheumatic disease (SARD). Screening for NLS-related antibodies in patients with related SARD or those in whom there is a risk of NLS including first-degree relatives should occur before pregnancy. This screening is best performed as part of a collaborative relationship between obstetrics and rheumatology. Pregnancy preparations in those with SARD include transitioning to pregnancy-safe medications. The symptoms of NLS range from minor skin rashes to fetal demise from heart block. Fetal screening allows for maternal therapeutic interventions that may be beneficial, as well as the use of fetal pacemakers in the more severe cases that include cardiac NLS.
Collapse
Affiliation(s)
- Adegbenga Bankole
- Internal Medicine/Rheumatology, Virginia Tech Carilion School of Medicine (VTCSOM), Roanoke, VA, USA
| | - Jane Nwaonu
- Internal Medicine/Rheumatology, Virginia Tech Carilion School of Medicine (VTCSOM), Roanoke, VA, USA
| |
Collapse
|
9
|
Shimada H, Powell TL, Jansson T. Regulation of placental amino acid transport in health and disease. Acta Physiol (Oxf) 2024; 240:e14157. [PMID: 38711335 PMCID: PMC11162343 DOI: 10.1111/apha.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Abnormal fetal growth, i.e., intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) and fetal overgrowth, is associated with increased perinatal morbidity and mortality and is strongly linked to the development of metabolic and cardiovascular disease in childhood and later in life. Emerging evidence suggests that changes in placental amino acid transport may contribute to abnormal fetal growth. This review is focused on amino acid transport in the human placenta, however, relevant animal models will be discussed to add mechanistic insights. At least 25 distinct amino acid transporters with different characteristics and substrate preferences have been identified in the human placenta. Of these, System A, transporting neutral nonessential amino acids, and System L, mediating the transport of essential amino acids, have been studied in some detail. Importantly, decreased placental Systems A and L transporter activity is strongly associated with IUGR and increased placental activity of these two amino acid transporters has been linked to fetal overgrowth in human pregnancy. An array of factors in the maternal circulation, including insulin, IGF-1, and adiponectin, and placental signaling pathways such as mTOR, have been identified as key regulators of placental Systems A and L. Studies using trophoblast-specific gene targeting in mice have provided compelling evidence that changes in placental Systems A and L are mechanistically linked to altered fetal growth. It is possible that targeting specific placental amino acid transporters or their upstream regulators represents a novel intervention to alleviate the short- and long-term consequences of abnormal fetal growth in the future.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Departments of Obstetrics & Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Theresa L Powell
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| | - Thomas Jansson
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| |
Collapse
|
10
|
Chen J, Chang JJ, Chung EH, Lathi RB, Aghajanova L, Katznelson L. Fertility issues in hypopituitarism. Rev Endocr Metab Disord 2024; 25:467-477. [PMID: 38095806 DOI: 10.1007/s11154-023-09863-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 06/09/2024]
Abstract
Women with hypopituitarism have lower fertility rates and worse pregnancy outcomes than women with normal pituitary function. These disparities exist despite the use of assisted reproductive technologies and hormone replacement. In women with hypogonadotropic hypogonadism, administration of exogenous gonadotropins can be used to successfully induce ovulation. Growth hormone replacement in the setting of growth hormone deficiency has been suggested to potentiate reproductive function, but its routine use in hypopituitary women remains unclear and warrants further study. In this review, we will discuss the clinical approach to fertility in a woman with hypopituitarism.
Collapse
Affiliation(s)
- Julie Chen
- Department of Medicine, Division of Endocrinology, Stanford University Medical Center, 300 Pasteur Drive, Grant-S025, Stanford, Palo Alto, CA, 94305-5103, USA.
| | - Julia J Chang
- Department of Medicine, Division of Endocrinology, Stanford University Medical Center, 300 Pasteur Drive, Grant-S025, Stanford, Palo Alto, CA, 94305-5103, USA
| | - Esther H Chung
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Stanford University, Palo Alto, CA, USA
| | - Ruth B Lathi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Stanford University, Palo Alto, CA, USA
| | - Lusine Aghajanova
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Stanford University, Palo Alto, CA, USA
| | - Laurence Katznelson
- Department of Medicine, Division of Endocrinology, Stanford University Medical Center, 300 Pasteur Drive, Grant-S025, Stanford, Palo Alto, CA, 94305-5103, USA
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
11
|
Gumusoglu SB. The role of the placenta-brain axis in psychoneuroimmune programming. Brain Behav Immun Health 2024; 36:100735. [PMID: 38420039 PMCID: PMC10900837 DOI: 10.1016/j.bbih.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
Gestational exposures have enduring impacts on brain and neuroimmune development and function. Perturbations of pregnancy leading to placental structure/function deficits, cell stress, immune activation, and endocrine changes (metabolic, growth factors, etc.) all increase neuropsychiatric risk in offspring. The existing literature links obstetric diseases with placental involvement to offspring neuroimmune outcomes and neurodevelopmental risk. Psychoneuroimmune outcomes in offspring brain include changes to microglia, cytokine/chemokine production, cell stress, and long-term immunoreactivity. These outcomes are altered by structural, anti-angiogenic/hypoxic, inflammatory, and metabolic diseases of the placenta. This fetal programming occurs via direct placental passage or production of factors which can act directly on fetal brain substrates, or indirectly via action of circulating factors on intermediates in the placenta. Placental neuroendocrine, vascular/angiogenic, immune, and extracellular vesicular mechanisms are detailed. These mechanisms interact within various placental and pregnancy conditions. An increased understanding of the placental origins of psychoneuroimmunology will yield dividends for human health. Identifying maternal and placental biomarkers for fetal neuroimmune health may also revolutionize early diagnosis and precision psychiatry, empowering patients to make the best healthcare decisions for their families. Targeting placental mechanisms may be a valuable approach for the prevention and mitigation of intergenerational, lifelong neuropathology.
Collapse
Affiliation(s)
- Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 200 Hawkins Dr. Iowa City, IA, 52327, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
12
|
Stratilov V, Vetrovoy O, Potapova S, Tyulkova E. The Prenatal Hypoxic Pathology Associated with Maternal Stress Predisposes to Dysregulated Expression of the chrna7 Gene and the Subsequent Development of Nicotine Addiction in Adult Offspring. Neuroendocrinology 2024; 114:423-438. [PMID: 38198758 DOI: 10.1159/000536214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Previous studies have shown that fetal hypoxia predisposes individuals to develop addictive disorders in adulthood. However, the specific impact of maternal stress, mediated through glucocorticoids and often coexisting with fetal hypoxia, is not yet fully comprehended. METHODS To delineate the potential effects of these pathological factors, we designed models of prenatal severe hypoxia (PSH) in conjunction with maternal stress and prenatal intrauterine ischemia (PII). We assessed the suitability of these models for our research objectives by measuring HIF1α levels and evaluating the glucocorticoid neuroendocrine system. To ascertain nicotine dependence, we employed the conditioned place aversion test and the startle response test. To identify the key factor implicated in nicotine addiction associated with PSH, we employed techniques such as Western blot, immunohistochemistry, and correlational analysis between chrna7 and nr3c1 genes across different brain structures. RESULTS In adult rats exposed to PSH and PII, we observed increased levels of HIF1α in the hippocampus (HPC). However, the PSH group alone exhibited reduced glucocorticoid receptor levels and disturbed circadian glucocorticoid rhythms. Additionally, they displayed signs of nicotine addiction in the conditioned place aversion and startle response tests. We also observed elevated levels of phosphorylated DARPP-32 protein in the nucleus accumbens (NAc) indicated compromised glutamatergic efferent signaling. Furthermore, there was reduced expression of α7 nAChR, which modulates glutamate release, in the medial prefrontal cortex (PFC) and HPC. Correlation analysis revealed strong associations between chrna7 and nr3c1 expression in both brain structures. CONCLUSION Perturbations in the glucocorticoid neuroendocrine system and glucocorticoid-dependent gene expression of chrna7 associated with maternal stress response to hypoxia in prenatal period favor the development of nicotine addiction in adulthood.
Collapse
Affiliation(s)
- Viktor Stratilov
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
| | - Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Sophia Potapova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
| |
Collapse
|
13
|
Ronai C, Katlaps I, Kim A, Valent AM, Thornburg KL, Madriago E. Perinatal Stressors and Consequences for Neonates with Critical Congenital Heart Disease. J Cardiovasc Dev Dis 2023; 10:497. [PMID: 38132664 PMCID: PMC10744155 DOI: 10.3390/jcdd10120497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION The prenatal diagnosis of congenital heart disease (CHD) is a traumatic event that can cause expectant parents to experience anxiety, depression, and toxic stress. Prenatal exposure to stress may impact neonatal postoperative outcomes. In addition, expectant parents may have other psychosocial stressors that may compound maternal stress. We investigated the relationship between stress in pregnancies complicated by prenatally diagnosed CHD and their neonatal outcomes. METHODS A pilot retrospective cohort study of pregnancies with prenatally diagnosed critical CHD (2019-2021) was performed. The collected data included pregnancy characteristics and neonatal and postoperative outcomes (including the need for exogenous corticosteroid treatment (ECT)). In order to quantify prenatal stressors, a composite prenatal stress score (PSS) was established and utilized. RESULTS In total, 41 maternal-fetal dyads were evaluated. Thirteen (32%) neonates had single-ventricle anatomy. The need for ECT after CHD surgery was associated with higher pregnant patient PSS (p = 0.01). PSS did not correlate with birthweight, infection, or hypoglycemia in the neonatal period. CONCLUSIONS Prenatal stress is multifactorial; higher PSS is correlates with post-bypass ECT, suggesting that a stressful intrauterine environment may be associated with worse neonatal postoperative outcomes.
Collapse
Affiliation(s)
- Christina Ronai
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Isabel Katlaps
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Amanda Kim
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Amy M. Valent
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kent L. Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Erin Madriago
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
14
|
Wei M, Gao Q, Liu J, Yang Y, Yang J, Fan J, Lv S, Yang S. Development programming: Stress during gestation alters offspring development in sheep. Reprod Domest Anim 2023; 58:1497-1511. [PMID: 37697713 DOI: 10.1111/rda.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
Inappropriate management practices of domestic animals during pregnancy can be potential stressors, resulting in complex behavioural, physiological and neurological consequences in the developing offspring. Some of these consequences can last into adulthood or propagate to subsequent generations. We systematically summarized the results of different experimental patterns using artificially increased maternal glucocorticoid levels or prenatal maternal physiological stress paradigms, mediators between prenatal maternal stress (PMS) and programming effects in the offspring and the effects of PMS on offspring phenotypes in sheep. PMS can impair birthweight, regulate the development of the hypothalamic-pituitary-adrenal axis, modify behavioural patterns and cognitive abilities and alter gene expression and brain morphology in offspring. Further research should focus on the effects of programming on gene expression, immune function, gut microbiome, sex-specific effects and maternal behaviour of offspring, especially comparative studies of gestational periods when PMS is applied, continual studies of programming effects on offspring and treatment strategies that effectively reverse the detrimental programming effects of prenatal stress.
Collapse
Affiliation(s)
- Mingji Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Qian Gao
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Junjun Liu
- Hebei Agriculture University, Baoding, China
| | - Yan Yang
- Linyi Academy of Agricultural Sciences, Linyi, China
| | - Jinyan Yang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Jingchang Fan
- Jiaxiang County Sheep Breeding Farm, Jiaxiang, China
| | - Shenjin Lv
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Shengmei Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Herzberg MP, Triplett R, McCarthy R, Kaplan S, Alexopoulos D, Meyer D, Arora J, Miller JP, Smyser TA, Herzog ED, England SK, Zhao P, Barch DM, Rogers CE, Warner BB, Smyser CD, Luby J. The Association Between Maternal Cortisol and Infant Amygdala Volume Is Moderated by Socioeconomic Status. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:837-846. [PMID: 37881545 PMCID: PMC10593881 DOI: 10.1016/j.bpsgos.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 10/27/2023] Open
Abstract
Background It has been well established that socioeconomic status is associated with mental and physical health as well as brain development, with emerging data suggesting that these relationships begin in utero. However, less is known about how prenatal socioeconomic environments interact with the gestational environment to affect neonatal brain volume. Methods Maternal cortisol output measured at each trimester of pregnancy and neonatal brain structure were assessed in 241 mother-infant dyads. We examined associations between the trajectory of maternal cortisol output across pregnancy and volumes of cortisol receptor-rich regions of the brain, including the amygdala, hippocampus, medial prefrontal cortex, and caudate. Given the known effects of poverty on infant brain structure, socioeconomic disadvantage was included as a moderating variable. Results Neonatal amygdala volume was predicted by an interaction between maternal cortisol output across pregnancy and socioeconomic disadvantage (standardized β = -0.31, p < .001), controlling for postmenstrual age at scan, infant sex, and total gray matter volume. Notably, amygdala volumes were positively associated with maternal cortisol for infants with maternal disadvantage scores 1 standard deviation below the mean (i.e., less disadvantage) (simple slope = 123.36, p < .01), while the association was negative in infants with maternal disadvantage 1 standard deviation above the mean (i.e., more disadvantage) (simple slope = -82.70, p = .02). Individuals with disadvantage scores at the mean showed no association, and there were no significant interactions in the other brain regions examined. Conclusions These data suggest that fetal development of the amygdala is differentially affected by maternal cortisol production at varying levels of socioeconomic advantage.
Collapse
Affiliation(s)
- Max P. Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Regina Triplett
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
| | - Sydney Kaplan
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | | | - Dominique Meyer
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Jyoti Arora
- Department of Biostatistics, Washington University in St. Louis, St. Louis, Missouri
| | - J. Philip Miller
- Department of Biostatistics, Washington University in St. Louis, St. Louis, Missouri
| | - Tara A. Smyser
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, Missouri
| | - Deanna M. Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Cynthia E. Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Barbara B. Warner
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Christopher D. Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
16
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Yao TC, Chang SM, Wu CS, Tsai YF, Sheen KH, Hong X, Chen HY, Wu AC, Tsai HJ. Association between antenatal corticosteroids and risk of serious infection in children: nationwide cohort study. BMJ 2023; 382:e075835. [PMID: 37532264 PMCID: PMC10394679 DOI: 10.1136/bmj-2023-075835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
OBJECTIVE To investigate the associations between exposure to antenatal corticosteroids and serious infection in children during the first three, six, and 12 months of life. DESIGN Nationwide cohort study. SETTING National Health Insurance Research Database, Birth Reporting Database, and Maternal and Child Health Database, 1 January 2008 to 31 December 2019, to identify all pregnant individuals and their offspring in Taiwan. PARTICIPANTS 1 960 545 pairs of pregnant individuals and their singleton offspring. 45 232 children were exposed and 1 915 313 were not exposed to antenatal corticosteroids. MAIN OUTCOME MEASURES Incidence rates were estimated for overall serious infection, sepsis, pneumonia, acute gastroenteritis, pyelonephritis, meningitis or encephalitis, cellulitis or soft tissue infection, septic arthritis or osteomyelitis, and endocarditis during the first three, six, and 12 months of life in children exposed versus those not exposed to antenatal corticosteroids. Cox proportional hazards models were performed to quantify adjusted hazard ratios with 95% confidence intervals for each study outcome. RESULTS The study cohort was 1 960 545 singleton children: 45 232 children were exposed to one course of antenatal corticosteroids and 1 915 313 children were not exposed to antenatal corticosteroids. The adjusted hazard ratios for overall serious infection, sepsis, pneumonia, and acute gastroenteritis among children exposed to antenatal corticosteroids were significantly higher than those not exposed to antenatal corticosteroids during the first six months of life (adjusted hazard ratio 1.32, 95% confidence interval 1.18 to 1.47, P<0.001, for overall serious infection; 1.74, 1.16 to 2.61, P=0.01, for sepsis; 1.39, 1.17 to 1.65, P<0.001, for pneumonia; and 1.35, 1.10 to 1.65, P<0.001, for acute gastroenteritis).Similarly, the adjusted hazard ratios for overall serious infection (P<0.001), sepsis (P=0.02), pneumonia (P<0.001), and acute gastroenteritis (P<0.001) were significantly higher from birth to 12 months of life. In the sibling matched cohort, the results were comparable with those observed in the whole cohort, with a significantly increased risk of sepsis in the first six (P=0.01) and 12 (P=0.04) months of life. CONCLUSIONS This nationwide cohort study found that children exposed to one course of antenatal corticosteroids were significantly more likely to have an increased risk of serious infection during the first 12 months of life. These findings suggest that before starting treatment, the long term risks of rare but serious infection associated with antenatal corticosteroids should be carefully weighed against the benefits in the perinatal period.
Collapse
Affiliation(s)
- Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Paediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Sheng-Mao Chang
- Department of Statistics, National Taipei University, Taipei, Taiwan
| | - Chi-Shin Wu
- National Centre for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin Branch, Douliu, Taiwan
| | - Yi-Fen Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Kun-Hua Sheen
- Department of Medical Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Xiumei Hong
- Department of Population, Family, and Reproductive Health, Center on Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hui-Yu Chen
- Department of Pharmacy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Department of Medical Science, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Fox MM, Knorr DA, Kwon D, Wiley KS, Parrish MH. How prenatal cortisol levels relate to grandmother-mother relationships among a cohort of Latina women. Am J Hum Biol 2023; 35:e23883. [PMID: 36862026 PMCID: PMC10474942 DOI: 10.1002/ajhb.23883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION As part of the human reproductive strategy, mothers receive childcare assistance from others. For kin, allomothers are adaptively incentivized to provide assistance due to inclusive fitness benefits. Previous studies across a broad range of populations identify grandmothers as particularly consistent allomothers. Minimal attention has been paid to the possibility that allomothers may begin investing in offspring quality during the prenatal stage of life. Here, we innovate within the area of grandmother allocare research by examining the prenatal stage of life and biopsychosocial mechanisms by which prenatal grandmother effects may be enacted. METHODS Data derive from the Mothers' Cultural Experiences study, a cohort of 107 pregnant Latina women in Southern California. At <16 weeks' gestation, we administered questionnaires, collected morning urine samples, and measured cortisol by enzyme-linked immunosorbent assay, correcting for specific gravity. We measured the soon-to-be maternal and paternal grandmothers' relationship quality, social support, frequency of seeing each other, communicating, and geographic proximity to pregnant mothers, that is, their daughters and daughters-in-law. These measures were self-reported by the pregnant mothers. We assessed how grandmother constructs related to the pregnant women's depression, stress, anxiety, and cortisol levels. RESULTS We observed benefits conferred by maternal grandmothers for mothers' prenatal mental health and lower cortisol levels. Paternal grandmothers also conferred mental health benefits to pregnant daughters-in-law, but higher cortisol levels. CONCLUSION Our results suggest that grandmothers, especially maternal grandmothers, are able to improve their inclusive fitness by caring for pregnant daughters, and allomother support may positively impact prenatal health. This work extends the traditional cooperative breeding model by identifying a prenatal grandmother effect, and, by examining a maternal biomarker.
Collapse
Affiliation(s)
- Molly M. Fox
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, 90095 USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Delaney A. Knorr
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Dayoon Kwon
- Department of Epidemiology, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Kyle S. Wiley
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Michael H. Parrish
- Department of Psychology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
19
|
Mascioli I, Iapadre G, Ingrosso D, Donato GD, Giannini C, Salpietro V, Chiarelli F, Farello G. Brain and eye involvement in McCune-Albright Syndrome: clinical and translational insights. Front Endocrinol (Lausanne) 2023; 14:1092252. [PMID: 37274327 PMCID: PMC10235602 DOI: 10.3389/fendo.2023.1092252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
McCune-Albright Syndrome (MAS) is a rare mosaic (post-zygotic) genetic disorder presenting with a broad continuum clinical spectrum. MAS arises from somatic, activating mutations in the GNAS gene, which induces a dysregulated Gsα-protein signaling in several tissues and an increased production of intracellular cyclic adenosine monophosphate (cAMP). Overall, MAS is a rare disorder affecting less than 1/100,000 children and, for this reason, data establishing genotype-phenotype correlations remain limited. Affected individuals clinically present with a variable combination of fibrous dysplasia of bone (FD), extra-skeletal manifestations (including cafeí-au-lait spots) and precocious puberty which might also be associated to broad hyperfunctioning endocrinopathies, and also gastrointestinal and cardiological involvement. Central nervous system (CNS) and eye involvement in MAS are among the less frequently described complications and remain largely uncharacterized. These rare complications mainly include neurodevelopmental abnormalities (e.g., delayed motor development, cognitive and language impairment), CNS anomalies (e.g., Chiari malformation type I) and a wide array of ophthalmological abnormalities often associated with vision loss. The pathophysiological mechanisms underlying abnormal neurological development have not been yet fully elucidated. The proposed mechanisms include a deleterious impact of chronically dysregulated Gsα-protein signaling on neurological function, or a secondary (damaging) effect of (antenatal and/or early postnatal) hypercortisolism on early pre- and post-natal CNS development. In this Review, we summarize the main neurological and ophthalmological features eventually associated with the MAS spectrum, also providing a detailed overview of the potential pathophysiological mechanisms underlying these clinical complications.
Collapse
Affiliation(s)
- Ilaria Mascioli
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | | | - Giulio Di Donato
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | - Giovanni Farello
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
20
|
Kley M, Moser SO, Winter DV, Odermatt A. In vitro methods to assess 11β-hydroxysteroid dehydrogenase type 2 activity. Methods Enzymol 2023; 689:167-200. [PMID: 37802570 DOI: 10.1016/bs.mie.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2) converts active 11β-hydroxyglucocorticoids to their inactive 11-keto forms, fine-tuning the activation of mineralocorticoid and glucocorticoid receptors. 11β-HSD2 is expressed in mineralocorticoid target tissues such as renal distal tubules and cortical collecting ducts, and distal colon, but also in placenta where it acts as a barrier to reduce the amount of maternal glucocorticoids that reach the fetus. Disruption of 11β-HSD2 activity by genetic defects or inhibitors causes the syndrome of apparent mineralocorticoid excess (AME), characterized by hypernatremia, hypokalemia and hypertension. Secondary hypertension due to 11β-HSD2 inhibition has been observed upon consumption of excessive amounts of licorice and in patients treated with the azole fungicides posaconazole and itraconazole. Furthermore, inhibition of 11β-HSD2 during pregnancy with elevated exposure of the fetus to cortisol can cause neurological complications with a lower intelligence quotient, higher odds of attention deficit and hyperactivity disorder as well as metabolic reprogramming with an increased risk of cardio-metabolic disease in adulthood. This chapter describes in vitro methods for the determination of 11β-HSD2 activity that can be applied to identify inhibitors that may cause secondary hypertension and characterize the enzyme's activity in disease models. The included decision tree and the list of methods with their advantages and disadvantages aim to enable the reader to select and apply an in vitro method suitable for the scientific question and the equipment available in the respective laboratory.
Collapse
Affiliation(s)
- Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina O Moser
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denise V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Huang J, Wu T, Li Y, Zhang Y, Yu X, Xu D, Wang H. Toxic effect window of ovarian development in female offspring mice induced by prenatal prednisone exposure with different doses and time. J Ovarian Res 2023; 16:71. [PMID: 37038227 PMCID: PMC10088227 DOI: 10.1186/s13048-023-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Prednisone is one of the most used synthetic glucocorticoids during pregnancy. Epidemiological investigations suggested that prenatal prednisone therapy could affect fetal development, but systematic studies on its effects on ovarian development and the "toxic effect window" remained scarce. METHODS In this study, by simulating clinical application characteristics, Kunming mice were given prednisone by oral gavage with different doses (0.25 or 1.0 mg/kg·d) or at different time gestational days (GD) (GD0-9, GD10-18, or GD0-18). Blood and ovaries of fetal mice were collected on GD18, and the serum estradiol level and the related function indexes of ovarian granulosa cells and oocytes were detected. RESULTS Compared with the control group, prenatal prednisone exposure (PPE) induced pathological injury and enhanced cell proliferation in fetal mice ovary. Furthermore, the expression of steroid synthesis functional genes in pre-granulosa cells, the oocyte function markers, and developmentally related genes was enhanced with different doses or at different time of PPE. The Hippo signaling was activated in the fetal ovary of PPE groups. The above changes were most significant in the low or high-dose and full-term PPE groups. CONCLUSION PPE caused various cell developmental toxicity in the fetal ovary, especially in the low or high-dose, full-term exposure groups. The potential mechanism might be related to the activation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Jing Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Tiancheng Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yating Li
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Xu
- Department of Pharmacy, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
22
|
Yeramilli V, Cheddadi R, Shah J, Brawner K, Martin C. A Review of the Impact of Maternal Prenatal Stress on Offspring Microbiota and Metabolites. Metabolites 2023; 13:metabo13040535. [PMID: 37110193 PMCID: PMC10142778 DOI: 10.3390/metabo13040535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Maternal prenatal stress exposure affects the development of offspring. We searched for articles in the PubMed database and reviewed the evidence for how prenatal stress alters the composition of the microbiome, the production of microbial-derived metabolites, and regulates microbiome-induced behavioral changes in the offspring. The gut-brain signaling axis has gained considerable attention in recent years and provides insights into the microbial dysfunction in several metabolic disorders. Here, we reviewed evidence from human studies and animal models to discuss how maternal stress can modulate the offspring microbiome. We will discuss how probiotic supplementation has a profound effect on the stress response, the production of short chain fatty acids (SCFAs), and how psychobiotics are emerging as novel therapeutic targets. Finally, we highlight the potential molecular mechanisms by which the effects of stress are transmitted to the offspring and discuss how the mitigation of early-life stress as a risk factor can improve the birth outcomes.
Collapse
Affiliation(s)
- Venkata Yeramilli
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Riadh Cheddadi
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Juhi Shah
- Burnett School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA
| | - Kyle Brawner
- Department of Biology, Lipscomb University, Nashville, TN 37204, USA
| | - Colin Martin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
23
|
Bablok M, Gellisch M, Scharf M, Brand-Saberi B, Morosan-Puopolo G. Spatiotemporal expression pattern of the chicken glucocorticoid receptor during early embryonic development. Ann Anat 2023; 247:152056. [PMID: 36696929 DOI: 10.1016/j.aanat.2023.152056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/23/2023]
Abstract
Glucocorticoids - commonly known as stress hormones - belong to the family of steroid hormones and regulate numerous life essential physiological processes. As lipophilic molecules, glucocorticoids are known to cross the placental barrier in mammals, which - applied for therapeutic reasons or arising from environmental influences - illustrates the role of prenatal stress during embryonic developmental processes. The hormones employ their functions by binding to the glucocorticoid receptor (GR) and thus are involved in regulating the transcription of thousands of genes. Therefore, the aim of this study was to investigate the spatiotemporal expression pattern of the GR during early embryonic vertebrate development, using the chicken embryo as a model organism. The results should contribute to enhance and expand the current understanding of glucocorticoid signaling. By performing in-situ hybridization on whole mount chicken embryos from stage HH10 to HH29 and analyzing vibratome sections of hybridized embryos, we described the spatiotemporal expression pattern of the GR during early embryogenesis. Moreover, we compared the expression pattern of the GR with other developmental markers such as Pax7, Desmin, MyoD and HNK-1 using double in-situ hybridization and immunohistochemistry. We were able to determine the first emergence of GR expression in stage HH13 of chicken development in the cranial area, especially in the muscle anlagen of the branchial arches and of non-somitic neck muscles. Furthermore, we monitored the extension of GR expression pattern throughout later stages and found transcripts of GR during somitogenesis, limb development, myogenesis, neurulation and neural differentiation and moreover during organogenesis of the gastrointestinal organs, the heart, the kidneys and the lungs. Toward later stages, GR expression transitioned from more distinct areas of expression to an increasingly ubiquitous expression pattern. Our results support the notion of an enormous relevance of glucocorticoid signaling during vertebrate embryonic development and contribute to a better understanding of the consequences of prenatal stress and the clinical administration of prenatal glucocorticoids.
Collapse
Affiliation(s)
- Martin Bablok
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Morris Gellisch
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Marion Scharf
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
24
|
Maternal serum cortisol levels during pregnancy differ by fetal sex. Psychoneuroendocrinology 2023; 149:105999. [PMID: 36543024 DOI: 10.1016/j.psyneuen.2022.105999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Males and females have different patterns of fetal growth, resulting in different sizes at birth. Increased maternal cortisol levels in pregnancy negatively impact fetal growth. However, it is unknown whether sexual dimorphism displays differences in maternal cortisol levels already during early pregnancy and to what extent it explains sex differences in intra-uterine growth. The present cross-sectional study investigated whether fetal sex was associated with the level of maternal serum total cortisol in first half of pregnancy and its contribution to sex differences in fetal growth. METHOD The study population comprised 3049 pregnant women from the Amsterdam Born Children and their Development (ABCD)-cohort). Total serum cortisol levels were determined during pregnancy. Multivariable linear regression was used to determine fetal sex differences in maternal cortisol levels and its association with sex differences in fetal growth measured as birth weight standardized for gestational age, parity and sex. RESULTS Maternal serum total cortisol increased during pregnancy from on average 390 ± 22 nmol/L (at 5th week) to 589 ± 15 nmol/L (at 20th week). Women carrying a female fetus had higher maternal total cortisol levels. This sex difference was not significant before the 11th week; at the 12th week the difference was 15 ± 7 nmol/L which increased to 45 ± 22 nmol/L at the 20th week (p-for-interaction=0.05). Maternal total cortisol levels were associated with birth weight (ß:-0.22;P < 0.001). However, sex differences in birth weight were not explained by related maternal total cortisol levels. CONCLUSION The sexual dimorphic maternal serum total cortisol levels are apparent after the first trimester but do not explain the different patterns of fetal growth.
Collapse
|
25
|
Lee JH, Torpy DJ. Adrenal insufficiency in pregnancy: Physiology, diagnosis, management and areas for future research. Rev Endocr Metab Disord 2023; 24:57-69. [PMID: 35816262 DOI: 10.1007/s11154-022-09745-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Adrenal insufficiency requires prompt diagnosis in pregnancy, as untreated, it can lead to serious consequences such as adrenal crisis, intrauterine growth restriction and even foetal demise. Similarities between symptoms of adrenal insufficiency and those of normal pregnancy can complicate diagnosis. Previously diagnosed adrenal insufficiency needs monitoring and, often, adjustment of adrenal hormone replacement. Many physiological changes occur to the hypothalamic-pituitary-adrenal (HPA) axis during pregnancy, often making diagnosis and management of adrenal insufficiency challenging. Pregnancy is a state of sustained physiologic hypercortisolaemia; there are multiple contributing factors including high plasma concentrations of placental derived corticotropin-releasing hormone (CRH), adrenocorticotropin (ACTH) and increased adrenal responsiveness to ACTH. Despite increased circulating concentrations of CRH-binding protein (CRH-BP) and the major cortisol binding protein, corticosteroid binding globulin (CBG), free concentrations of both hormones are increased progressively in pregnancy. In addition, pregnancy leads to activation of the renin-angiotensin-aldosterone system. Most adrenocortical hormone diagnostic thresholds are not applicable or validated in pregnancy. The management of adrenal insufficiency also needs to reflect the physiologic changes of pregnancy, often requiring increased doses of glucocorticoid and at times mineralocorticoid replacement, especially in the last trimester. In this review, we describe pregnancy induced changes in adrenal function, the diagnosis and management of adrenal insufficiency in pregnancy and areas requiring further research.
Collapse
Affiliation(s)
- Jessica H Lee
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
26
|
Kondo R, Ozawa R, Satomi T, Funabayashi K, Iwata H, Kuwayama T, Shirasuna K. Severe maternal stress alters placental function, resulting in adipose tissue and liver dysfunction in offspring of mice. Mol Cell Endocrinol 2023; 560:111814. [PMID: 36356688 DOI: 10.1016/j.mce.2022.111814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The developmental origins of health and disease (DOHaD) hypothesis is that future lifestyle diseases in offspring are associated with intrauterine origins in the mother; stress during pregnancy is a risk factor for these diseases in offspring. This study aimed to clarify association of maternal stress with placental dysfunction and offspring development in mice. We applied water stress for 24 h during late pregnancy to explore the metabolic response of offspring to a normal diet (ND) and high-fat diet (HFD). Placental functions were altered by maternal stress, reducing the birth weight of the offspring. In the later life of offspring fed with ND, maternal stress impaired systemic glucose tolerance and altered adipokine secretion in adipose tissue and/or liver. The female offspring of stress-induced dams were light in body weight with lower adipose tissue and smaller adipocytes in both the ND and HFD groups. Abnormal situations, such as dysregulation of plasma glucose levels and fatty liver despite and lower increases in body weight, were observed in the female offspring of stress-induced dams, especially in the HFD-treated group. These findings suggest that long-lasting abnormal conditions and responses to metabolic challenges in maternal stress-induced offspring are linked to placental dysregulation and fetal programming.
Collapse
Affiliation(s)
- Risa Kondo
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Ren Ozawa
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Taiyo Satomi
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Kaho Funabayashi
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan.
| |
Collapse
|
27
|
Wang Y, Tzeng JY, Huang Y, Maguire R, Hoyo C, Allen TK. Duration of exposure to epidural anesthesia at delivery, DNA methylation in umbilical cord blood and their association with offspring asthma in Non-Hispanic Black women. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac026. [PMID: 36694712 PMCID: PMC9854336 DOI: 10.1093/eep/dvac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Epidural anesthesia is an effective pain relief modality, widely used for labor analgesia. Childhood asthma is one of the commonest chronic medical illnesses in the USA which places a significant burden on the health-care system. We recently demonstrated a negative association between the duration of epidural anesthesia and the development of childhood asthma; however, the underlying molecular mechanisms still remain unclear. In this study of 127 mother-child pairs comprised of 75 Non-Hispanic Black (NHB) and 52 Non-Hispanic White (NHW) from the Newborn Epigenetic Study, we tested the hypothesis that umbilical cord blood DNA methylation mediates the association between the duration of exposure to epidural anesthesia at delivery and the development of childhood asthma and whether this differed by race/ethnicity. In the mother-child pairs of NHB ancestry, the duration of exposure to epidural anesthesia was associated with a marginally lower risk of asthma (odds ratio = 0.88, 95% confidence interval = 0.76-1.01) for each 1-h increase in exposure to epidural anesthesia. Of the 20 CpGs in the NHB population showing the strongest mediation effect, 50% demonstrated an average mediation proportion of 52%, with directional consistency of direct and indirect effects. These top 20 CpGs mapped to 21 genes enriched for pathways engaged in antigen processing, antigen presentation, protein ubiquitination and regulatory networks related to the Major Histocompatibility Complex (MHC) class I complex and Nuclear Factor Kappa-B (NFkB) complex. Our findings suggest that DNA methylation in immune-related pathways contributes to the effects of the duration of exposure to epidural anesthesia on childhood asthma risk in NHB offspring.
Collapse
Affiliation(s)
- Yaxu Wang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Jung-Ying Tzeng
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7633, USA
- Department of Statistics, North Carolina State University, Raleigh, NC 27607, USA
| | - Yueyang Huang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Rachel Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7633, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Terrence K Allen
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
28
|
Kang K, Zeng L, Ma J, Shi L, Hu R, Zou H, Peng Q, Wang L, Xue B, Wang Z. High energy diet of beef cows during gestation promoted growth performance of calves by improving placental nutrients transport. Front Vet Sci 2022; 9:1053730. [PMID: 36504847 PMCID: PMC9730878 DOI: 10.3389/fvets.2022.1053730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to explore the effects of dietary energy level during gestation on growth performance and serum parameters in offspring using beef cattle as research objects. Additionally, the gene expressions associated with nutrients transport in the placenta were evaluated. Eighteen Simmental crossbred cows (body weight = 338.44 ± 16.03 kg and 760 ± 6 days of age) were randomly assigned to 3 dietary treatment groups: low energy (LE, metabolic energy = 8.76 MJ/kg), medium (ME, 9.47 MJ/kg) and high (HE, 10.18 MJ/kg). The dietary treatments were introduced from day 45 before expected date of parturition. The pre-experiment lasted for 15 days and formal experiment lasted for 30 days. Growth performance data and blood samples of calves were collected at birth and day 30 post-birth. The placental tissue was collected at parturition. The results indicated that the birth weight and average daily gain of calves in HE group were higher (P < 0.05) than those in LE group. After parturition, the serum contents of glucose, total protein, cortisol and leptin in neonatal calves were significantly increased (P < 0.05) with the elevation of dietary energy levels. At 30 days postpartum, the glucose, glutathione peroxidase, growth hormone, insulin-like growth factor 1 and leptin concentrations of HE group were significantly increased (P < 0.05) as compared with LE group, while the serum amyloid protein A displayed an opposite trend between two groups. With the increase of dietary energy concentration, placental mRNA expressions of vascular endothelial growth factor A, glucose transporter 1 and 3 were significantly up-regulated (P < 0.05). Furthermore, the amino acid transporter solute carrier family 38 member 1, hydroxysteroid 11-beta dehydrogenase 2, insulin-like growth factor 1 and 2 mRNA expressions of HE group were higher (P < 0.05) than those of LE and ME groups. In conclusion, the improved growth performance of calves from the high energy ration supplemented beef cows may be attributed to the increased placental nutrients transport, which may lead to the increased nutrient supply to the fetus.
Collapse
|
29
|
Maternal childhood trauma is associated with offspring body size during the first year of life. Sci Rep 2022; 12:19619. [PMID: 36380091 PMCID: PMC9666509 DOI: 10.1038/s41598-022-23740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal childhood trauma (MCT) is an important factor affecting offspring size at birth. Whether the effect of MCT persists during the subsequent development remains unclear. We present the results of a semi-longitudinal investigation examining the physical growth of infants born to mothers with high (HCT) and low (LCT) childhood trauma during the first year of life. One hundred healthy mother-infant dyads were included based on following criteria: exclusive breastfeeding, birth on term with appropriate weight for gestational age. MCT was assessed using the Early Life Stress Questionnaire. The weight, length, and head circumference of the infant were taken at birth, 5 and 12 months postpartum. Separate MANCOVA models were run for infant size at each age. We found an association between MCT and infant size at 5 and 12 months. The children of mothers with HCT had higher weight and greater head circumference than the children of mothers with LCT. These results suggest that MCT might contribute to developmental programming of offspring growth during the first year of life. From an evolutionary perspective, the larger size of HCT mother's offspring might represent an adaptation to potentially harsh environmental conditions. This effect might be mediated by epigenetic changes to DNA and altered breast milk composition.
Collapse
|
30
|
Gene Dysregulation in the Adult Rat Paraventricular Nucleus and Amygdala by Prenatal Exposure to Dexamethasone. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071077. [PMID: 35888164 PMCID: PMC9316520 DOI: 10.3390/life12071077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
Fetal programming is the concept that maternal stressors during critical periods of fetal development can alter offspring phenotypes postnatally. Excess glucocorticoids can interact with the fetus to effect genetic and epigenetic changes implicated in adverse developmental outcomes. The present study investigates how chronic exposure to the synthetic glucocorticoid dexamethasone during late gestation alters the expression of genes related to behavior in brain areas relevant to the regulation and function of the hypothalamic–pituitary–adrenal axis. Pregnant Wistar Kyoto rats received subcutaneous injections of dexamethasone (100 μg/kg) daily from gestational day 15–21 or vehicle only as sham controls. The amygdala and paraventricular nucleus (PVN) were micro-punched to extract mRNA for reverse transcription and quantitative polymerase chain reaction for the analysis of the expression of specific genes. In the PVN, the expression of the glucocorticoid receptor NR3C1 was downregulated in female rats in response to programming. The expression of CACNA1C encoding the Cav1.2 pore subunit of L-type voltage-gated calcium channels was downregulated in male and female rats prenatally exposed to dexamethasone. Collectively, the results suggest that prenatal exposure to elevated levels of glucocorticoids plays a role in the dysregulation of the hypothalamic–pituitary–adrenal axis and potentially learning and memory by altering the expression of specific genes within the amygdala and PVN.
Collapse
|
31
|
Yu P, Zhou J, Ge C, Fang M, Zhang Y, Wang H. Differential expression of placental 11β-HSD2 induced by high maternal glucocorticoid exposure mediates sex differences in placental and fetal development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154396. [PMID: 35259391 DOI: 10.1016/j.scitotenv.2022.154396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A variety of adverse environmental factors during pregnancy cause maternal chronic stress. Caffeine is a common stressor, and its consumption during pregnancy is widespread. Our previous study showed that prenatal caffeine exposure (PCE) increased maternal blood glucocorticoid levels and caused abnormal development of offspring. However, the placental mechanism for fetal development inhibition caused by PCE-induced high maternal glucocorticoid has not been reported. This study investigated the effects of PCE-induced high maternal glucocorticoid level on placental and fetal development by regulating placental 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) expression and its underlying mechanism. First, human placenta and umbilical cord blood samples were collected from women without prenatal use of synthetic glucocorticoids. We found that placental 11β-HSD2 expression was significantly correlated with umbilical cord blood cortisol level and birth weight in male newborns but not in females. Furthermore, we established a rat model of high maternal glucocorticoids induced by PCE (caffeine, 60 mg/kg·d, ig), and found that the expression of 11β-HSD2 in male PCE placenta was decreased and negatively correlated with the maternal/fetal/placental corticosterone levels. Meanwhile, we found abnormal placental structure and nutrient transporter expression. In vitro, BeWo cells were used and confirm that 11β-HSD2 mediated inhibition of placental nutrient transporter expression induced by high levels of glucocorticoid. Finally, combined with the animal and cell experiments, we further confirmed that high maternal glucocorticoid could activate the GR-C/EBPα-Egr1 signaling pathway, leading to decreased expression of 11β-HSD2 in males. However, there was no significant inhibition of placental 11β-HSD2 expression, placental and fetal development in females. In summary, we confirmed that high maternal glucocorticoids could regulate placental 11β-HSD2 expression in a sex-specific manner, leading to differences in placental and fetal development. This study provides the theoretical and experimental basis for analyzing the inhibition of fetoplacental development and its sex difference caused by maternal stress.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
32
|
Kozik V, Schwab M, Thiel S, Hellwig K, Rakers F, Dreiling M. Protocol for a Cross-Sectional Study: Effects of a Multiple Sclerosis Relapse Therapy With Methylprednisolone on Offspring Neurocognitive Development and Behavior (MS-Children). Front Neurol 2022; 13:830057. [PMID: 35557615 PMCID: PMC9087857 DOI: 10.3389/fneur.2022.830057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Multiple Sclerosis (MS) is the most common neuroimmunological disease in women of childbearing age. Current MS therapy consists of immunomodulatory relapse prevention with disease-modifying therapies (DMTs) and acute relapse therapy with the synthetic glucocorticoid (GC) methylprednisolone (MP). As most DMTs are not approved for use during pregnancy, treatment is usually discontinued, increasing the risk for relapses. While MP therapy during pregnancy is considered relatively save for the fetus, it may be detrimental for later cognitive and neuropsychiatric function. The underlying mechanism is thought to be an epigenetically mediated desensitization of GC receptors, the subsequent increase in stress sensitivity, and a GC-mediated impairment of brain development. The aim of this study is to investigate the associations of fetal MP exposure in the context of MS relapse therapy with later cognitive function, brain development, stress sensitivity, and behavior. Methods and Analysis Eighty children aged 8–18 years of mothers with MS will be recruited. Forty children, exposed to GC in utero will be compared to 40 children without fetal GC exposure. The intelligence quotient will serve as primary outcome. Secondary outcomes will include attention, motor development, emotional excitability, Attention-Deficit Hyperactivity Disorder-related symptoms, and behavioral difficulties. The Trier Social Stress Test will test stress sensitivity, EEG and MRI will assess functional and structural brain development. To determine underlying mechanisms, DNA methylation of the GC receptor gene and the H19/IGF2 locus and changes in the microbiome and the metabolome will be investigated. Primary and secondary outcomes will be analyzed using linear regression models. Time-variant outcomes of the stress test will be analyzed in two mixed linear models exploring overall activity and change from baseline. Ethics and Dissemination This study was approved by the participating institutions' ethics committees and results will be presented in accordance with the STROBE 2007 Statement. Trial Registration https://clinicaltrials.gov/ct2/show/NCT04832269?id=ZKSJ0130
Collapse
Affiliation(s)
- Valeska Kozik
- Department of Neurology, Jena University Hospital, Jena, Germany
- *Correspondence: Valeska Kozik
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sandra Thiel
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Florian Rakers
- Department of Neurology, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
33
|
Liu X, Bai Y, Cui R, He S, Ling Y, Wu C, Fang M. Integrated Analysis of the ceRNA Network and M-7474 Function in Testosterone-Mediated Fat Deposition in Pigs. Genes (Basel) 2022; 13:genes13040668. [PMID: 35456474 PMCID: PMC9032878 DOI: 10.3390/genes13040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Castration can significantly enhance fat deposition in pigs, and the molecular mechanism of fat deposition caused by castration and its influence on fat deposition in different parts of pigs remain unclear. RNA-seq was performed on adipose tissue from different parts of castrated and intact Yorkshire pigs. Different ceRNA networks were constructed for different fat parts. GO and KEGG pathway annotations suggested that testosterone elevates cell migration and affects differentiation and apoptosis in back fat, while it predisposes animals to glycolipid metabolism disorders and increases the expression of inflammatory cytokines in abdominal fat. The interaction between M-7474, novel_miR_243 and SGK1 was verified by dual fluorescence experiments. This ceRNA relationship has also been demonstrated in porcine preadipocytes. Overexpression of M-7474 significantly inhibited the differentiation of preadipocytes compared to the control group. When 100 nM testosterone was added during preadipocyte differentiation, the expression of M-7474 was increased, and preadipocyte differentiation was significantly inhibited. Testosterone can affect preadipocyte differentiation by upregulating the expression of M-7474, sponging novel-miR-243, and regulating the expression of genes such as SGK1. At the same time, HSD11B1 and SLC2A4 may also be regulated by the corresponding lncRNA and miRNA, which ultimately affects glucose uptake by adipocytes and leads to obesity.
Collapse
Affiliation(s)
- Ximing Liu
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Ying Bai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China;
| | - Ran Cui
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Shuaihan He
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Yao Ling
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Meiying Fang
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Correspondence: ; Tel.: +86-10-62734943; Fax: +86-10-62734943
| |
Collapse
|
34
|
Aulinas A, Stantonyonge N, García-Patterson A, Adelantado JM, Medina C, Espinós JJ, López E, Webb SM, Corcoy R. Hypopituitarism and pregnancy: clinical characteristics, management and pregnancy outcome. Pituitary 2022; 25:275-284. [PMID: 34846622 PMCID: PMC8894301 DOI: 10.1007/s11102-021-01196-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE To describe the clinical characteristics, management and pregnancy outcome of women with prepregnancy hypopituitarism (HYPO) that received care at our center. METHODS Retrospective study describing 12 pregnancies in women with prepregnancy HYPO (two or more pituitary hormonal deficiencies under replacement treatment) that received care during pregnancy at Hospital Santa Creu i Sant Pau. Clinical characteristics, management and pregnancy outcome were systematically collected. RESULTS Average patients' age was 35 years and HYPO duration at the beginning of pregnancy was 19 years. The most frequent cause of HYPO was surgical treatment of a sellar mass (8 pregnancies). Eight pregnancies were in primigravid women and 10 required assisted reproductive techniques. The hormonal deficits before pregnancy were as follows: GH in 12 women, TSH in 10, gonadotropin in 9, ACTH in 5 and ADH in 2. All deficits were under hormonal substitution except for GH deficit in 4 pregnancies. During pregnancy, 4 new deficits were diagnosed. The dosage of replacement treatment for TSH, ACTH and ADH deficits was increased and GH was stopped. Average gestational age at birth was 40 weeks, gestational weight gain was excessive in 9 women, 8 patients required induction/elective delivery and cesarean section was performed in 6. Average birthweight was 3227 g. No major complications were observed. Five women were breastfeeding at discharge. CONCLUSIONS In this group of women with long-standing HYPO, with careful clinical management (including treatment of new-onset hormonal deficits) pregnancy outcome was satisfactory but with a high rate of excessive gestational weight gain and cesarean section.
Collapse
Affiliation(s)
- Anna Aulinas
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER Unidad 747), ISCIII, Barcelona, Spain
- Department of Medicine, University of Vic - Central University of Catalonia, Vic, Barcelona, Spain
- Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Nicole Stantonyonge
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Juan M Adelantado
- Department of Gynecology and Obstetrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carmen Medina
- Department of Gynecology and Obstetrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Juan José Espinós
- Department of Gynecology and Obstetrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Esther López
- Department of Pediatrics, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Susan M Webb
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER Unidad 747), ISCIII, Barcelona, Spain
- Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Corcoy
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), ISCIII, Madrid, Spain.
| |
Collapse
|
35
|
Palmer EA, Vedovatto M, Oliveira RA, Ranches J, Vendramini JMB, Poore MH, Martins T, Binelli M, Arthington JD, Moriel P. Effects of maternal winter vs. year-round supplementation of protein and energy on postnatal growth, immune function, and carcass characteristics of Bos indicus-influenced beef offspring. J Anim Sci 2022; 100:6539999. [PMID: 35230426 PMCID: PMC8886918 DOI: 10.1093/jas/skac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
This 2-yr study evaluated the effects of winter vs. year-round supplementation of Bos indicus-influenced beef cows on cow reproductive performance and impact on their offspring. On day 0 of each year (approximately day 122 ± 23 of gestation), 82 to 84 mature Brangus cows/yr were stratified by body weight (BW; 475 ± 67 kg) and body condition score (BCS; 4.85 ± 0.73) and randomly assigned to 1 of 6 bahiagrass (Paspalum notatum) pastures (13 to 14 cows/pasture). Treatments were randomly assigned to pastures consisting of winter supplementation with molasses + urea (WMOL), or year-round supplementation with molasses + urea (YMOL) or wheat middling-based range cubes (YCUB). Total yearly supplement DM amount was 272 kg/cow and supplements were formulated to be isocaloric and isonitrogenous (75% TDN and 20% CP). On day 421 (weaning; approximately 260 ± 24 d of age), 33 to 35 steers/yr were vaccinated against parainfluenza-3 (PI3) and bovine viral diarrhea virus type 1 (BVDV-1) and transported 1,193 km to a feedlot. Steers were penned according to maternal pasture and managed similarly until slaughter. Data were analyzed using the MIXED and GLIMMIX procedures of SAS. On day 217 (start of breeding season), BCS was greater (P = 0.01) for YMOL than WMOL cows, whereas BCS of YCUB did not differ (P ≥ 0.11) to both WMOL and YMOL cows. The percentage of cows that calved, calving date, birth BW, and preweaning BW of the first offspring did not differ (P ≥ 0.22) among maternal treatments. Plasma cortisol concentrations were greater (P ≤ 0.001) for YCUB steers at feedlot arrival (day 422) than WMOL and YMOL steers. Moreover, YCUB steers had greater (P = 0.02) and tended (P = 0.08) to have greater plasma concentrations of haptoglobin compared to WMOL and YMOL steers, respectively. Antibody titers against PI3 and BVDV-1 viruses did not differ (P ≥ 0.25) among maternal treatments. Steer BW at feedlot exit was greater (P ≤ 0.05) for YMOL and WMOL than YCUB steers. However, feedlot DMI did not differ (P ≥ 0.37) by maternal treatment. Hot carcass weight, yield grade, LMA, and marbling did not differ (P ≥ 0.14) among maternal treatments. Percentage of steers that graded low choice was enhanced (P ≤ 0.05) for WMOL and YCUB than YMOL steers. Maternal year-round supplementation of range cubes or molasses + urea either did not impact or decrease growth, immune function, and carcass characteristics of the offspring when compared with maternal supplementation of molasses + urea during winter only.
Collapse
Affiliation(s)
- Elizabeth A Palmer
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Marcelo Vedovatto
- Unidade Universitária de Aquidauana, Universidade Estadual de Mato Grosso do Sul, Aquidauana, MS, Brazil
| | - Rhaiza A Oliveira
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Joao M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Matthew H Poore
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Thiago Martins
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Mario Binelli
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - John D Arthington
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA,Corresponding author:
| |
Collapse
|
36
|
Polinski KJ, Putnick DL, Robinson SL, Schliep KC, Silver RM, Guan W, Schisterman EF, Mumford SL, Yeung EH. Periconception and Prenatal Exposure to Maternal Perceived Stress and Cord Blood DNA Methylation. Epigenet Insights 2022; 15:25168657221082045. [PMID: 35237744 PMCID: PMC8882928 DOI: 10.1177/25168657221082045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/23/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Maternal prenatal stress is associated with physiologic and adverse mental health outcomes in the offspring, but the underlying biologic mechanisms are unknown. We examined the associations of maternal perceived stress, including preconception exposure, with DNA methylation (DNAm) alterations in the cord blood buffy coats of 358 singleton infants. METHODS Maternal perceived stress was measured prior to and throughout pregnancy in a cohort of women enrolled in Effects of Aspirin in Gestation and Reproduction Trial (EAGeR) trial. Perceived stress assessments based on a standardized Likert-scale were obtained in periconception (~2 months preconception and 2-8 weeks of gestation) and pregnancy (8-36 weeks of gestation). Cumulative perceived stress was estimated by calculating the predicted area under the curve of stress reported prior to and during pregnancy. DNAm was measured by the Infinium MethylationEPIC BeadChip. Multivariable robust linear regression was used to assess associations of perceived stress with individual CpG probes. RESULTS Based on a 0 to 3 scale, average reported preconception and early pregnancy stress were 0.76 (0.60) and 0.67 (0.50), respectively. Average mid- to late-pregnancy stress, based on a 0 to 10 scale, was 4.9 (1.6). Neither periconception nor pregnancy perceived stress were associated with individual CpG sites in neonatal cord blood (all false discovery rate [FDR] >5%). CONCLUSION No effects of maternal perceived stress exposure on array-wide cord blood neonatal methylation differences were found.
Collapse
Affiliation(s)
- Kristen J Polinski
- Division of Population Health Research,
Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Diane L Putnick
- Division of Population Health Research,
Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sonia L Robinson
- Division of Population Health Research,
Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Karen C Schliep
- Department of Family and Preventive
Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert M Silver
- Department of Family and Preventive
Medicine, University of Utah, Salt Lake City, UT, USA
| | - Weihua Guan
- Division of Biostatistics, University
of Minnesota, Minneapolis, MN, USA
| | - Enrique F Schisterman
- Department of Biostatistics,
Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA,
USA
| | - Sunni L Mumford
- Department of Biostatistics,
Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA,
USA
| | - Edwina H Yeung
- Division of Population Health Research,
Eunice Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD, USA,Edwina H Yeung, Epidemiology Branch,
Division of Population Health Research, Division of Intramural Research,
Eunice Kennedy Shriver National Institute of Child Health
and Human Development, National Institutes of Health, 6710B Rockledge Dr, MSC
7004, Bethesda, MD 20817, USA.
| |
Collapse
|
37
|
Müller S, Moser D, Frach L, Wimberger P, Nitzsche K, Li SC, Kirschbaum C, Alexander N. No long-term effects of antenatal synthetic glucocorticoid exposure on epigenetic regulation of stress-related genes. Transl Psychiatry 2022; 12:62. [PMID: 35173143 PMCID: PMC8850596 DOI: 10.1038/s41398-022-01828-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022] Open
Abstract
Antenatal synthetic glucocorticoid (sGC) treatment is a potent modifier of the hypothalamic-pituitary-adrenal (HPA) axis. In this context, epigenetic modifications are discussed as potential regulators explaining how prenatal exposure to GCs might translate into persistent changes of HPA axis "functioning". The purpose of this study was to investigate whether DNA methylation and gene expression profiles of stress-associated genes (NR3C1; FKBP5; SLC6A4) may mediate the persistent effects of sGC on cortisol stress reactivity that have been previously observed. In addition, hair cortisol concentrations (hairC) were investigated as a valid biomarker of long-term HPA axis activity. This cross-sectional study comprised 108 term-born children and adolescents, including individuals with antenatal GC treatment and controls. From whole blood, DNA methylation was analyzed by targeted deep bisulfite sequencing. Relative mRNA expression was determined by RT-qPCR experiments and qBase analysis. Acute stress reactivity was assessed by the Trier Social Stress Test (TSST) measuring salivary cortisol by ELISA and hairC concentrations were determined from hair samples by liquid chromatography coupled with tandem mass spectrometry. First, no differences in DNA methylation and mRNA expression levels of the stress-associated genes between individuals treated with antenatal sGC compared to controls were found. Second, DNA methylation and mRNA expression levels were neither associated with cortisol stress reactivity nor with hairC. These findings do not corroborate the belief that DNA methylation and mRNA expression profiles of stress-associated genes (NR3C1; FKBP5; SLC6A4) play a key mediating role of the persistent effects of sGC on HPA axis functioning.
Collapse
Affiliation(s)
- Svenja Müller
- Department of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Dirk Moser
- grid.5570.70000 0004 0490 981XDepartment of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Leonard Frach
- grid.5570.70000 0004 0490 981XDepartment of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany ,grid.83440.3b0000000121901201Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP UK
| | - Pauline Wimberger
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Katharina Nitzsche
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Shu-Chen Li
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01602 Dresden, Germany ,grid.4488.00000 0001 2111 7257CeTI – Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Clemens Kirschbaum
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01602 Dresden, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany. .,Center for Mind, Brain and Behavior, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032, Marburg, Germany.
| |
Collapse
|
38
|
Alijotas-Reig J, Esteve-Valverde E, Anunciación-Llunell A, Marques-Soares J, Pardos-Gea J, Miró-Mur F. Pathogenesis, Diagnosis and Management of Obstetric Antiphospholipid Syndrome: A Comprehensive Review. J Clin Med 2022; 11:675. [PMID: 35160128 PMCID: PMC8836886 DOI: 10.3390/jcm11030675] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Antiphospholipid syndrome is an autoimmune disorder characterized by vascular thrombosis and/or pregnancy morbidity associated with persistent antiphospholipid antibody positivity. Cases fulfilling the Sydney criteria for obstetric morbidity with no previous thrombosis are known as obstetric antiphospholipid syndrome (OAPS). OAPS is the most identified cause of recurrent pregnancy loss and late-pregnancy morbidity related to placental injury. Cases with incomplete clinical or laboratory data are classified as obstetric morbidity APS (OMAPS) and non-criteria OAPS (NC-OAPS), respectively. Inflammatory and thrombotic mechanisms are involved in the pathophysiology of OAPS. Trophoblasts, endothelium, platelets and innate immune cells are key cellular players. Complement activation plays a crucial pathogenic role. Secondary placental thrombosis appears by clot formation in response to tissue factor activation. New risk assessment tools could improve the prediction of obstetric complication recurrences or thromboses. The standard-of-care treatment consists of low-dose aspirin and prophylactic low molecular weight heparin. In refractory cases, the addition of hydroxychloroquine, low-dose prednisone or IVIG improve pregnancy outcomes. Statins and eculizumab are currently being tested for treating selected OAPS women. Finally, we revisited recent insights and concerns about the pathophysiology, diagnosis and management of OAPS.
Collapse
Affiliation(s)
- Jaume Alijotas-Reig
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron Hospital Campus, Hospital Universitari Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Enrique Esteve-Valverde
- Department of Internal Medicine, Althaia Xarxa Assistencial, Carrer Dr Joan Soler 1-3, 08243 Manresa, Spain;
| | - Ariadna Anunciación-Llunell
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
| | - Joana Marques-Soares
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron Hospital Campus, Hospital Universitari Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Pardos-Gea
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron Hospital Campus, Hospital Universitari Vall d’Hebron (HUVH), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Francesc Miró-Mur
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Hospital Campus, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.A.-L.); (J.M.-S.); (J.P.-G.)
| |
Collapse
|
39
|
Oftedal A, Bekkhus M, Haugen G, Braithwaite E, Bollerslev J, Godang K, Thorsby PM, Kaasen A. Changes in maternal cortisol, cortisol binding globulin and cortisone levels following diagnosis of fetal anomaly. Psychoneuroendocrinology 2022; 135:105574. [PMID: 34741978 DOI: 10.1016/j.psyneuen.2021.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
The diagnosis of fetal anomaly can be a major stressor to the expectant mother. Current understanding of the relationship between psychological stress and cortisol in pregnancy is limited. This study examined: (1) differences in the ratio of serum cortisol to cortisol binding globulin (SC/CBG) and cortisone levels among women with and without a diagnosis of fetal anomaly, (2) the association between self-reported stress and cortisol from mid to late pregnancy, and (3) the agreement between two different techniques for analyzing cortisol: liquid chromatography-tandem mass spectrometry (LC-MS/MS) and radioimmunoassay (RIA). Thirty-six pregnant women with a diagnosis of fetal anomaly (study group) and 101 women with healthy pregnancies (comparison group) provided blood samples and completed self-report questionnaires at gestational weeks 18-24 (T1) and 30 (T2). In the comparison group, mean SC/CBG increased from 0.341 nmol/L at T1 to 0.415 at T2 (p < .001), whereas in the study group there was no change (0.342 nmol/L at T1, 0.343 at T2). There was no difference in cortisone levels between the groups at either timepoints. There was a negative association between both depression and traumatic stress at T1, and SC/CBG at T2 (p < .05). There was no association between general distress and SC/CBG. The two methods for analyzing cortisol gave similar results, but with LC-MS/MS showing a lower detection limit than RIA. Increased cortisol with advancing gestational age is expected, thus these findings indicate that under certain conditions of severe stress there may be a suppression of maternal cortisol increase from mid to late gestation. The discrepancy does not seem to be due to differences in the metabolization of cortisol, as indicated by the similar levels of cortisone. Further research is needed in order to understand the potential underlying mechanisms limiting the expression of cortisol in response to certain types of stress in pregnancy.
Collapse
Affiliation(s)
- Aurora Oftedal
- Oslo Metropolitan University, Faculty of Health Sciences, Norway.
| | - Mona Bekkhus
- Promenta Research Center, Department of Psychology, University of Oslo, Norway
| | - Guttorm Haugen
- Department of Fetal Medicine, Division of Obstetrics and Gynaecology, Oslo University Hospital, Norway; University of Oslo, Institute of Clinical Medicine, Norway
| | | | - Jens Bollerslev
- University of Oslo, Institute of Clinical Medicine, Norway; Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristin Godang
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Biochemical Endocrinology And Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway
| | - Anne Kaasen
- Oslo Metropolitan University, Faculty of Health Sciences, Norway
| |
Collapse
|
40
|
Hodges TE, Puri TA, Blankers SA, Qiu W, Galea LAM. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. VITAMINS AND HORMONES 2021; 118:129-170. [PMID: 35180925 DOI: 10.1016/bs.vh.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hippocampal neurogenesis persists across the lifespan in many species, including rodents and humans, and is associated with cognitive performance and the pathogenesis of neurodegenerative disease and psychiatric disorders. Neurogenesis is modulated by steroid hormones that change across development and differ between the sexes in rodents and humans. Here, we discuss the effects of stress and glucocorticoid exposure from gestation to adulthood as well as the effects of androgens and estrogens in adulthood on neurogenesis in the hippocampus. Throughout the review we highlight sex differences in the effects of steroid hormones on neurogenesis and how they may relate to hippocampal function and disease. These data highlight the importance of examining age and sex when evaluating the effects of steroid hormones on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Travis E Hodges
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
41
|
Allen MC, Moog NK, Buss C, Yen E, Gustafsson HC, Sullivan EL, Graham AM. Co-occurrence of preconception maternal childhood adversity and opioid use during pregnancy: Implications for offspring brain development. Neurotoxicol Teratol 2021; 88:107033. [PMID: 34601061 PMCID: PMC8578395 DOI: 10.1016/j.ntt.2021.107033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022]
Abstract
Understanding of the effects of in utero opioid exposure on neurodevelopment is a priority given the recent dramatic increase in opioid use among pregnant individuals. However, opioid abuse does not occur in isolation-pregnant individuals abusing opioids often have a significant history of adverse experiences in childhood, among other co-occurring factors. Understanding the specific pathways in which these frequently co-occurring factors may interact and cumulatively influence offspring brain development in utero represents a priority for future research in this area. We highlight maternal history of childhood adversity (CA) as one such co-occurring factor that is more prevalent among individuals using opioids during pregnancy and which is increasingly shown to affect offspring neurodevelopment through mechanisms beginning in utero. Despite the high incidence of CA history in pregnant individuals using opioids, we understand very little about the effects of comorbid prenatal opioid exposure and maternal CA history on fetal brain development. Here, we first provide an overview of current knowledge regarding effects of opioid exposure and maternal CA on offspring neurodevelopment that may occur during gestation. We then outline potential mechanistic pathways through which these factors might have interactive and cumulative influences on offspring neurodevelopment as a foundation for future research in this area.
Collapse
Affiliation(s)
- Madeleine C Allen
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States
| | - Nora K Moog
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Luisenstrasse 57, 10117 Berlin, Germany
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Luisenstrasse 57, 10117 Berlin, Germany; Development, Health and Disease Research Program, University of California, Irvine, 837 Health Sciences Drive, Irvine, California 92697, United States
| | - Elizabeth Yen
- Department of Pediatrics, Tufts Medical Center, Boston, MA 02111, United States
| | - Hanna C Gustafsson
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States
| | - Elinor L Sullivan
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185(th) Ave., Beaverton, OR 97006, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States
| | - Alice M Graham
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States.
| |
Collapse
|
42
|
Schroeder R, Sridharan P, Nguyen L, Loren A, Williams NS, Kettimuthu KP, Cintrón-Pérez CJ, Vázquez-Rosa E, Pieper AA, Stevens HE. Maternal P7C3-A20 Treatment Protects Offspring from Neuropsychiatric Sequelae of Prenatal Stress. Antioxid Redox Signal 2021; 35:511-530. [PMID: 33501899 PMCID: PMC8388250 DOI: 10.1089/ars.2020.8227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Impaired embryonic cortical interneuron development from prenatal stress is linked to adult neuropsychiatric impairment, stemming in part from excessive generation of reactive oxygen species in the developing embryo. Unfortunately, there are no preventive medicines that mitigate the risk of prenatal stress to the embryo, as the underlying pathophysiologic mechanisms are poorly understood. Our goal was to interrogate the molecular basis of prenatal stress-mediated damage to the embryonic brain to identify a neuroprotective strategy. Results: Chronic prenatal stress in mice dysregulated nicotinamide adenine dinucleotide (NAD+) synthesis enzymes and cortical interneuron development in the embryonic brain, leading to axonal degeneration in the hippocampus, cognitive deficits, and depression-like behavior in adulthood. Offspring were protected from these deleterious effects by concurrent maternal administration of the NAD+-modulating agent P7C3-A20, which crossed the placenta to access the embryonic brain. Prenatal stress also produced axonal degeneration in the adult corpus callosum, which was not prevented by maternal P7C3-A20. Innovation: Prenatal stress dysregulates gene expression of NAD+-synthesis machinery and GABAergic interneuron development in the embryonic brain, which is associated with adult cognitive impairment and depression-like behavior. We establish a maternally directed treatment that protects offspring from these effects of prenatal stress. Conclusion: NAD+-synthesis machinery and GABAergic interneuron development are critical to proper embryonic brain development underlying postnatal neuropsychiatric functioning, and these systems are highly susceptible to prenatal stress. Pharmacologic stabilization of NAD+ in the stressed embryonic brain may provide a neuroprotective strategy that preserves normal embryonic development and protects offspring from neuropsychiatric impairment. Antioxid. Redox Signal. 35, 511-530.
Collapse
Affiliation(s)
- Rachel Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Preethy Sridharan
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lynn Nguyen
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alexandra Loren
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kavitha P Kettimuthu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA.,Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
43
|
Stead SM, Bădescu I, Boonstra R. Of mammals and milk: how maternal stress affects nursing offspring. Mamm Rev 2021. [DOI: 10.1111/mam.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha M. Stead
- Department of Anthropology University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| | - Iulia Bădescu
- Département d’Anthropologie Université de Montréal 3150 Rue Jean‐Brillant Montréal QCH3T 1N8Canada
| | - Rudy Boonstra
- Department of Biological Sciences University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| |
Collapse
|
44
|
Marinello WP, Patisaul HB. Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:347-400. [PMID: 34452690 DOI: 10.1016/bs.apha.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pregnancy is a critical time of vulnerability for the development of the fetal brain. Exposure to environmental pollutants at any point in pregnancy can negatively impact many aspects of fetal development, especially the organization and differentiation of the brain. The placenta performs a variety of functions that can help protect the fetus and sustain brain development. However, disruption of any of these functions can have negative impacts on both the pregnancy outcome and fetal neurodevelopment. This review presents current understanding of how environmental exposures, specifically to endocrine disrupting chemicals (EDCs), interfere with placental function and, in turn, neurodevelopment. Some of the key differences in placental development between animal models are presented, as well as how placental functions such as serving as a xenobiotic barrier and exchange organ, immune interface, regulator of growth and fetal oxygenation, and a neuroendocrine organ, could be vulnerable to environmental exposure. This review illustrates the importance of the placenta as a modulator of fetal brain development and suggests critical unexplored areas and possible vulnerabilities to environmental exposure.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
45
|
Martínez-Sánchez N, De la Calle Fernández-Miranda M, Bartha JL. Safety profile of treatments administered in COVID 19 infection in pregnant women. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2021; 48:100663. [PMID: 33654337 PMCID: PMC7906532 DOI: 10.1016/j.gine.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/10/2021] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 infection has unexpectedly arrived in our society. In pregnant women, the situation has been similar to general population. Some drugs have been used empirically, and obstetricians have to consider whether the same treatments used in the general population were valid for pregnant women with severe disease, according to their safety profile for both the mother and the fetus. There has been a wide experience with the use of hydroxychloroquine and lopinavir/ritonavir in pregnant women. Tocilizumab and interferon beta could be used if benefits exceed risks. There is no experience using remdesivir in pregnancy.
Collapse
Affiliation(s)
- N Martínez-Sánchez
- Obstetrics and Gynecology Department, University Hospital La Paz, Madrid, Spain
| | | | - J L Bartha
- Obstetrics and Gynecology Department, University Hospital La Paz, Madrid, Spain
| |
Collapse
|
46
|
Sarieva K, Mayer S. The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 2021; 8:686410. [PMID: 34250020 PMCID: PMC8264783 DOI: 10.3389/fmolb.2021.686410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, a growing body of evidence has demonstrated the impact of prenatal environmental adversity on the development of the human embryonic and fetal brain. Prenatal environmental adversity includes infectious agents, medication, and substances of use as well as inherently maternal factors, such as diabetes and stress. These adversities may cause long-lasting effects if occurring in sensitive time windows and, therefore, have high clinical relevance. However, our knowledge of their influence on specific cellular and molecular processes of in utero brain development remains scarce. This gap of knowledge can be partially explained by the restricted experimental access to the human embryonic and fetal brain and limited recapitulation of human-specific neurodevelopmental events in model organisms. In the past years, novel 3D human stem cell-based in vitro modeling systems, so-called brain organoids, have proven their applicability for modeling early events of human brain development in health and disease. Since their emergence, brain organoids have been successfully employed to study molecular mechanisms of Zika and Herpes simplex virus-associated microcephaly, as well as more subtle events happening upon maternal alcohol and nicotine consumption. These studies converge on pathological mechanisms targeting neural stem cells. In this review, we discuss how brain organoids have recently revealed commonalities and differences in the effects of environmental adversities on human neurogenesis. We highlight both the breakthroughs in understanding the molecular consequences of environmental exposures achieved using organoids as well as the on-going challenges in the field related to variability in protocols and a lack of benchmarking, which make cross-study comparisons difficult.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Rensel MA, Schlinger BA. 11ß hydroxysteroid dehydrogenases regulate circulating glucocorticoids but not central gene expression. Gen Comp Endocrinol 2021; 305:113734. [PMID: 33548254 PMCID: PMC7954975 DOI: 10.1016/j.ygcen.2021.113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2022]
Abstract
Regulation of glucocorticoids (GCs), important mediators of physiology and behavior at rest and during stress, is multi-faceted and dynamic. The 11ß hydroxysteroid dehydrogenases 11ß-HSD1 and 11ß-HSD2 catalyze the regeneration and inactivation of GCs, respectively, and provide peripheral and central control over GC actions in mammals. While these enzymes have only recently been investigated in just two songbird species, central expression patterns suggest that they may function differently in birds and mammals, and little is known about how peripheral expression regulates circulating GCs. In this study, we utilized the 11ß-HSD inhibitor carbenoxolone (CBX) to probe the functional effects of 11ß-HSD activity on circulating GCs and central GC-dependent gene expression in the adult zebra finch (Taeniopygia guttata). Peripheral CBX injection produced a marked increase in baseline GCs 60 min after injection, suggestive of a dominant role for 11ß-HSD2 in regulating circulating GCs. In the adult zebra finch brain, where 11ß-HSD2 but not 11ß-HSD1 is expressed, co-incubation of micro-dissected brain regions with CBX and stress-level GCs had no impact on expression of several GC-dependent genes. These results suggest that peripheral 11ß-HSD2 attenuates circulating GCs, whereas central 11ß-HSD2 has little impact on gene expression. Instead, rapid 11ß-HSD2-based regulation of local GC levels might fine-tune membrane GC actions in brain. These results provide new insights into the dynamics of GC secretion and action in this important model organism.
Collapse
Affiliation(s)
- Michelle A Rensel
- Institute for Society and Genetics, University of California Los Angeles, 621 Charles E Young Drive S, Los Angeles, CA 90095, USA; Laboratory of Neuroendocrinology, Brain Research Institute UCLA, Box 951761, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Laboratory of Neuroendocrinology, Brain Research Institute UCLA, Box 951761, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E Young Drive E, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E Young Drive S, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
49
|
Serati L, Carnovale C, Maestroni S, Brenna M, Smeriglia A, Massafra A, Bizzi E, Picchi C, Tombetti E, Brucato A. Management of acute and recurrent pericarditis in pregnancy. Panminerva Med 2021; 63:276-287. [PMID: 33687181 DOI: 10.23736/s0031-0808.21.04198-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes the currently available evidence on the management of acute and recurrent pericarditis during pregnancy, focusing on the safety of diagnostic procedures and treatment options for the mother and foetus. Family planning should be addressed in women with recurrent pericarditis of reproductive age and adjustment of therapy should be considered before a planned pregnancy. The treatment of pericarditis in pregnancy is similar to that for non-pregnant women but considers current knowledge on drug safety during pregnancy and lactation. The largest case series on this topic described 21 pregnancies with idiopathic recurrent pericarditis. Pregnancy should be planned in a phase of disease quiescence. Non-steroidal anti-inflammatory drugs can be used at high dosages until the 20th week of gestation (except low-dose aspirin 100 mg/die). Colchicine is allowed until gravindex positivity; after this period, administration of this drug during pregnancy and lactation should be discussed with the mother if its use is important to control recurrent pericarditis. Prednisone is safe if used at low-medium doses (2,5 - 10 mg/die). General outcomes of pregnancy in patients with pericarditis are good when the mothers are followed by a multidisciplinary team with experience in the field.
Collapse
Affiliation(s)
- Lisa Serati
- Department of Internal Medicine, Fatebenefratelli Hospital, Milan, Italy -
| | - Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, Luigi Sacco University Hospital, Università di Milano, Milan, Italy
| | - Silvia Maestroni
- Department of Internal Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Martino Brenna
- Department of Internal Medicine, Fatebenefratelli Hospital, Milan, Italy
| | - Aurora Smeriglia
- Department of Internal Medicine, Fatebenefratelli Hospital, Milan, Italy
| | - Agnese Massafra
- Department of Internal Medicine, Fatebenefratelli Hospital, Milan, Italy
| | - Emanuele Bizzi
- Department of Internal Medicine, Fatebenefratelli Hospital, Milan, Italy
| | - Chiara Picchi
- Department of Internal Medicine, Fatebenefratelli Hospital, Milan, Italy
| | - Enrico Tombetti
- Department of Biomedical and Clinical Sciences, University of Milan, Fatebenefratelli Hospital, Milan, Italy
| | - Antonio Brucato
- Department of Biomedical and Clinical Sciences, University of Milan, Fatebenefratelli Hospital, Milan, Italy
| |
Collapse
|
50
|
Karahoda R, Kallol S, Groessl M, Ontsouka E, Anderle P, Fluck C, Staud F, Albrecht C. Revisiting Steroidogenic Pathways in the Human Placenta and Primary Human Trophoblast Cells. Int J Mol Sci 2021; 22:ijms22041704. [PMID: 33567726 PMCID: PMC7915605 DOI: 10.3390/ijms22041704] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Steroid hormones play a crucial role in supporting a successful pregnancy and ensuring proper fetal development. The placenta is one of the principal tissues in steroid production and metabolism, expressing a vast range of steroidogenic enzymes. Nevertheless, a comprehensive characterization of steroidogenic pathways in the human placenta and potential developmental changes occurring during gestation are poorly understood. Furthermore, the specific contribution of trophoblast cells in steroid release is largely unknown. Thus, this study aimed to (i) identify gestational age-dependent changes in the gene expression of key steroidogenic enzymes and (ii) explore the role of trophoblast cells in steroid biosynthesis and metabolism. Quantitative and Droplet Digital PCR analysis of 12 selected enzymes was carried out in the first trimester (n = 13) and term (n = 20) human placentas. Primary trophoblast cells (n = 5) isolated from human term placentas and choriocarcinoma-derived cell lines (BeWo, BeWo b30 clone, and JEG-3) were further screened for gene expression of enzymes involved in placental synthesis/metabolism of steroids. Finally, de novo steroid synthesis by primary human trophoblasts was evaluated, highlighting the functional activity of steroidogenic enzymes in these cells. Collectively, we provide insights into the expression patterns of steroidogenic enzymes as a function of gestational age and delineate the cellular origin of steroidogenesis in the human placenta.
Collapse
Affiliation(s)
- Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (E.O.)
- Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Michael Groessl
- Department of Nephrology and Hypertension, Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland;
| | - Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (E.O.)
| | - Pascale Anderle
- Sitem Center for Translational Medicine and Biomedical Entrepreneurship and Sitem-Insel AG, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland;
| | - Christa Fluck
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Department of Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
- Correspondence: (F.S.); (C.A.); Tel.: +420-495-067-407 (F.S.); Tel.: +413-163-141-08 (C.A.)
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland; (S.K.); (E.O.)
- Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
- Correspondence: (F.S.); (C.A.); Tel.: +420-495-067-407 (F.S.); Tel.: +413-163-141-08 (C.A.)
| |
Collapse
|