1
|
Bhat AA, Altamimi ASA, Goyal A, Goyal K, Kaur I, Kumar S, Sharma N, Kumar MR, Ali H, Thapa R, Negi P, Singh SK, Gupta G. The role of CD95 in modulating CAR T-cell therapy: Challenges and therapeutic opportunities in oncology. Int Immunopharmacol 2025; 144:113675. [PMID: 39608172 DOI: 10.1016/j.intimp.2024.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
CAR T cell therapy has revolutionized how we deliver cancer treatment, most notably for hematologic cancers, by compelling T cells to recognize and kill tumor cells. Nevertheless, current obstacles to utilizing this therapy in solid tumors and overcoming cancer resistance include radicalization. This review discusses how CD95 modulation can boost CAR T cell efficacy. Traditionally, CD95 was known to execute apoptosis induction, but it plays a dual role in induced cell death or in supporting cancer cell survival. Recent data have demonstrated that cancer cells escape CD95-mediated apoptosis via the downregulation of CD95, caspase 8 mutation, or the expression of the inhibition protein cFLIP. Additionally, the immunosuppressive tumor microenvironment, containing CD95L expressing immune cells, explains CAR T cell therapy resistance. Furthermore, we characterize the therapeutic potential of CD95 targeted approaches, including CD95L inhibition (APG101) and alterations in CAR T cell manufacturing (tyrosine kinase inhibitors to mitigate fratricide). In this review, we highlight the importance of multi-path way strategies combining CD95 modulation with CAR T cell engineering to overcome resistance, specifically to target tumor cells better and sustain CAR T cell persistence to enhance treatment efficacy in solid tumors.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173212, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
2
|
Papadaki MA, Papadaki E, Chatziavraam S, Aggouraki D, Michaelidou K, Fotsitzoudis C, Vassilakopoulou M, Mavroudis D, Agelaki S. Prognostic Value of Fas/Fas Ligand Expression on Circulating Tumor Cells (CTCs) and Immune Cells in the Peripheral Blood of Patients with Metastatic Breast Cancer. Cancers (Basel) 2024; 16:2927. [PMID: 39272785 PMCID: PMC11393959 DOI: 10.3390/cancers16172927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The Fas/Fas ligand (FasL) system is a major apoptosis-regulating pathway with a key role in tumor immune surveillance and metastasis. The expression of Fas/FasL on mammary tumor tissues holds prognostic value for breast cancer (BC) patients. We herein assessed Fas/FasL expression on circulating tumor cells (CTCs) and matched peripheral blood mononuclear cells (PBMCs) from 98 patients with metastatic BC receiving first-line treatment. Fas+, FasL+, and Fas+/FasL+ CTCs were identified in 88.5%, 92.3%, and 84.6% of CTC-positive patients, respectively. In addition, Fas+/FasL+, Fas-/FasL+, and Fas-/FasL- PBMCs were identified in 70.3%, 24.2%, and 5.5% of patients, respectively. A reduced progression-free survival (PFS) was revealed among CTC-positive patients (median PFS: 9.5 versus 13.4 months; p = 0.004), and specifically among those harboring Fas+/FasL+ CTCs (median PFS: 9.5 vs. 13.4 months; p = 0.009). On the other hand, an increased overall survival (OS) was demonstrated among patients with Fas+/FasL+ PBMCs rather than those with Fas-/FasL+ and Fas-/FasL- PBMCs (median OS: 35.7 vs. 25.9 vs. 14.4 months, respectively; p = 0.008). These data provide for the first time evidence on Fas/FasL expression on CTCs and PBMCs with significant prognostic value for patients with metastatic BC, thus highlighting the role of the Fas/FasL system in the peripheral immune response and metastatic progression of BC.
Collapse
Affiliation(s)
- Maria A Papadaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Eleni Papadaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Sofia Chatziavraam
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Despoina Aggouraki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Maria Vassilakopoulou
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
3
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
4
|
Andrianto A, Sudiana IK, Suprabawati DGA, Notobroto HB. Immune system and tumor microenvironment in early-stage breast cancer: different mechanisms for early recurrence after mastectomy and chemotherapy on ductal and lobular types. F1000Res 2023; 12:841. [PMID: 38046195 PMCID: PMC10692586 DOI: 10.12688/f1000research.134302.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 12/05/2023] Open
Abstract
Background: The most common type of breast cancer is the ductal type (IDC), followed by lobular type (ILC). Surgery is the main therapy for early-stage breast cancer. Adjuvant chemotherapy might be given to those at high risk of recurrence. Recurrence is still possible after mastectomy and chemotherapy and most often occurs in the first two years. We aimed to determine the mechanisms in early local recurrence in both types. Methods: We used an observational method with a cross-sectional study design. The samples were patients with early-stage IDC and ILC, who underwent modified radical mastectomy (MRM) and got adjuvant chemotherapy with taxan and anthracycline base, and experienced recurrence in the first two years after surgery. The materials in this study were paraffin blocks from surgical specimens; we examined vimentin, α-SMA and MMP1, PDGF and CD95 by immunohistochemistry (IHC). Data analysis was done using OpenEpi 3.0.1 and EZR. We used pathway analysis with linear regression. Results: There were 25 samples with local recurrence and 25 samples without recurrence in the ductal type group. The lobular type group consisted of six subjects without recurrence and seven with recurrence. There were significant differences in the expression of vimentin (p=0.000 and 0.021, respectively), PDGF (p=0.000 and 0.002) and CD95 (p=0.000 and 0.045) in ductal and lobular cancer types, respectively. MMP1 (p=0.000) and α-SMA (p=0.000) only showed a significant difference in the ductal type. The pathway analysis showed that in the ductal type, the mechanism of recurrence was enabled by two factors: α-SMA and CD95. Meanwhile, for the lobular type, the recurrence mechanism was through the CD95 pathway. Conclusions: Local recurrence in early-stage IDC and ILC had different mechanisms. These findings are expected to make cancer treatment in both types more focused and efficient.
Collapse
Affiliation(s)
- Andreas Andrianto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - I Ketut Sudiana
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - Desak Gede Agung Suprabawati
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - Hari Basuki Notobroto
- Department of Biostatistics and Population, Faculty of Public Health, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| |
Collapse
|
5
|
Fridrichova I, Kalinkova L, Ciernikova S. Clinical Relevancy of Circulating Tumor Cells in Breast Cancer: Epithelial or Mesenchymal Characteristics, Single Cells or Clusters? Int J Mol Sci 2022; 23:12141. [PMID: 36292996 PMCID: PMC9603393 DOI: 10.3390/ijms232012141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Metastatic breast cancer (MBC) is typically an incurable disease with high mortality rates; thus, early identification of metastatic features and disease recurrence through precise biomarkers is crucial. Circulating tumor cells (CTCs) consisting of heterogeneous subpopulations with different morphology and genetic, epigenetic, and gene expression profiles represent promising candidate biomarkers for metastatic potential. The experimentally verified role of epithelial-to-mesenchymal transition in cancer dissemination has not been clearly described in BC patients, but the stemness features of CTCs strongly contributes to metastatic potency. Single CTCs have been shown to be protected in the bloodstream against recognition by the immune system through impaired interactions with T lymphocytes and NK cells, while associations of heterotypic CTC clusters with platelets, leucocytes, neutrophils, tumor-associated macrophages, and fibroblasts improve their tumorigenic behavior. In addition to single CTC and CTC cluster characteristics, we reviewed CTC evaluation methods and clinical studies in early and metastatic BCs. The variable CTC tests were developed based on specific principles and strategies. However, CTC count and the presence of CTC clusters were shown to be most clinically relevant in existing clinical trials. Despite the known progress in CTC research and sampling of BC patients, implementation of CTCs and CTC clusters in routine diagnostic and treatment strategies still requires improvement in detection sensitivity and precise molecular characterizations, focused predominantly on the role of CTC clusters for their higher metastatic potency.
Collapse
|
6
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
7
|
Wallach-Dayan SB, Petukhov D, Ahdut-HaCohen R, Richter-Dayan M, Breuer R. sFasL-The Key to a Riddle: Immune Responses in Aging Lung and Disease. Int J Mol Sci 2021; 22:ijms22042177. [PMID: 33671651 PMCID: PMC7926921 DOI: 10.3390/ijms22042177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
By dint of the aging population and further deepened with the Covid-19 pandemic, lung disease has turned out to be a major cause of worldwide morbidity and mortality. The condition is exacerbated when the immune system further attacks the healthy, rather than the diseased, tissue within the lung. Governed by unremittingly proliferating mesenchymal cells and increased collagen deposition, if inflammation persists, as frequently occurs in aging lungs, the tissue develops tumors and/or turns into scars (fibrosis), with limited regenerative capacity and organ failure. Fas ligand (FasL, a ligand of the Fas cell death receptor) is a key factor in the regulation of these processes. FasL is primarily found in two forms: full length (membrane, or mFasL) and cleaved (soluble, or sFasL). We and others found that T-cells expressing the mFasL retain autoimmune surveillance that controls mesenchymal, as well as tumor cell accumulation following an inflammatory response. However, mesenchymal cells from fibrotic lungs, tumor cells, or cells from immune-privileged sites, resist FasL+ T-cell-induced cell death. The mechanisms involved are a counterattack of immune cells by FasL, by releasing a soluble form of FasL that competes with the membrane version, and inhibits their cell death, promoting cell survival. This review focuses on understanding the previously unrecognized role of FasL, and in particular its soluble form, sFasL, in the serum of aged subjects, and its association with the evolution of lung disease, paving the way to new methods of diagnosis and treatment.
Collapse
Affiliation(s)
- Shulamit B. Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (D.P.); (R.B.)
- Correspondence:
| | - Dmytro Petukhov
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (D.P.); (R.B.)
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| | - Mark Richter-Dayan
- Department of Emergency Medicine, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Raphael Breuer
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (D.P.); (R.B.)
| |
Collapse
|
8
|
Shendi D, Dede A, Yin Y, Wang C, Valmikinathan C, Jain A. Tunable, bioactive protein conjugated hyaluronic acid hydrogel for neural engineering applications. J Mater Chem B 2016; 4:2803-2818. [DOI: 10.1039/c5tb02235e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-step Michael addition click chemistry reaction is used to fabricate a bioactive conjugated hyaluronic acid (HA) scaffold for neural engineering applications.
Collapse
Affiliation(s)
- Dalia Shendi
- nano-Neural Therapeutics Laboratory
- Department Biomedical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| | - Ana Dede
- nano-Neural Therapeutics Laboratory
- Department Biomedical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| | - Yuan Yin
- nano-Neural Therapeutics Laboratory
- Department Biomedical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| | - Chaoming Wang
- nano-Neural Therapeutics Laboratory
- Department Biomedical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| | | | - Anjana Jain
- nano-Neural Therapeutics Laboratory
- Department Biomedical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| |
Collapse
|
9
|
Milani A, Sangiolo D, Aglietta M, Valabrega G. Recent advances in the development of breast cancer vaccines. BREAST CANCER-TARGETS AND THERAPY 2014; 6:159-68. [PMID: 25339848 PMCID: PMC4204811 DOI: 10.2147/bctt.s38428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The manipulation of the immune system through the administration of a vaccine to direct an effective and long-lasting immune response against breast cancer (BC) cells is an attractive strategy. Vaccines would have several theoretical advantages over standard therapies, including low toxicities, high specificity, and long-lasting efficacy due to the establishment of immunological memory. However, BC vaccines have failed to demonstrate meaningful results in clinical trials so far. This reflects the intrinsic difficulty in breaking the complex immune-escaping mechanisms developed by cancer cells. New vaccines should be able to elicit complex immunologic response involving multiple immune effectors such as cytotoxic and antibody-secreting B cells, innate immunity effectors, and memory cells. Moreover, especially in patients with large tumor burdens and metastatic disease, combining vaccines with other strategies, such as systemic BC therapies, passive immunotherapy, or immunomodulatory agents, could increase the effectiveness of each approach. Here, we review recent advances in BC vaccines, focusing on suitable targets and innovative strategies. We report results of most recent trials investigating active immunotherapy in BC and provide possible future perspectives in this field of research.
Collapse
Affiliation(s)
- Andrea Milani
- Department of Oncology, University of Torino, Torino, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Torino, Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, Torino, Italy ; FPO, Candiolo Cancer Institute, IRCCS, Torino, Italy
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, Torino, Italy ; FPO, Candiolo Cancer Institute, IRCCS, Torino, Italy
| |
Collapse
|
10
|
Wu MF, Yang J, Xiang T, Shi YY, Liu LJ. miR-21 targets Fas ligand-mediated apoptosis in breast cancer cell line MCF-7. ACTA ACUST UNITED AC 2014; 34:190-194. [PMID: 24710931 DOI: 10.1007/s11596-014-1257-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/23/2013] [Indexed: 12/20/2022]
Abstract
Over-expression of Fas ligand (FasL) on tumor cell surface can induce the apoptosis of specific activated tumor infiltrating lymphocytes (TILs) via the Fas/FasL pathway, leading to the formation of a site of immune privilege surrounding the tumor mass for escaping immune surveillance and promoting tumor proliferation, invasion and metastasis. The blocking effect of miR-21 on FasL-mediated apoptosis in breast cancers was investigated in this study. The expression levels of miR-21 and FasL in human breast carcinoma cell lines were detected by using RT-PCR and Western blotting. FasL as a target gene of miR-21 was identified by Luciferase assay. The apoptosis of Jurkat T lymphocytes induced by MCF-7 cells was determined by flow cytometry. It was found that in four human breast cancer cell lines, FasL expression level in MCF-7 cells was the highest, while miR-21 was down-regulated the most notably. After miR-21 expression in MCF-7 cells was up-regulated, FasL was identified as a target gene of miR-21. When the effector/target (E/T) ratio of MCF-7 cells and Jurkat cells was 10:1, 5:1 and 1:1, the inhibitory rate of apoptosis of Jurkat T lymphocytes induced by MCF-7 cells was 95.81%, 93.16% and 91.94%, respectively. It is suggested that in breast cancers miR-21 expression is negatively associated with FasL expression, and FasL is a target gene of miR-21. miR-21 targeting and regulating FasL-mediated apoptosis will bring us the possibility of a new tumor immunotherapy via breaking tumor immune privilege.
Collapse
Affiliation(s)
- Ming-Fu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Xiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan-Yan Shi
- Department of Anesthesiology, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Li-Jiang Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Hashemi M, Fazaeli A, Ghavami S, Eskandari-Nasab E, Arbabi F, Mashhadi MA, Taheri M, Chaabane W, Jain MV, Łos MJ. Functional polymorphisms of FAS and FASL gene and risk of breast cancer - pilot study of 134 cases. PLoS One 2013; 8:e53075. [PMID: 23326385 PMCID: PMC3543397 DOI: 10.1371/journal.pone.0053075] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/23/2012] [Indexed: 01/06/2023] Open
Abstract
Fas/Fas ligand (FasL) system is one of the key apoptotic signaling entities in the extrinsic apoptotic pathway. De-regulation of this pathway, i.e. by mutations may prevent the immune system from the removal of newly-formed tumor cells, and thus lead to tumor formation. The present study investigated the association between −1377 G/A (rs2234767) and −670 A/G (rs1800682) polymorphisms in Fas as well as single nucleotide polymorphisms INV2nt −124 A/G (rs5030772) and −844 C/T (rs763110) in FasL in a sample of Iranian patients with breast cancer. This case-control study was done on 134 breast cancer patients and 152 normal women. Genomic DNA was extracted from whole blood samples. The polymorphisms were determined by using tetra-ARMS-PCR method. There was no significant difference in the genotype distribution of FAS rs2234767 polymorphism between cases and controls. FAS rs1800682, FASL rs5030772, and FASL rs763110 genotypes showed significant associations with an increasing risk of breast cancer (odds ratio OR = 3.18, P = 0.019; OR = 5.08, P = 0.012; OR = 2.40, P = 0.024, respectively). In conclusion, FAS rs2234767 was not associated with breast cancer risk. Though, FAS rs1800682, FASL rs5030772, and FASL rs763110 polymorphisms were associated with the risk of breast cancer in the examined population.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Saeid Ghavami
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ebrahim Eskandari-Nasab
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Farshid Arbabi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Mohammad Ali Mashhadi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Mohsen Taheri
- Genetic of Non Communicable Disease Research Center, Zahedan University of Medical Science, Zahedan, Iran
| | - Wiem Chaabane
- Department of Clinical and Experimental Medicine, Integrative Regenerative Med. Center (IGEN), Division of Cell Biology, Linköping University, Linköping, Sweden
- Department of Biology, Faculty of Sciences, University of Tunis, Tunis, Tunisia
| | - Mayur V. Jain
- Department of Clinical and Experimental Medicine, Integrative Regenerative Med. Center (IGEN), Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Marek J. Łos
- Department of Clinical and Experimental Medicine, Integrative Regenerative Med. Center (IGEN), Division of Cell Biology, Linköping University, Linköping, Sweden
- BioApplications Enterprises, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
12
|
Jia LT, Chen SY, Yang AG. Cancer gene therapy targeting cellular apoptosis machinery. Cancer Treat Rev 2012; 38:868-876. [PMID: 22800735 DOI: 10.1016/j.ctrv.2012.06.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 01/14/2023]
Abstract
The unraveling of cellular apoptosis machinery provides novel targets for cancer treatment, and gene therapy targeting this suicidal system has been corroborated to cause inflammation-free autonomous elimination of neoplastic cells. The apoptotic machinery can be targeted by introduction of a gene encoding an inducer, mediator or executioner of apoptotic cell death or by inhibition of anti-apoptotic gene expression. Strategies targeting cancer cells, which are achieved by selective gene delivery, specific gene expression or secretion of target proteins via genetic modification of autologous cells, dictate the outcome of apoptosis-based cancer gene therapy. Despite so far limited clinical success, gene therapy targeting the apoptotic machinery has great potential to benefit patients with threatening malignancies provided the availability of efficient and specific gene delivery and administration systems.
Collapse
Affiliation(s)
- Lin-Tao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | | | | |
Collapse
|
13
|
Ge Z, Sanders AJ, Ye L, Jiang WG. Aberrant expression and function of death receptor-3 and death decoy receptor-3 in human cancer. Exp Ther Med 2011; 2:167-172. [PMID: 22977485 DOI: 10.3892/etm.2011.206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/17/2011] [Indexed: 12/15/2022] Open
Abstract
Death receptor-3 (DR3) and death decoy receptor-3 (DcR3) are both members of the tumour necrosis factor receptor (TNFR) superfamily. The TNFR superfamily contains eight death domain-containing receptors, including TNFR1 (also called DR1), Fas (also called DR2), DR3, DR4, DR5, DR6, NGFR and EDAR. Upon the binding of these receptors with their corresponding ligands, the death domain recruits various proteins that mediate both the death and proliferation of cells. Receptor function is negatively regulated by decoy receptors (DcR1, DcR2, DcR3 and OPG). DR3/DcR3 are a pair of positive and negative players with which vascular endothelial growth inhibitor (VEGI) interacts. VEGI has been suggested to be a potential tumour suppressor. The inhibitory effects of VEGI on cancer are manifested in three main areas: a direct effect on cancer cells, an anti-angiogenic effect on endothelial cells, and the stimulation of dendritic cell maturation. A recent study indicated that DR3 may be a new receptor for E-selectin, which has been reported to be associated with cancer metastasis. DcR3 is a soluble receptor, highly expressed in various tumours, which lacks an apparent transmembrane segment, prevents cytokine response through ligand binding and neutralization, and is an inhibitor of apoptosis. DcR3 serves as a decoy receptor for FasL, LIGHT and VEGI. The cytokine LIGHT activates various anti-tumour functions and is expected to be a promising candidate for cancer therapy. Certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing DcR3, which blocks FasL function. DR3/DcR3 play profound roles in regulating cell death and proliferation in cancer. The present review briefly discusses DR3/DcR3 and attempts to elucidate the role of these negative and positive players in cancer.
Collapse
Affiliation(s)
- Zhicheng Ge
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|
14
|
Abstract
The goal of cancer vaccines and immunotherapies is to train the immune system to recognize cancer cells and destroy them. Immune responses play a dynamic role in the development of cancers, from immunosurveillance to immune escape; from in situ immune dysregulation to metastatic spread. The systematic identification and targeting of molecules involved in the immune response has led to a wide variety of potential immunotherapeutic targets for the treatment of breast cancer. Extraordinary advances in molecular immunology have led to a detailed understanding of tumor antigens, antigen presentation, innate immunity, cytokine and chemokine pathways, and immunoregulation. Many of these vaccine therapies are already in clinical development. It is the rational and rapid translation of these scientific discoveries into effective therapies for patients with breast cancer that poses the greatest challenge, and opportunity, to realize the potential of tumor vaccine therapy for breast cancer.
Collapse
Affiliation(s)
- Karen S Anderson
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Cuezva JM, Ortega AD, Willers I, Sánchez-Cenizo L, Aldea M, Sánchez-Aragó M. The tumor suppressor function of mitochondria: translation into the clinics. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1145-58. [PMID: 19419707 DOI: 10.1016/j.bbadis.2009.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/15/2008] [Accepted: 01/16/2009] [Indexed: 01/30/2023]
Abstract
Recently, the inevitable metabolic reprogramming experienced by cancer cells as a result of the onset of cellular proliferation has been added to the list of hallmarks of the cancer cell phenotype. Proliferation is bound to the synchronous fluctuation of cycles of an increased glycolysis concurrent with a restrained oxidative phosphorylation. Mitochondria are key players in the metabolic cycling experienced during proliferation because of their essential roles in the transduction of biological energy and in defining the life-death fate of the cell. These two activities are molecularly and functionally integrated and are both targets of commonly altered cancer genes. Moreover, energetic metabolism of the cancer cell also affords a target to develop new therapies because the activity of mitochondria has an unquestionable tumor suppressor function. In this review, we summarize most of these findings paying special attention to the opportunity that translation of energetic metabolism into the clinics could afford for the management of cancer patients. More specifically, we emphasize the role that mitochondrial beta-F1-ATPase has as a marker for the prognosis of different cancer patients as well as in predicting the tumor response to therapy.
Collapse
Affiliation(s)
- José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Serum sFas and Tumor Tissue FasL Negatively Correlated with Survival in Egyptian Patients Suffering from Breast Ductal Carcinoma. Pathol Oncol Res 2008; 15:241-50. [DOI: 10.1007/s12253-008-9109-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/02/2008] [Indexed: 12/24/2022]
|
17
|
Kassouf N, Thornhill MH. Oral cancer cell lines can use multiple ligands, including Fas-L, TRAIL and TNF-α, to induce apoptosis in Jurkat T cells: Possible mechanisms for immune escape by head and neck cancers. Oral Oncol 2008; 44:672-82. [DOI: 10.1016/j.oraloncology.2007.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/30/2007] [Accepted: 08/30/2007] [Indexed: 01/05/2023]
|
18
|
Li H, Cai X, Fan X, Moquin B, Stoicov C, Houghton J. Fas Ag-FasL coupling leads to ERK1/2-mediated proliferation of gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G263-75. [PMID: 17991709 DOI: 10.1152/ajpgi.00267.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
When cells within the gastric mucosa progress from metaplasia to dysplasia to cancer, they acquire a Fas Ag apoptosis-resistant phenotype. It is unusual to completely abolish the pathway, suggesting other forms of Fas Ag signaling may be important or even necessary for gastric cancer to progress. Little is known about alternate signaling of the Fas Ag pathway in gastric mucosal cells. Using a cell culture model of rat gastric mucosal cells, we show that gastric mucosal cells utilize a type II signaling pathway for apoptosis. Under conditions of low receptor stimulation or under conditions where apoptosis is blocked downstream of the death-inducing signal complex, Fas Ag signaling proceeds toward proliferative signaling. Under conditions favoring proliferative signaling, cFLIP is recruited to the Fas-associated death domain-like interleukin-1beta-converting enzyme at the death-inducing signal complex and activates ERK1/2. ERK1/2 in turn activates NF-kappaB. ERK1/2 stimulates proliferation, whereas NF-kappaB activation results in upregulation of the antiapoptotic protein survivin, further promoting proliferation over apoptosis. These results suggest that factors that inhibit apoptosis confer a growth advantage to the cells beyond the survival advantage of avoiding apoptosis and in effect convert the Fas Ag signaling pathway from a tumor suppressor to a tumor promoter.
Collapse
Affiliation(s)
- Hanchen Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Mitochondria are key players in several cellular functions including growth, division, energy metabolism, and apoptosis. The mitochondrial network undergoes constant remodelling and these morphological changes are of direct relevance for the role of this organelle in cell physiology. Mitochondrial dysfunction contributes to a number of human disorders and may aid cancer progression. Here, we summarize the recent contributions made in the field of mitochondrial dynamics and discuss their impact on our understanding of cell function and tumorigenesis.
Collapse
Affiliation(s)
- E Alirol
- Department of Cell Biology, University of Geneva, Genève, Switzerland
| | | |
Collapse
|
20
|
Bel Hadj Jrad B, Mahfouth W, Bouaouina N, Gabbouj S, Ahmed SB, Ltaïef M, Jalbout M, Chouchane L. A polymorphism in FAS gene promoter associated with increased risk of nasopharyngeal carcinoma and correlated with anti-nuclear autoantibodies induction. Cancer Lett 2006; 233:21-7. [PMID: 16473667 DOI: 10.1016/j.canlet.2005.02.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Revised: 02/20/2005] [Accepted: 02/25/2005] [Indexed: 01/11/2023]
Abstract
Loss of FAS (CD95) expression is a common feature of malignant transformation, which has been related to loss of epithelial cell differentiation and loss of sensitivity to apoptosis. We investigated the potential association between FAS promoter polymorphism and the genetic susceptibility to the Epstein-Barr virus (EBV)-related nasopharyngeal carcinoma. The in vivo functional significance of the FAS polymorphism was investigated by assessing the correlation between FAS genotypes and the presence of autoantibodies to cytoskeleton and nuclear antigens frequently detected in nasopharyngeal carcinoma. We determined the FAS polymorphism distributions by RFLP-PCR in 170 patients with nasopharyngeal carcinoma and in 224 sex and age-matched controls. We used ELISA and the immunofluorescence analysis to characterize the presence of IgG autoantibodies to the cytoskeleton and nuclear proteins in patients' sera. A significantly increased risk of nasopharyngeal carcinoma was associated with heterozygote FAS-A/G (OR=2.00, P=0.001) and homozygote FAS-G/G (OR=3.19, P=0.0001) variants. The increased frequency of FAS-G/G genotype is correlated with the presence of anti-nuclear autoantibodies in patients with nasopharyngeal carcinoma (P=0.0298). Our results demonstrated that FAS promoter polymorphism was significantly associated with the nasopharyngeal carcinoma in Tunisians. The anti-nuclear autoantibodies induction was also found to be related to FAS polymorphism. The FAS promoter polymorphism associated not only with the increased risk of nasopharyngeal carcinoma in Tunisians but also with immune response deregulation observed in this cancer.
Collapse
Affiliation(s)
- Besma Bel Hadj Jrad
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Université du Centre, 5019 Monastir, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Basma H, El-Refaey H, Sgagias MK, Cowan KH, Luo X, Cheng PW. BCL-2 antisense and cisplatin combination treatment of MCF-7 breast cancer cells with or without functional p53. J Biomed Sci 2005; 12:999-1011. [PMID: 16228292 DOI: 10.1007/s11373-005-9025-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 08/21/2005] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy has been used for treatment of breast cancer but with limited success. We characterized the effects of bcl-2 antisense and cisplatin combination therapy in two human isogenic breast carcinoma cells p53(+)MCF-7 and p53(-)MCF-7/E6. The transferrin-facilitated lipofection strategy we have developed yielded same transfection efficiency in both cells. Bcl-2 antisense delivered with this strategy significantly induced more cell death, apoptosis, and cytochrome c release in MCF-7/E6 than in MCF-7, but did not affect Fas level in both cells and activated caspase-8 equally. Cisplatin exerted same effects on cell viability and apoptosis in both cells, but released smaller amounts of cytochrome c while activated more caspase-8 in MCF-7/E6. The combination treatment yielded greater effects on cell viability, apoptosis, cytochrome c release, and caspase-8 activation than individual treatments in both cells although p53(-) cells were more sensitive. The potentiated activation of caspase-8 in the combination treatment suggested that caspase-8-mediated (but cytochrome c-independent) apoptotic pathway is the major contributor of the enhanced cell killing. Thus, bcl-2 antisense delivered with transferrin-facilitated lipofection can achieve the efficacy of killing breast cancer cells and sensitizing them to chemotherapy. Bcl-2 antisense and cisplatin combination treatment is a potentially useful therapeutic strategy for breast cancer irrespective of p53 status.
Collapse
Affiliation(s)
- Hesham Basma
- Department of Biochemistry and Molecular Biology, College of Medicine, Omaha, NE 68198-5870, USA
| | | | | | | | | | | |
Collapse
|
22
|
Xu T, Sun BC, Li Q, Hao XS. Role of cytokines in promoting immune escape of FasL-expressing human colon cancer cells. World J Gastroenterol 2005; 11:3915-9. [PMID: 15991293 PMCID: PMC4504896 DOI: 10.3748/wjg.v11.i25.3915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the potential role of cytokines in promoting Fas ligand (FasL)-expressing colon cancer cells.
METHODS: Immunohistochemical SABC method was used to observe the expression of Fas receptor and ligand in SW620 colon cancer cell line and Jurkat T cells in order to provide the morphological evidence for the functions of Fas receptor and ligand. To examine the cytotoxicity of effector cells, CytoTox96 non-radioactive cytotoxicity assay was adopted to measure the lactate dehydrogenase-releasing value after SW620 cells were co-cultured with Jurkat T lymphocytes.
RESULTS: The FasL of colon cancer SW620 cells was positive. The positive substances were distributed in the cell membrane and cytoplasm. The Fas receptor of colon cancer SW620 cells was negative. The Fas receptor and ligand of Jurkat T lymphocytes turned out to be positive. The positive substances were distributed in the cell membrane. After phytohemagglutinin (PHA)-stimulated Jurkat T lymp-hocytes were co-cultured with phorbol 12-myristate 13-acetate (PMA)-plus-ionomycin-stimulated (for 48 h) SW620 cells or tumor necrosis factor-alpha (TNF-α)-stimulated (for 48 h) SW620 cells or unstimulated SW620 cells for 4 h, the cytotoxicity of SW620 cells to PHA-stimulated Jurkat cells at effector-to-target ratios of 10:1, 5:1, 2.5:1, and 1.25:1 was 74.6%, 40.8%, 32.4%, and 10.9% (F = 8.19, P < 0.05); or 54.9%, 35.3%, 22.0%, and 10.3% (F = 11.12, P < 0.05); or 14.9%, 10.5%, 6.9%, and 5.8% (F = 3.45, P < 0.05). After PHA-stimulated Jurkat T lymphocytes were co-cultured with unstimulated SW620 cells for 8 h, the cytotoxicity of SW620 cells to PHA-stimulated Jurkat cells at effector-to-target ratios of 5:1, 2.5:1, and 1.25:1 from the experiment was 83.9%, 74.1%, and 28.5% (F = 137.04, P < 0.05) respectively. Non-radioactive cytotoxicity assay showed that the apoptotic rate of Jurkat cells remarkably increased with the increase of planting concentration of SW620 cells and co-culture time after the SW620 cells were co-cultured with the Jurkat T lymphocytes. The cytotoxicity was significantly enhanced by PMA+ionomycin or TNF-α.
CONCLUSION: The FasL expressed in human colon cancer cells may be regulated by endogenous factors in the microenvironment of the host and facilitate the escape of tumor cells from the host immune system.
Collapse
Affiliation(s)
- Tong Xu
- Department of Abdominal Surgery, Cancer Hospital Affiliated to Tianjin Medical University, Tianjin 300060, China.
| | | | | | | |
Collapse
|
23
|
Peter ME, Legembre P, Barnhart BC. Does CD95 have tumor promoting activities? Biochim Biophys Acta Rev Cancer 2005; 1755:25-36. [PMID: 15907590 DOI: 10.1016/j.bbcan.2005.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 11/14/2004] [Accepted: 01/04/2005] [Indexed: 01/12/2023]
Abstract
CD95 (APO-1/Fas) is an important inducer of the extrinsic apoptosis signaling pathway and therapy induced apoptosis of many tumor cells has been linked to the activity of CD95. Changes in the expression of CD95 and/or its ligand CD95L are frequently found in human cancer. The downregulation or mutation of CD95 has been proposed as a mechanism by which cancer cells avoid destruction by the immune system through reduced apoptosis sensitivity. CD95 has therefore been viewed as a tumor suppressor. Furthermore, increased CD95L concentration in tumor patients has been linked to tumor cells killing infiltrating lymphocytes in a process called "the tumor counter-attack". Recent data have illuminated unknown activities of CD95 in tumor cells with downregulated or mutated CD95 in the presence of increased CD95L. Under these conditions the stimulation of CD95 signals nonapoptotic pathways, activating NF-kappaB and MAP kinases for example, which may result in the induction of tumorigenic or prosurvival genes. A new model of CD95 functions is proposed in which CD95 is converted from a tumor suppressor to a tumor promotor by a single point mutation in one of the CD95 alleles, a situation frequently found in advanced human cancer, resulting in apoptosis resistance and activation of tumorigenic pathways.
Collapse
Affiliation(s)
- Marcus E Peter
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
24
|
Xu T, Li Q, Hao XS. Relationship between expression of functional Fas ligand in human colon cancer cells and tumor's immune escape. Shijie Huaren Xiaohua Zazhi 2004; 12:2066-2069. [DOI: 10.11569/wcjd.v12.i9.2066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: The evidence has pointed to an abnormal increase in apoptosis among activated Fas-positive lymphocytes, mainly in the periphery of the Fas ligand (FasL)-expressing tumors. On the other hand, to a great extent, the occurrence of tumor is due to the fact that the converted cells cannot undergo a normal process of apoptosis. This study was designed to detect the expression of FasL in human colon carcinoma cells and to determine whether colon cancer cells SW620 could induce apoptosis of lymphocytes by Fas system in vitro.
METHODS: By using immunohistochemical SABC method, the expression of Fas receptor and Fas ligand in SW620 colon carcinoma cell line and Jurkat T cells was observed so as to supply morphological evidence for the functions of Fas receptor and Fas ligand. In an effort to examine the cytotoxicity of effector cells, CytoTox 96â non-radioactive cytotoxicity assay was adopted to measure LDH releasing value after the SW620 cells were co-cultured with the Jurkat T lymphocytes.
RESULTS: It was shown that the Fas ligand of colon carcinoma SW620 cells was positive and the positive substances were distributed in the cell membrane and cytoplasm, and the Fas receptor of colon carcinoma SW620 cells was negative. The Fas receptor and the Fas ligand of Jurkat T lymphocytes turned out to be positive. The positive substances were distributed in the cell membrane. The non-radioactive cytotoxicity assay showed that the apoptotic rate of Jurkat cells remarkably increased with the increase of planting concentration of SW620 and co-cultured time with the Jurkat T lymphocytes. The cytotoxicity was significantly enhanced by PMA and ionomycin.
CONCLUSION: The functional expression of FasL in the colon carcinoma SW620 cells can inversely induce apoptosis of Fas-expressing Jurkat T lymphocytes for immune escape.
Collapse
|
25
|
Filion MC, Filion B, Roy J, Ménard S, Reader S, Phillips NC. Development of immunomodulatory six base-length non-CpG motif oligonucleotides for cancer vaccination. Vaccine 2004; 22:2480-8. [PMID: 15193412 DOI: 10.1016/j.vaccine.2003.11.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Accepted: 11/18/2003] [Indexed: 01/05/2023]
Abstract
We have previously described a novel family of immunomodulatory synthetic oligonucleotides characterized by a phosphodiester backbone, a length of six bases and a 5'G3xG23' sequence, where x is A, C, G or T. In the present study, we have evaluated whether these 5'G3xG23' oligonucleotides possess additional activities essential for adequate cancer vaccination. Immunization for the treatment of cancer requires an adjuvant, a source of tumor-associated antigen(s), for example apoptotic cancer cells, and a way to overcome the escape of tumor cells from the immune system, for example the up-regulation of Fas ligand (FasL) on the surface of cancer cells. The results show that phosphodiester 5'G3AG23' and 5'G3TG23' oligonucleotides have a direct activity on a number of different cancer cells by inducing apoptosis (release of cytochrome C, activation of caspase-3, cleavage of poly [ADP-ribose] polymerase, degradation of nuclear mitotic apparatus protein and translocation of phophatidylserine at the cell surface). In addition, the 5'G3AG23', 5'G3CG23', and 5'G3TG23' oligonucleotides were found to down-regulate the levels of FasL on the surface of cancer cells. These immunomodulatory phosphodiester six base-length oligonucleotides, which are capable of inducing apoptosis in cancer cells as well as downregulating the expression of FasL at their cell surface, may have application as cancer cell vaccines.
Collapse
Affiliation(s)
- Mario C Filion
- Bioniche Therapeutics Division, Bioniche Life Sciences, 6100 Royalmount Avenue, Montréal, Que., Canada, H4P 2R2.
| | | | | | | | | | | |
Collapse
|
26
|
Nieto Y, Shpall EJ, McNiece IK, Nawaz S, Beaudet J, Rosinski S, Pellom J, Slat-Vasquez V, McSweeney PA, Bearman SI, Murphy J, Jones RB. Prognostic analysis of early lymphocyte recovery in patients with advanced breast cancer receiving high-dose chemotherapy with an autologous hematopoietic progenitor cell transplant. Clin Cancer Res 2004; 10:5076-86. [PMID: 15297410 DOI: 10.1158/1078-0432.ccr-04-0117] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the prognostic effect of early posttransplant lymphocyte recovery in patients with advanced breast cancer receiving high-dose chemotherapy with autologous hematopoietic progenitor cell transplantation. EXPERIMENTAL DESIGN We analyzed the effect of the absolute lymphocyte count on day +15 posttransplant on freedom from relapse and overall survival in patients with high-risk primary breast cancer or metastatic breast cancer, enrolled between 1990 and 2001 in prospective high-dose chemotherapy trials, using a uniform regimen of cyclophosphamide, cisplatin, and 1,3-bis(2-chloroethyl)-1-nitrosourea. RESULTS Four hundred and seventy-six patients (264 high-risk primary breast cancer and 212 metastatic breast cancer patients) were evaluated at median follow-up of 8 years (range, 1.5-11 years). The disease-free survival and overall survival rates in the high-risk primary breast cancer group were 67% and 70%, respectively. Patients with metastatic breast cancer patients had 21.8% disease-free survival and 31.5% overall survival rates. Day +15 absolute lymphocyte count correlated with freedom from relapse (P = 0.007) and overall survival (P = 0.04) in the metastatic breast cancer group, but not in the high-risk primary breast cancer group (P = 0.5 and 0.8, respectively). The prognostic effect of absolute lymphocyte count in metastatic breast cancer was restricted to those patients receiving unmanipulated peripheral blood progenitor cells (P = 0.04). In contrast, absolute lymphocyte count had no significant effect in those metastatic breast cancer patients receiving bone marrow or a CD34-selected product. In multivariate analyses, the prognostic effect of day +15 absolute lymphocyte count in metastatic breast cancer was independent of other predictors, such as disease status, pre-high-dose chemotherapy treatment, number of tumor sites, or HER2. CONCLUSIONS Early lymphocyte recovery is an independent outcome predictor in metastatic breast cancer patients receiving high-dose chemotherapy and an autologous peripheral blood progenitor cell transplant. These observations suggest that immune strategies targeting minimal posttransplant residual disease may prove worthwhile.
Collapse
Affiliation(s)
- Yago Nieto
- Bone Marrow Transplant Program and Departments of Pathology and Biostatistics, University of Colorado, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim R, Emi M, Tanabe K, Uchida Y, Toge T. The role of Fas ligand and transforming growth factor beta in tumor progression: molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy. Cancer 2004; 100:2281-91. [PMID: 15160330 DOI: 10.1002/cncr.20270] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the fact that expression of Fas ligand (FasL) in cytotoxic T lymphocytes (CTLs) and in natural killer (NK) cells plays an important role in Fas-mediated tumor killing, During tumor progression FasL-expressing tumor cells are involved in counterattacking to kill tumor-infiltrating lymphocytes (TILs). Soluble FasL levels also increase with tumor progression in solid tumors, and this increase inhibits Fas-mediated tumor killing by CTLs and NK cells. The increased expression of FasL in tumor cells is associated with decreased expression of Fas; and the promoter region of the FASL gene is regulated by transcription factors, such as neuronal factor kappaB (NF-kappaB) and AP-1, in the tumor microenvironment. Although the ratio of FasL expression to Fas expression in tumor cells is not strongly related to the induction of apoptosis in TILs, increased expression of FasL is associated with decreased Fas levels in tumor cells that can escape immune surveillance and facilitate tumor progression and metastasis. Transforming growth factor beta (TGF-beta) is a potent growth inhibitor and has tumor-suppressing activity in the early phases of carcinogenesis. During subsequent tumor progression, the increased secretion of TGF-beta by both tumor cells and, in a paracrine fashion, stromal cells, is involved in the enhancement of tumor invasion and metastasis accompanied by immunosuppression. Herein, the authors review the clinical significance of FasL and TGF-beta expression patterns as features of immune privilege accompanying tumor progression in the tumor microenvironment. Potential strategies for identifying which molecules can serve as targets for effective antitumor therapy also are discussed.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | |
Collapse
|
28
|
Pawelec G. Tumour escape: antitumour effectors too much of a good thing? Cancer Immunol Immunother 2004; 53:262-74. [PMID: 14685780 PMCID: PMC11032803 DOI: 10.1007/s00262-003-0469-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 10/24/2003] [Indexed: 11/26/2022]
Abstract
Although even "spontaneous" tumours are immunogenic and are commonly infiltrated by tumour antigen-specific T cells (at least in melanoma), most tumours are not completely rejected by the host, and cancer progresses. There is a growing realisation that many responses defined as antitumour effector mechanisms act as double-edged swords and under different conditions either become ineffective or even protumorigenic. Examples are interleukin 2 (also proapoptotic for activated T cells), interferon gamma (by induction of ligands for T and NK cell inhibitory receptors), angiogenesis inhibition (by hypoxia-mediated induction of growth factors promoting metastasis), and macrophage free radical-mediated cytotoxicity (by inhibiting T cells). Immune selection pressure itself, resulting in outgrowth of resistant tumour variants could also be viewed in this light. On the other hand, knowledge of the many tumour escape pathways offers the theoretical possibility of reconstituting antitumour immunity. Tumour escape from immunosurveillance represents the last series of hurdles to be overcome in formulating truly effective cancer immunotherapy, but given the immense plasticity of the tumour cell, and the complex balance between pro- and antitumour activity of the very same effector pathways, this remains a major challenge.
Collapse
Affiliation(s)
- Graham Pawelec
- Center for Medical Research (ZMF), University of Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany.
| |
Collapse
|
29
|
Models of Breast Cancer Metastasis to Bone: Characterization of a Clinically Relevant Model. BONE METASTASIS AND MOLECULAR MECHANISMS 2004. [DOI: 10.1007/978-1-4020-2036-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Bauernhofer T, Kuss I, Friebe-Hoffmann U, Baum AS, Dworacki G, Vonderhaar BK, Whiteside TL. Role of prolactin receptor and CD25 in protection of circulating T lymphocytes from apoptosis in patients with breast cancer. Br J Cancer 2003; 88:1301-9. [PMID: 12698200 PMCID: PMC2747567 DOI: 10.1038/sj.bjc.6600860] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Prolactin (PRL) has been reported to inhibit apoptosis in various cell types and to serve as a cofactor in the upregulation of CD25 on T cells during activation. We investigated a possible relation between prolactin receptor (PRL-R) or IL-2 receptor alpha (IL-2Ralpha, CD25) expression on circulating T lymphocytes and their apoptosis in patients with breast cancer. Peripheral blood mononuclear cells obtained from 25 patients, 25 normal controls (NC) and three cord blood samples were evaluated for Annexin V binding and expression of CD95, CD25, and PRL-R on CD3(+) T cells by multicolour flow cytometry. Plasma levels of PRL, sCD95L, and sIL-2R were determined in patients and controls and related to T-cell apoptosis. The ability of PRL to protect T cells from apoptosis induced by various agents was also studied. Expression of PRL-R on the surface of T cells was comparable in patients with breast cancer and NC, but PRL plasma levels in patients were significantly lower (P<0.05). In patients, 18+/-11% (mean+/-s.d.) of CD3(+) cells bound Annexin V, compared to 9+/-6% in NC (P<0.0004). Percentages of CD3(+)Fas(+) and CD3(+)CD25(+) cells were higher in the peripheral circulation of patients than NC (P<0.0001 and <0.04, respectively). Levels of sFasL were lowest in plasma of the patients with the highest proportions of CD3(+)Fas(+) T cells. Most T cells undergoing apoptosis were CD3(+)CD25(-) in patients, and the proportion of CD3(+)CD25(-) Annexin V(+) cells was significantly increased in patients compared to NC (P<0.006). Ex vivo PRL protected T cells from starvation-induced or anti-CD3Ab-induced but not from Fas/FasL-dependent apoptosis. These results indicate that expression of CD25 but not of PRL-R on the surface of activated T lymphocytes appears to be involved in modulating Fas/Fas - ligand interactions, which are, in part, responsible for apoptosis of T lymphocytes and excessive turnover of immune cells in the circulation of patients with breast cancer.
Collapse
Affiliation(s)
- T Bauernhofer
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | - I Kuss
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | - U Friebe-Hoffmann
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | - A S Baum
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213-1863, USA
| | - G Dworacki
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | - B K Vonderhaar
- Basic Research Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - T L Whiteside
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213-1863, USA
- University of Pittsburgh Cancer Institute, Research Pavilion at the Hillman Cancer Center, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA. E-mail:
| |
Collapse
|
31
|
Derweesh IH, Tannenbaum CS, Rayman PA, Finke JH. Mechanisms of immune dysfunction in renal cell carcinoma. Cancer Treat Res 2003; 116:29-51. [PMID: 14650824 DOI: 10.1007/978-1-4615-0451-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Ithaar H Derweesh
- Department of Immunology, Lerner Research Institute, Glickman Urological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
32
|
Rousseau J, Têtu B, Caron D, Malenfant P, Cattaruzzi P, Audette M, Doillon C, Tremblay JP, Guérette B. RCAS1 is associated with ductal breast cancer progression. Biochem Biophys Res Commun 2002; 293:1544-9. [PMID: 12054692 DOI: 10.1016/s0006-291x(02)00401-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RCAS1/EBAG9 (receptor-binding cancer antigen expressed on SiSo cells/ estrogen receptor-binding fragment-associated gene 9), an estrogen-transcribed protein, has been shown to be expressed in a wide variety of cancers, including uterine, ovarian, and lung cancer cells. Soluble and membranous RCAS1 proteins may play a role in the immune escape of tumor cells by promoting T lymphocyte inhibition of growth and apoptosis. In the present report, the presence of RCAS1 was revealed in human ductal breast cancer biopsies by immunohistochemistry. Its cytoplasmic expression was exhibited in cancer cells obtained from tumor biopsies and in breast cancer cell lines. RCAS1 significantly correlated with tumor grade. In addition, RCAS1 was identified in MCF7 culture supernatants. Those observations suggest that RCAS1 is a new marker for breast cancer progression and a possible mechanism for breast cancer immune escape.
Collapse
Affiliation(s)
- Joel Rousseau
- Oncology and Molecular Endocrinology Research Center, CHUL's Research Center and Laval University, 2705, boul. Laurier, Bureau T2-33, Sainte-Foy, Qué.,Canada G1V 4G2
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Toillon RA, Descamps S, Adriaenssens E, Ricort JM, Bernard D, Boilly B, Le Bourhis X. Normal breast epithelial cells induce apoptosis of breast cancer cells via Fas signaling. Exp Cell Res 2002; 275:31-43. [PMID: 11925103 DOI: 10.1006/excr.2002.5490] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fas/Fas ligand (Fas L) death pathway is an important mediator of apoptosis. Deregulation of Fas pathway is reported to be involved in the immune escape of breast cancer and the resistance to anti-cancer drugs. In this study, we demonstrated that conditioned medium by normal breast epithelial cells (NBEC-CM) induced apoptosis of MCF-7 and T-47D Fas-sensitive cells but had no effect on MDA-MB-231 Fas-resistant cells. Inhibition of PI3 kinase or NF-kappaB by specific inhibitors or transient transfections restored the sensitivity of MDA-MB-231 cells to NBEC-induced apoptosis. Moreover, the constitutive activation of NF-kappaB was controlled by PI3 kinase because inhibition of PI3 kinase reduced NF-kappaB activity. Inducible activation of NF-kappaB rendered MCF-7 cells resistant to NBEC-CM- and Fas agonist antibody-triggered apoptosis. Therefore, constitutive or inducible activation of PI3 kinase and/or NF-kappaB in breast cancer cells rendered them resistant to NBEC-triggered apoptosis. In addition, Fas neutralizing antibody and dominant negative Fas abolished NBEC-triggered apoptosis. Western blot and confocal microscopy analysis showed an increase of membrane Fas/Fas L when cells were induced into apoptotis by NBEC-CM. Taken together, these data show that NBEC induced apoptosis in breast cancer cells via Fas signaling.
Collapse
Affiliation(s)
- Robert-Alain Toillon
- Laboratoire de Biologie du Développement (UPRES, EA 1033), Equipe Facteurs de Croissance, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, 59655, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Taylor DD, Lyons KS, Gerçel-Taylor C. Shed membrane fragment-associated markers for endometrial and ovarian cancers. Gynecol Oncol 2002; 84:443-8. [PMID: 11855885 DOI: 10.1006/gyno.2001.6551] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The objective of this study was to assess circulating tumor-derived membrane fragments (MFs) and specific proteins associated with them as diagnostic and prognostic markers for ovarian and endometrial cancers. METHODS The level of shed tumor-derived plasma MFs was analyzed chromatographically on high exclusion limit agarose-based gels, using sera from non-cancer-bearing female controls (n = 50), women with ovarian disease (benign, n = 43, and stages III and IV ovarian cancer, n = 62), and women with early (n = 10) and late (n = 12) stage endometrial cancers. The presence of specific proteins on MFs associated with development and progression of cancer was examined by Western immunoblot, while the association of proteolytic enzymes with MFs was analyzed by zymography. RESULTS Shed MFs were demonstrated in the circulation of women with both ovarian (4.12 plus minus 1.46 mg/ml) and endometrial cancers (2.53 +/- 0.34 mg/ml in women with stage I and 4.51 +/- 1.33 mg/ml with late stage); however, they were not demonstrated in control sera or in sera from women with benign disease. In endometrial cancer, the level of MFs correlated with the tumor's progression. Specific proteins, including MMP-2, MMP-9, and Fas ligand (FasL), were present on MFs from both endometrial and ovarian cancer sera. However, FasL (3.2-fold) and MMP-2 and -9 (5.9x and 7.5x, respectively) levels were significantly elevated on MFs from late stage cancer. CONCLUSION This study demonstrates the unique elevation of circulating MFs in ovarian and endometrial cancer patients. The levels of specific MF-associated proteins differentiate between early and late stage endometrial cancers and benign versus malignant ovarian disease.
Collapse
Affiliation(s)
- Douglas D Taylor
- Department of Obstetrics, Gynecology, and Women's Health, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA.
| | | | | |
Collapse
|
35
|
Abstract
CD95 (Apo-1/Fas) is crucial for the negative selection of B cells within the germinal center (GC). Impairment of CD95-mediated apoptosis results in defective affinity maturation and the persistence of autoreactive B-cell clones. CD95 was defined recently as a tumor-suppressor gene and is silenced in many tumor entities. In contrast to other malignancies, in GC-derived B-cell lymphomas, inactivation of the CD95 gene is often a result of deleterious mutations. Such mutations occur also at a low frequency in normal GC, but not naive, B cells. We propose that CD95 mutations in B-cell lymphomas originate from the GC reaction and are introduced most probably as targeting errors of the somatic hypermutation machinery, which bears--besides its physiological role--an inherent risk of malignant transformation and the persistence of autoreactive B-cell specificities.
Collapse
Affiliation(s)
- Markus Müschen
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Universität zu Köln, Germany.
| | | | | | | |
Collapse
|
36
|
Chopin V, Toillon RA, Jouy N, Bourhis XL. Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br J Pharmacol 2002; 135:79-86. [PMID: 11786482 PMCID: PMC1573118 DOI: 10.1038/sj.bjp.0704456] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2001] [Revised: 10/01/2001] [Accepted: 10/24/2001] [Indexed: 12/31/2022] Open
Abstract
1. This study was performed to determine the effect and action mechanisms of sodium butyrate (NaB) on the growth of breast cancer cells. 2. Butyrate inhibited the growth of all breast cancer cell lines analysed. It induced cell cycle arrest in G1 and apoptosis in MCF-7, MCF-7ras, T47-D, and BT-20 cells, as well as arrest in G2/M in MDA-MB-231 cells. 3. Transient transfection of MCF-7 and T47-D cells with wild-type and antisense p53 did not modify butyrate-induced apoptosis. Pifithrin-alpha, which inhibits the transcriptional activity of P53, did not modify cell growth or apoptosis of MCF-7 and T47-D cells treated with butyrate. These results indicate that P53 was not involved in butyrate-induced growth inhibition of breast cancer cells. 4. Treatment of MCF-7 cells with anti-Fas agonist antibody induced cell death, indicating that Fas was functional in these cells. Moreover, butyrate potentiated Fas-induced apoptosis, as massive apoptosis was observed rapidly when MCF-7 cells were treated with butyrate and anti-Fas agonist antibody. In addition, butyrate-induced apoptosis in MCF-7 cells was considerably reduced by anti-Fas antagonist antibody. Western blot analysis showed that butyrate increased Fas and Fas ligand levels (Fas L), indicating that butyrate-induced apoptosis may be mediated by Fas signalling. 5. These results demonstrate that butyrate inhibited the growth of breast cancer cells in a P53-independent manner. Moreover, it induced apoptosis via the Fas/Fas L system and potentiated Fas-triggered apoptosis in MCF-7 cells. These findings may open interesting perspectives in human breast cancer treatment strategy.
Collapse
Affiliation(s)
- Valérie Chopin
- Laboratoire de Biologie du Développement, Equipe facteurs de croissance (UPRES 1033), Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Robert-Alain Toillon
- Laboratoire de Biologie du Développement, Equipe facteurs de croissance (UPRES 1033), Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Nathalie Jouy
- Institut Fédératif de Recherche 22: ‘Biologie et Pathologie des Régulations Cellulaires', Institut de Recherche sur le Cancer de Lille, 59045 Lille Cedex, France
| | - Xuefen Le Bourhis
- Laboratoire de Biologie du Développement, Equipe facteurs de croissance (UPRES 1033), Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
37
|
Bewick M, Conlon M, Parissenti AM, Lee H, Zhang L, Glück S, Lafrenie RM. Soluble Fas (CD95) is a prognostic factor in patients with metastatic breast cancer undergoing high-dose chemotherapy and autologous stem cell transplantation. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:759-68. [PMID: 11798502 DOI: 10.1089/152581601317210854] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Fas/Fas ligand (FasL) system plays an important role in cellular apoptosis and is involved in cancer cell death induced by the immune system and anticancer drugs. Increased serum levels of soluble Fas (sFas) are associated with a number of different disease states and with tumor progression and metastasis in patients. In this study, we examined the plasma levels of sFas in 94 women with metastatic breast cancer undergoing high-dose chemotherapy (HDCT) treatment with autologous stem cell transplantation (ASCT) using a quantitative enzyme-linked immunosorbent assay (ELISA) method. Thirty-one patients (31/94, 33%) had plasma sFas levels greater than the optimum cut point of 1.90 ng/ml (median 2.47, range 1.98-13.54 ng/ml) and were designated as sFas positive. Sixty-three patients (63/94, 67%) had sFas levels below 1.90 ng/ml (median 1.14, range 0.47-1.89 ng/ml). In univariate analysis, patients with sFas-positive status, HER-2 overexpression, and the presence of liver metastases had a significantly shorter time to disease progression (PFS) and significantly decreased overall survival (OS). Multivariable analysis (Cox proportional hazards model) for PFS determined that sFas status significantly predicted disease progression (p = 0.004) with an adjusted hazard ratio (HR) of 2.0 (95% CI, 1.3-3.3). HER-2 status and liver metastases were also significant independent predictors of disease progression (p < 0.001) for both. sFas level was also an independent prognostic factor for OS with an adjusted HR of 2.0 (p = 0.006; 95% CI, 1.2-3.4). HER-2 status and liver metastases also remained highly significant independent prognostic factors for OS (HER-2: p < 0.001, HR 2.3, and liver metastases: p = 0.001, HR 2.7). In conclusion, these results suggest that plasma levels of sFas may be a valuable clinical prognostic factor in predicting outcome (PFS and OS) for patients with metastatic breast cancer undergoing HDCT with ASCT.
Collapse
Affiliation(s)
- M Bewick
- Northeastern Ontario Regional Cancer Center, Sudbury, Ontario, P3E 5J1 Canada.
| | | | | | | | | | | | | |
Collapse
|
38
|
Santourlidis S, Warskulat U, Florl AR, Maas S, Pulte T, Fischer J, Müller W, Schulz WA. Hypermethylation of the tumor necrosis factor receptor superfamily 6 (APT1, Fas, CD95/Apo-1) gene promoter at rel/nuclear factor kappaB sites in prostatic carcinoma. Mol Carcinog 2001; 32:36-43. [PMID: 11568974 DOI: 10.1002/mc.1062] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA hypermethylation of CpG-rich promoter sequences is associated with tumor suppressor gene inactivation in many human cancers, notably in carcinoma of the prostate and the urinary bladder. Recently, the mouse homologue of the tumor necrosis factor receptor superfamily 6 (TNFRSF6) gene was reported to be inactivated by DNA methylation in various cell types. The Fas (CD95, Apo-1) protein encoded by the TNFRSF6 gene is an important mediator of apoptosis, which also is downregulated in different types of human carcinoma. We therefore investigated the methylation of the TNFRSF6 promoter in prostatic and bladder carcinomas and cell lines. In a restriction enzyme polymerase chain reaction assay, four of 32 prostatic carcinomas and three of 15 advanced bladder carcinomas showed evidence of hypermethylation at the rel/nuclear factor kappaB (NFkappaB) binding sites essential for promoter activity. The DU145 cell line derived from a metastasis of a prostate carcinoma also displayed hypermethylation in this assay, which was confirmed by bisulfite sequencing. Treatment of DU145 cells with the methylation inhibitor deoxyazacytidine slightly increased Fas protein expression, as detected by flow cytometry analysis. In vitro methylation of the TNFRSF6 promoter at the rel/NFkappaB sites completely abolished its activity. Thus, although the TNFRSF6 gene can be inactivated efficiently by DNA methylation, hypermethylation occurs neither frequently nor extensively in human carcinomas and appears to play a limited role in downregulation of Fas expression.
Collapse
Affiliation(s)
- S Santourlidis
- Urologische Klinik, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Céfai D, Schwaninger R, Balli M, Brunner T, Gimmi CD. Functional characterization of Fas ligand on tumor cells escaping active specific immunotherapy. Cell Death Differ 2001; 8:687-95. [PMID: 11464213 DOI: 10.1038/sj.cdd.4400862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2000] [Revised: 01/05/2001] [Accepted: 02/13/2001] [Indexed: 12/26/2022] Open
Abstract
Mice transgenic for the rat HER-2/neu oncogene (rNeu-TG) developed spontaneous breast tumors that can escape a rNeu-specific immune response induced by active specific immunotherapy (ASI). The ability of these escape tumors to grow appeared to be due to upregulation of the Fas ligand (Fas-L) molecule. In an effort to develop tools for the better elucidation of the role of Fas-L and other regulatory mechanisms in tumor escape, we established cell lines derived from escape tumors. These tumor cell lines retained MHC class I, rNeu and Fas-L expression in vitro and formed tumors in vaccinated mice. Tumor growth was accompanied by permanent Fas-L expression in vivo, both in vaccinated and control vaccinated mice, indicating that these cells have acquired constitutive Fas-L expression. Moreover, these cells induced target cell apoptosis in vitro. Thus, these cells represent a unique tool to elucidate the importance of Fas-L expressed by tumors that escaped efficient systemic immune responses.
Collapse
MESH Headings
- 3T3 Cells
- Adenocarcinoma/genetics
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Adenocarcinoma/therapy
- Animals
- Apoptosis
- Coculture Techniques
- Fas Ligand Protein
- Flow Cytometry
- Gene Expression
- Immunohistochemistry
- Immunotherapy, Active
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/therapy
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Neoplasm Transplantation
- Phenotype
- Rats
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Tumor Cells, Cultured
- Vaccination
Collapse
Affiliation(s)
- D Céfai
- Department of Clinical Research, University of Bern, 35 Murtenstrasse, 3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Müschen M, Re D, Betz B, Moers C, Wolf J, Niederacher D, Diehl V, Beckmann MW. Resistance to CD95-mediated apoptosis in breast cancer is not due to somatic mutation of the CD95 gene. Int J Cancer 2001; 92:309-10. [PMID: 11291062 DOI: 10.1002/1097-0215(200102)9999:9999<::aid-ijc1188>3.0.co;2-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Resistance to CD95 (Apo-1/Fas)-mediated apoptosis is a typical feature of breast cancer cells. Recent studies identified deleterious mutations of the CD95 gene not only in a variety of B cell lymphomas but also in a number of solid tumor entities. Therefore, we amplified and sequenced selected regions of the CD95 gene from 48 breast cancer cases and 10 cell lines but no mutation was found. In the presence of both polymorphic alleles, loss of heterozygosity was excluded in 27 informative cases. We conclude, that relevant somatic mutations of the CD95 gene occur, if at all, at a low frequency and are not the primary cause for resistance to CD95-mediated apoptosis in breast cancer.
Collapse
|
41
|
Céfai D, Favre L, Wattendorf E, Marti A, Jaggi R, Gimmi CD. Role of Fas ligand expression in promoting escape from immune rejection in a spontaneous tumor model. Int J Cancer 2001; 91:529-37. [PMID: 11251977 DOI: 10.1002/1097-0215(200002)9999:9999<::aid-ijc1074>3.0.co;2-o] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumors escape immune-mediated rejection by a variety of mechanisms during tumor progression. The elucidation of these mechanisms in vivo suffers from a lack of suitable models of spontaneous tumor formation escaping active specific immunotherapy (ASI). In a rat neu transgenic (rNeu-TG) mouse model of spontaneous breast tumor formation, we showed that rNeu-TG mice developed late escape tumors despite the presence of a persistent rNeu-specific immune response after ASI. Cell suspensions derived from these escape tumors grew in vaccinated tumor-free mice, whereas injected spontaneous tumor cells were rejected. Escape tumors retained rNeu or MHC class I expression but significantly upregulated Fas (CD95, Apo-1) ligand. We further demonstrated that Fas-L on escape tumor cells correlated with apoptosis of infiltrating T lymphocytes. Thus, our results provide evidence that spontaneous breast tumors upregulate Fas-L expression after vaccination that may promote tumor escape in vivo after ASI.
Collapse
Affiliation(s)
- D Céfai
- Department of Clinical Research, University of Bern, 35 Murtenstrasse, 3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Virus del papiloma humano y radiación ultravioleta: unas amistades peligrosas para la piel (II). Inmunopatogenia del cáncer cutáneo no melanoma. El papel iniciador y promotor de la radiación ultravioleta. Infiltrado inflamatorio y escape tumoral. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0213-9251(01)72511-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Hellstrand K, Brune M, Dahlgren C, Hansson M, Hermodsson S, Lindnér P, Mellqvist UH, Naredi P. Alleviating oxidative stress in cancer immunotherapy: a role for histamine? Med Oncol 2000; 17:258-69. [PMID: 11114704 DOI: 10.1007/bf02782190] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1999] [Accepted: 03/20/2000] [Indexed: 12/24/2022]
Abstract
Interleukin-2 is a remarkable activator of lymphocytes with anti-neoplastic properties such as T-cells or natural killer cells, but tumor regression only rarely occurs in interleukin-2-treated cancer patients. In this review, we focus on interactions between monocytes/macrophages and T-cells/natural killer-cells, and in particular the role of such interactions for the outcome of cancer immunotherapy with interleukin-2. We propose that interleukin-2 therapy should be supplemented with compounds that alleviate toxicity inflicted by monocyte/macrophage-derived reactive oxygen metabolites within and around tumors. The hypothesis is founded on data demonstrating that (i) functions of intratumoral lymphocytes in many human malignant tumors are inhibited by reactive oxygen metabolites, generated by neighboring monocytes/macrophages, (ii) interleukin-2 only weakly activates T-cells or natural killer cells in an environment of oxidative stress, and (iii) inhibitors of the formation of reactive oxygen metabolites or scavengers of reactive oxygen metabolites synergize with interleukin-2 to activate these lymphocyte subsets. We also review the preclinical background to the use of histamine dihydrochloride, an inhibitor of reactive oxygen metabolite formation in monocytes/macrophages, as a supplement to cancer immunotherapy with interleukin-2.
Collapse
Affiliation(s)
- K Hellstrand
- Department of Virology, University of Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|