1
|
Fabbri D, Mirolo M, Tagliapietra V, Ludlow M, Osterhaus A, Beraldo P. Ecological determinants driving orthohantavirus prevalence in small mammals of Europe: a systematic review. ONE HEALTH OUTLOOK 2025; 7:15. [PMID: 40134030 PMCID: PMC11938672 DOI: 10.1186/s42522-025-00136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/30/2025] [Indexed: 03/27/2025]
Abstract
Orthohantaviruses are emerging zoonotic pathogens that cause severe human disease and are considered an emerging public health threat globally. Mammalian orthohantaviruses are naturally maintained in rodent species and occasionally in other mammals. The abundance and density of natural orthohantavirus reservoir species are affected by multi annual and seasonal population cycles, community composition, ecosystem variables and climate. Horizontal transmission between host species is mostly density-driven and occurs via contact with infected host excreta, thus, fluctuations in populations and environmental variables often determine the prevalence of hantavirus in natural hosts. Given the zoonotic potential of hantaviruses, ecological factors influencing their spread and persistence in their natural reservoir and population dynamics influencing horizontal transmission require critical evaluation for human infection risk assessment. The present review paper discusses the impacts of natural host population cycles and ecosystem diversity, environmental conditions, and abiotic factors on the epidemiology of rodent-borne hantavirus infections in Europe. While significant efforts have been made to understand the drivers of hantavirus prevalence in natural hosts, we highlight key challenges in evaluating viral prevalence and assessing the role of environmental and population variables in determining hantavirus prevalence in host species.
Collapse
Affiliation(s)
- Daniele Fabbri
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via Sondrio 2/A, Udine, Italy.
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, Italy.
| | - Monica Mirolo
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, Hannover, Germany
| | - Valentina Tagliapietra
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All' Adige, Via Edmund Mach 1, Trento, Italy
| | - Martin Ludlow
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, Hannover, Germany
| | - Albert Osterhaus
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, Hannover, Germany
| | - Paola Beraldo
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via Sondrio 2/A, Udine, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, Italy
| |
Collapse
|
2
|
Husar K, Pittman DC, Rajala J, Mostafa F, Allen LJS. Lyme Disease Models of Tick-Mouse Dynamics with Seasonal Variation in Births, Deaths, and Tick Feeding. Bull Math Biol 2024; 86:25. [PMID: 38294562 DOI: 10.1007/s11538-023-01248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Lyme disease is the most common vector-borne disease in the United States impacting the Northeast and Midwest at the highest rates. Recently, it has become established in southeastern and south-central regions of Canada. In these regions, Lyme disease is caused by Borrelia burgdorferi, which is transmitted to humans by an infected Ixodes scapularis tick. Understanding the parasite-host interaction is critical as the white-footed mouse is one of the most competent reservoir for B. burgdorferi. The cycle of infection is driven by tick larvae feeding on infected mice that molt into infected nymphs and then transmit the disease to another susceptible host such as mice or humans. Lyme disease in humans is generally caused by the bite of an infected nymph. The main aim of this investigation is to study how diapause delays and demographic and seasonal variability in tick births, deaths, and feedings impact the infection dynamics of the tick-mouse cycle. We model tick-mouse dynamics with fixed diapause delays and more realistic Erlang distributed delays through delay and ordinary differential equations (ODEs). To account for demographic and seasonal variability, the ODEs are generalized to a continuous-time Markov chain (CTMC). The basic reproduction number and parameter sensitivity analysis are computed for the ODEs. The CTMC is used to investigate the probability of Lyme disease emergence when ticks and mice are introduced, a few of which are infected. The probability of disease emergence is highly dependent on the time and the infected species introduced. Infected mice introduced during the summer season result in the highest probability of disease emergence.
Collapse
Affiliation(s)
- Kateryna Husar
- Department of Statistical Science, Duke University, Durham, NC, 27705, USA.
| | - Dana C Pittman
- Department of Epidemiology and Biostatistics, Texas A &M University, College Station, TX, 77843, USA
| | - Johnny Rajala
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
| | - Fahad Mostafa
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Linda J S Allen
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
3
|
Castel G, Alburkat H, Tatard C, Dutra L, Criado M, Bouilloud M, Pradel J, Sironen T, Charbonnel N. Puumala orthohantavirus circulation in its wild reservoir, the bank vole, during the 2021 outbreak of hemorrhagic fever with renal syndrome in Jura, France. Infect Dis Now 2023; 53:104767. [PMID: 37562571 DOI: 10.1016/j.idnow.2023.104767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE A large and unprecedented outbreak of an attenuated form of hemorrhagic fever with renal syndrome called nephropathia epidemica (NE) and caused by Puumala virus (PUUV) occurred in 2021 in the southern Jura Mountains (France) leading to numerous hospitalizations. The aim of this study was to investigate the circulation of PUUV in its animal reservoir at the time of this outbreak. METHODS We conjointly surveyed bank vole relative abundance, small mammal community composition, and PUUV circulation in bank voles (seroprevalence and genetic diversity) in the Jura NE epidemic area, between 2020 and 2022. RESULTS Trapping results showed a higher relative abundance of bank voles in 2021 compared to 2020 and 2022. Extremely high levels of PUUV seroprevalence in bank voles were found at the time of the human NE epidemic with seropositive animals trapped in almost all trap lines as of spring 2021. Genetic analyses of PUUV (S segment) gathered in 2021 at two sampling sites revealed a strong clustering of these strains within the "Jura" clade. No significant genetic variation was detected compared to what was already known to be circulating in the Jura region. CONCLUSION These results underline a need for enhanced monitoring of PUUV circulation in host reservoir populations in NE endemic areas. This would enable the relevant actors to better inform and sensitize the public on this zoonotic risk, and to implement prevention strategies in collaboration with physicians.
Collapse
Affiliation(s)
- Guillaume Castel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université de Montpellier, France.
| | - Hussein Alburkat
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Caroline Tatard
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université de Montpellier, France
| | - Lara Dutra
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mathilde Criado
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université de Montpellier, France
| | - Marie Bouilloud
- CBGP, IRD, INRAE, CIRAD, Institut Agro, Université de Montpellier, France
| | - Julien Pradel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université de Montpellier, France
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
4
|
Davies K, Lenhart S, Day J, Lloyd AL, Lanzas C. Extensions of mean-field approximations for environmentally-transmitted pathogen networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:1637-1673. [PMID: 36899502 DOI: 10.3934/mbe.2023075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Many pathogens spread via environmental transmission, without requiring host-to-host direct contact. While models for environmental transmission exist, many are simply constructed intuitively with structures analogous to standard models for direct transmission. As model insights are generally sensitive to the underlying model assumptions, it is important that we are able understand the details and consequences of these assumptions. We construct a simple network model for an environmentally-transmitted pathogen and rigorously derive systems of ordinary differential equations (ODEs) based on different assumptions. We explore two key assumptions, namely homogeneity and independence, and demonstrate that relaxing these assumptions can lead to more accurate ODE approximations. We compare these ODE models to a stochastic implementation of the network model over a variety of parameters and network structures, demonstrating that with fewer restrictive assumptions we are able to achieve higher accuracy in our approximations and highlighting more precisely the errors produced by each assumption. We show that less restrictive assumptions lead to more complicated systems of ODEs and the potential for unstable solutions. Due to the rigour of our derivation, we are able to identify the reason behind these errors and propose potential resolutions.
Collapse
Affiliation(s)
- Kale Davies
- Department of Mathematics, University of Chicago, Chicago, IL, USA
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| | - Judy Day
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Cristina Lanzas
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Munjita SM, Moonga G, Mukubesa AN, Ndebe J, Mubemba B, Vanaerschot M, Tato C, Tembo J, Kapata N, Chitanga S, Changula K, Kajihara M, Muleya W, Takada A, Fichet-Calvet E, Zumla A, Sawa H, Bates M, Munsaka S, Simulundu E. Luna Virus and Helminths in Wild Mastomys natalensis in Two Contrasting Habitats in Zambia: Risk Factors and Evidence of Virus Dissemination in Semen. Pathogens 2022; 11:1345. [PMID: 36422597 PMCID: PMC9697851 DOI: 10.3390/pathogens11111345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 03/29/2025] Open
Abstract
Transmission dynamics and the maintenance of mammarenaviruses in nature are poorly understood. Using metagenomic next-generation sequencing (mNGS) and RT-PCR, we investigated the presence of mammarenaviruses and co-infecting helminths in various tissues of 182 Mastomys natalensis rodents and 68 other small mammals in riverine and non-riverine habitats in Zambia. The Luna virus (LUAV) genome was the only mammarenavirus detected (7.7%; 14/182) from M. natalensis. Only one rodent from the non-riverine habitat was positive, while all six foetuses from one pregnant rodent carried LUAV. LUAV-specific mNGS reads were 24-fold higher in semen than in other tissues from males. Phylogenetically, the viruses were closely related to each other within the LUAV clade. Helminth infections were found in 11.5% (21/182) of M. natalensis. LUAV-helminth co-infections were observed in 50% (7/14) of virus-positive rodents. Juvenility (OR = 9.4; p = 0.018; 95% CI: 1.47-59.84), nematodes (OR = 15.5; p = 0.001; 95% CI: 3.11-76.70), cestodes (OR = 10.8; p = 0.025; 95% CI: 1.35-86.77), and being male (OR = 4.6; p = 0.036; 95% CI: 1.10-18.90) were associated with increased odds of LUAV RNA detection. The role of possible sexual and/or congenital transmission in the epidemiology of LUAV infections in rodents requires further study, along with the implications of possible helminth co-infection.
Collapse
Affiliation(s)
- Samuel Munalula Munjita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka 10101, Zambia
| | - Given Moonga
- Department of Epidemiology and Biostatistics, School of Public Health, University of Zambia, Lusaka 10101, Zambia
| | - Andrew Nalishuwa Mukubesa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Benjamin Mubemba
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, Kitwe 50100, Zambia
- Department of Biomedical Sciences, School of Medicine, Copperbelt University, Ndola 50100, Zambia
| | | | - Cristina Tato
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka 10101, Zambia
| | - Nathan Kapata
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
| | - Simbarashe Chitanga
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Namibia, Windhoek 10005, Namibia
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Mashiro Kajihara
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokaido University, Sapporo 001-0020, Japan
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokaido University, Sapporo 001-0020, Japan
| | - Elisabeth Fichet-Calvet
- Department of Virology/Disease Ecology, Bernhard-Nocht Institute for Tropical Medicine, Bernhard-Nocht Strasse 74, 20359 Hamburg, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London NW3 2PF, UK
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, Global Virus Network, Baltimore, MD 21201, USA
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0020, Japan
| | - Matthew Bates
- HerpeZ, University Teaching Hospital, Lusaka 10101, Zambia
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincolnshire LN6 7TS, UK
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Macha Research Trust, Choma 20100, Zambia
| |
Collapse
|
6
|
Data-driven models for replication kinetics of Orthohantavirus infections. Math Biosci 2022; 349:108834. [DOI: 10.1016/j.mbs.2022.108834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
|
7
|
Razzauti M, Castel G, Cosson JF. Impact of Landscape on Host-Parasite Genetic Diversity and Distribution Using the Puumala orthohantavirus-Bank Vole System. Microorganisms 2021; 9:microorganisms9071516. [PMID: 34361952 PMCID: PMC8306195 DOI: 10.3390/microorganisms9071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
In nature, host specificity has a strong impact on the parasite's distribution, prevalence, and genetic diversity. The host's population dynamics is expected to shape the distribution of host-specific parasites. In turn, the parasite's genetic structure is predicted to mirror that of the host. Here, we study the tandem Puumala orthohantavirus (PUUV)-bank vole system. The genetic diversity of 310 bank voles and 33 PUUV isolates from 10 characterized localities of Northeast France was assessed. Our findings show that the genetic diversity of both PUUV and voles, was positively correlated with forest coverage and contiguity of habitats. While the genetic diversity of voles was weakly structured in space, that of PUUV was found to be strongly structured, suggesting that the dispersion of voles was not sufficient to ensure a broad PUUV dissemination. Genetic diversity of PUUV was mainly shaped by purifying selection. Genetic drift and extinction events were better reflected than local adaptation of PUUV. These contrasting patterns of microevolution have important consequences for the understanding of PUUV distribution and epidemiology.
Collapse
Affiliation(s)
- Maria Razzauti
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université Montpellier, 34000 Montpellier, France;
- Correspondence:
| | - Guillaume Castel
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université Montpellier, 34000 Montpellier, France;
| | - Jean-François Cosson
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France;
| |
Collapse
|
8
|
Rees EM, Minter A, Edmunds WJ, Lau CL, Kucharski AJ, Lowe R. Transmission modelling of environmentally persistent zoonotic diseases: a systematic review. Lancet Planet Health 2021; 5:e466-e478. [PMID: 34245717 DOI: 10.1016/s2542-5196(21)00137-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Transmission of many infectious diseases depends on interactions between humans, animals, and the environment. Incorporating these complex processes in transmission dynamic models can help inform policy and disease control interventions. We identified 20 diseases involving environmentally persistent pathogens (ie, pathogens that survive for more than 48 h in the environment and can cause subsequent human infections), of which indirect transmission can occur from animals to humans via the environment. Using a systematic approach, we critically appraised dynamic transmission models for environmentally persistent zoonotic diseases to quantify traits of models across diseases. 210 transmission modelling studies were identified and most studies considered diseases of domestic animals or high-income settings, or both. We found that less than half of studies validated their models to real-world data, and environmental data on pathogen persistence was rarely incorporated. Model structures varied, with few studies considering the animal-human-environment interface of transmission in the context of a One Health framework. This Review highlights the need for more data-driven modelling of these diseases and a holistic One Health approach to model these pathogens to inform disease prevention and control strategies.
Collapse
Affiliation(s)
- Eleanor M Rees
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK.
| | - Amanda Minter
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - W John Edmunds
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Colleen L Lau
- Research School of Population Health, Australian National University, Canberra, ACT, Australia; School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Adam J Kucharski
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Rachel Lowe
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
9
|
Reijniers J, Tersago K, Borremans B, Hartemink N, Voutilainen L, Henttonen H, Leirs H. Why Hantavirus Prevalence Does Not Always Increase With Host Density: Modeling the Role of Host Spatial Behavior and Maternal Antibodies. Front Cell Infect Microbiol 2020; 10:536660. [PMID: 33134187 PMCID: PMC7550670 DOI: 10.3389/fcimb.2020.536660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
For wildlife diseases, one often relies on host density to predict host infection prevalence and the subsequent force of infection to humans in the case of zoonoses. Indeed, if transmission is mainly indirect, i.e., by way of the environment, the force of infection is expected to increase with host density, yet the laborious field data supporting this theoretical claim are often absent. Hantaviruses are among those zoonoses that have been studied extensively over the past decades, as they pose a significant threat to humans. In Europe, the most widespread hantavirus is the Puumala virus (PUUV), which is carried by the bank vole and causes nephropathia epidemica (NE) in humans. Extensive field campaigns have been carried out in Central Finland to shed light on this supposed relationship between bank vole density and PUUV prevalence and to identify other drivers for the infection dynamics. This resulted in the surprising observation that the relationship between bank vole density and PUUV prevalence is not purely monotonic on an annual basis, contrary to what previous models predicted: a higher vole density does not necessary result in a higher infection prevalence, nor in an increased number of humans reported having NE. Here, we advance a novel individual-based spatially-explicit model which takes into account the immunity provided by maternal antibodies and which simulates the spatial behavior of the host, both possible causes for this discrepancy that were not accounted for in previous models. We show that the reduced prevalence in peak years can be attributed to transient immunity, and that the density-dependent spatial vole behavior, i.e., the fact that home ranges are smaller in high density years, plays only a minor role. The applicability of the model is not limited to the study and prediction of PUUV (and NE) occurrence in Europe, as it could be easily adapted to model other rodent-borne diseases, either with indirect or direct transmission.
Collapse
Affiliation(s)
- Jonas Reijniers
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium.,Active Perception Lab, Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Katrien Tersago
- Agentschap Zorg en Gezondheid, Government Administration, Brussels, Belgium
| | - Benny Borremans
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Nienke Hartemink
- Theoretical Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.,Biometris, Wageningen University and Research, Wageningen, Netherlands
| | | | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Helsinki, Finland
| | - Herwig Leirs
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Murri S, Madrières S, Tatard C, Piry S, Benoit L, Loiseau A, Pradel J, Artige E, Audiot P, Leménager N, Lacôte S, Vulin J, Charbonnel N, Marianneau P, Castel G. Detection and Genetic Characterization of Puumala Orthohantavirus S-Segment in Areas of France Non-Endemic for Nephropathia Epidemica. Pathogens 2020; 9:pathogens9090721. [PMID: 32882953 PMCID: PMC7559001 DOI: 10.3390/pathogens9090721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/15/2020] [Accepted: 08/22/2020] [Indexed: 12/30/2022] Open
Abstract
Puumala virus (PUUV) in Europe causes nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). The incidence of NE is highly heterogeneous spatially, whereas the geographic distribution of the wild reservoir of PUUV, the bank vole, is essentially homogeneous. Our understanding of the processes driving this heterogeneity remains incomplete due to gaps in knowledge. Little is known about the current distribution and genetic variation of PUUV in the areas outside the well-identified zones of NE endemicity. We trapped bank voles in four forests in French regions in which NE is considered non-endemic, but sporadic NE cases have been reported recently. We tested bank voles for anti-PUUV IgG and characterized the S segment sequences of PUUV from seropositive animals. Phylogenetic analyses revealed specific amino-acid signatures and genetic differences between PUUV circulating in non-endemic and nearby NE-endemic areas. We also showed, in temporal surveys, that the amino-acid sequences of PUUV had undergone fewer recent changes in areas non-endemic for NE than in endemic areas. The evolutionary history of the current French PUUV clusters was investigated by phylogeographic approaches, and the results were considered in the context of the history of French forests. Our findings highlight the need to monitor the circulation and genetics of PUUV in a larger array of bank vole populations, to improve our understanding of the risk of NE.
Collapse
Affiliation(s)
- Séverine Murri
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Sarah Madrières
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Caroline Tatard
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Sylvain Piry
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Laure Benoit
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Julien Pradel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Emmanuelle Artige
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Philippe Audiot
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Nicolas Leménager
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Sandra Lacôte
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Johann Vulin
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
| | - Philippe Marianneau
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (S.M.); (S.L.); (J.V.); (P.M.)
| | - Guillaume Castel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (C.T.); (S.P.); (L.B.); (A.L.); (J.P.); (E.A.); (P.A.); (N.L.); (N.C.)
- Correspondence:
| |
Collapse
|
11
|
Fevola C, Rossi C, Rosso F, Girardi M, Rosà R, Manica M, Delucchi L, Rocchini D, Garzon-Lopez CX, Arnoldi D, Bianchi A, Buzan E, Charbonnel N, Collini M, Ďureje L, Ecke F, Ferrari N, Fischer S, Gillingham EL, Hörnfeldt B, Kazimírová M, Konečný A, Maas M, Magnusson M, Miller A, Niemimaa J, Nordström Å, Obiegala A, Olsson G, Pedrini P, Piálek J, Reusken CB, Rizzolli F, Romeo C, Silaghi C, Sironen T, Stanko M, Tagliapietra V, Ulrich RG, Vapalahti O, Voutilainen L, Wauters L, Rizzoli A, Vaheri A, Jääskeläinen AJ, Henttonen H, Hauffe HC. Geographical Distribution of Ljungan Virus in Small Mammals in Europe. Vector Borne Zoonotic Dis 2020; 20:692-702. [PMID: 32487013 DOI: 10.1089/vbz.2019.2542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ljungan virus (LV), which belongs to the Parechovirus genus in the Picornaviridae family, was first isolated from bank voles (Myodes glareolus) in Sweden in 1998 and proposed as a zoonotic agent. To improve knowledge of the host association and geographical distribution of LV, tissues from 1685 animals belonging to multiple rodent and insectivore species from 12 European countries were screened for LV-RNA using reverse transcriptase (RT)-PCR. In addition, we investigated how the prevalence of LV-RNA in bank voles is associated with various intrinsic and extrinsic factors. We show that LV is widespread geographically, having been detected in at least one host species in nine European countries. Twelve out of 21 species screened were LV-RNA PCR positive, including, for the first time, the red vole (Myodes rutilus) and the root or tundra vole (Alexandromys formerly Microtus oeconomus), as well as in insectivores, including the bicolored white-toothed shrew (Crocidura leucodon) and the Valais shrew (Sorex antinorii). Results indicated that bank voles are the main rodent host for this virus (overall RT-PCR prevalence: 15.2%). Linear modeling of intrinsic and extrinsic factors that could impact LV prevalence showed a concave-down relationship between body mass and LV occurrence, so that subadults had the highest LV positivity, but LV in older animals was less prevalent. Also, LV prevalence was higher in autumn and lower in spring, and the amount of precipitation recorded during the 6 months preceding the trapping date was negatively correlated with the presence of the virus. Phylogenetic analysis on the 185 base pair species-specific sequence of the 5' untranslated region identified high genetic diversity (46.5%) between 80 haplotypes, although no geographical or host-specific patterns of diversity were detected.
Collapse
Affiliation(s)
- Cristina Fevola
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chiara Rossi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Matteo Girardi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center for Agriculture Food Environment-C3A, University of Trento and Fondazione E. Mach, San Michele all'Adige, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Luca Delucchi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Duccio Rocchini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center for Agriculture Food Environment-C3A, University of Trento and Fondazione E. Mach, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Povo, Italy
| | - Carol X Garzon-Lopez
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Ecology and Vegetation Physiology Group (EcoFiv), Universidad de los Andes, Bogotá, Colombia
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna "Bruno Ubertini," Brescia, Italy
| | - Elena Buzan
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Margherita Collini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - L'udovít Ďureje
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Studenec, Czech Republic
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nicola Ferrari
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Stefan Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Emma L Gillingham
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Department of Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Salisbury, United Kingdom.,Department of Climate Change and Health, Public Health England, London, United Kingdom
| | - Birger Hörnfeldt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mária Kazimírová
- Slovak Academy of Sciences (SAS), Institute of Zoology, Bratislava, Slovakia
| | - Adam Konečný
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Miriam Maas
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Magnus Magnusson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andrea Miller
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department for Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Jukka Niemimaa
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Åke Nordström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität, Munich, Germany.,Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Gert Olsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Paolo Pedrini
- Sezione Zoologia dei Vertebrati, MUSE-Museo delle Scienze, Trento, Italy
| | - Jaroslav Piálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Studenec, Czech Republic
| | - Chantal B Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Franco Rizzolli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudia Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität, Munich, Germany.,Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michal Stanko
- Slovak Academy of Sciences (SAS), Institute of Zoology, Bratislava, Slovakia.,Slovak Academy of Sciences (SAS), Institute of Parasitology, Košice, Slovakia
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Olli Vapalahti
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Lucas Wauters
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne J Jääskeläinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
12
|
Gorosito I, BenÍtez A, Busch M. Home range variability, spatial aggregation, and excursions of Akodon azarae and Oligoryzomys flavescens in Pampean agroecosystems. Integr Zool 2020; 15:401-415. [PMID: 32304184 DOI: 10.1111/1749-4877.12437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rodents are reservoirs of various types of hantavirus, some of which are agents of hantavirus pulmonary syndrome in humans. Each hantavirus is associated with a single rodent host species but successive spill-over events may eventually lead to host-switching and new species' becoming host of a given pathogen. This study aims to gain an understanding of the spatial ecology of two hantavirus-host species, Akodon azarae, and Oligoryzomys flavescens, by identifying factors modulating their home range sizes and stability, and by evaluating intra- and interspecific spatial aggregation for these species and a third one-Oxymycterus rufus-living in sympatry. For this, eleven capture-mark-recapture surveys were carried out, spanning 22 months. We found that A. azarae males have larger and more mobile home ranges than females, independently of the season. Consequently, males could likely have a more relevant role in the transmission of hantavirus because of their greater exposure both to a higher number of contacts between individuals and viral contamination of the environment. Contrasting, O. flavescens individuals showed negligible displacements of their home range through time, which could limit the range of hantavirus spread in host populations. Since O. flavescens is host to Lechiguanas hantavirus (pathogenic to humans) this result encompasses epidemiological relevance, for it may imply the existence of local foci of infection. Additionally, individuals of both species performed excursions outside their home ranges. These events could enable hantavirus spread over distances beyond the normal range of movements and lead to new hantavirus outbreaks in formerly non-infected rodent populations, favoring the persistence of the virus in nature.
Collapse
Affiliation(s)
- Irene Gorosito
- Laboratorio de, Ecología de Poblaciones, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ailén BenÍtez
- Laboratorio de Ecología de Poblaciones, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Busch
- Laboratorio de Ecología de Poblaciones, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
13
|
Madai M, Németh V, Oldal M, Horváth G, Herczeg R, Kelemen K, Kemenesi G, Jakab F. Temporal Dynamics of Two Pathogenic Hantaviruses Among Rodents in Hungary. Vector Borne Zoonotic Dis 2020; 20:212-221. [PMID: 31821117 DOI: 10.1089/vbz.2019.2438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hantaviruses are worldwide pathogens, which often cause serious or even fatal diseases in humans. Hosts are predominantly in the form of rodents and soricomorphs; however, bats are also described as an important reservoir. In Hungary, representatives of two human pathogenic species of the genus Orthohantavirus are present: the Dobrava-Belgrade orthohantavirus and Puumala orthohantavirus. In Hungarian forests, the dominant rodent species are Apodemus flavicollis, Apodemus agrarius, Apodemus sylvaticus, and Myodes glareolus, all of which are natural reservoirs comprising different hantaviruses. The aim of the study was to survey the prevalence of hantaviruses among rodent populations and examine the potential relationship regarding population densities, years, sex, and seroprevalence. Rodents were trapped at 13 sampling plots in a forest reserve located in the Mecsek Mountain range, Hungary, from March to October between 2011 and 2014. Rodent serum samples were tested for IgG antibodies against Dobrava-Belgrade virus and Puumala virus by enzyme-linked immunosorbent assay (ELISA) using a recombinant nucleocapsid protein. During the 4-year sampling period, 2491 specimens were tested and 254 (10.2%) proved seropositive for orthohantaviruses. In 2011, the seroprevalence among Apodemus spp. and M. glareolus was 17.2% (114/661) and 3.9% (3/77), respectively, although this rate had reversed itself in 2014. Seropositivity was substantiated in 18.4% (12/65) of Myodes voles, while only 3.6% (13/359) of the tested Apodemus rodents were found to be IgG positive. Seroconversion was observed in 58 cases, while seroreversion was only detected in 3 individual cases. A significant difference among the number of infected males and females was identified in the first 2 years of our study. Winter survival with respect to rodents was not negatively affected due to the hantavirus infection. Hantavirus seroprevalence was not directly influenced by host abundance. Consequently, we assume that high rodent density alone does not lead to an increased risk of hantavirus infection among the rodent host population.
Collapse
Affiliation(s)
- Mónika Madai
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Viktória Németh
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Dermatology, Venereology and Oncodermatology, University of Pécs, Pécs, Hungary
| | - Miklós Oldal
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Győző Horváth
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Róbert Herczeg
- Bioinformatics Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztina Kelemen
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- Virological Research Group, BSL-4 Laboratory, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| |
Collapse
|
14
|
Pepin KM, Golnar AJ, Abdo Z, Podgórski T. Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control. Ecol Evol 2020; 10:2846-2859. [PMID: 32211160 PMCID: PMC7083705 DOI: 10.1002/ece3.6100] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/12/2020] [Indexed: 12/12/2022] Open
Abstract
Environmental sources of infection can play a primary role in shaping epidemiological dynamics; however, the relative impact of environmental transmission on host-pathogen systems is rarely estimated. We developed and fit a spatially explicit model of African swine fever virus (ASFV) in wild boar to estimate what proportion of carcass-based transmission is contributing to the low-level persistence of ASFV in Eastern European wild boar. Our model was developed based on ecological insight and data from field studies of ASFV and wild boar in Eastern Poland. We predicted that carcass-based transmission would play a substantial role in persistence, especially in low-density host populations where contact rates are low. By fitting the model to outbreak data using approximate Bayesian computation, we inferred that between 53% and 66% of transmission events were carcass-based that is, transmitted through contact of a live host with a contaminated carcass. Model fitting and sensitivity analyses showed that the frequency of carcass-based transmission increased with decreasing host density, suggesting that management policies should emphasize the removal of carcasses and consider how reductions in host densities may drive carcass-based transmission. Sensitivity analyses also demonstrated that carcass-based transmission is necessary for the autonomous persistence of ASFV under realistic parameters. Autonomous persistence through direct transmission alone required high host densities; otherwise re-introduction of virus periodically was required for persistence when direct transmission probabilities were moderately high. We quantify the relative role of different persistence mechanisms for a low-prevalence disease using readily collected ecological data and viral surveillance data. Understanding how the frequency of different transmission mechanisms vary across host densities can help identify optimal management strategies across changing ecological conditions.
Collapse
Affiliation(s)
- Kim M. Pepin
- National Wildlife Research CenterUSDAAPHISFort CollinsCOUSA
| | | | - Zaid Abdo
- Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
| | - Tomasz Podgórski
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
- Department of Game Management and Wildlife BiologyFaculty of Forestry and Wood SciencesCzech University of Life SciencesPraha 6Czech Republic
| |
Collapse
|
15
|
Milholland MT, Castro-Arellano I, Garcia-Peña GE, Mills JN. The Ecology and Phylogeny of Hosts Drive the Enzootic Infection Cycles of Hantaviruses. Viruses 2019; 11:v11070671. [PMID: 31340455 PMCID: PMC6669546 DOI: 10.3390/v11070671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Hantaviruses (Family: Hantaviridae; genus: Orthohantavirus) and their associated human diseases occur globally and differ according to their geographic distribution. The structure of small mammal assemblages and phylogenetic relatedness among host species are suggested as strong drivers for the maintenance and spread of hantavirus infections in small mammals. We developed predictive models for hantavirus infection prevalence in rodent assemblages using defined ecological correlates from our current knowledge of hantavirus-host distributions to provide predictive models at the global and continental scale. We utilized data from published research between 1971–2014 and determined the biological and ecological characteristics of small mammal assemblages to predict the prevalence of hantavirus infections. These models are useful in predicting hantavirus disease outbreaks based on environmental and biological information obtained through the surveillance of rodents.
Collapse
Affiliation(s)
- Matthew T Milholland
- College of Agriculture and Natural Resources-Department of Environmental Sciences and Technology, University of Maryland, College Park, MD 1433, USA.
- United States Department of Agriculture-Agriculture Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA.
| | | | - Gabriel E Garcia-Peña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City 04510, México
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, México City 04510, México
- UMR MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 5290, CNRIS-IRD-Université de Montpellier, Centre de Recherche IRD, Montpellier Cedex 5 34192, France
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
The Needs for Developing Experiments on Reservoirs in Hantavirus Research: Accomplishments, Challenges and Promises for the Future. Viruses 2019; 11:v11070664. [PMID: 31331096 PMCID: PMC6669540 DOI: 10.3390/v11070664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022] Open
Abstract
Due to their large geographic distribution and potential high mortality rates in human infections, hantaviruses constitute a worldwide threat to public health. As such, they have been the subject of a large array of clinical, virological and eco-evolutionary studies. Many experiments have been conducted in vitro or on animal models to identify the mechanisms leading to pathogenesis in humans and to develop treatments of hantavirus diseases. Experimental research has also been dedicated to the understanding of the relationship between hantaviruses and their reservoirs. However, these studies remain too scarce considering the diversity of hantavirus/reservoir pairs identified, and the wide range of issues that need to be addressed. In this review, we present a synthesis of the experimental studies that have been conducted on hantaviruses and their reservoirs. We aim at summarizing the knowledge gathered from this research, and to emphasize the gaps that need to be filled. Despite the many difficulties encountered to carry hantavirus experiments, we advocate for the need of such studies in the future, at the interface of evolutionary ecology and virology. They are critical to address emerging areas of research, including hantavirus evolution and the epidemiological consequences of individual variation in infection outcomes.
Collapse
|
17
|
Jarquín-Díaz VH, Balard A, Jost J, Kraft J, Dikmen MN, Kvičerová J, Heitlinger E. Detection and quantification of house mouse Eimeria at the species level - Challenges and solutions for the assessment of coccidia in wildlife. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 10:29-40. [PMID: 31360634 PMCID: PMC6637263 DOI: 10.1016/j.ijppaw.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/23/2022]
Abstract
Detection and quantification of coccidia in studies of wildlife can be challenging. Therefore, prevalence of coccidia is often not assessed at the parasite species level in non-livestock animals. Parasite species – specific prevalences are especially important when studying evolutionary questions in wild populations. We tested whether increased host population density increases prevalence of individual Eimeria species at the farm level, as predicted by epidemiological theory. We studied free-living commensal populations of the house mouse (Mus musculus) in Germany, and established a strategy to detect and quantify Eimeria infections. We show that a novel diagnostic primer targeting the apicoplast genome (Ap5) and coprological assessment after flotation provide complementary detection results increasing sensitivity. Genotyping PCRs confirm detection in a subset of samples and cross-validation of different PCR markers does not indicate bias towards a particular parasite species in genotyping. We were able to detect double infections and to determine the preferred niche of each parasite species along the distal-proximal axis of the intestine. Parasite genotyping from tissue samples provides additional indication for the absence of species bias in genotyping amplifications. Three Eimeria species were found infecting house mice at different prevalences: Eimeria ferrisi (16.7%; 95% CI 13.2–20.7), E. falciformis (4.2%; 95% CI 2.6–6.8) and E. vermiformis (1.9%; 95% CI 0.9–3.8). We also find that mice in dense populations are more likely to be infected with E. falciformis and E. ferrisi. We provide methods for the assessment of prevalences of coccidia at the species level in rodent systems. We show and discuss how such data can help to test hypotheses in ecology, evolution and epidemiology on a species level. Flotation and PCR provide complementary results for Eimeria detection in house mice. Genotyping PCRs confirm detections. E. ferrisi, E. falciformis, and E. vermiformis infect natural populations of M. musculus. Double infections and preferentially infected tissues could be identified using qPCR. Potential virulence prevalence trade-off for Eimeria of house mice.
Collapse
Affiliation(s)
- Víctor Hugo Jarquín-Díaz
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.,Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Im Forschungsverbund Berlin e.V. Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Alice Balard
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.,Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Im Forschungsverbund Berlin e.V. Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Jenny Jost
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Julia Kraft
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Mert Naci Dikmen
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany
| | - Jana Kvičerová
- Department of Parasitology, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Philippstr. 13, Haus 14, 10115, Berlin, Germany.,Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Im Forschungsverbund Berlin e.V. Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|
18
|
Li S, Gilbert L, Vanwambeke SO, Yu J, Purse BV, Harrison PA. Lyme Disease Risks in Europe under Multiple Uncertain Drivers of Change. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67010. [PMID: 31232609 PMCID: PMC6792373 DOI: 10.1289/ehp4615] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Debates over whether climate change could lead to the amplification of Lyme disease (LD) risk in the future have received much attention. Although recent large-scale disease mapping studies project an overall increase in Lyme disease risk as the climate warms, such conclusions are based on climate-driven models in which other drivers of change, such as land-use/cover and host population distribution, are less considered. OBJECTIVES The main objectives were to project the likely future ecological risk patterns of LD in Europe under different assumptions about future socioeconomic and climate conditions and to explore similarity and uncertainty in the projected risks. METHODS An integrative, spatially explicit modeling study of the ecological risk patterns of LD in Europe was conducted by applying recent advances in process-based modeling of tick-borne diseases, species distribution mapping, and scenarios of land-use/cover change. We drove the model with stakeholder-driven, integrated scenarios of plausible future socioeconomic and climate change [the Shared Socioeconomic Pathway (SSPs) combined with the Representative Concentration Pathways (RCPs)]. RESULTS The model projections suggest that future temperature increases may not always amplify LD risk: Low emissions scenarios (RCP2.6) combined with a sustainability socioeconomic scenario (SSP1) resulted in reduced LD risk. The greatest increase in risk was projected under intermediate (RCP4.5) rather than high-end (RCP8.5) climate change scenarios. Climate and land-use change were projected to have different roles in shaping the future regional dynamics of risk, with climate warming being likely to cause risk expansion in northern Europe and conversion of forest to agriculture being likely to limit risk in southern Europe. CONCLUSIONS Projected regional differences in LD risk resulted from mixed effects of temperature, land use, and host distributions, suggesting region-specific and cross-sectoral foci for LD risk management policy. The integrated model provides an improved explanatory tool for the system mechanisms of LD pathogen transmission and how pathogen transmission could respond to combined socioeconomic and climate changes. https://doi.org/10.1289/EHP4615.
Collapse
Affiliation(s)
- Sen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, P.R. China
- Centre for Ecology & Hydrology, Wallingford, UK
- Environmental Change Institute, University of Oxford, Oxford, UK
| | - Lucy Gilbert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sophie O. Vanwambeke
- Georges Lemaître Centre for Earth and Climate Research, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jianjun Yu
- Environmental Change Institute, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
19
|
Assessing the role of dens in the spread, establishment and persistence of sarcoptic mange in an endangered canid. Epidemics 2019; 27:28-40. [DOI: 10.1016/j.epidem.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 11/21/2022] Open
|
20
|
Laenen L, Vergote V, Vanmechelen B, Tersago K, Baele G, Lemey P, Leirs H, Dellicour S, Vrancken B, Maes P. Identifying the patterns and drivers of Puumala hantavirus enzootic dynamics using reservoir sampling. Virus Evol 2019; 5:vez009. [PMID: 31024739 PMCID: PMC6476162 DOI: 10.1093/ve/vez009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hantaviruses are zoonotic hemorrhagic fever viruses for which prevention of human spillover remains the first priority in disease management. Tailored intervention measures require an understanding of the drivers of enzootic dynamics, commonly inferred from distorted human incidence data. Here, we use longitudinal sampling of approximately three decades of Puumala orthohantavirus (PUUV) evolution in isolated reservoir populations to estimate PUUV evolutionary rates, and apply these to study the impact of environmental factors on viral spread. We find that PUUV accumulates genetic changes at a rate of ∼10−4 substitutions per site per year and that land cover type defines the dispersal dynamics of PUUV, with forests facilitating and croplands impeding virus spread. By providing reliable short-term PUUV evolutionary rate estimates, this work facilitates the evaluation of spatial risk heterogeneity starting from timed phylogeographic reconstructions based on virus sampling in its animal reservoir, thereby side-stepping the need for difficult-to-collect human disease incidence data.
Collapse
Affiliation(s)
- Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Bert Vanmechelen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Katrien Tersago
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium.,Epidemiology of Infectious Diseases, Belgian Institute of Health, Sciensano, Brussels, Belgium
| | - Guy Baele
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Philippe Lemey
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Simon Dellicour
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium.,Spatial Epidemiology Lab (spELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Bram Vrancken
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Wijaya KP, Aldila D, Schäfer LE. Learning the seasonality of disease incidences from empirical data. ECOLOGICAL COMPLEXITY 2019. [DOI: 10.1016/j.ecocom.2019.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Parand K, Yousefi H, Fotouhifar M, Delkhosh M, Hosseinzadeh M. Shifted Boubaker Lagrangian approach for solving biological systems. INT J BIOMATH 2018. [DOI: 10.1142/s1793524518500390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mathematical models and computer simulations are useful experimental tools for building and testing theories. Many mathematical models in biology can be formulated by a nonlinear system of ordinary differential equations. This work deals with the numerical solution of the hantavirus infection model, the human immunodeficiency virus (HIV) infection model of CD4[Formula: see text]T cells and the susceptible–infected–removed (SIR) epidemic model using a new reliable algorithm based on shifted Boubaker Lagrangian (SBL) method. This method reduces the solution of such system to a system of linear or nonlinear algebraic equations which are solved using the Newton iteration method. The obtained results of the proposed method show highly accurate and valid for an arbitrary finite interval. Also, those are compared with fourth-order Runge–Kutta (RK4) method and with the solutions obtained by some other methods in the literature.
Collapse
Affiliation(s)
- Kourosh Parand
- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
- Department of Cognitive Modelling, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Tehran, Iran
| | - Hossein Yousefi
- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
| | - Mina Fotouhifar
- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
| | - Mehdi Delkhosh
- Department of Computer Sciences, Shahid Beheshti University, G.C., Tehran, Iran
| | - Mehdi Hosseinzadeh
- Iran University of Medical Sciences, Tehran, Iran
- Computer Science, University of Human Development, Sulaimaniyah, Iraq
| |
Collapse
|
23
|
Monchatre-Leroy E, Murri S, Castel G, Calavas D, Boué F, Hénaux V, Marianneau P. First insights into Puumala orthohantavirus circulation in a rodent population in Alsace, France. Zoonoses Public Health 2018; 65:540-551. [PMID: 29577655 DOI: 10.1111/zph.12464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Indexed: 11/29/2022]
Abstract
In-depth knowledge on the mechanisms that maintain infection by a zoonotic pathogen in an animal reservoir is the key to predicting and preventing transmission to humans. The Puumala orthohantavirus (PUUV), the most prevalent orthohantavirus in Western Europe, causes a mild form of haemorrhagic fever with renal syndrome (HFRS) in humans. In France, this endemic illness affects the north-eastern part of the country. We conducted a 4-year capture-mark-recapture study in a bank vole population, combined with molecular analyses, to explore the epidemiological situation of PUUV in Alsace, a French region where human cases have occurred, but for which no studies have been conducted on this reservoir host. PUUV-infected bank voles were detected in the 2 years that showed high bank vole density with a prevalence of 4%. The individual PUUV sequences identified in this study were similar from year to year and similar to other French sequences. On a very small spatial scale, the distribution of seropositive bank voles was very heterogeneous in time and space. The short distances travelled on average by bank voles resulted in spatial clusters of seropositive rodents, which spread only very gradually throughout the year.
Collapse
Affiliation(s)
| | - S Murri
- Laboratoire de Lyon, ANSES, Unité de virologie, Lyon, France
| | - G Castel
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - D Calavas
- Laboratoire de Lyon, ANSES, Unité d'épidémiologie, Lyon, France
| | - F Boué
- Laboratoire de la rage et de la Faune Sauvage, ANSES, Nancy, France
| | - V Hénaux
- Laboratoire de Lyon, ANSES, Unité d'épidémiologie, Lyon, France
| | - P Marianneau
- Laboratoire de Lyon, ANSES, Unité de virologie, Lyon, France
| |
Collapse
|
24
|
Li L, Wang CH, Wang SF, Li MT, Yakob L, Cazelles B, Jin Z, Zhang WY. Hemorrhagic fever with renal syndrome in China: Mechanisms on two distinct annual peaks and control measures. INT J BIOMATH 2018; 11:1850030. [DOI: 10.1142/s1793524518500304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by several serotypes of hantavirus and 90% of all reported HFRS cases occur in China. However, the dynamics of such outbreak, particularly the characteristics of two distinct annual peaks in China, are not well understood. Here, we investigate several of the biologically plausible causes for the peaks in monthly HFRS cases, and find that the key factor is the interplay between periodic transmission rates and rodent periodic birth rate. Analysis of dynamical model reveals that vaccination plays a significant role in the control of HFRS in China. Sensitive analysis of different interventions demonstrates that integrating rodent culling and environmental management with the current vaccination program is effective for HFRS control. Our results suggest that for diseases from animals to human beings, the features of both animals and humans beings should be taken into account in the control and prevention strategies.
Collapse
Affiliation(s)
- Li Li
- School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, P. R. China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Cui-Hua Wang
- Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Shi-Fu Wang
- Department of Children’s Medical Laboratory, Diagnosis Center Qilu Children’s Hospital of Shandong University, Jinan 250022, P. R. China
| | - Ming-Tao Li
- Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Bernard Cazelles
- UMMISCO, UMI 209 IRD-UPMC, 93142 Bondy, France
- Eco-Evolutionary Mathematics, IBENS UMR 8197, ENS, Paris, France
| | - Zhen Jin
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
- Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Wen-Yi Zhang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, P. R. China
| |
Collapse
|
25
|
Mariën J, Borremans B, Gryseels S, Soropogui B, De Bruyn L, Bongo GN, Becker-Ziaja B, de Bellocq JG, Günther S, Magassouba N, Leirs H, Fichet-Calvet E. No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions. Parasit Vectors 2017; 10:210. [PMID: 28449693 PMCID: PMC5408478 DOI: 10.1186/s13071-017-2146-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In order to optimize net transmission success, parasites are hypothesized to evolve towards causing minimal damage to their reservoir host while obtaining high shedding rates. For many parasite species however this paradigm has not been tested, and conflicting results have been found regarding the effect of arenaviruses on their rodent host species. The rodent Mastomys natalensis is the natural reservoir host of several arenaviruses, including Lassa virus that is known to cause Lassa haemorrhagic fever in humans. Here, we examined the effect of three arenaviruses (Gairo, Morogoro and Lassa virus) on four parameters of wild-caught Mastomys natalensis: body mass, head-body length, sexual maturity and fertility. After correcting for the effect of age, we compared these parameters between arenavirus-positive (arenavirus RNA or antibody) and negative animals using data from different field studies in Guinea (Lassa virus) and Tanzania (Morogoro and Gairo viruses). RESULTS Although the sample sizes of our studies (1297, 749 and 259 animals respectively) were large enough to statistically detect small differences in body conditions, we did not observe any adverse effects of these viruses on Mastomys natalensis. We did find that sexual maturity was significantly positively related with Lassa virus antibody presence until a certain age, and with Gairo virus antibody presence in general. Gairo virus antibody-positive animals were also significantly heavier and larger than antibody-free animals. CONCLUSION Together, these results suggest that the pathogenicity of arenaviruses is not severe in M. natalensis, which is likely to be an adaptation of these viruses to optimize transmission success. They also suggest that sexual behaviour might increase the probability of M. natalensis to become infected with arenaviruses.
Collapse
Affiliation(s)
- Joachim Mariën
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Benny Borremans
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Sophie Gryseels
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Barré Soropogui
- Projet des Fièvre Hémorragiques en Guinée, Hôpital Donka, Conakry, Guinea
| | - Luc De Bruyn
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Gédéon Ngiala Bongo
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- Department of Biology, University of Kinshasa, P.O. Box. 190, Kinshasa XI, Democratic Republic of the Congo
| | | | - Joëlle Goüy de Bellocq
- Institute of Vertebrate Biology, Research Facility Studenec, The Czech Academy of Sciences, Brno, Czech Republic
| | - Stephan Günther
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - N’Faly Magassouba
- Projet des Fièvre Hémorragiques en Guinée, Hôpital Donka, Conakry, Guinea
| | - Herwig Leirs
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
26
|
Guzzetta G, Tagliapietra V, Perkins SE, Hauffe HC, Poletti P, Merler S, Rizzoli A. Population dynamics of wild rodents induce stochastic fadeouts of a zoonotic pathogen. J Anim Ecol 2017; 86:451-459. [PMID: 28217934 DOI: 10.1111/1365-2656.12653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/06/2016] [Indexed: 11/28/2022]
Abstract
Stochastic processes play an important role in the infectious disease dynamics of wildlife, especially in species subject to large population oscillations. Here, we study the case of a free ranging population of yellow-necked mice (Apodemus flavicollis) in northern Italy, where circulation of Dobrava-Belgrade hantavirus (DOBV) has been detected intermittently since 2001, until an outbreak emerged in 2010. We analysed the transmission dynamics of the recent outbreak using a computational model that accounts for seasonal changes of the host population and territorial behaviour. Model parameters were informed by capture-mark-recapture data collected over 14 years and longitudinal seroprevalence data from 2010 to 2013. The intermittent observation of DOBV before 2010 can be interpreted as repeated stochastic fadeouts after multiple introductions of infectious rodents migrating from neighbouring areas. We estimated that only 20% of introductions in a naïve host population results in sustained transmission after 2 years, despite an effective reproduction number well above the epidemic threshold (mean 4·5, 95% credible intervals, CI: 0·65-15·8). Following the 2010 outbreak, DOBV has become endemic in the study area, but we predict a constant probability of about 4·7% per year that infection dies out, following large population drops in winter. In the absence of stochastic fadeout, viral prevalence is predicted to continue its growth to an oscillating equilibrium around a value of 24% (95% CI: 3-57). We presented an example of invasion dynamics of a zoonotic virus where stochastic fadeout have played a major role and may induce future extinction of the endemic infection.
Collapse
Affiliation(s)
| | | | - Sarah E Perkins
- Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.,Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - Heidi C Hauffe
- Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Piero Poletti
- Fondazione Bruno Kessler, Povo, TN, Italy.,Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy
| | | | | |
Collapse
|
27
|
Satterfield DA, Altizer S, Williams MK, Hall RJ. Environmental Persistence Influences Infection Dynamics for a Butterfly Pathogen. PLoS One 2017; 12:e0169982. [PMID: 28099501 PMCID: PMC5242512 DOI: 10.1371/journal.pone.0169982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022] Open
Abstract
Many pathogens, including those infecting insects, are transmitted via dormant stages shed into the environment, where they must persist until encountering a susceptible host. Understanding how abiotic conditions influence environmental persistence and how these factors influence pathogen spread are crucial for predicting patterns of infection risk. Here, we explored the consequences of environmental transmission for infection dynamics of a debilitating protozoan parasite (Ophryocystis elektroscirrha) that infects monarch butterflies (Danaus plexippus). We first conducted an experiment to observe the persistence of protozoan spores exposed to natural conditions. Experimental results showed that, contrary to our expectations, pathogen doses maintained high infectivity even after 16 days in the environment, although pathogens did yield infections with lower parasite loads after environmental exposure. Because pathogen longevity exceeded the time span of our experiment, we developed a mechanistic model to better explore environmental persistence for this host-pathogen system. Model analysis showed that, in general, longer spore persistence led to higher infection prevalence and slightly smaller monarch population sizes. The model indicated that typical parasite doses shed onto milkweed plants must remain viable for a minimum of 3 weeks for prevalence to increase during the summer-breeding season, and for 11 weeks or longer to match levels of infection commonly reported from the wild, assuming moderate values for parasite shedding rate. Our findings showed that transmission stages of this butterfly pathogen are long-lived and indicated that this is a necessary condition for the protozoan to persist in local monarch populations. This study provides a modeling framework for future work examining the dynamics of an ecologically important pathogen in an iconic insect.
Collapse
Affiliation(s)
- Dara A. Satterfield
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Mary-Kate Williams
- Biological Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Richard J. Hall
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
28
|
Tian H, Yu P, Bjørnstad ON, Cazelles B, Yang J, Tan H, Huang S, Cui Y, Dong L, Ma C, Ma C, Zhou S, Laine M, Wu X, Zhang Y, Wang J, Yang R, Stenseth NC, Xu B. Anthropogenically driven environmental changes shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLoS Pathog 2017; 13:e1006198. [PMID: 28141833 PMCID: PMC5302841 DOI: 10.1371/journal.ppat.1006198] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/10/2017] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Zoonoses are increasingly recognized as an important burden on global public health in the 21st century. High-resolution, long-term field studies are critical for assessing both the baseline and future risk scenarios in a world of rapid changes. We have used a three-decade-long field study on hantavirus, a rodent-borne zoonotic pathogen distributed worldwide, coupled with epidemiological data from an endemic area of China, and show that the shift in the ecological dynamics of Hantaan virus was closely linked to environmental fluctuations at the human-wildlife interface. We reveal that environmental forcing, especially rainfall and resource availability, exert important cascading effects on intra-annual variability in the wildlife reservoir dynamics, leading to epidemics that shift between stable and chaotic regimes. Our models demonstrate that bimodal seasonal epidemics result from a powerful seasonality in transmission, generated from interlocking cycles of agricultural phenology and rodent behavior driven by the rainy seasons.
Collapse
Affiliation(s)
- Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Pengbo Yu
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an, Shaanxi, China
| | - Ottar N. Bjørnstad
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania
| | - Bernard Cazelles
- Ecologie & Evolution, UMR 7625, UPMC-ENS, Paris, France
- UMMISCO UMI 209 IRD - UPMC, Bondy, France
| | - Jing Yang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Hua Tan
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Shanqian Huang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chaofeng Ma
- Xi’an Centre for Disease Control and Prevention, Xi’an, Shaanxi, China
| | - Changan Ma
- Hu County Centre for Disease Control and Prevention, Xi’an, Shaanxi, China
| | - Sen Zhou
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, School of Environment, Tsinghua University, Beijing, China
| | - Marko Laine
- Finnish Meteorological Institute, Helsinki, Finland
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Yanyun Zhang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingjun Wang
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an, Shaanxi, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of OsloBlindern, Oslo, Norway
| | - Bing Xu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Lange M, Kramer-Schadt S, Thulke HH. Relevance of Indirect Transmission for Wildlife Disease Surveillance. Front Vet Sci 2016; 3:110. [PMID: 27965970 PMCID: PMC5127825 DOI: 10.3389/fvets.2016.00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/17/2016] [Indexed: 01/06/2023] Open
Abstract
Epidemiological models of infectious diseases are essential tools in support of risk assessment, surveillance design, and contingency planning in public and animal health. Direct pathogen transmission from host to host is an essential process of each host–pathogen system and respective epidemiological modeling concepts. It is widely accepted that numerous diseases involve indirect transmission (IT) through pathogens shed by infectious hosts to their environment. However, epidemiological models largely do not represent pathogen persistence outside the host explicitly. We hypothesize that this simplification might bias management-related model predictions for disease agents that can persist outside their host for a certain time span. We adapted an individual-based, spatially explicit epidemiological model that can mimic both transmission processes. One version explicitly simulated indirect pathogen transmission through a contaminated environment. The second version simulated direct host-to-host transmission only. We aligned the model variants by the transmission potential per infectious host (i.e., basic reproductive number R0) and the spatial transmission kernel of the infection to allow unbiased comparison of predictions. The quantitative model results are provided for the example of surveillance plans for early detection of foot-and-mouth disease in wild boar, a social host. We applied systematic sampling strategies on the serological status of randomly selected host individuals in both models. We compared between the model variants the time to detection and the area affected prior to detection, measures that strongly influence mitigation costs. Moreover, the ideal sampling strategy to detect the infection in a given time frame was compared between both models. We found the simplified, direct transmission model to underestimate necessary sample size by up to one order of magnitude but to overestimate the area put under control measures. Thus, the model predictions underestimated surveillance efforts but overestimated mitigation costs. We discuss parameterization of IT models and related knowledge gaps. We conclude that the explicit incorporation of IT mechanisms in epidemiological modeling may reward by adapting surveillance and mitigation efforts.
Collapse
Affiliation(s)
- Martin Lange
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research Leipzig - UFZ , Leipzig , Germany
| | | | - Hans-Hermann Thulke
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research Leipzig - UFZ , Leipzig , Germany
| |
Collapse
|
30
|
Tosa MI, Schauber EM, Nielsen CK. Localized removal affects white-tailed deer space use and contacts. J Wildl Manage 2016. [DOI: 10.1002/jwmg.21176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marie I. Tosa
- Cooperative Wildlife Research Laboratory, Department of Zoology; Center for Ecology, Southern Illinois University; 1125 Lincoln Drive Carbondale IL USA
| | - Eric M. Schauber
- Cooperative Wildlife Research Laboratory, Department of Zoology; Center for Ecology, Southern Illinois University; 1125 Lincoln Drive Carbondale IL USA
| | - Clayton K. Nielsen
- Cooperative Wildlife Research Laboratory, Department of Forestry; Southern Illinois University; 1125 Lincoln Drive Carbondale IL USA
| |
Collapse
|
31
|
Monchatre-Leroy E, Crespin L, Boué F, Marianneau P, Calavas D, Hénaux V. Spatial and Temporal Epidemiology of Nephropathia Epidemica Incidence and Hantavirus Seroprevalence in Rodent Hosts: Identification of the Main Environmental Factors in Europe. Transbound Emerg Dis 2016; 64:1210-1228. [PMID: 26996739 DOI: 10.1111/tbed.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 01/05/2023]
Abstract
In Europe, the increasing number of nephropathia epidemica (NE) infections in humans, caused by Puumala virus carried by bank voles (Myodes glareolus), has triggered studies of environmental factors driving these infections. NE infections have been shown to occur in specific geographical areas characterized by environmental factors that influence the distribution and dynamics of host populations and virus persistence in the soil. Here, we review the influence of environmental conditions (including climate factors, food availability and habitat conditions) with respect to incidence in humans and seroprevalence in rodents, considering both direct and indirect transmission pathways. For each type of environmental factor, results and discrepancies between studies are presented and examined in the light of biological hypotheses. Overall, food availability and temperature appear to be the main drivers of host seroprevalence and NE incidence, but data quality and statistical approaches varied greatly among studies. We highlight the issues that now need to be addressed and suggest improvements for study design in regard to the current knowledge on hantavirus epidemiology.
Collapse
Affiliation(s)
| | - L Crespin
- INRA, UR346 d'Epidémiologie Animale, F63122 Saint Genès Champanelle, Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - F Boué
- Laboratoire de la rage et de la faune sauvage, ANSES, Nancy, France
| | - P Marianneau
- Unité de virologie, Laboratoire de Lyon, ANSES, Lyon, France
| | - D Calavas
- Unité d'épidémiologie, Laboratoire de Lyon, ANSES, Lyon, France
| | - V Hénaux
- Unité d'épidémiologie, Laboratoire de Lyon, ANSES, Lyon, France
| |
Collapse
|
32
|
Khalil H, Hörnfeldt B, Evander M, Magnusson M, Olsson G, Ecke F. Dynamics and drivers of hantavirus prevalence in rodent populations. Vector Borne Zoonotic Dis 2015; 14:537-51. [PMID: 25072983 DOI: 10.1089/vbz.2013.1562] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human encroachment on wildlife habitats has contributed to the emergence of several zoonoses. Pathogenic hantaviruses are hosted by rodents and cause severe diseases in the Americas and Eurasia. We reviewed several factors that potentially drive prevalence (the proportion of infected rodents) in host populations. These include demography, behavior, host density, small mammal diversity, predation, and habitat and landscape characteristics. This review is the first to include a quantitative summary of the literature investigating hantavirus prevalence in rodents. Demographic structure and density were investigated the most and predation the least. Reported effects of demographic structure and small mammal diversity were consistent, whereby reproductive males were most likely to be infected and prevalence decreased with small mammal diversity. The influences of habitat and landscape properties are often complex and indirect. The relationship between density and prevalence merits more investigation. Most hantavirus hosts are habitat generalists and their control is challenging. Incorporating all potential factors and their interactions is essential to understanding and controlling infection in host populations.
Collapse
Affiliation(s)
- Hussein Khalil
- 1 Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences , Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Recent increase in prevalence of antibodies to Dobrava-Belgrade virus (DOBV) in yellow-necked mice in Northern Italy. Epidemiol Infect 2015; 143:2241-4. [PMID: 26050717 DOI: 10.1017/s0950268814003525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dobrava-Belgrade virus (DOBV) is the most pathogenic hantavirus in Europe with a case-fatality rate of up to 12%. To detect changes in risk for humans, the prevalence of antibodies to DOBV has been monitored in a population of Apodemus flavicollis in the province of Trento (northern Italy) since 2000, and a sudden increase was observed in 2010. In the 13-year period of this study, 2077 animals were live-trapped and mean hantavirus seroprevalence was 2·7% (s.e. = 0·3%), ranging from 0% (in 2000, 2002 and 2003) to 12·5% (in 2012). Climatic (temperature and precipitation) and host (rodent population density, rodent weight and sex, and larval tick burden) variables were analysed using Generalized Linear Models and multi-model inference to select the best model. Climatic changes (mean annual precipitation and maximum temperature) and individual body mass had a positive effect on hantavirus seroprevalence. Other possible drivers affecting the observed pattern need to be studied further.
Collapse
|
34
|
Heier L, Viljugrein H, Storvik GO. Persistence of plague outbreaks among great gerbils in Kazakhstan: effects of host population dynamics. POPUL ECOL 2015. [DOI: 10.1007/s10144-015-0500-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Thoma BR, Müller J, Bässler C, Georgi E, Osterberg A, Schex S, Bottomley C, Essbauer SS. Identification of factors influencing the Puumala virus seroprevalence within its reservoir in aMontane Forest Environment. Viruses 2014; 6:3944-67. [PMID: 25341661 PMCID: PMC4213572 DOI: 10.3390/v6103944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/03/2014] [Accepted: 09/29/2014] [Indexed: 12/28/2022] Open
Abstract
Puumala virus (PUUV) is a major cause of mild to moderate haemorrhagic fever with renal syndrome and is transmitted by the bank vole (Myodes glareolus). There has been a high cumulative incidence of recorded human cases in South-eastern Germany since 2004 when the region was first recognized as being endemic for PUUV. As the area is well known for outdoor recreation and the Bavarian Forest National Park (BFNP) is located in the region, the increasing numbers of recorded cases are of concern. To understand the population and environmental effects on the seroprevalence of PUUV in bank voles we trapped small mammals at 23 sites along an elevation gradient from 317 to 1420m above sea level. Generalized linear mixed effects models(GLMEM) were used to explore associations between the seroprevalence of PUUV in bank voles and climate and biotic factors. We found that the seroprevalence of PUUV was low (6%–7%) in 2008 and 2009, and reached 29% in 2010. PUUV seroprevalence was positively associated with the local species diversity and deadwood layer, and negatively associated with mean annual temperature, mean annual solar radiation, and herb layer. Based on these findings, an illustrative risk map for PUUV seroprevalence prediction in bank voles was created for an area of the national park. The map will help when planning infrastructure in the national park (e.g., huts, shelters, and trails).
Collapse
Affiliation(s)
- Bryan R Thoma
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - Jörg Müller
- Bavarian Forest National Park, Freyunger Str. 2, 94481 Grafenau, Germany.
| | - Claus Bässler
- Bavarian Forest National Park, Freyunger Str. 2, 94481 Grafenau, Germany.
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - Anja Osterberg
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - Susanne Schex
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - Christian Bottomley
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK.
| | - Sandra S Essbauer
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.
| |
Collapse
|
36
|
Hughes NK, Helsen S, Tersago K, Leirs H. Puumala hantavirus infection alters the odour attractiveness of its reservoir host. Oecologia 2014; 176:955-63. [DOI: 10.1007/s00442-014-3072-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/29/2014] [Indexed: 12/01/2022]
|
37
|
Oliveira RC, Gentile R, Guterres A, Fernandes J, Teixeira BR, Vaz V, Valdez FP, Vicente LHB, da Costa-Neto SF, Bonvicino C, D’Andrea PS, Lemos ER. Ecological study of hantavirus infection in wild rodents in an endemic area in Brazil. Acta Trop 2014; 131:1-10. [PMID: 24291677 DOI: 10.1016/j.actatropica.2013.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/13/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
A 3-year ecological study of small mammals was carried out in an endemic area for hantavirus pulmonary syndrome in the state of Santa Catarina in Southern Brazil. A total of 994 rodents of 14 different species corresponding to the subfamilies of Sigmodontinae, Murinae, Eumysopinae, and Caviinae were captured during 2004-2006. Oligoryzomys nigripes and Akodon montensis were the most abundant species and showed a clear seasonal pattern with higher population sizes during the winter. Rodent population outbreaks, associated within bamboo mast seeding events, were detected predominantly in areas where hantavirus pulmonary syndrome cases were notified in the state. Antibody reactivity to Hantavirus was detected in five sigmodontine species: O. nigripes (39/435), A. montensis (15/318), Akodon paranaensis (4/37), Thaptomys nigrita (1/86) and Sooretamys angouya (1/12). The highest hantavirus antibody prevalence occurred during the period of highest population size in A. montensis. For O. nigripes, hantavirus prevalence was higher in late spring, when reproduction was more frequent. Co-circulation of Juquitiba (JUQV) and Jabora (JABV) viruses was observed - JABV in A. paranaensis and A. montensis; JUQV in O. nigripes and T. nigrita. JABV occurrence was associated to gender and population size of the rodent while JUQV was related to gender, season, temperature, and locality.
Collapse
|
38
|
Kotnis B, Kuri J. Stochastic analysis of epidemics on adaptive time varying networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062810. [PMID: 23848732 DOI: 10.1103/physreve.87.062810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 05/16/2023]
Abstract
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an "adaptive threshold," i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
Collapse
Affiliation(s)
- Bhushan Kotnis
- Indian Institute of Science, Department of Electronic Systems Engineering, Bangalore 560012, India.
| | | |
Collapse
|
39
|
Microevolution of Puumala hantavirus during a complete population cycle of its host, the bank vole (Myodes glareolus). PLoS One 2013; 8:e64447. [PMID: 23717616 PMCID: PMC3661530 DOI: 10.1371/journal.pone.0064447] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/15/2013] [Indexed: 01/28/2023] Open
Abstract
Microevolution of Puumala hantavirus (PUUV) was studied throughout a population cycle of its host, the bank vole (Myodes glareolus). We monitored PUUV variants circulating in the host population in Central Finland over a five-year period that included two peak-phases and two population declines. Of 1369 bank voles examined, 360 (26.3%) were found infected with PUUV. Partial sequences of each of the three genome segments were recovered (approx. 12% of PUUV genome) from 356 bank voles. Analyses of these sequences disclosed the following features of PUUV evolution: 1) nucleotide substitutions are mostly silent and deduced amino acid changes are mainly conservative, suggesting stabilizing selection at the protein level; 2) the three genome segments accumulate mutations at a different rate; 3) some of the circulating PUUV variants are frequently observed while others are transient; 4) frequently occurring PUUV variants are composed of the most abundant segment genotypes (copious) and new transient variants are continually generated; 5) reassortment of PUUV genome segments occurs regularly and follows a specific pattern of segments association; 6) prevalence of reassortant variants oscillates with season and is higher in the autumn than in the spring; and 7) reassortants are transient, i.e., they are not competitively superior to their parental variants. Collectively, these observations support a quasi-neutral mode of PUUV microevolution with a steady generation of transient variants, including reassortants, and preservation of a few preferred genotypes.
Collapse
|
40
|
Cortez MH, Weitz JS. Distinguishing between indirect and direct modes of transmission using epidemiological time series. Am Nat 2013; 181:E43-54. [PMID: 23348785 DOI: 10.1086/668826] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pathogen transmission can involve direct and/or indirect pathways. Using theoretical models, in this study we ask, "do directly and indirectly transmitted pathogens yield different population-level epidemiological dynamics?" and "can the transmission pathway be inferred from population-level epidemiological data?" Our approach involves comparing the continuous-time dynamics of a class of compartmental epidemiological models with direct versus environmentally mediated indirect transmission pathways. Combing analytical theory and numerical simulations we show that models with direct and indirect transmission can produce quantitatively similar time series when the pathogen cannot reproduce in the environment, particularly when the environmental pathogen dynamics are fast. We apply these results to a previous study on chronic wasting disease and show that identifying the transmission pathway is more difficult than previously acknowledged. Our analysis and simulations also yield conditions under which numerical differences can potentially identify the transmission route in oscillating endemic systems and systems where the environmental pathogen dynamics are not fast. This work begins to identify how differences in the transmission pathway can result in quantitatively different epidemiological dynamics and how those differences can be used to identify the transmission pathway from population level time series.
Collapse
Affiliation(s)
- Michael H Cortez
- School of Biology and School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | |
Collapse
|
41
|
Haredasht SA, Taylor CJ, Maes P, Verstraeten WW, Clement J, Barrios M, Lagrou K, Van Ranst M, Coppin P, Berckmans D, Aerts JM. Model-Based Prediction of Nephropathia Epidemica Outbreaks Based on Climatological and Vegetation Data and Bank Vole Population Dynamics. Zoonoses Public Health 2012; 60:461-77. [DOI: 10.1111/zph.12021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Population density and seasonality effects on Sin Nombre virus transmission in North American deermice (Peromyscus maniculatus) in outdoor enclosures. PLoS One 2012; 7:e37254. [PMID: 22768034 PMCID: PMC3387171 DOI: 10.1371/journal.pone.0037254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/16/2012] [Indexed: 12/22/2022] Open
Abstract
Surveys of wildlife host-pathogen systems often document clear seasonal variation in transmission; conclusions concerning the relationship between host population density and transmission vary. In the field, effects of seasonality and population density on natural disease cycles are challenging to measure independently, but laboratory experiments may poorly reflect what happens in nature. Outdoor manipulative experiments are an alternative that controls for some variables in a relatively natural environment. Using outdoor enclosures, we tested effects of North American deermouse (Peromyscus maniculatus) population density and season on transmission dynamics of Sin Nombre hantavirus. In early summer, mid-summer, late summer, and fall 2007–2008, predetermined numbers of infected and uninfected adult wild deermice were released into enclosures and trapped weekly or bi-weekly. We documented 18 transmission events and observed significant seasonal effects on transmission, wounding frequency, and host breeding condition. Apparent differences in transmission incidence or wounding frequency between high- and low-density treatments were not statistically significant. However, high host density was associated with a lower proportion of males with scrotal testes. Seasonality may have a stronger influence on disease transmission dynamics than host population density, and density effects cannot be considered independent of seasonality.
Collapse
|
43
|
Li S, Hartemink N, Speybroeck N, Vanwambeke SO. Consequences of landscape fragmentation on Lyme disease risk: a cellular automata approach. PLoS One 2012; 7:e39612. [PMID: 22761842 PMCID: PMC3382467 DOI: 10.1371/journal.pone.0039612] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
The abundance of infected Ixodid ticks is an important component of human risk of Lyme disease, and various empirical studies have shown that this is associated, at least in part, to landscape fragmentation. In this study, we aimed at exploring how varying woodland fragmentation patterns affect the risk of Lyme disease, through infected tick abundance. A cellular automata model was developed, incorporating a heterogeneous landscape with three interactive components: an age-structured tick population, a classical disease transmission function, and hosts. A set of simplifying assumptions were adopted with respect to the study objective and field data limitations. In the model, the landscape influences both tick survival and host movement. The validation of the model was performed with an empirical study. Scenarios of various landscape configurations (focusing on woodland fragmentation) were simulated and compared. Lyme disease risk indices (density and infection prevalence of nymphs) differed considerably between scenarios: (i) the risk could be higher in highly fragmented woodlands, which is supported by a number of recently published empirical studies, and (ii) grassland could reduce the risk in adjacent woodland, which suggests landscape fragmentation studies of zoonotic diseases should not focus on the patch-level woodland patterns only, but also on landscape-level adjacent land cover patterns. Further analysis of the simulation results indicated strong correlations between Lyme disease risk indices and the density, shape and aggregation level of woodland patches. These findings highlight the strong effect of the spatial patterns of local host population and movement on the spatial dynamics of Lyme disease risks, which can be shaped by woodland fragmentation. In conclusion, using a cellular automata approach is beneficial for modelling complex zoonotic transmission systems as it can be combined with either real world landscapes for exploring direct spatial effects or artificial representations for outlining possible empirical investigations.
Collapse
Affiliation(s)
- Sen Li
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
44
|
ALLEN LJS, BROWN VL, JONSSON CB, KLEIN SL, LAVERTY SM, MAGWEDERE K, OWEN JC, VAN DEN DRIESSCHE P. Mathematical Modeling of Viral Zoonoses in Wildlife. NATURAL RESOURCE MODELING 2012; 25:5-51. [PMID: 22639490 PMCID: PMC3358807 DOI: 10.1111/j.1939-7445.2011.00104.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Zoonoses are a worldwide public health concern, accounting for approximately 75% of human infectious diseases. In addition, zoonoses adversely affect agricultural production and wildlife. We review some mathematical models developed for the study of viral zoonoses in wildlife and identify areas where further modeling efforts are needed.
Collapse
Affiliation(s)
- L. J. S. ALLEN
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, E‐mail:
| | - V. L. BROWN
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - C. B. JONSSON
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease, University of Louisville, Louisville, KY 40202
| | - S. L. KLEIN
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - S. M. LAVERTY
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112
| | - K. MAGWEDERE
- Division of Veterinary Public Health, Directorate of Veterinary Services, Mariental, Namibia, Africa
| | - J. C. OWEN
- Departments of Fisheries and Wildlife and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - P. VAN DEN DRIESSCHE
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 3R4
| |
Collapse
|
45
|
Guivier E, Galan M, Chaval Y, Xuéreb A, Ribas Salvador A, Poulle ML, Voutilainen L, Henttonen H, Charbonnel N, Cosson JF. Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus. Mol Ecol 2011; 20:3569-83. [PMID: 21819469 DOI: 10.1111/j.1365-294x.2011.05199.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rodent host dynamics and dispersal are thought to be critical for hantavirus epidemiology as they determine pathogen persistence and transmission within and between host populations. We used landscape genetics to investigate how the population dynamics of the bank vole Myodes glareolus, the host of Puumala hantavirus (PUUV), vary with forest fragmentation and influence PUUV epidemiology. We sampled vole populations within the Ardennes, a French PUUV endemic area. We inferred demographic features such as population size, isolation and migration with regard to landscape configuration. We next analysed the influence of M. glareolus population dynamics on PUUV spatial distribution. Our results revealed that the global metapopulation dynamics of bank voles were strongly shaped by landscape features, including suitable patch size and connectivity. Large effective size in forest might therefore contribute to the higher observed levels of PUUV prevalence. By contrast, populations from hedge networks highly suffered from genetic drift and appeared strongly isolated from all other populations. This might result in high probabilities of local extinction for both M. glareolus and PUUV. Besides, we detected signatures of asymmetric bank vole migration from forests to hedges. These movements were likely to sustain PUUV in fragmented landscapes. In conclusion, our study provided arguments in favour of source-sink dynamics shaping PUUV persistence and spread in heterogeneous, Western European temperate landscapes. It illustrated the potential contribution of landscape genetics to the understanding of the epidemiological processes occurring at this local scale.
Collapse
Affiliation(s)
- E Guivier
- INRA, UMR CBGP, Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Madec S, Wolf C. A multi-structured epidemic problem with direct and indirect transmission in heterogeneous environments. JOURNAL OF BIOLOGICAL DYNAMICS 2011; 6:235-266. [PMID: 22873589 DOI: 10.1080/17513758.2011.553392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, we analyse a deterministic epidemic mathematical model motivated by the propagation of a hantavirus (Puumala hantavirus) within a bank vole population (Clethrionomys glareolus). The host population is split into juvenile and adult individuals. A heterogeneous spatial chronological age and infection age structure is considered, and also indirect transmission via the environment. Maturation rates for juvenile individuals are adult density-dependent. For the reaction-diffusion systems with age structures derived, we give global existence, uniqueness and global boundedness results. A model with transmission to humans is also studied here.
Collapse
Affiliation(s)
- S Madec
- UMR CNRS 6625 Irmar, Bât. 22, Campus de Beaulieu, Université de Rennes 1, 35042, Rennes cedex, France.
| | | |
Collapse
|
47
|
Almberg ES, Cross PC, Johnson CJ, Heisey DM, Richards BJ. Modeling routes of chronic wasting disease transmission: environmental prion persistence promotes deer population decline and extinction. PLoS One 2011; 6:e19896. [PMID: 21603638 PMCID: PMC3094393 DOI: 10.1371/journal.pone.0019896] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 04/19/2011] [Indexed: 01/26/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R(0), may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress.
Collapse
Affiliation(s)
- Emily S Almberg
- Northern Rocky Mountain Science Center, United States Geological Survey, Bozeman, Montana, United States of America.
| | | | | | | | | |
Collapse
|
48
|
Salvador AR, Guivier E, Xuéreb A, Chaval Y, Cadet P, Poulle ML, Sironen T, Voutilainen L, Henttonen H, Cosson JF, Charbonnel N. Concomitant influence of helminth infection and landscape on the distribution of Puumala hantavirus in its reservoir, Myodes glareolus. BMC Microbiol 2011; 11:30. [PMID: 21303497 PMCID: PMC3040693 DOI: 10.1186/1471-2180-11-30] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/08/2011] [Indexed: 12/22/2022] Open
Abstract
Background Puumala virus, the agent of nephropathia epidemica (NE), is the most prevalent hantavirus in Europe. The risk for human infection seems to be strongly correlated with the prevalence of Puumala virus (PUUV) in populations of its reservoir host species, the bank vole Myodes glareolus. In humans, the infection risks of major viral diseases are affected by the presence of helminth infections. We therefore proposed to analyse the influence of both helminth community and landscape on the prevalence of PUUV among bank vole populations in the Ardennes, a PUUV endemic area in France. Results Among the 313 voles analysed, 37 had anti-PUUV antibodies. Twelve gastro-intestinal helminth species were recorded among all voles sampled. We showed that PUUV seroprevalence strongly increased with age or sexual maturity, especially in the northern forests (massif des Ardennes). The helminth community structure significantly differed between this part and the woods or hedgerows of the southern cretes pre-ardennaises. Using PUUV RNA quantification, we identified significant coinfections between PUUV and gastro-intestinal helminths in the northern forests only. More specifically, PUUV infection was positively associated with the presence of Heligmosomum mixtum, and in a lesser extent, Aonchotheca muris-sylvatici. The viral load of PUUV infected individuals tended to be higher in voles coinfected with H. mixtum. It was significantly lower in voles coinfected with A. muris-sylvatici, reflecting the influence of age on these latter infections. Conclusions This is the first study to emphasize hantavirus - helminth coinfections in natural populations. It also highlights the importance to consider landscape when searching for such associations. We have shown that landscape characteristics strongly influence helminth community structure as well as PUUV distribution. False associations might therefore be evidenced if geographic patterns of helminths or PUUV repartition are not previously identified. Moreover, our work revealed that interactions between helminths and landscape enhance/deplete the occurrence of coinfections between PUUV and H. mixtum or A. muris-sylvatici. Further experimental analyses and long-term individual surveys are now required to confirm these correlative results, and to ascertain the causal links between helminth and PUUV infection risks.
Collapse
Affiliation(s)
- Alexis Ribas Salvador
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitaries, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Olsson GE, Leirs H, Henttonen H. Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector Borne Zoonotic Dis 2010; 10:549-61. [PMID: 20795916 DOI: 10.1089/vbz.2009.0138] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Five hantaviruses are known to circulate among rodents in Europe, and at least two among insectivores. Four (Dobrava, Saaremaa, Seoul, and Puumala [PUUV] viruses) are clearly associated with hemorrhagic fever with renal syndrome (HFRS). PUUV, the most common etiological agent of HFRS in Europe, is carried by the bank vole (Myodes glareolus), one of the most widespread and abundant mammal species in Europe. This host-virus system is among hantaviruses also the most studied one in Europe. However, HFRS incidence varies throughout the continent. The spatial as well as temporal variation in the occurrence of HFRS is linked to geographic differences in the population dynamics of the reservoir rodents in different biomes of Europe. While rodent abundance may follow mast seeding events in many parts of temperate Europe, in northern (N) Europe multiannual cycles in population density exist as the result of the interaction between rodent populations and specialist predator populations in a delayed density-dependent manner. The spatial distribution of hantaviruses further depends on parameters such as forest patch size and connectivity of the most suitable rodent habitats, and the conditions for the survival of the virus outside the host, as well as historical distribution patterns (phylogeographies) of hosts and viruses. In multiannually fluctuating populations of rodents, with population increases of great amplitude, one should expect a simultaneous build-up of recently hantavirus-infected (shedding) rodents. The increasing number of infectious, virus-shedding rodents leads to a rapid transmission of hantavirus across the rodent population, and to humans. Our review discusses these aspects for PUUV, the only European hantavirus for which there is a reasonable, yet still far from complete, ecological continental-wide understanding. We discuss how this information could translate to other European hantavirus-host systems, and where the most important questions lie for further research.
Collapse
Affiliation(s)
- Gert E Olsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | | | | |
Collapse
|
50
|
Tersago K, Verhagen R, Leirs H. Temporal variation in individual factors associated with hantavirus infection in bank voles during an epizootic: implications for Puumala virus transmission dynamics. Vector Borne Zoonotic Dis 2010; 11:715-21. [PMID: 21142469 DOI: 10.1089/vbz.2010.0007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Puumala virus (PUUV), the causal agent of nephropathia epidemica in humans, is one of the many hantaviruses included in the list of emerging pathogens. Hantavirus infection is not distributed evenly among PUUV reservoir hosts (i.e., bank voles [Myodes glareolus]). Besides environmental factors and local population features, individual characteristics play an important role in vole PUUV infection risk. Identifying the relative importance of these individual characteristics can provide crucial information on PUUV transmission processes. In the present study, bank voles were monitored during the nephropathia epidemica outbreak of 2005 in Belgium. Vole sera were tested for presence of immunoglobulin G against PUUV, and a logistic mixed model was built to investigate the temporal variation in individual characteristics and their relative importance to PUUV infection risk in bank voles. Relative risk calculations for individual vole characteristics related to PUUV infection in the reservoir host show that reproductive activity dominates infection risk. The gender effect is only found in reproductively active voles, where reproductively active males have the highest infection risk. Results also revealed a clear seasonal variation in the importance of reproductive activity linked to PUUV infection. In contrast to the main effect found in other trapping sessions, no difference in infection risk ratio was found between reproductively active and nonactive voles in the spring period. Combined with increased infection risk for the reproductively nonactive group at that time, these results indicate a shift in the transmission process due to changes in bank vole behavior, physiology, or climate conditions. Hence, our results suggest that mathematical models should take into account seasonal shifts in transmission mechanisms. When these results are combined with the seasonal changes in population structure during the epizootic period, we identify vole reproductive activity and length of the breeding season as potential drivers of PUUV epizootics in west-central European regions.
Collapse
Affiliation(s)
- Katrien Tersago
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|