1
|
Gao Y, Tan YS, Lin J, Chew LY, Aung HY, Palliyana B, Gujar MR, Lin KY, Kondo S, Wang H. SUMOylation of Warts kinase promotes neural stem cell reactivation. Nat Commun 2024; 15:8557. [PMID: 39419973 PMCID: PMC11487185 DOI: 10.1038/s41467-024-52569-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
A delicate balance between neural stem cell (NSC) quiescence and proliferation is important for adult neurogenesis and homeostasis. Small ubiquitin-related modifier (SUMO)-dependent post-translational modifications cause rapid and reversible changes in protein functions. However, the role of the SUMO pathway during NSC reactivation and brain development is not established. Here, we show that the key components of the SUMO pathway play an important role in NSC reactivation and brain development in Drosophila. Depletion of SUMO/Smt3 or SUMO conjugating enzyme Ubc9 results in notable defects in NSC reactivation and brain development, while their overexpression leads to premature NSC reactivation. Smt3 protein levels increase with NSC reactivation, which is promoted by the Ser/Thr kinase Akt. Warts/Lats, the core protein kinase of the Hippo pathway, can undergo SUMO- and Ubc9-dependent SUMOylation at Lys766. This modification attenuates Wts phosphorylation by Hippo, leading to the inhibition of the Hippo pathway, and consequently, initiation of NSC reactivation. Moreover, inhibiting Hippo pathway effectively restores the NSC reactivation defects induced by SUMO pathway inhibition. Overall, our study uncovered an important role for the SUMO-Hippo pathway during Drosophila NSC reactivation and brain development.
Collapse
Affiliation(s)
- Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Liang Yuh Chew
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Htet Yamin Aung
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Brinda Palliyana
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Mahekta R Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Kosvyra Α, Karadimitris Α, Papaioannou Μ, Chouvarda I. Machine learning and integrative multi-omics network analysis for survival prediction in acute myeloid leukemia. Comput Biol Med 2024; 178:108735. [PMID: 38875909 DOI: 10.1016/j.compbiomed.2024.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common malignant myeloid disorder in adults and the fifth most common malignancy in children, necessitating advanced technologies for outcome prediction. METHOD This study aims to enhance prognostic capabilities in AML by integrating multi-omics data, especially gene expression and methylation, through network-based feature selection methodologies. By employing artificial intelligence and network analysis, we are exploring different methods to build a machine learning model for predicting AML patient survival. We evaluate the effectiveness of combining omics data, identify the most informative method for network integration and compare the performance with standard feature selection methods. RESULTS Our findings demonstrate that integrating gene expression and methylation data significantly improves prediction accuracy compared to single omics data. Among network integration methods, our study identifies the best approach that improves informative feature selection for predicting patient outcomes in AML. Comparative analyses demonstrate the superior performance of the proposed network-based methods over standard techniques. CONCLUSIONS This research presents an innovative and robust methodology for building a survival prediction model tailored to AML patients. By leveraging multilayer network analysis for feature selection, our approach contributes to improving the understanding and prognostic capabilities in AML and laying the foundation for more effective personalized therapeutic interventions in the future.
Collapse
Affiliation(s)
- Α Kosvyra
- Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Α Karadimitris
- Centre for Haematology and Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London, W12 0NN, UK
| | - Μ Papaioannou
- Hematology Unit, 1st Dept of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - I Chouvarda
- Laboratory of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Hertz EPT, Vega IAD, Kruse T, Wang Y, Hendriks IA, Bizard AH, Eugui-Anta A, Hay RT, Nielsen ML, Nilsson J, Hickson ID, Mailand N. The SUMO-NIP45 pathway processes toxic DNA catenanes to prevent mitotic failure. Nat Struct Mol Biol 2023; 30:1303-1313. [PMID: 37474739 PMCID: PMC10497417 DOI: 10.1038/s41594-023-01045-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
SUMOylation regulates numerous cellular processes, but what represents the essential functions of this protein modification remains unclear. To address this, we performed genome-scale CRISPR-Cas9-based screens, revealing that the BLM-TOP3A-RMI1-RMI2 (BTRR)-PICH pathway, which resolves ultrafine anaphase DNA bridges (UFBs) arising from catenated DNA structures, and the poorly characterized protein NIP45/NFATC2IP become indispensable for cell proliferation when SUMOylation is inhibited. We demonstrate that NIP45 and SUMOylation orchestrate an interphase pathway for converting DNA catenanes into double-strand breaks (DSBs) that activate the G2 DNA-damage checkpoint, thereby preventing cytokinesis failure and binucleation when BTRR-PICH-dependent UFB resolution is defective. NIP45 mediates this new TOP2-independent DNA catenane resolution process via its SUMO-like domains, promoting SUMOylation of specific factors including the SLX4 multi-nuclease complex, which contributes to catenane conversion into DSBs. Our findings establish that SUMOylation exerts its essential role in cell proliferation by enabling resolution of toxic DNA catenanes via nonepistatic NIP45- and BTRR-PICH-dependent pathways to prevent mitotic failure.
Collapse
Affiliation(s)
- Emil P T Hertz
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| | - Ignacio Alonso-de Vega
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kruse
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Yiqing Wang
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Anna H Bizard
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ania Eugui-Anta
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Weng SC, Shiao SH. SUMOylation Is Essential for Dengue Virus Replication and Transmission in the Mosquito Aedes aegypti. Front Microbiol 2022; 13:801284. [PMID: 35572621 PMCID: PMC9093690 DOI: 10.3389/fmicb.2022.801284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a reversible post-translational protein modifier. Protein SUMOylation regulates a wide variety of cellular processes and is important for controlling virus replication. Earlier studies suggest that dengue virus envelope protein interacts with Ubc9, the sole E2-conjugating enzyme required for protein SUMOylation in mammalian cells. However, little is known about the effect of protein SUMOylation on dengue virus replication in the major dengue vector, Aedes aegypti. Thus, in this study, we investigated the impact of protein SUMOylation on dengue virus replication in A. aegypti. The transcription of A. aegypti Ubc9 was significantly increased in the midgut after a normal blood meal. Silencing AaUbc9 resulted in significant inhibition of dengue virus NS1 protein production, viral genome transcription, and reduced viral titer in the mosquito saliva. In addition, we showed that dengue virus E proteins and prM proteins were SUMOylated post-infection. The amino acid residues K51 and K241 of dengue virus E protein were essential for protein SUMOylation. Taken together, our results reveal that protein SUMOylation contributes to dengue virus replication and transmission in the mosquito A. aegypti. This study introduces the possibility that protein SUMOylation is beneficial for virus replication and facilitates virus transmission from the mosquito.
Collapse
Affiliation(s)
- Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Lü J, Liu ZQ, Guo W, Guo MJ, Chen SM, Yang CX, Zhang YJ, Pan HP. Oral delivery of dsHvlwr is a feasible method for managing the pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). INSECT SCIENCE 2021; 28:509-520. [PMID: 32240577 DOI: 10.1111/1744-7917.12784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/18/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) techniques have emerged as powerful tools that facilitate development of novel management strategies for insect pests, such as Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae), which is a major pest of solanaceous plants in Asia. In this study, the potential of oral delivery of in vitro-synthesized and bacterially expressed double-stranded H. vigintioctopunctata lesswright (lwr) gene (dsHvlwr) to manage of H. vigintioctopunctata was investigated. Our results showed that the gene Hvlwr had a 480-bp open reading frame and encoded a 160-amino acid protein. Hvlwr expression levels were greater in the fat body than other tissue types. Hvlwr silencing led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent, likely as a result of the number of hemocytes increasing with dsRNA concentration, but decreasing with time. Bacterially expressed dsHvlwr that was applied to leaf discs caused 88%, 66%, and 36% mortality in 1st instars, 3rd instars, and adults after 10, 10, and 14 d, respectively; when applied to living plants, there was greater mortality in 1st and 3rd instars, but there was no effect on adults. Furthermore, dsHvlwr led to improved plant protection against H. vigintioctopunctata. Our study shows an effective dietary RNAi response in H. vigintioctopunctata and that Hvlwr is a promising RNAi target gene for control of this pest species.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Zhuo-Qi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Mu-Juan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Shi-Min Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Chun-Xiao Yang
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui-Peng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
The role of SUMOylation during development. Biochem Soc Trans 2021; 48:463-478. [PMID: 32311032 PMCID: PMC7200636 DOI: 10.1042/bst20190390] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.
Collapse
|
7
|
Li X, Qiao H, Qin F, Cheng G, Liu J, Li H, Gu S, Jin Y. Comparative analysis of iTRAQ-based proteome profiles of Schistosoma japonicum female worms coming from single-sex infections and bisexual infections. J Proteomics 2019; 213:103597. [PMID: 31778827 DOI: 10.1016/j.jprot.2019.103597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/10/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
In schistosomiasis, eggs produced by bisexual infected mature female schistosome worms (FMS) are the main cause of pathological damage to the host and the dissemination of the disease. Single-sex infected female worms (FSS) cannot completely develop to sexual maturity or produce normal eggs. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-coupled LC-MS/MS was used to explore the proteome of FSS and FMS of Schistosoma japonicum. A total of 1477 differentially expressed proteins (fold change >1.2, P < .05) between FSS and FMS were identified. Bioinformatics analysis indicated that FMS expressed more proteins related to biosynthetic processes, such as eggshell synthesis, ribosomal synthesis, protein folding, cellular detoxification, and metabolic processes such as protein metabolism and glucose metabolism, whereas more proteins related to locomotion and oxidative phosphorylation were expressed in FSS. Our identification and analysis of differentially expressed proteins between FMS and FSS provides new insights to elucidate the molecular biological mechanisms of female worm sexual maturation and reproduction. SIGNIFICANCE: Female Schistosome worms must maintain constant pairing contact with male worms for differentiation of their reproductive organs. Mature female worms can produce infectious eggs, cause serious pathological damage to the host and the dissemination of the disease. Unpaired female worms remain small and sexually immature; they do not spawn normally. In this study, iTRAQ-coupled LC-MS/MS was used to explore the whole proteome of single-sex infected female worms (FSS) and bisexual infected mature female worms (FMS) of Schistosoma japonicum. 1477 differentially expressed proteins (DEPs) between FSS and FMS were identified and analyzed. Further research on DEPs' functions in schistosome sexual maturation and reproductive development might provide theoretical bases to explore female maturation and spawning.
Collapse
Affiliation(s)
- Xiaochun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China; College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hongbin Qiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Fanglin Qin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China; College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guifeng Cheng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Shaopeng Gu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China.
| |
Collapse
|
8
|
Li X, Cheng G, Qin F, Liu J, Li H, Jin Y. Function of the lesswright (lwr) gene in the growth, development, and reproduction of Schistosoma japonicum. Vet Parasitol 2019; 272:31-39. [PMID: 31395202 DOI: 10.1016/j.vetpar.2019.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023]
Abstract
The lesswright (lwr) gene and its products are essential molecules in mitosis, DNA repair, and embryo formation in many eukaryotes. In this study, immunohistochemical analysis revealed that the Lwr protein was located in the internal tissues and the surface layer of the adult Schistosoma japonicum (Sj) worms. The mRNA expression levels of SjLwr at different points were evaluated by quantitative real-time RT-PCR. The expression of SjLwr peaked at 14 days and then decreased thereafter. SjLwr expression was relatively more stable in male worms than in female worms. The functions of SjLwr were explored by siRNA-based gene silencing with a simple soaking method. The results showed that knockdown of the SjLwr gene impaired the growth and development of S. japonicum in mice, as well as survival, morphology, reproductive capacity, and egg vitality. These observations imply that SjLwr presents a novel target for the development of immuno- and/or small molecule-based therapeutics for the control and treatment of schistosome infections.
Collapse
Affiliation(s)
- Xiaochun Li
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guifeng Cheng
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Fanglin Qin
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jinming Liu
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Li
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
9
|
Wrestling with Chromosomes: The Roles of SUMO During Meiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:185-196. [PMID: 28197913 DOI: 10.1007/978-3-319-50044-7_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Meiosis is a specialized form of cell division required for the formation of haploid gametes and therefore is essential for successful sexual reproduction. Various steps are exquisitely coordinated to ensure accurate chromosome segregation during meiosis, thereby promoting the formation of haploid gametes from diploid cells. Recent studies are demonstrating that an important form of regulation during meiosis is exerted by the post-translational protein modification known as sumoylation. Here, we review and discuss the various critical steps of meiosis in which SUMO-mediated regulation has been implicated thus far. These include the maintenance of meiotic centromeric heterochromatin , meiotic DNA double-strand break repair and homologous recombination, centromeric coupling, and the assembly of a proteinaceous scaffold between homologous chromosomes known as the synaptonemal complex.
Collapse
|
10
|
Lv X, Pan C, Zhang Z, Xia Y, Chen H, Zhang S, Guo T, Han H, Song H, Zhang L, Zhao Y. SUMO regulates somatic cyst stem cells maintenance and directly targets hedgehog pathway in adult Drosophila testis. Development 2016; 143:1655-62. [DOI: 10.1242/dev.130773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/16/2016] [Indexed: 01/12/2023]
Abstract
SUMO (Small ubiquitin-related modifier) modification (SUMOylation) is a highly dynamic post-translational modification (PTM) playing important roles in tissue development and disease progression. However, its function in adult stem cell maintenance is largely unknown. Here we report the function of SUMOylation in somatic cyst stem cells (CySCs) self-renewal in adult Drosophila testis. The SUMO pathway cell-autonomously regulates CySCs maintenance. Reduction of SUMOylation promotes premature differentiation of CySCs and impedes the proliferation of CySCs, which finally reduce the number of CySCs. Consistently, CySC clones carrying mutation of the SUMO conjugating enzyme are rapidly lost. Furthermore, inhibition of SUMO pathway phenocopies the disruption of Hedgehog (Hh) pathway, and can block the promoted proliferation of CySCs by Hh activation. Importantly, SUMO pathway directly regulates the SUMOylation of Hh pathway transcriptional factor, Cubitus interruptus (Ci), which is required for promoting CySCs proliferation. Thus, we conclude that SUMO directly targets Hh pathway and regulates CySCs maintenance in adult Drosophila testis.
Collapse
Affiliation(s)
- Xiangdong Lv
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Chenyu Pan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Zhao Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Yuanxin Xia
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Hao Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Shuo Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Tong Guo
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Hui Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Haiyun Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of sciences, Shanghai 200031, P.R. China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, P.R. China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, P.R. China
| |
Collapse
|
11
|
Regulation of germ cell function by SUMOylation. Cell Tissue Res 2015; 363:47-55. [PMID: 26374733 DOI: 10.1007/s00441-015-2286-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/11/2015] [Indexed: 01/30/2023]
Abstract
Oogenesis and spermatogenesis are tightly regulated complex processes that are critical for fertility. Germ cells undergo meiosis to generate haploid cells necessary for reproduction. Errors in meiosis, including the generation of chromosomal abnormalities, can result in reproductive defects and infertility. Meiotic proteins are regulated by post-translational modifications including SUMOylation, the covalent attachment of small ubiquitin-like modifier (SUMO) proteins. Here, we review the role of SUMO proteins in controlling germ cell development and maturation based on recent findings from mouse models. Several studies have characterized the localization of SUMO proteins in male and female germ cells. However, a deeper understanding of how SUMOylation regulates proteins with essential roles in oogenesis and spermatogenesis will provide useful insight into the underlying mechanisms of germ cell development and fertility.
Collapse
|
12
|
Yuan YF, Zhai R, Liu XM, Khan HA, Zhen YH, Huo LJ. SUMO-1 plays crucial roles for spindle organization, chromosome congression, and chromosome segregation during mouse oocyte meiotic maturation. Mol Reprod Dev 2014; 81:712-24. [PMID: 25123474 DOI: 10.1002/mrd.22339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/29/2014] [Indexed: 12/28/2022]
Abstract
Small ubiquitin-related modifier-1 (SUMO-1)-dependent modifications of many target proteins are involved in a range of intracellular processes. Previous studies reported the localization of SUMO-1 during oocyte meiosis, and that overexpression of Sentrin/SUMO-specific protease 2 (SENP2), a de-SUMOylation protease, altered SUMO-modified proteins, and caused defects in metaphase-II spindle organization. In this study, we detailed the consequences of SUMO-1-mediated SUMOylation by either inhibition of SUMO-1 or UBC9 with a specific antibody or their depletion by specific siRNA microinjection. Inhibition or depletion of SUMO-1 or UBC9 in germinal vesicle (GV)-stage oocytes decreased the rates of germinal vesicle breakdown and first polar body (PB1) extrusion; caused defective spindle organization and misaligned chromosomes; and led to aneuploidy in matured oocytes. Stage-specific antibody injections suggested that SUMO-1 functions before anaphase I during PB1 extrusion. Further experiments indicated that the localization of γ-tubulin was disordered after SUMO-1 inhibition, and that SUMO-1 depletion disrupted kinetochore-microtubule attachment at metaphase I. Moreover, SUMO-1 inhibition resulted in less-condensed chromosomes, altered localization of REC8 and securin, and reduced BUBR1 accumulation at the centromere. On the other hand, overexpression of SUMO-1 in GV-stage oocytes had no significant effect on oocyte maturation. In conclusion, our results implied that SUMO-1 plays crucial roles during oocyte meiotic maturation, specifically involving spindle assembly and chromosome behavior, by regulating kinetochore-microtubule attachment and the localization of γ-tubulin, BUBR1, REC8, and securin.
Collapse
Affiliation(s)
- Yi-Feng Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Landscape of protein-protein interactions in Drosophila immune deficiency signaling during bacterial challenge. Proc Natl Acad Sci U S A 2013; 110:10717-22. [PMID: 23749869 DOI: 10.1073/pnas.1304380110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Drosophila defense against pathogens largely relies on the activation of two signaling pathways: immune deficiency (IMD) and Toll. The IMD pathway is triggered mainly by Gram-negative bacteria, whereas the Toll pathway responds predominantly to Gram-positive bacteria and fungi. The activation of these pathways leads to the rapid induction of numerous NF-κB-induced immune response genes, including antimicrobial peptide genes. The IMD pathway shows significant similarities with the TNF receptor pathway. Recent evidence indicates that the IMD pathway is also activated in response to various noninfectious stimuli (i.e., inflammatory-like reactions). To gain a better understanding of the molecular machinery underlying the pleiotropic functions of this pathway, we first performed a comprehensive proteomics analysis to identify the proteins interacting with the 11 canonical members of the pathway initially identified by genetic studies. We identified 369 interacting proteins (corresponding to 291 genes) in heat-killed Escherichia coli-stimulated Drosophila S2 cells, 92% of which have human orthologs. A comparative analysis of gene ontology from fly or human gene annotation databases points to four significant common categories: (i) the NuA4, nucleosome acetyltransferase of H4, histone acetyltransferase complex, (ii) the switching defective/sucrose nonfermenting-type chromatin remodeling complex, (iii) transcription coactivator activity, and (iv) translation factor activity. Here we demonstrate that sumoylation of the IκB kinase homolog immune response-deficient 5 plays an important role in the induction of antimicrobial peptide genes through a highly conserved sumoylation consensus site during bacterial challenge. Taken together, the proteomics data presented here provide a unique avenue for a comparative functional analysis of proteins involved in innate immune reactions in flies and mammals.
Collapse
|
14
|
Monribot-Villanueva J, Juárez-Uribe RA, Palomera-Sánchez Z, Gutiérrez-Aguiar L, Zurita M, Kennison JA, Vázquez M. TnaA, an SP-RING protein, interacts with Osa, a subunit of the chromatin remodeling complex BRAHMA and with the SUMOylation pathway in Drosophila melanogaster. PLoS One 2013; 8:e62251. [PMID: 23620817 PMCID: PMC3631182 DOI: 10.1371/journal.pone.0062251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
Tonalli A (TnaA) is a Drosophila melanogaster protein with an XSPRING domain. The XSPRING domain harbors an SP-RING zinc-finger, which is characteristic of proteins with SUMO E3 ligase activity. TnaA is required for homeotic gene expression and is presumably involved in the SUMOylation pathway. Here we analyzed some aspects of the TnaA location in embryo and larval stages and its genetic and biochemical interaction with SUMOylation pathway proteins. We describe that there are at least two TnaA proteins (TnaA130 and TnaA123) differentially expressed throughout development. We show that TnaA is chromatin-associated at discrete sites on polytene salivary gland chromosomes of third instar larvae and that tna mutant individuals do not survive to adulthood, with most dying as third instar larvae or pupae. The tna mutants that ultimately die as third instar larvae have an extended life span of at least 4 to 15 days as other SUMOylation pathway mutants. We show that TnaA physically interacts with the SUMO E2 conjugating enzyme Ubc9, and with the BRM complex subunit Osa. Furthermore, we show that tna and osa interact genetically with SUMOylation pathway components and individuals carrying mutations for these genes show a phenotype that can be the consequence of misexpression of developmental-related genes.
Collapse
Affiliation(s)
- Juan Monribot-Villanueva
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - R. Alejandro Juárez-Uribe
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Zoraya Palomera-Sánchez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lucía Gutiérrez-Aguiar
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Zurita
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - James A. Kennison
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martha Vázquez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
15
|
Hu Q, Chen S. Cloning, genomic structure and expression analysis of ubc9 in the course of development in the half-smooth tongue sole (Cynoglossus semilaevis). Comp Biochem Physiol B Biochem Mol Biol 2013; 165:181-8. [PMID: 23507627 DOI: 10.1016/j.cbpb.2013.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 01/20/2023]
Abstract
The small ubiquitin-like modifier (SUMO) pathway is an essential biological process in eukaryote, and Ubc9 is an important E2 conjugating enzyme (UBE2) for SUMO pathway and plays a critical role in cellular differentiation, development and sex modification in various species. However, the relationship between Ubc9 and sex modification and development in fish remains elusive. To elucidate the impact of Ubc9 on sex modification and development, the full length of the cDNA and genomic sequence was cloned from half-smooth tongue sole, Cynoglossus semilaevis. Real-time quantitative RT-PCR demonstrated that ubc9 was ubiquitously expressed in different tissues, and the expression levels varied in the different stages of embryonic and gonadal development. In addition, the expression level was significantly higher in the temperature-treated females than the normal females and males. Moreover, the PET-32-Ubc9 plasmid was constructed and the recombinant protein was expressed in Escherichia coli. Follistatin gene expression was initially up-regulated and FSE genes (cyp19a1a, ctnnb1, foxl2) were initially down-regulated after the injection of Ubc9 protein, prior to 96 h eventually recovered to normal levels. Taken together, the results show that Ubc9 is involved in embryogenesis, gametogenesis and sex modification, and exerts an effect on gene expression.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | | |
Collapse
|
16
|
Davidson CJ, Guthrie EE, Lipsick JS. Duplication and maintenance of the Myb genes of vertebrate animals. Biol Open 2012; 2:101-10. [PMID: 23431116 PMCID: PMC3575645 DOI: 10.1242/bio.20123152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022] Open
Abstract
Gene duplication is an important means of generating new genes. The major mechanisms by which duplicated genes are preserved in the face of purifying selection are thought to be neofunctionalization, subfunctionalization, and increased gene dosage. However, very few duplicated gene families in vertebrate species have been analyzed by functional tests in vivo. We have therefore examined the three vertebrate Myb genes (c-Myb, A-Myb, and B-Myb) by cytogenetic map analysis, by sequence analysis, and by ectopic expression in Drosophila. We provide evidence that the vertebrate Myb genes arose by two rounds of regional genomic duplication. We found that ubiquitous expression of c-Myb and A-Myb, but not of B-Myb or Drosophila Myb, was lethal in Drosophila. Expression of any of these genes during early larval eye development was well tolerated. However, expression of c-Myb and A-Myb, but not of B-Myb or Drosophila Myb, during late larval eye development caused drastic alterations in adult eye morphology. Mosaic analysis implied that this eye phenotype was cell-autonomous. Interestingly, some of the eye phenotypes caused by the retroviral v-Myb oncogene and the normal c-Myb proto-oncogene from which v-Myb arose were quite distinct. Finally, we found that post-translational modifications of c-Myb by the GSK-3 protein kinase and by the Ubc9 SUMO-conjugating enzyme that normally occur in vertebrate cells can modify the eye phenotype caused by c-Myb in Drosophila. These results support a model in which the three Myb genes of vertebrates arose by two sequential duplications. The first duplication was followed by a subfunctionalization of gene expression, then neofunctionalization of protein function to yield a c/A-Myb progenitor. The duplication of this progenitor was followed by subfunctionalization of gene expression to give rise to tissue-specific c-Myb and A-Myb genes.
Collapse
Affiliation(s)
- Colin J Davidson
- Departments of Pathology, Genetics, and Biology, Stanford University , Stanford, CA 94305-5324 , USA
| | | | | |
Collapse
|
17
|
Smith M, Turki-Judeh W, Courey AJ. SUMOylation in Drosophila Development. Biomolecules 2012; 2:331-49. [PMID: 24970141 PMCID: PMC4030835 DOI: 10.3390/biom2030331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 11/29/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO), an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a direct role in targeting proteins for proteasomal degradation. However, like ubiquitin, SUMO does modulate protein function in a variety of other ways. This includes effects on protein conformation, subcellular localization, and protein–protein interactions. Significant insight into the in vivo role of SUMOylation has been provided by studies in Drosophila that combine genetic manipulation, proteomic, and biochemical analysis. Such studies have revealed that the SUMO conjugation pathway regulates a wide variety of critical cellular and developmental processes, including chromatin/chromosome function, eggshell patterning, embryonic pattern formation, metamorphosis, larval and pupal development, neurogenesis, development of the innate immune system, and apoptosis. This review discusses our current understanding of the diverse roles for SUMO in Drosophila development.
Collapse
Affiliation(s)
- Matthew Smith
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA.
| | - Wiam Turki-Judeh
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA.
| | - Albert J Courey
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
18
|
Kalamarz ME, Paddibhatla I, Nadar C, Govind S. Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in Drosophila melanogaster larvae. Biol Open 2012; 1:161-72. [PMID: 23213407 PMCID: PMC3507282 DOI: 10.1242/bio.2012043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
How cell-intrinsic regulation of the cell cycle and the extrinsic influence of the niche converge to provide proliferative quiescence, safeguard tissue integrity, and provide avenues to stop stem cells from giving rise to tumors is a major challenge in gene therapy and tissue engineering. We explore this question in sumoylation-deficient mutants of Drosophila. In wild type third instar larval lymph glands, a group of hematopoietic stem/progenitor cells acquires quiescence; a multicellular niche supports their undifferentiated state. However, how proliferative quiescence is instilled in this population is not understood. We show that Ubc9 protein is nuclear in this population. Loss of the SUMO-activating E1 enzyme, Aos1/Uba2, the conjugating E2 enzyme, Ubc9, or the E3 SUMO ligase, PIAS, results in a failure of progenitors to quiesce; progenitors become hyperplastic, misdifferentiate, and develop into microtumors that eventually detach from the dorsal vessel. Significantly, dysplasia and lethality of Ubc9 mutants are rescued when Ubc9(wt) is provided specifically in the progenitor populations, but not when it is provided in the niche or in the differentiated cortex. While normal progenitors express high levels of the Drosophila cyclin-dependent kinase inhibitor p21 homolog, Dacapo, the corresponding overgrown mutant population exhibits a marked reduction in Dacapo. Forced expression of either Dacapo or human p21 in progenitors shrinks this population. The selective expression of either protein in mutant progenitor cells, but not in other hematopoietic populations, limits overgrowth, blocks tumorogenesis, and restores organ integrity. We discuss an essential and complex role for sumoylation in preserving the hematopoietic progenitor states for stress response and in the context of normal development of the fly.
Collapse
Affiliation(s)
- Marta E Kalamarz
- Biology Department, The City College of the City University of New York , 138th Street and Convent Avenue, New York, NY 10031 , USA ; The Graduate Center of the City University of New York , 365 Fifth Avenue, New York, NY 10016 , USA
| | | | | | | |
Collapse
|
19
|
Golovnin A, Volkov I, Georgiev P. SUMO conjugation is required for the assembly of Drosophila Su(Hw) and Mod(mdg4) into insulator bodies that facilitate insulator complex formation. J Cell Sci 2012; 125:2064-74. [PMID: 22375064 DOI: 10.1242/jcs.100172] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chromatin insulators are special regulatory elements involved in modulation of enhancer-promoter interactions. The best studied insulators in Drosophila require Suppressor of Hairy Wing [Su(Hw)], Modifier of mdg4 [Mod(mdg4)] and centrosomal 190 kDa (CP190) proteins to be functional. These insulator proteins are colocalized in nuclear speckles named insulator bodies. Here, we demonstrate that post-translational modification of insulator proteins by small ubiquitin-like modifier (SUMO) and intact CP190 protein is crucial for insulator body formation. Inactivation of SUMO binding sites in Mod(mdg4)-67.2 leads to the inability of the mutant protein and Su(Hw) to be assembled into insulator bodies. In vivo functional tests show that a smaller amount of intact Mod(mdg4)-67.2, compared with the mutant protein, is required to restore the normal activity of the Su(Hw) insulator. However, high expression of mutant Mod(mdg4)-67.2 completely rescues the insulator activity, indicating that sumoylation is not necessary for enhancer blocking. These results suggest that insulator bodies function as a depot of sumoylated proteins that are involved in insulation and can facilitate insulator complex formation, but are nonessential for insulator action.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of Molecular Genetics of Drosophila, Russian Academy of Sciences, Moscow 119334, Russia.
| | | | | |
Collapse
|
20
|
Lomelí H, Vázquez M. Emerging roles of the SUMO pathway in development. Cell Mol Life Sci 2011; 68:4045-64. [PMID: 21892772 PMCID: PMC11115048 DOI: 10.1007/s00018-011-0792-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 01/01/2023]
Abstract
Sumoylation is a reversible post-translational modification that targets a variety of proteins mainly within the nucleus, but also in the plasma membrane and cytoplasm of the cell. It controls diverse cellular mechanisms such as subcellular localization, protein-protein interactions, or transcription factor activity. In recent years, the use of several developmental model systems has unraveled many critical functions for the sumoylation system in the early life of diverse species. In particular, detailed analyses of mutant organisms in both the components of the SUMO pathway and their targets have established the importance of the SUMO system in early developmental processes, such as cell division, cell lineage commitment, specification, and/or differentiation. In addition, an increasing number of developmental proteins, including transcription factors and epigenetic regulators, have been identified as sumoylation substrates. Sumoylation acts on these targets through various mechanisms. For example, this modification has been involved in converting a transcription factor from an activator to a repressor or in regulating the localization and/or stability of numerous transcription factors. This review will summarize current information on the function of sumoylation in embryonic development in different species from yeast to mammals.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | |
Collapse
|
21
|
Lee FY, Faivre EJ, Suzawa M, Lontok E, Ebert D, Cai F, Belsham DD, Ingraham HA. Eliminating SF-1 (NR5A1) sumoylation in vivo results in ectopic hedgehog signaling and disruption of endocrine development. Dev Cell 2011; 21:315-27. [PMID: 21820362 DOI: 10.1016/j.devcel.2011.06.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/23/2011] [Accepted: 06/24/2011] [Indexed: 11/16/2022]
Abstract
Sumoylation is generally considered a repressive mark for many transcription factors. However, the in vivo importance of sumoylation for any given substrate remains unclear and is questionable because the extent of sumoylation appears exceedingly low for most substrates. Here, we permanently eliminated SF-1/NR5A1 sumoylation in mice (Sf-1(K119R, K194R, or 2KR)) and found that Sf-1(2KR/2KR) mice failed to phenocopy a simple gain of SF-1 function or show elevated levels of well-established SF-1 target genes. Instead, mutant mice exhibited marked endocrine abnormalities and changes in cell fate that reflected an inappropriate activation of hedgehog signaling and other potential SUMO-sensitive targets. Furthermore, unsumoylatable SF-1 mutants activated Shh and exhibited preferential recruitment to Shh genomic elements in cells. We conclude that the sumoylation cycle greatly expands the functional capacity of transcription factors such as SF-1 and is leveraged during development to achieve cell-type-specific gene expression in multicellular organisms.
Collapse
Affiliation(s)
- Florence Y Lee
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang ZB, Ou XH, Tong JS, Li S, Wei L, Ouyang YC, Hou Y, Schatten H, Sun QY. The SUMO pathway functions in mouse oocyte maturation. Cell Cycle 2011; 9:2640-6. [PMID: 20543581 DOI: 10.4161/cc.9.13.12120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sumoylation is an important post-translational modification in which SUMO (small ubiquitin-related modifier) proteins are bonded covalently to their substrates. Studies on the roles of sumoylation in cell cycle regulation have been emerging in both mitosis from yeast to mammals and meiosis in budding yeast, but the functions of sumoylation in mammalian meiosis, especially in oocyte meiotic maturation are not well known. Here, we examined the localization and expression of SUMO-1 and SUMO-2/3, the two basic proteins in the sumoylation pathway and investigated their roles through over-expression of Senp2 during mouse oocyte maturation. Immunofluorescent staining revealed differential patterns of SUMO-1 and SUMO-2/3 localization: SUMO-1 was localized to the spindle poles in prometaphase I, MI and MII stages, around the separating homologues in anaphase I and telophase I stages of first meiosis, while SUMO-2/3 was mainly concentrated near centromeres during mouse oocyte maturation. Immunoblot analysis uncovered the different expression profiles of SUMO-1 and SUMO-2/3 modified proteins during mouse oocyte maturation. Over-expression of Senp2, a SUMO-specific isopeptidase, caused changes of SUMO-modified proteins and led to defects in MII spindle organization in mature eggs. These results suggest that the SUMO pathway may play an indispensable role during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Terada K, Furukawa T. Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis. Dev Biol 2010; 347:180-94. [PMID: 20801111 DOI: 10.1016/j.ydbio.2010.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/07/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Precisely controlled progenitor proliferation is essential for normal development. However, molecular mechanisms, which control the correct timing of cell cycle withdrawal during development, have been poorly understood. We show here that ubc9, a sumo-conjugating enzyme, controls the cell cycle exit of retinal progenitors. We found that ubc9 is highly expressed in retinal progenitors and stem cells in Xenopus embryos. Ubc9 physically and functionally associates with Xenopus hmgb3, which is required for retinal cell proliferation, and prolonged expression of ubc9 and hmgb3 results in suppression of the cell cycle exit of retinal progenitors in a sumoylation-dependent manner. Overexpression of ubc9 and hmgb3 decreased expression of the cell-cycle inhibitor p27(Xic1). Furthermore, progenitor proliferation is regulated, at least in part, by sumoylation of transcription factor Sp1. These results suggest a significant role of sumoylation for cell cycle regulation in retinal progenitors.
Collapse
Affiliation(s)
- Koji Terada
- Department of Developmental Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
24
|
Sánchez J, Talamillo A, Lopitz-Otsoa F, Pérez C, Hjerpe R, Sutherland JD, Herboso L, Rodríguez MS, Barrio R. Sumoylation modulates the activity of Spalt-like proteins during wing development in Drosophila. J Biol Chem 2010; 285:25841-9. [PMID: 20562097 DOI: 10.1074/jbc.m110.124024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Spalt-like family of zinc finger transcription factors is conserved throughout evolution and is involved in fundamental processes during development and during embryonic stem cell maintenance. Although human SALL1 is modified by SUMO-1 in vitro, it is not known whether this post-translational modification plays a role in regulating the activity of this family of transcription factors. Here, we show that the Drosophila Spalt transcription factors are modified by sumoylation. This modification influences their nuclear localization and capacity to induce vein formation through the regulation of target genes during wing development. Furthermore, spalt genes interact genetically with the sumoylation machinery to repress vein formation in intervein regions and to attain the wing final size. Our results suggest a new level of regulation of Sall activity in vivo during animal development through post-translational modification by sumoylation. The evolutionary conservation of this family of transcription factors suggests a functional role for sumoylation in vertebrate Sall members.
Collapse
Affiliation(s)
- Jonatan Sánchez
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reo E, Seum C, Spierer P, Bontron S. Sumoylation of Drosophila SU(VAR)3-7 is required for its heterochromatic function. Nucleic Acids Res 2010; 38:4254-62. [PMID: 20299342 PMCID: PMC2910048 DOI: 10.1093/nar/gkq168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Drosophila, SU(VAR)3-7 is an essential heterochromatin component. It is required for proper chromatin condensation, and changing its dose modifies position-effect variegation. Sumoylation is a post-translational modification shown to play a role in diverse biological processes. Here, we demonstrate that sumoylation is essential for proper heterochromatin function in Drosophila through modification of SU(VAR)3-7. Indeed, SU(VAR)3-7 is sumoylated at lysine K839; this modification is required for localization of SU(VAR)3-7 at pericentric heterochromatin, chromosome 4, and telomeres. In addition, sumoylation of SU(VAR)3-7 is a prerequisite for its ability to enhance position-effect variegation. Thus, these results show that the heterochromatic function of SU(VAR)3-7 depends on its own sumoylation, and unveil a role for sumoylation in Drosophila heterochromatin.
Collapse
Affiliation(s)
- Emanuela Reo
- Department of Zoology and Animal Biology, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
26
|
Abstract
SUMOylation, a reversible process used as a ‘fine-tuning’ mechanism to regulate the role of multiple proteins, is conserved throughout evolution. This post-translational modification affects several cellular processes by the modulation of subcellular localization, activity or stability of a variety of substrates. A growing number of proteins have been identified as targets for SUMOylation, although, for many of them, the role of SUMO conjugation on their function is unknown. The use of model systems might facilitate the study of SUMOylation implications in vivo. In the present paper, we have compiled what is known about SUMOylation in Drosophila melanogaster, where the use of genetics provides new insights on SUMOylation's biological roles.
Collapse
|
27
|
Miles WO, Jaffray E, Campbell SG, Takeda S, Bayston LJ, Basu SP, Li M, Raftery LA, Ashe MP, Hay RT, Ashe HL. Medea SUMOylation restricts the signaling range of the Dpp morphogen in the Drosophila embryo. Genes Dev 2008; 22:2578-90. [PMID: 18794353 PMCID: PMC2546696 DOI: 10.1101/gad.494808] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 07/08/2008] [Indexed: 12/17/2022]
Abstract
Morphogens are secreted signaling molecules that form concentration gradients and control cell fate in developing tissues. During development, it is essential that morphogen range is strictly regulated in order for correct cell type specification to occur. One of the best characterized morphogens is Drosophila Decapentaplegic (Dpp), a BMP signaling molecule that patterns the dorsal ectoderm of the embryo by activating the Mad and Medea (Med) transcription factors. We demonstrate that there is a spatial and temporal expansion of the expression patterns of Dpp target genes in SUMO pathway mutant embryos. We identify Med as the primary SUMOylation target in the Dpp pathway, and show that failure to SUMOylate Med leads to the increased Dpp signaling range observed in the SUMO pathway mutant embryos. Med is SUMO modified in the nucleus, and we provide evidence that SUMOylation triggers Med nuclear export. Hence, Med SUMOylation provides a mechanism by which nuclei can continue to monitor the presence of extracellular Dpp signal to activate target gene expression for an appropriate duration. Overall, our results identify an unusual strategy for regulating morphogen range that, rather than impacting on the morphogen itself, targets an intracellular transducer.
Collapse
Affiliation(s)
- Wayne O. Miles
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Ellis Jaffray
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Susan G. Campbell
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Shugaku Takeda
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Laura J. Bayston
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Sanjay P. Basu
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Mingfa Li
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02109, USA
| | - Laurel A. Raftery
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02109, USA
| | - Mark P. Ashe
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Ronald T. Hay
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Hilary L. Ashe
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
28
|
Watts FZ, Skilton A, Ho JCY, Boyd LK, Trickey MAM, Gardner L, Ogi FX, Outwin EA. The role of Schizosaccharomyces pombe SUMO ligases in genome stability. Biochem Soc Trans 2007; 35:1379-84. [PMID: 18031226 DOI: 10.1042/bst0351379] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SUMOylation is a post-translational modification that affects a large number of proteins, many of which are nuclear. While the role of SUMOylation is beginning to be elucidated, it is clear that understanding the mechanisms that regulate the process is likely to be important. Control of the levels of SUMOylation is brought about through a balance of conjugating and deconjugating activities, i.e. of SUMO (small ubiquitin-related modifier) conjugators and ligases versus SUMO proteases. Although conjugation of SUMO to proteins can occur in the absence of a SUMO ligase, it is apparent that SUMO ligases facilitate the SUMOylation of specific subsets of proteins. Two SUMO ligases in Schizosaccharomyces pombe, Pli1 and Nse2, have been identified, both of which have roles in genome stability. We report here on a comparison between the properties of the two proteins and discuss potential roles for the proteins.
Collapse
Affiliation(s)
- F Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sakaguchi K, Koshiyama A, Iwabata K. Meiosis and small ubiquitin-related modifier (SUMO)-conjugating enzyme, Ubc9. FEBS J 2007; 274:3519-3531. [PMID: 17608723 DOI: 10.1111/j.1742-4658.2007.05905.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we describe the role of a small ubiquitin-like protein modifier (SUMO)-conjugating protein, Ubc9, in synaptonemal complex formation during meiosis in a basidiomycete, Coprinus cinereus. Because its meiotic cell cycle is long and naturally synchronous, it is suitable for molecular biological, biochemical and genetic studies of meiotic prophase events. In yeast two-hybrid screening using the meiotic-specific cDNA library of C. cinereus, we found that the meiotic RecA homolog CcLim15 interacted with CcUbc9, CcTopII and CcPCNA. Moreover, both TopII and PCNA homologs were known as Ubc9 interactors and the targets of sumoylation. Immunocytochemistry demonstrates that CcUbc9, CcTopII and CcPCNA localize with CcLim15 in meiotic nuclei during leptotene to zygotene when synaptonemal complex is formed and when homologous chromosomes pair. We discuss the relationships between Lim15/Dmc1 (CcLim15), TopII (CcTopII), PCNA (CcPCNA) and CcUbc9, and subsequently, the role of sumoylation in the stages. We speculate that CcLim15 and CcTopII work in cohesion between homologous chromatins initially and then, in the process of the zygotene events, CcUbc9 works with factors including CcLim15 and CcTopII as an inhibitor of ubiquitin-mediated degradation and as a metabolic switch in the meiotic prophase cell cycle. After CcLim15-CcTopII dissociation, CcLim15 remains on the zygotene DNA and recruits CcUbc9, Rad54B, CcUbc9, Swi5-Sfr1, CcUbc9 and then CcPCNA in rotation on the C-terminus. Finally during zygotene, CcPCNA replaces CcLim15 on the DNA and the free-CcLim15 is probably ubiquitinated and disappears. CcPCNA may recruit the polymerase. The idea that CcUbc9 intervenes in every step by protecting CcLim15 and by switching several factors at the C-terminus of CcLim15 is likely. At the boundary of the zygotene and pachytene stages, CcPCNA would be sumoylated. CcUbc9 may also be involved with CcPCNA in the switch from the replicative polymerase being recruited at zygotene to the repair-type DNA polymerases being recruited at pachytene.
Collapse
Affiliation(s)
- Kengo Sakaguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Akiyo Koshiyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Kazuki Iwabata
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
30
|
Abstract
SUMO modification (sumoylation) plays important roles in nucleo-cytoplasmic transport, maintenance of sub-nuclear architecture, the regulation of gene expression and in DNA replication, repair and recombination. Here we review recent evidence for SUMO's role in protecting genomic integrity at both the chromosomal and the DNA level. Furthermore, the involvement of sumoylation and of specific SUMO targets in cancer is discussed.
Collapse
Affiliation(s)
- J S Seeler
- Nuclear Organisation and Oncogenesis Unit, INSERM U.579, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France.
| | | | | | | |
Collapse
|
31
|
Yamaguchi YL, Tanaka SS, Yasuda K, Matsui Y, Tam PPL. Stage-specific Importin13 activity influences meiosis of germ cells in the mouse. Dev Biol 2006; 297:350-60. [PMID: 16908015 DOI: 10.1016/j.ydbio.2006.04.465] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/11/2006] [Accepted: 04/24/2006] [Indexed: 02/02/2023]
Abstract
Importin-mediated transport of cargoes is known to be a key mechanism for nucleo-cytoplasmic trafficking of molecules. Ipo13, which is a member of Importin-beta gene family, encodes two transcripts by utilizing different transcription start sites. In the mouse, the full-length transcript (L-Ipo13) is expressed in the primordial germ cells in the embryo and is later expressed predominantly at the pachytene phase of meiosis in both male and female germ cells. The shorter transcript (TS-Ipo13) is only expressed in the germ cells in the adult testis. Activity of L-Ipo13, but not TS-Ipo13, mediates the nuclear accumulation of ubiquitin-conjugating enzyme 9 (UBC9), a cargo of human IPO13. This finding is consistent with the progressive accumulation of UBC9 in the nucleus of the meiotic germ cells after the onset of L-Ipo13 expression. Following siRNA knockdown of IPO13 activity in the fetal ovary, fewer germ cells are found to progress to the late-pachytene stage of meiosis and nuclear accumulation of UBC9 is reduced. Our findings strongly implicate a stage-specific role of IPO13 in nuclear-cytoplasmic translocation of cargoes that accompanies meiotic differentiation of the mouse germ cells.
Collapse
Affiliation(s)
- Yasuka L Yamaguchi
- Embryology Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville, NSW, 2145, Australia
| | | | | | | | | |
Collapse
|
32
|
Koshiyama A, Hamada FN, Namekawa SH, Iwabata K, Sugawara H, Sakamoto A, Ishizaki T, Sakaguchi K. Sumoylation of a meiosis-specific RecA homolog, Lim15/Dmc1, via interaction with the small ubiquitin-related modifier (SUMO)-conjugating enzyme Ubc9. FEBS J 2006; 273:4003-12. [PMID: 16879611 DOI: 10.1111/j.1742-4658.2006.05403.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sumoylation is a post-translational modification system that covalently attaches the small ubiquitin-related modifier (SUMO) to target proteins. Ubc9 is required as the E2-type enzyme for SUMO-1 conjugation to targets. Here, we show that Ubc9 interacts with the meiosis-specific RecA homolog, Lim15/Dmc1 in the basidiomycete Coprinus cinereus (CcLim15), and mediates sumoylation of CcLim15 during meiosis. In vitro protein-protein interaction assays revealed that CcUbc9 interacts with CcLim15 and binds to the C-terminus (amino acids 105-347) of CcLim15, which includes the ATPase domain. Immunocytochemistry demonstrates that CcUbc9 and CcLim15 colocalize in the nuclei from the leptotene stage to the early pachytene stage during meiotic prophase I. Coimmunoprecipitation experiments indicate that CcUbc9 interacts with CcLim15 in vivo during meiotic prophase I. Furthermore, we show that CcLim15 is a target protein of sumoylation both in vivo and in vitro, and identify the C-terminus (amino acids 105-347) of CcLim15 as the site of sumoylation in vitro. These results suggest that sumoylation is a candidate modulator of meiotic recombination via interaction between Ubc9 and Lim15/Dmc1.
Collapse
Affiliation(s)
- Akiyo Koshiyama
- Department of Applied Biological Science, Tokyo University of Science, Chiba-ken, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Ubiquitin-conjugating enzyme (Ubc9) was originally thought to be a conjugating enzyme for ubiquitylation, but was later shown to be responsible for the most recently identified type of post-translational modification, (i.e., SUMO [small ubiquitin-related modifier]) conjugation or sumoylation. Like ubiquitylation, sumoylation modulates protein function through post-translational covalent attachment to lysine residues within targeted proteins. However, although ubiquitylation can lead to protein degradation through the 26S proteasome, sumoylation does not cause protein degradation; instead, it has been implicated in other cellular processes, such as regulating the activity of transcription factors, mediating nuclear translocation of proteins or the formation of subnuclear structures. Interestingly, some proteins can be modified at the same lysine residue by both SUMO and ubiquitin, but with distinct functional consequences. Given that many proteins involved in cell-cycle regulation, proliferation, apoptosis and DNA repair are targets for sumoylation, alterations of sumoylation could ultimately have an impact on cell growth, cancer development and drug responsiveness. As Ubc9 is the sole E2-conjugating enzyme required for sumoylation, and, in particular, Ubc9 is upregulated in an increasing number of human malignancies, such as ovarian carcinoma, melanoma and lung adenocarcinoma, it is a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yin-Yuan Mo
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University, PO Box 19626, Springfield, IL 62794, USA.
| | | |
Collapse
|
34
|
Capelson M, Corces VG. SUMO conjugation attenuates the activity of the gypsy chromatin insulator. EMBO J 2006; 25:1906-14. [PMID: 16628226 PMCID: PMC1456934 DOI: 10.1038/sj.emboj.7601068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 03/08/2006] [Indexed: 02/08/2023] Open
Abstract
Chromatin insulators have been implicated in the establishment of independent gene expression domains and in the nuclear organization of chromatin. Post-translational modification of proteins by Small Ubiquitin-like Modifier (SUMO) has been reported to regulate their activity and subnuclear localization. We present evidence suggesting that two protein components of the gypsy chromatin insulator of Dorsophila melanogaster, Mod(mdg4)2.2 and CP190, are sumoylated, and that SUMO is associated with a subset of genomic insulator sites. Disruption of the SUMO conjugation pathway improves the enhancer-blocking function of a partially active insulator, indicating that SUMO modification acts to regulate negatively the activity of the gypsy insulator. Sumoylation does not affect the ability of CP190 and Mod(mdg4)2.2 to bind chromatin, but instead appears to regulate the nuclear organization of gypsy insulator complexes. The results suggest that long-range interactions of insulator proteins are inhibited by sumoylation and that the establishment of chromatin domains can be regulated by SUMO conjugation.
Collapse
Affiliation(s)
- Maya Capelson
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Victor G Corces
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
35
|
Mukai M, Kitadate Y, Arita K, Shigenobu S, Kobayashi S. Expression of meiotic genes in the germline progenitors of Drosophila embryos. Gene Expr Patterns 2006; 6:256-66. [PMID: 16412701 DOI: 10.1016/j.modgep.2005.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/29/2005] [Accepted: 08/05/2005] [Indexed: 11/19/2022]
Abstract
Meiosis is one of the fundamental characteristics of germ cells. In Drosophila, genetic screens have identified many genes required for meiotic division. However, it remains elusive as to when and how these meiotic genes are activated during germline development. To obtain insights into their regulatory mechanisms, we examined the expression of 38 meiotic genes in the germline progenitors, pole cells, during embryogenesis. We found that the transcripts of 12 meiotic genes were enriched in pole cells within the embryonic gonads. Among them, bag of marbles (bam), benign gonial cell neoplasia (bgcn), deadhead (dhd), matotopetli (topi) and twine (twe) were activated only in pole cells within the gonads, whereas the transcripts from grapes (grp), Kinesin-like protein at 3A (Klp3A), pavarotti (pav), lesswright (lwr), mei-P26, Topoisomerase 2 (Top2) and out at first (oaf) were distributed ubiquitously in early embryos and then became restricted to pole cells and to a subset of somatic tissues at later embryonic stages. The remaining meiotic genes were either expressed ubiquitously in the embryos (15 genes) or were undetectable in pole cells within the gonads (11 genes). These observations suggest that pole cells have already acquired the potential to express several meiotic genes. Our data will thus provide a useful basis for analyzing how the germline acquires a potential to execute meiosis.
Collapse
Affiliation(s)
- Masanori Mukai
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
| | | | | | | | | |
Collapse
|
36
|
Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 2006; 9:769-79. [PMID: 16326389 DOI: 10.1016/j.devcel.2005.10.007] [Citation(s) in RCA: 426] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 07/21/2005] [Accepted: 10/13/2005] [Indexed: 12/19/2022]
Abstract
Covalent modification by SUMO regulates a wide range of cellular processes, including transcription, cell cycle, and chromatin dynamics. To address the biological function of the SUMO pathway in mammals, we generated mice deficient for the SUMO E2-conjugating enzyme Ubc9. Ubc9-deficient embryos die at the early postimplantation stage. In culture, Ubc9 mutant blastocysts are viable, but fail to expand after 2 days and show apoptosis of the inner cell mass. Loss of Ubc9 leads to major chromosome condensation and segregation defects. Ubc9-deficient cells also show severe defects in nuclear organization, including nuclear envelope dysmorphy and disruption of nucleoli and PML nuclear bodies. Moreover, RanGAP1 fails to accumulate at the nuclear pore complex in mutant cells that show a collapse in Ran distribution. Together, these findings reveal a major role for Ubc9, and, by implication, for the SUMO pathway, in nuclear architecture and function, chromosome segregation, and embryonic viability in mammals.
Collapse
Affiliation(s)
- Karim Nacerddine
- Unité d'Organisation Nucléaire et Oncogénèse, INSERM U 579, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chiu H, Ring BC, Sorrentino RP, Kalamarz M, Garza D, Govind S. dUbc9 negatively regulates the Toll-NF-kappa B pathways in larval hematopoiesis and drosomycin activation in Drosophila. Dev Biol 2005; 288:60-72. [PMID: 16248995 DOI: 10.1016/j.ydbio.2005.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 07/22/2005] [Accepted: 08/01/2005] [Indexed: 12/27/2022]
Abstract
Highly conserved during evolution, the enzyme Ubc9 activates the small ubiquitin-like modifier (SUMO) prior to its covalent ligation to target proteins. We have used mutations in the Drosophila Ubc9 (dUbc9) gene to understand Ubc9 functions in vivo. Loss-of-function mutations in dUbc9 cause strong mitotic defects in larval hematopoietic tissues, an increase in the number of hematopoietic precursors in the lymph gland and of mature blood cells in circulation, and an increase in the proportion of cyclin-B-positive cells. Some blood cells are polyploid and multinucleate, exhibiting signs of genomic instability. We also observe an overabundance of highly differentiated blood cells (lamellocytes), normally not found in healthy larvae. Lamellocytes in mutants are either free in circulation or recruited to form tumorous masses. Hematopoietic defects of dUbc9 mutants are strongly suppressed in the absence of the Rel/NF-kappaB-family transcription factors Dorsal and Dif or in the presence of a non-signaling allele of Cactus, the IkappaB protein in Drosophila. In the larval fat body, dUbc9 negatively regulates the expression of the antifungal peptide gene drosomycin, which is constitutively expressed in dUbc9 mutants in the absence of immune challenge. dUbc9-mediated drosomycin expression requires Dorsal and Dif. Together, our results support a role for dUbc9 in the negative regulation of the Drosophila NF-kappaB signaling pathways in larval hematopoiesis and humoral immunity.
Collapse
Affiliation(s)
- Hsiling Chiu
- Department of Functional Genomics, Novartis Institutes for Biomedical Research, 100 Technology Square Bldg. 601-Rm. 6404, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
38
|
Huang L, Ohsako S, Tanda S. The lesswright mutation activates Rel-related proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. Dev Biol 2005; 280:407-20. [PMID: 15882582 DOI: 10.1016/j.ydbio.2005.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/04/2005] [Accepted: 02/05/2005] [Indexed: 11/25/2022]
Abstract
The lesswright (lwr) gene encodes an enzyme that conjugates a small ubiquitin-related modifier (SUMO). Since the conjugation of SUMO occurs in many different proteins, a variety of cellular processes probably require lwr function. Here, we demonstrate that lwr function regulates the production of blood cells (hemocytes) in Drosophila larvae. lwr mutant larvae develop many melanotic tumors in the hemolymph at the third instar stage. The formation of melanotic tumors is due to a large number of circulating hemocytes, which is approximately 10 times higher than those of wild type. This overproduction of hemocytes is attributed to the loss of lwr function primarily in hemocytes and the lymph glands, a hematopoietic organ in Drosophila larvae. High incidences of Dorsal (Dl) protein in the nucleus were observed in lwr mutant hemocytes, and the dl and Dorsal-related immunity factor (Dif) mutations were found to be suppressors of the lwr mutation. Therefore, the lwr mutation leads to the activation of these Rel-related proteins, key transcription factors in hematopoiesis. We also demonstrate that dl and Dif play different roles in hematopoiesis. dl primarily stimulates plasmatocyte production, but Dif controls both plasmatocyte and lamellocyte production.
Collapse
Affiliation(s)
- Liang Huang
- Department of Biological Sciences and Molecular and Cell Biology Program, Ohio University, Athens, 45701, USA
| | | | | |
Collapse
|
39
|
Casso DJ, Tanda S, Biehs B, Martoglio B, Kornberg TB. Drosophila signal peptide peptidase is an essential protease for larval development. Genetics 2005; 170:139-48. [PMID: 15716490 PMCID: PMC1449732 DOI: 10.1534/genetics.104.039933] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 01/26/2005] [Indexed: 11/18/2022] Open
Abstract
We identified the Drosophila melanogaster Signal peptide peptidase gene (Spp) that encodes a multipass transmembrane aspartyl protease. Drosophila SPP is homologous to the human signal peptide peptidase (SPP) and is distantly related to the presenilins. We show that, like human SPP, Drosophila SPP can proteolyze a model signal peptide and is sensitive to an SPP protease inhibitor and that it localizes to the endoplasmic reticulum. Expression of Drosophila SPP was first apparent at germ band extension, and in late embryos it was robust in the salivary glands, proventriculus, and tracheae. Flies bearing mutations in conserved residues or carrying deficiencies for the Spp gene had defective tracheae and died as larvae.
Collapse
Affiliation(s)
- David J Casso
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
SUMO (small ubiquitin-related modifier) family proteins are not only structurally but also mechanistically related to ubiquitin in that they are posttranslationally attached to other proteins. As ubiquitin, SUMO is covalently linked to its substrates via amide (isopeptide) bonds formed between its C-terminal glycine residue and the epsilon-amino group of internal lysine residues. The enzymes involved in the reversible conjugation of SUMO are similar to those mediating the ubiquitin conjugation. Since its discovery in 1996, SUMO has received a high degree of attention because of its intriguing and essential functions, and because its substrates include a variety of biomedically important proteins such as tumor suppressor p53, c-jun, PML and huntingtin. SUMO modification appears to play important roles in diverse processes such as chromosome segregation and cell division, DNA replication and repair, nuclear protein import, protein targeting to and formation of certain subnuclear structures, and the regulation of a variety of processes including the inflammatory response in mammals and the regulation of flowering time in plants.
Collapse
Affiliation(s)
- R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany.
| |
Collapse
|
41
|
Abstract
Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzyme pathway that is analogous to the ubiquitin pathway. The functional consequences of SUMO attachment vary greatly from substrate to substrate, and in many cases are not understood at the molecular level. Frequently SUMO alters interactions of substrates with other proteins or with DNA, but SUMO can also act by blocking ubiquitin attachment sites. An unusual feature of SUMO modification is that, for most substrates, only a small fraction of the substrate is sumoylated at any given time. This review discusses our current understanding of how SUMO conjugation is controlled, as well as the roles of SUMO in a number of biological processes.
Collapse
Affiliation(s)
- Erica S Johnson
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
42
|
Rogers RS, Inselman A, Handel MA, Matunis MJ. SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 2004; 113:233-43. [PMID: 15349788 DOI: 10.1007/s00412-004-0311-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 01/26/2023]
Abstract
The XY body is a specialized chromatin territory that forms during meiotic prophase of spermatogenesis and comprises the transcriptionally repressed sex chromosomes. Remodeling of the XY chromatin is brought about by recruitment of specific proteins to the X and Y chromosomes during meiosis, and also by post-translational modifications of histones and other chromatin-associated proteins. Here, we demonstrate that SUMO, a small ubiquitin-related modifier protein that regulates a wide variety of nuclear functions in somatic cells, dramatically localizes to the XY body. SUMO was first detected in the XY body of early pachytene spermatocytes and gradually accumulated, reaching maximal levels there during the mid to late pachytene stages. Several known SUMO substrates, including PML and DAXX, were also found to accumulate in the XY body of mid to late stage pachytene spermatocytes. These same proteins localize to PML nuclear bodies of somatic interphase nuclei. Together, these findings indicate a role for SUMO modification in regulating the structure and function of the XY body and reveal molecular similarities between the XY body and PML nuclear bodies.
Collapse
Affiliation(s)
- Richard S Rogers
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
43
|
Zhang H, Smolen GA, Palmer R, Christoforou A, van den Heuvel S, Haber DA. SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2. Nat Genet 2004; 36:507-11. [PMID: 15107848 DOI: 10.1038/ng1336] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Accepted: 02/18/2004] [Indexed: 11/09/2022]
Abstract
Post-translational modification of proteins by the ubiquitin-like molecule SUMO (sumoylation) regulates their subcellular localization and affects their functional properties in vitro, but the physiological function of sumoylation in multicellular organisms is largely unknown. Here, we show that the C. elegans Polycomb group (PcG) protein SOP-2 interacts with the SUMO-conjugating enzyme UBC-9 through its evolutionarily conserved SAM domain. Sumoylation of SOP-2 is required for its localization to nuclear bodies in vivo and for its physiological repression of Hox genes. Global disruption of sumoylation phenocopies a sop-2 mutation by causing ectopic Hox gene expression and homeotic transformations. Chimeric constructs in which the SOP-2 SAM domain is replaced with that derived from fruit fly or mammalian PcG proteins, but not those in which the SOP-2 SAM domain is replaced with the SAM domains of non-PcG proteins, confer appropriate in vivo nuclear localization and Hox gene repression. These observations indicate that sumoylation of PcG proteins, modulated by their evolutionarily conserved SAM domain, is essential to their physiological repression of Hox genes.
Collapse
Affiliation(s)
- Hong Zhang
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Post-translational modification by the ubiquitin-like SUMO protein is emerging as a defining feature of eukaryotic cells. Sumoylation has crucial roles in the regulatory challenges that face nucleate cells, including the control of nucleocytoplasmic signalling and transport and the faithful replication of a large and complex genome, as well as the regulation of gene expression.
Collapse
Affiliation(s)
- Jacob-S Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U 579, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
45
|
Shih HP, Hales KG, Pringle JR, Peifer M. Identification of septin-interacting proteins and characterization of the Smt3/SUMO-conjugation system inDrosophila. J Cell Sci 2002; 115:1259-71. [PMID: 11884525 DOI: 10.1242/jcs.115.6.1259] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The septins are a family of proteins involved in cytokinesis and other aspects of cell-cortex organization. In a two-hybrid screen designed to identify septin-interacting proteins in Drosophila, we isolated several genes, including homologues (Dmuba2 and Dmubc9) of yeast UBA2 and UBC9. Yeast Uba2p and Ubc9p are involved in the activation and conjugation, respectively, of the ubiquitin-like protein Smt3p/SUMO, which becomes conjugated to a variety of proteins through this pathway. Uba2p functions together with a second protein, Aos1p. We also cloned and characterized the Drosophila homologues of AOS1(Dmaos1) and SMT3 (Dmsmt3). Our biochemical data suggest that DmUba2/DmAos1 and DmUbc9 indeed act as activating and conjugating enzymes for DmSmt3, implying that this protein-conjugation pathway is well conserved in Drosophila. Immunofluorescence studies showed that DmUba2 shuttles between the embryonic cortex and nuclei during the syncytial blastoderm stage. In older embryos, DmUba2 and DmSmt3 are both concentrated in the nuclei during interphase but dispersed throughout the cells during mitosis, with DmSmt3 also enriched on the chromosomes during mitosis. These data suggest that DmSmt3 could modify target proteins both inside and outside the nuclei. We did not observe any concentration of DmUba2 at sites where the septins are concentrated, and we could not detect DmSmt3 modification of the three Drosophila septins tested. However, we did observe DmSmt3 localization to the midbody during cytokinesis both in tissue-culture cells and in embryonic mitotic domains, suggesting that DmSmt3 modification of septins and/or other midzone proteins occurs during cytokinesis in Drosophila.
Collapse
Affiliation(s)
- Hsin-Pei Shih
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 USA
| | | | | | | |
Collapse
|
46
|
Bhaskar V, Smith M, Courey AJ. Conjugation of Smt3 to dorsal may potentiate the Drosophila immune response. Mol Cell Biol 2002; 22:492-504. [PMID: 11756545 PMCID: PMC139748 DOI: 10.1128/mcb.22.2.492-504.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of transcription factors are targets for conjugation to the ubiquitin-like protein Smt3 (also called SUMO). While many such factors exhibit enhanced activity under conditions that favor conjugation, the mechanisms behind this enhancement are largely unknown. We previously showed that the Drosophila melanogaster rel family factor, Dorsal, is a substrate for Smt3 conjugation. The conjugation machinery was found to enhance Dorsal activity at least in part by counteracting the Cactus-mediated inhibition of Dorsal nuclear localization. In this report, we show that Smt3 conjugation occurs at a single site in Dorsal (lysine 382), requires just the Smt3-activating and -conjugating enzymes, and is reversed by the deconjugating enzyme Ulp1. Mutagenesis of the acceptor lysine eliminates the response of Dorsal to the conjugation machinery and results in enhanced levels of synergistic transcriptional activation. Thus, in addition to controlling Dorsal localization, Smt3 also appears to regulate Dorsal-mediated activation, perhaps by modulating an interaction with a negatively acting nuclear factor. Finally, since Dorsal contributes to innate immunity, we examined the role of Smt3 conjugation in the immune response. We find that the conjugation machinery is required for lipopolysaccharide-induced expression of antimicrobial peptides in cultured cells and larvae, suggesting that Smt3 regulates Dorsal function in vivo.
Collapse
Affiliation(s)
- Vinay Bhaskar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
47
|
Abstract
SUMO belongs to a growing number of ubiquitin-like proteins that covalently modify their target proteins. Although some evidence supports a role of SUMO modification in regulating protein stability, most studied examples support a model by which SUMO alters the interaction properties of its targets, often affecting their subcellular localization behavior. Examination of the PML nuclear bodies, whose principal components are SUMO-modified, has revealed this modification to be essential for their structural and functional integrity. This and other examples thus support the view that SUMO regulates the stability not of individual proteins, but rather that of entire multiprotein complexes.
Collapse
Affiliation(s)
- J S Seeler
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
48
|
Lee J, Jee C, Lee JI, Lee MH, Lee MH, Koo HS, Chung CH, Ahnn J. A deubiquitinating enzyme, UCH/CeUBP130, has an essential role in the formation of a functional microtubule-organizing centre (MTOC) during early cleavage in C. elegans. Genes Cells 2001; 6:899-911. [PMID: 11683918 DOI: 10.1046/j.1365-2443.2001.00471.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Deubiquitinating enzymes generate monomeric ubiquitin in protein degradation pathways and are known to be important for the early development in many organisms. RESULTS RNA interference experiments targeted for a UBP homologue, UCH/CeUBP130, in C. elegans resulted in cell division defective embryos. Immunostaining localized UCH/CeUBP130 in the sperm and at the microtubule-organizing centre (MTOC) during early cleavage. Furthermore, the embryonic lethal phenotype was rescued by mating with wild-type males. CONCLUSIONS Since it is known that the MTOC in the fertilized embryo is contributed by sperm asters in C. elegans, we suggest that UCH/CeUBP130 and ubiquitin protein degradation pathways may be involved in microtubule-based sperm aster formation. Therefore UCH/CeUBP130 is necessary for the formation of a functional MTOC in the fertilized embryo of C. elegans.
Collapse
Affiliation(s)
- J Lee
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Topper LM, Bastians H, Ruderman JV, Gorbsky GJ. Elevating the level of Cdc34/Ubc3 ubiquitin-conjugating enzyme in mitosis inhibits association of CENP-E with kinetochores and blocks the metaphase alignment of chromosomes. J Cell Biol 2001; 154:707-17. [PMID: 11514588 PMCID: PMC2196447 DOI: 10.1083/jcb.200104130] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cdc34/Ubc3 is a ubiquitin-conjugating enzyme that functions in targeting proteins for proteasome-mediated degradation at the G1 to S cell cycle transition. Elevation of Cdc34 protein levels by microinjection of bacterially expressed Cdc34 into mammalian cells at prophase inhibited chromosome congression to the metaphase plate with many chromosomes remaining near the spindle poles. Chromosome condensation and nuclear envelope breakdown occurred normally, and chromosomes showed oscillatory movements along mitotic spindle microtubules. Most injected cells arrested in a prometaphase-like state. Kinetochores, even those of chromosomes that failed to congress, possessed the normal trilaminar plate ultrastructure. The elevation of Cdc34 protein levels in early mitosis selectively blocked centromere protein E (CENP-E), a mitotic kinesin, from associating with kinetochores. Other proteins, including two CENP-E-associated proteins, BubR1 and phospho-p42/p44 mitogen-activated protein kinase, and mitotic centromere-associated kinesin, cytoplasmic dynein, Cdc20, and Mad2, all exhibited normal localization to kinetochores. Proteasome inhibitors did not affect the prometaphase arrest induced by Cdc34 injection. These studies suggest that CENP-E targeting to kinetochores is regulated by ubiquitylation not involving proteasome-mediated degradation.
Collapse
Affiliation(s)
- L M Topper
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|