1
|
Xiao T, Zhang D, Tun HM, Shah NP. Cysteine protected cells from H 2O 2-induced damage and promoted long-chain fatty acids synthesis in vivo to improve γ-aminobutyric acid production in Levilactobacillus brevis. World J Microbiol Biotechnol 2022; 38:185. [PMID: 35972565 DOI: 10.1007/s11274-022-03379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Levilactobacillus brevis NPS-QW-145 isolated from kimchi is deficient in glutamate dehydrogenase-encoding gene (gdhA) to form glutamate, hence it required exogenous supplementation of glutamate/monosodium glutamate (MSG) for decarboxylation reaction to produce γ-aminobutyric acid (GABA). However, GABA conversion rate from MSG was relatively low. The individual effect of 20 amino acids on regulating GABA biosynthesis was investigated. Cysteine was selected to significantly improve GABA production from MSG. It was found that Lb. brevis was capable of producing H2O2, cysteine protected Lb. brevis against H2O2-induced oxidative damage to increase cell viability for the enhancement of GABA production. Moreover, cysteine promoted glucose consumption to produce acetyl-CoA for synthesizing long-chain fatty acids to significantly up-regulate GABA biosynthesis. These findings deciphered antioxidative capability of cysteine in Lb. brevis 145 and provided a theoretical basis for fatty acids synthesis-mediated GABA synthesis in Lb. brevis 145, and possibly in other lactic acid bacteria.
Collapse
Affiliation(s)
- Tingting Xiao
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Dengwei Zhang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hein Min Tun
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
2
|
van Zyl WF, Deane SM, Dicks LM. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 2020; 12:1831339. [PMID: 33112695 PMCID: PMC7595611 DOI: 10.1080/19490976.2020.1831339] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) diseases, and in particular those caused by bacterial infections, are a major cause of morbidity and mortality worldwide. Treatment is becoming increasingly difficult due to the increase in number of species that have developed resistance to antibiotics. Probiotic lactic acid bacteria (LAB) have considerable potential as alternatives to antibiotics, both in prophylactic and therapeutic applications. Several studies have documented a reduction, or prevention, of GI diseases by probiotic bacteria. Since the activities of probiotic bacteria are closely linked with conditions in the host's GI-tract (GIT) and changes in the population of enteric microorganisms, a deeper understanding of gut-microbial interactions is required in the selection of the most suitable probiotic. This necessitates a deeper understanding of the molecular capabilities of probiotic bacteria. In this review, we explore how probiotic microorganisms interact with enteric pathogens in the GIT. The significance of probiotic colonization and persistence in the GIT is also addressed.
Collapse
Affiliation(s)
- Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M.T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa,CONTACT Leon M.T. Dicks; Department of Microbiology; Stellenbosch University, Stellenbosch7602, South Africa
| |
Collapse
|
3
|
Qiao Y, Liu G, Lv X, Fan X, Zhang Y, Meng L, Ai M, Feng Z. Metabolic Pathway Profiling in Intracellular and Extracellular Environments of Streptococcus thermophilus During pH-Controlled Batch Fermentations. Front Microbiol 2020; 10:3144. [PMID: 32038577 PMCID: PMC6990133 DOI: 10.3389/fmicb.2019.03144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/29/2019] [Indexed: 12/31/2022] Open
Abstract
Elucidating the metabolite profiles during the growth of Streptococcus thermophilus is beneficial for understanding its growth characteristics. The changes in the intracellular and extracellular concentrations of carbohydrates, nucleotides, amino sugars, nucleoside sugars, fatty acids, and amino acids, as well as their metabolites over time, were investigated by metabolomics technology. Most metabolites of nucleotides were highly accumulated in the intracellular environment after the mid-exponential phase. Increases in the intracellular unsaturated fatty acids and N-acetyl-glucosamine and N-acetyl-muramoate recycling provided potential evidence that cell envelope remodeling occurred after the mid-exponential phase. At the later fermentation stages, potentially functional metabolite produced by glycine was highly accumulated in the intracellular environment. Additionally, potential toxic metabolites produced by phenylalanine and tyrosine could not be excreted into the extracellular environment in a timely basis. The accumulation of large amounts of these metabolites might be the primary cause of the overconsumption of amino acids and influence the growth of S. thermophilus.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xuepeng Lv
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xuejing Fan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yanjiao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Li Meng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingzhi Ai
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Kim HS, Lee SY, Hur SJ. Effects of different starter cultures on the biogenic amine concentrations, mutagenicity, oxidative stress, and neuroprotective activity of fermented sausages and their relationships. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG. Secretome of Intestinal Bacilli: A Natural Guard against Pathologies. Front Microbiol 2017; 8:1666. [PMID: 28919884 PMCID: PMC5586196 DOI: 10.3389/fmicb.2017.01666] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Current studies of human gut microbiome usually do not consider the special functional role of transient microbiota, although some of its members remain in the host for a long time and produce broad spectrum of biologically active substances. Getting into the gastrointestinal tract (GIT) with food, water and probiotic preparations, two representatives of Bacilli class, genera Bacillus and Lactobacillus, colonize epithelium blurring the boundaries between resident and transient microbiota. Despite their minor proportion in the microbiome composition, these bacteria can significantly affect both the intestinal microbiota and the entire body thanks to a wide range of secreted compounds. Recently, insufficiency and limitations of pure genome-based analysis of gut microbiota became known. Thus, the need for intense functional studies is evident. This review aims to characterize the Bacillus and Lactobacillus in GIT, as well as the functional roles of the components released by these members of microbial intestinal community. Complex of their secreted compounds is referred by us as the "bacillary secretome." The composition of the bacillary secretome, its biological effects in GIT and role in counteraction to infectious diseases and oncological pathologies in human organism is the subject of the review.
Collapse
Affiliation(s)
| | - Vera V. Ulyanova
- Department of Microbiology, Kazan Federal UniversityKazan, Russia
| | | | - Ilgiz G. Gataullin
- Department of Surgery and Oncology, Regional Clinical Cancer CenterKazan, Russia
| |
Collapse
|
6
|
Surendran Nair M, Amalaradjou MA, Venkitanarayanan K. Antivirulence Properties of Probiotics in Combating Microbial Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2017; 98:1-29. [PMID: 28189153 DOI: 10.1016/bs.aambs.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Probiotics are nonpathogenic microorganisms that confer a health benefit on the host when administered in adequate amounts. Ample evidence is documented to support the potential application of probiotics for the prevention and treatment of infections. Health benefits of probiotics include prevention of diarrhea, including antibiotic-associated diarrhea and traveler's diarrhea, atopic eczema, dental carries, colorectal cancers, and treatment of inflammatory bowel disease. The cumulative body of scientific evidence that demonstrates the beneficial effects of probiotics on health and disease prevention has made probiotics increasingly important as a part of human nutrition and led to a surge in the demand for probiotics in clinical applications and as functional foods. The ability of probiotics to promote health is attributed to the various beneficial effects exerted by these microorganisms on the host. These include lactose metabolism and food digestion, production of antimicrobial peptides and control of enteric infections, anticarcinogenic properties, immunologic enhancement, enhancement of short-chain fatty acid production, antiatherogenic and cholesterol-lowering attributes, regulatory role in allergy, protection against vaginal or urinary tract infections, increased nutritional value, maintenance of epithelial integrity and barrier, stimulation of repair mechanism in cells, and maintenance and reestablishment of well-balanced indigenous intestinal and respiratory microbial communities. Most of these attributes primarily focus on the effect of probiotic supplementation on the host. Hence, in most cases, it can be concluded that the ability of a probiotic to protect the host from infection is an indirect result of promoting overall health and well-being. However, probiotics also exert a direct effect on invading microorganisms. The direct modes of action resulting in the elimination of pathogens include inhibition of pathogen replication by producing antimicrobial substances like bacteriocins, competition for limiting resources in the host, antitoxin effect, inhibition of virulence, antiadhesive and antiinvasive effects, and competitive exclusion by competition for binding sites or stimulation of epithelial barrier function. Although much has been documented about the ability of probiotics to promote host health, there is limited discussion on the above mentioned effects of probiotics on pathogens. Being in an era of antibiotic resistance, a better understanding of this complex probiotic-pathogen interaction is critical for development of effective strategies to control infections. Therefore, this chapter will focus on the ability of probiotics to directly modulate the infectious nature of pathogens and the underlying mechanisms that mediate these effects.
Collapse
|
7
|
The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei. J Ind Microbiol Biotechnol 2016; 43:703-11. [PMID: 26922415 DOI: 10.1007/s10295-016-1752-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Two heme-dependent catalase genes were amplified from genomic DNA of Lactobacillus plantarum WCFS1 (KatE1) and Lactobacillus brevis ATCC 367 (KatE2), respectively, and a manganese-containing superoxide dismutase from Lactobacillus casei MCJΔ1 (MnSOD) were cloned into plasmid pELX1, yielding pELX1-KatE1, pELX1-KatE2 and pELX1-MnSOD, then the recombinant plasmids were transferred into L. casei MCJΔ1. The strains of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were tolerant at 2 mM H2O2. The survival rates of L. casei MCJΔ1/pELX1-KatE1 and L. casei MCJΔ1/pELX1-KatE2 were 270-fold and 300-fold higher than that of the control strain on a short-term H2O2 exposure, and in aerated condition, the survival cells counts were 146- and 190-fold higher than that of the control strain after 96 h of incubation. Furthermore, L. casei MCJΔ1/pELX1-MnSOD was the best in three recombinants which was superior in the living cell viability during storage when co-storage with Lactobacillus delbrueckii subsp. lactis LBCH-1.
Collapse
|
8
|
Peng M, Reichmann G, Biswas D. Lactobacillus casei and its byproducts alter the virulence factors of foodborne bacterial pathogens. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Genome Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00980-14. [PMID: 25278529 PMCID: PMC4183873 DOI: 10.1128/genomea.00980-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactococcus lactis subsp. lactis NCDO 2118 is a nondairy lactic acid bacterium, a xylose fermenter, and a gamma-aminobutyric acid (GABA) producer isolated from frozen peas. Here, we report the complete genome sequence of L. lactis NCDO 2118, a strain with probiotic potential activity.
Collapse
|
10
|
Design of biopolymeric matrices entrapping bioprotective lactic acid bacteria to control Listeria monocytogenes growth: Comparison of alginate and alginate-caseinate matrices entrapping Lactococcus lactis subsp. lactis cells. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Expression of catalase in Lactobacillus fermentum and evaluation of its anti-oxidative properties in a dextran sodium sulfate induced mouse colitis model. World J Microbiol Biotechnol 2013; 29:2293-301. [PMID: 23783813 DOI: 10.1007/s11274-013-1395-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
Abstract
Lactic acid bacteria are generally sensitive to hydrogen peroxide (H₂O₂). Lactobacillus plantarum ATCC14431 is one of the few lactic acid bacteria able to degrade H₂O₂ through the action of a manganese-dependent catalase (containing the katA gene). However, it is not a natural inhabitant of the intestinal tract and its bio-efficacy and survival in the gastrointestinal tract have never been tested. In this study, we successfully expressed the katA gene from L. plantarum ATCC14431 in L. fermentum I5007 and the recombinant L. fermentum exhibited almost 20-fold higher catalase activity than the empty vector control. The anti-oxidative properties of this catalase-producing L. fermentum were evaluated using a dextran sodium sulphate (DSS) induced colitis mice model. Compared with the control, mice receiving DSS alone had increased diarrhea and mucosa histological scores (P < 0.05), as well as lipid peroxidation (P < 0.05), myeloperoxidase (P < 0.05), and active NF-κB in colonic tissue (P < 0.05). Similar to vitamin E, treatment with recombinant L. fermentum mitigate these effects accompanied by a improvement in mucosa histological scores in the proximal colon (P < 0.05) and decreased lipid peroxidation (P < 0.05), myeloperoxidase (P < 0.05) and active NF-κB in colonic tissue (P < 0.05). In conclusion, the expression of catalase in L. fermentum increased its ability to survive when exposed to aerated environment in vitro and conferred the anti-oxidative and anti-inflammatory effects in the DSS induced colitis model.
Collapse
|
12
|
Fu L, Kong J, Sun Z, Zhang L, Zhang X, Guo T. Enhancing the oxidative resistance of yoghurt starter bacteria with heterologous catalase expression in Streptococcus thermophilus. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2012.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Chiang IY, Worobo RW, Churey JJ, Henick-Kling T. Growth inhibition of foodborne pathogens by Oenococcus oeni. J Food Sci 2012; 77:M15-9. [PMID: 22260113 DOI: 10.1111/j.1750-3841.2011.02446.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED To explore the possibility of using Oenococcus oeni to inhibit foodborne pathogens, and to characterize antimicrobial compounds produced by O. oeni, 24 strains of O. oeni were tested for their ability to inhibit growth of foodborne pathogens, Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes by using the spot-on-lawn method. Of the 24 strains, 17 strains were able to inhibit all 3 pathogens in this study. Proteases, catalase, and buffer solutions were used for determining the type of inhibitory compounds produced from 4 selected strains with stronger inhibitory activity. Antimicrobial activity of 2 strains against the pathogens was completely inactivated by buffer solution, and other 2 strains against E. coli O157:H7 were partially removed. The antimicrobial compound was not sensitive to selected proteases and catalase. PRACTICAL APPLICATION There is little information available about using O. oeni for human pathogens control. The results of this study revealed such discovery and potential applications for pathogen control.
Collapse
Affiliation(s)
- I-Yuan Chiang
- Department of Nutrition and Health Sciences, Kainan University No.1, Luzhu Township, Taoyuan County, Taiwan
| | | | | | | |
Collapse
|
14
|
Amalaradjou MAR, Bhunia AK. Modern approaches in probiotics research to control foodborne pathogens. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 67:185-239. [PMID: 23034117 PMCID: PMC7150249 DOI: 10.1016/b978-0-12-394598-3.00005-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Foodborne illness is a serious public health concern. There are over 200 known microbial, chemical, and physical agents that are known to cause foodborne illness. Efforts are made for improved detection, control and prevention of foodborne pathogen in food, and pathogen associated diseases in the host. Several commonly used approaches to control foodborne pathogens include antibiotics, natural antimicrobials, bacteriophages, bacteriocins, ionizing radiations, and heat. In addition, probiotics offer a potential intervention strategy for the prevention and control of foodborne infections. This review focuses on the use of probiotics and bioengineered probiotics to control foodborne pathogens, their antimicrobial actions, and their delivery strategies. Although probiotics have been demonstrated to be effective in antagonizing foodborne pathogens, challenges exist in the characterization and elucidation of underlying molecular mechanisms of action and in the development of potential delivery strategies that could maintain the viability and functionality of the probiotic in the target organ.
Collapse
|
15
|
|
16
|
Pontes DS, de Azevedo MSP, Chatel JM, Langella P, Azevedo V, Miyoshi A. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 2011; 79:165-75. [PMID: 21704169 DOI: 10.1016/j.pep.2011.06.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 11/30/2022]
Abstract
Lactic acid bacteria (LAB), widely used in the food industry, are present in the intestine of most animals, including humans. The potential use of these bacteria as mucosal delivery vehicles for vaccinal, medical or technological use has been extensively investigated. Lactococcus lactis, a LAB species, is a potential candidate for the production of biologically useful proteins and for plasmid DNA delivery to eukaryotic cells. Several delivery systems have been developed to target heterologous proteins to a specific cell location (i.e., cytoplasm, cell wall or extracellular medium) and more recently to efficiently transfer DNA to eukaryotic cells. A promising application of L. lactis is its use for the development of live mucosal vaccines. Here, we have reviewed the expression of heterologous protein and the various delivery systems developed for L. lactis, as well as its use as an oral vaccine carrier.
Collapse
Affiliation(s)
- Daniela Santos Pontes
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Odamaki T, Xiao JZ, Yonezawa S, Yaeshima T, Iwatsuki K. Improved viability of bifidobacteria in fermented milk by cocultivation with Lactococcus lactis subspecies lactis. J Dairy Sci 2011; 94:1112-21. [PMID: 21338777 DOI: 10.3168/jds.2010-3286] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 11/15/2010] [Indexed: 11/19/2022]
Abstract
The poor survival of probiotic bacteria in commercial yogurts may limit their potential to exert health benefits in humans. The objective was to improve the survival of bifidobacteria in fermented milk. Cocultivation with some strains of Lactococcus lactis ssp. lactis improved the survival of bifidobacteria in fermented milk during refrigerated storage. Studies on one strain, Lc. lactis ssp. lactis MCC866, showed that the concentrations of dissolved oxygen were kept lower in the cocultivated fermented milk during storage compared with monocultured Bifidobacterium longum BB536 or samples cocultured with another noneffective Lc. lactis ssp. lactis strain. Degradation of genomic DNA was suppressed in the cocultivating system with Lc. lactis ssp. lactis MCC866. Several genes that participated in protection from active oxygen species (e.g., genes coding for alkyl hydroperoxide reductase and Fe(2+) transport system) were expressed at higher levels during refrigerated storage in Lc. lactis ssp. lactis MCC 866 compared with another noneffective Lc. lactis ssp. lactis strain. Concentration of free iron ion was also lower in supernatants of fermented milk cocultivated with B. longum BB536 and Lc. lactis ssp. lactis MCC866. These results suggest that Lc. lactis ssp. lactis MCC 866 is potentially superior in reducing oxygen damage and consequently improves the survival of bifidobacteria in the cocultivating system. This cocultivation system is of industrial interest for producing fermented milk containing viable bifidobacteria with long shelf life.
Collapse
Affiliation(s)
- T Odamaki
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 228-8583, Japan.
| | | | | | | | | |
Collapse
|
18
|
Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2010; 298:G807-19. [PMID: 20299599 DOI: 10.1152/ajpgi.00243.2009] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal tract is a diverse microenvironment where more than 500 species of bacteria thrive. A single layer of epithelium is all that separates these commensal microorganisms and pathogens from the underlying immune cells, and thus epithelial barrier function is a key component in the arsenal of defense mechanisms required to prevent infection and inflammation. The epithelial barrier consists of a dense mucous layer containing secretory IgA and antimicrobial peptides as well as dynamic junctional complexes that regulate permeability between cells. Probiotics are live microorganisms that confer benefit to the host and that have been suggested to ameliorate or prevent diseases including antibiotic-associated diarrhea, irritable bowel syndrome, and inflammatory bowel disease. Probiotics likely function through enhancement of barrier function, immunomodulation, and competitive adherence to the mucus and epithelium. This review summarizes the evidence about effects of the many available probiotics with an emphasis on intestinal barrier function and the mechanisms affected by probiotics.
Collapse
Affiliation(s)
- Christina L Ohland
- Department of Physiology and Pharmacology, Univ. of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
19
|
Bayoumi MA, Griffiths MW. Probiotics down-regulate genes in Salmonella enterica serovar typhimurium pathogenicity islands 1 and 2. J Food Prot 2010; 73:452-60. [PMID: 20202329 DOI: 10.4315/0362-028x-73.3.452] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Salmonella Typhimurium pathogenesis relies mainly on the expression of genes of two pathogenicity islands, Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2). Each island has its own pattern of expression and regulation. Success in suppression of the responsible key activator of each island would be an effective way of controlling Salmonella, especially with the emerging problem of antibiotic-resistant strains. Probiotics have been shown to inhibit several foodborne pathogens, and their mode of action may partly involve down-regulation of virulence genes. To investigate whether probiotics played a role in the regulation of the pathogenicity islands SPI1 and SPI2 in Salmonella, two reporter strains were constructed in which the general regulator of SPI1, hilA, and the response regulator of SPI2, ssrB, were fused with luxCDABE genes. These constructs were used to screen the effect of probiotics on the expression of each gene. Molecules secreted by Bifidobacterium bifidum were able to down-regulate both genes.
Collapse
Affiliation(s)
- Mohamed A Bayoumi
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | | |
Collapse
|
20
|
Atassi F, Servin AL. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens. FEMS Microbiol Lett 2009; 304:29-38. [PMID: 20082639 DOI: 10.1111/j.1574-6968.2009.01887.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.
Collapse
|
21
|
Herve-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin E, Rul F. Postgenomic analysis of streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 2009; 75:2062-73. [PMID: 19114510 PMCID: PMC2663229 DOI: 10.1128/aem.01984-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/22/2008] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus is one of the most widely used lactic acid bacteria in the dairy industry, in particular in yoghurt manufacture, where it is associated with Lactobacillus delbrueckii subsp. bulgaricus. This bacterial association, known as a proto-cooperation, is poorly documented at the molecular and regulatory levels. We thus investigate the kinetics of the transcriptomic and proteomic modifications of S. thermophilus LMG 18311 in response to the presence of L. delbrueckii subsp. bulgaricus ATCC 11842 during growth in milk at two growth stages. Seventy-seven different genes or proteins (4.1% of total coding sequences), implicated mainly in the metabolism of nitrogen (24%), nucleotide base (21%), and iron (20%), varied specifically in coculture. One of the most unpredicted results was a significant decrease of most of the transcripts and enzymes involved in purine biosynthesis. Interestingly, the expression of nearly all genes potentially encoding iron transporters of S. thermophilus decreased, whereas that of iron-chelating dpr as well as that of the fur (perR) regulator genes increased, suggesting a reduction in the intracellular iron concentration, probably in response to H(2)O(2) production by L. bulgaricus. The present study reveals undocumented nutritional exchanges and regulatory relationships between the two yoghurt bacteria, which provide new molecular clues for the understanding of their associative behavior.
Collapse
|
22
|
Simova E, Beshkova D, Dimitrov Z. Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. J Appl Microbiol 2009; 106:692-701. [DOI: 10.1111/j.1365-2672.2008.04052.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Maragkoudakis PA, Mountzouris KC, Psyrras D, Cremonese S, Fischer J, Cantor MD, Tsakalidou E. Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int J Food Microbiol 2009; 130:219-26. [PMID: 19249112 DOI: 10.1016/j.ijfoodmicro.2009.01.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
In this study 635 lactic acid bacteria of food origin were evaluated for their potential application as protective cultures in foods. A stepwise selection method was used to obtain the most appropriate strains for application as protective cultures in chicken meat. Specifically, all strains were examined for antimicrobial activity against various Gram positive and Gram negative pathogenic and spoilage bacteria. Strains exhibiting anti-bacterial activity were subsequently examined for survival in simulated food processing and gastrointestinal tract conditions, such as high temperatures, low pH, starvation and the presence of NaCl and bile salts. Selected strains where then examined for basic safety properties such as antibiotic resistance and haemolytic potential, while their antimicrobial activity was further investigated by PCR screening for possession of known bacteriocin genes. Two chosen strains were then applied on raw chicken meat to evaluate their protective ability against two common food pathogens, Listeria monocytogenes and Salmonella enteritidis, but also to identify potential spoilage effects by the application of the protective cultures on the food matrix. Antimicrobial activity in vitro was evident against Gram positive indicators, mainly Listeria and Brochothrix spp., while no antibacterial activity was obtained against any of the Gram negative bacteria tested. The antimicrobial activity was of a proteinaceous nature while strains with anti-listerial activity were found to possess one or more bacteriocin genes, mainly enterocins. Strains generally exhibited sensitivity to pH 2.0, but good survival at 45 degrees C, in the presence of bile salts and NaCl as well as during starvation, while variable survival rates were obtained at 55 degrees C. None of the strains was found to be haemolytic while variable antibiotic resistance profiles were obtained. Finally, when the selected strains Enterococcus faecium PCD71 and Lactobacillus fermentum ACA-DC179 were applied as protective cultures in chicken meat against L. monocytogenes and S. enteritidis respectively, a significantly reduced growth of these pathogenic bacteria was observed. In addition, these two strains did not appear to have any detrimental effect on biochemical parameters related to spoilage of the chicken meat.
Collapse
Affiliation(s)
- Petros A Maragkoudakis
- Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
24
|
Fajardo Bernárdez P, Fuciños González C, Méndez Batán J, Pastrana Castro L, Pérez Guerra N. Performance and intestinal coliform counts in weaned piglets fed a probiotic culture (Lactobacillus casei subsp. casei CECT 4043) or an antibiotic. J Food Prot 2008; 71:1797-805. [PMID: 18810863 DOI: 10.4315/0362-028x-71.9.1797] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The production of biomass and antibacterial extracellular products by Lactobacillus casei subsp. casei CECT 4043 was followed in both batch and in realkalized fed-batch cultures. Enhanced concentrations of biomass and antibacterial extracellular products were obtained with the use of the latter fermentation technique in comparison with the batch mode. The culture obtained by fed-batch fermentation was mixed with skim milk and used to prepare a probiotic feed for weaned piglets. To test the effect of the potentially probiotic culture of L. casei on body weight gain, feed intake, feed conversion efficiency, and on fecal coliform counts of piglets, two groups of animals received either feed supplemented with the probiotic preparation or avilamycin for 28 days. The control group was fed nonsupplemented feed. At the end of the administration period (day 28), the groups receiving probiotic and avilamycin exhibited the highest average body weight gain values, although the mean feed intake and feed conversion efficiency values were not different among the groups (P > 0.05). For the entire experimental period (42 days), the control group exhibited the lowest feed intake value, the probiotic group exhibited the highest feed conversion efficiency value, and the antibiotic group exhibited the highest body weight gain (P < 0.05). Interestingly, no significant difference in body weight gain was observed between the probiotic and the control groups by day 42 (P > 0.05). Fecal coliform values decreased (although not significantly) by day 28 in the three groups. However, the mean counts returned to pretreatment levels by day 42 in all groups.
Collapse
Affiliation(s)
- Paula Fajardo Bernárdez
- Departamento de Química Analítica y Alimentaria, Facultad de Ciencias de Orense, Universidad de Vigo, Las Lagunas s/n, 32004 Orense, Spain
| | | | | | | | | |
Collapse
|
25
|
Wu X, Vallance BA, Boyer L, Bergstrom KSB, Walker J, Madsen K, O'Kusky JR, Buchan AM, Jacobson K. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am J Physiol Gastrointest Liver Physiol 2008; 294:G295-306. [PMID: 18032474 DOI: 10.1152/ajpgi.00173.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Saccharomyces boulardii has received increasing attention as a probiotic effective in the prevention and treatment of infectious and inflammatory bowel diseases. The aim of this study was to examine the ameliorating effects of S. boulardii on Citrobacter rodentium colitis in vivo and identify potential mechanisms of action. C57BL/6 mice received 2.5 x 10(8) C. rodentium by gavage on day 0, followed by S. boulardii (25 mg; 5 x 10(8) live cells) gavaged twice daily from day 2 to day 9. Animal weights were monitored until death on day 10. Colons were removed and assessed for epithelial barrier function, histology, and myeloperoxidase activity. Bacterial epithelial attachment and type III secreted proteins translocated intimin receptor Tir (the receptor for bacterial intimin) and EspB (a translocation apparatus protein) required for bacterial virulence were assayed. In infected mice, S. boulardii treatment significantly attenuated weight loss, ameliorated crypt hyperplasia (234.7 +/- 7.2 vs. 297.8 +/- 17.6 microm) and histological damage score (0.67 +/- 0.67 vs. 4.75 +/- 0.75), reduced myeloperoxidase activity (2.1 +/- 0.4 vs. 4.7 +/- 0.9 U/mg), and attenuated increased mannitol flux (17.2 +/- 5.0 vs. 31.2 +/- 8.2 nm.cm(-2).h(-1)). The ameliorating effects of S. boulardii were associated with significantly reduced numbers of mucosal adherent C. rodentium, a marked reduction in Tir protein secretion and translocation into mouse colonocytes, and a striking reduction in EspB expression and secretion. We conclude that S. boulardii maintained colonic epithelial barrier integrity and ameliorated inflammatory sequelae associated with C. rodentium infection by attenuating C. rodentium adherence to host epithelial cells through putative actions on the type III secretion system.
Collapse
Affiliation(s)
- X Wu
- Div. of Gastroenterology, BC Children's Hospital, 4480 Oak St., Rm. K4-181, Vancouver, BC, Canada V6H 3V4
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Batdorj B, Trinetta V, Dalgalarrondo M, Prévost H, Dousset X, Ivanova I, Haertlé T, Chobert JM. Isolation, taxonomic identification and hydrogen peroxide production by Lactobacillus delbrueckii subsp. lactis T31, isolated from Mongolian yoghurt: inhibitory activity on food-borne pathogens. J Appl Microbiol 2007; 103:584-93. [PMID: 17714391 DOI: 10.1111/j.1365-2672.2007.03279.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this work was to isolate lactic acid bacteria (LAB) strains from Mongolian tarag (a traditionally homemade yoghurt) displaying antimicrobial activities against food-borne pathogens, identify inhibitory substances and study the kinetics of their production. METHODS AND RESULTS Inhibitory substance-producing bacterial strains were isolated from tarag. From 300 bacterial clones, 31 were able to inhibit the growth of the indicator strain Lactobacillus bulgaricus 340. One of the most active strains was identified as Lactobacillus delbrueckii subsp. lactis strain T31 by using cluster analysis of amplified fragment length polymorphism (AFLP) DNA fingerprints. The antimicrobial substance was inactivated by catalase, demonstrating the production of hydrogen peroxide (H(2)O(2)). Production of H(2)O(2) was studied under aerated and nonaerated culture conditions. The amount of H(2)O(2) in the culture supernatant increased during bacterial growth and reached a maximum (5.12 mmol l(-1)) at the early stationary phase under aerated conditions (agitated cultures). H(2)O(2) was not detected in the culture performed without agitation. In mixed cultures performed in milk with either Lact. delbrueckii subsp. lactis T31 in the presence of Escherichia coli, or Lact. delbrueckii subsp. lactis T31 in the presence of Listeria innocua under aerated and nonaerated conditions, a significant decrease in pathogen count was observed in aerated cultures. SIGNIFICANCE AND IMPACT OF THE STUDY The significant decrease in Listeria viability observed in aerated mixed cultures of Lact. delbrueckii subsp. lactis T31 is mainly because of H(2)O(2) production. Lactobacillus delbrueckii subsp. lactis T31 could be used as a protective culture in food industries or as a probiotic to prevent intestinal and urogenital infections.
Collapse
Affiliation(s)
- B Batdorj
- INRA, Unité de Recherche Biopolymères, Interactions, Assemblages, Fonctions et Interactions des Protéines Laitières (BIA-FIPL), rue de la Géraudière, Nantes Cedex 3, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Medellin-Peña MJ, Wang H, Johnson R, Anand S, Griffiths MW. Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Appl Environ Microbiol 2007; 73:4259-67. [PMID: 17496132 PMCID: PMC1932779 DOI: 10.1128/aem.00159-07] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The attachment of enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) to host intestinal epithelial cells is essential for the development of hemorrhagic colitis and hemolytic-uremic syndrome in humans. Genes involved in attachment are carried within a pathogenicity island named the locus of enterocyte effacement (LEE), known to be directly activated by quorum sensing (QS). In the present study, we investigated autoinducer-2 (AI-2) production and the expression of several virulence-related genes in EHEC O157 grown in the absence and presence of a Lactobacillus acidophilus-secreted molecule(s). Transcription of important EHEC O157 virulence-related genes was studied by constructing promoter-reporter fusions and reverse transcriptase PCR. Shiga toxin (Stx) production was assayed by an enzyme immunoassay. When EHEC O157 was grown in the presence of chromatographically selected fractions of L. acidophilus La-5 cell-free spent medium, we observed a significant reduction of both extracellular AI-2 concentration and the expression of important virulence-related genes, although no significant difference in Stx production was observed. We show here that L. acidophilus La-5 secretes a molecule(s) that either acts as a QS signal inhibitor or directly interacts with bacterial transcriptional regulators, controlling the transcription of EHEC O157 genes involved in colonization.
Collapse
|
28
|
Atassi F, Brassart D, Grob P, Graf F, Servin AL. In vitro antibacterial activity of Lactobacillus helveticus strain KS300 against diarrhoeagenic, uropathogenic and vaginosis-associated bacteria. J Appl Microbiol 2007; 101:647-54. [PMID: 16907815 DOI: 10.1111/j.1365-2672.2006.02933.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS The purpose of this study was to investigate in vitro the antibacterial activity of the Lactobacillus helveticus strain KS300 against vaginosis-associated bacteria including Gardnerella vaginalis and Prevotella bivia, uropathogenic Escherichia coli, and diarrhoeagenic Salmonella enterica serovar Typhimurium. METHODS AND RESULTS The KS300 strain inhibited the growth of G. vaginalis, P. bivia, S. typhimurium, and pathogenic E. coli. After direct co-culture, data show that the Lactobacillus strain decreased the viability of G. vaginalis, P. bivia, S. typhimurium, and pathogenic E. coli. The adhering KS300 strain inhibited the adhesion of G. vaginalis DSM 4944 and uropathogenic Dr-positive E. coli IH11128 onto HeLa cells. Moreover, the KS300 strain inhibited the internalization of uropathogenic Dr-positive E. coli IH11128 within HeLa cells and S. typhimurium SL1344 within Caco-2/TC7 cells. CONCLUSIONS The findings demonstrate that L. helveticus strain KS300 is adhesive onto cultured human cells and has antagonistic activities against vaginosis-associated, uropathogenic and diarrhoeagenic pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY Adhering L. helveticus strain KS300 is a potential probiotic strain displaying a strain-specific array of in vitro antibacterial activities.
Collapse
Affiliation(s)
- F Atassi
- Institut National de la Santé et de la Recherche Médicale, Unité 756, Faculté de Pharmacie, Université Paris, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
29
|
Batdorj B, Trinetta V, Dalgalarrondo M, Prévost H, Dousset X, Ivanova I, Haertlé T, Chobert JM. Isolation, taxonomic identification and hydrogen peroxide production by Lactobacillus delbrueckii subsp. lactis T31, isolated from Mongolian yoghurt: inhibitory activity on food-borne pathogens. J Appl Microbiol 2007. [DOI: 10.1111/j.1365-2672.2006.03279.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Atassi F, Brassart D, Grob P, Graf F, Servin AL. Lactobacillus strains isolated from the vaginal microbiota of healthy women inhibit Prevotella bivia and Gardnerella vaginalis in coculture and cell culture. ACTA ACUST UNITED AC 2006; 48:424-32. [PMID: 17059467 DOI: 10.1111/j.1574-695x.2006.00162.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to investigate how human vaginal isolates of Lactobacillus acidophilus, Lactobacillus jensenii, Lactobacillus gasseri and Lactobacillus crispatus inhibit the vaginosis-associated pathogens Gardnerella vaginalis and Prevotella bivia. Results show that all the strains in coculture condition reduced the viability of G. vaginalis and P. bivia, but with differing degrees of efficacy. The treatment of G. vaginalis- and P. bivia-infected cultured human cervix epithelial HeLa cells with L. gasseri strain KS120.1 culture or cell-free culture supernatant (CFCS) results in the killing of the pathogens that are adhering to the cells. The mechanism of the killing activity is not attributable to low pH and the presence of lactic acid alone, but rather to the presence of hydrogen peroxide and proteolytic enzyme-resistant compound(s) present in the CFCSs. In addition, coculture of G. vaginalis or P. bivia with L. gasseri KS120.1 culture or KS120.1 bacteria results in inhibition of the adhesion of the pathogens onto HeLa cells.
Collapse
Affiliation(s)
- Fabrice Atassi
- INSERM and Université Paris XI, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
31
|
Rochat T, Gratadoux JJ, Gruss A, Corthier G, Maguin E, Langella P, van de Guchte M. Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Appl Environ Microbiol 2006; 72:5143-9. [PMID: 16885258 PMCID: PMC1538758 DOI: 10.1128/aem.00482-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.
Collapse
Affiliation(s)
- Tatiana Rochat
- Unité d'Ecologie et de Physiologie du Système Digestif, INRA, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Carraturo A, Raieta K, Ottaviani D, Russo GL. Inhibition of Vibrio parahaemolyticus by a bacteriocin-like inhibitory substance (BLIS) produced by Vibrio mediterranei 1. J Appl Microbiol 2006; 101:234-41. [PMID: 16834611 DOI: 10.1111/j.1365-2672.2006.02909.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this research was to identify and partially purify new bacteriocin-like substances from strains of halophilic 'non-cholera' vibrios isolated from food sources. METHODS AND RESULTS Forty-five halophilic Vibrio spp. strains were screened for antimicrobial production. Vibrio mediterranei 1, a nonpathogenic strain, showed antimicrobial activity towards Vibrio parahaemolyticus spp. and related species. The bacteriocin-like inhibitory substance (BLIS), released by the bacteria into growth media, was concentrated by ultrafiltration and characterized. BLIS was sensitive to proteinase K, was stable in the pH range 5-9, was resistant to organic solvents and was heat stable up to 75 degrees C. Initial purification of BLIS by size exclusion chromatography showed an apparent molecular mass of 63-65 kDa. CONCLUSIONS This study reports the ability of V. mediterranei 1 to produce a bacteriocin-like substance inhibiting growth of V. parahaemolyticus spp. and other closely related bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY The strong activity of BLIS towards the human and fish pathogen V. parahaemolyticus and the persistence of antimicrobial properties under a variety of different conditions suggest its potential application in food microbiology.
Collapse
Affiliation(s)
- A Carraturo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | | | | | | |
Collapse
|
33
|
Sherman PM, Johnson-Henry KC, Yeung HP, Ngo PSC, Goulet J, Tompkins TA. Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 2005; 73:5183-8. [PMID: 16041036 PMCID: PMC1201237 DOI: 10.1128/iai.73.8.5183-5188.2005] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to determine if probiotics reduce epithelial injury following exposure to Escherichia coli O157:H7 and E. coli O127:H6. The pretreatment of intestinal (T84) cells with lactic acid-producing bacteria reduced the pathogen-induced drop in transepithelial electrical resistance. These findings demonstrate that probiotics prevent epithelial injury induced by attaching-effacing bacteria.
Collapse
Affiliation(s)
- Philip M Sherman
- Gastroenterology and Nutrition, Room 8409, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Commane DM, Shortt CT, Silvi S, Cresci A, Hughes RM, Rowland IR. Effects of fermentation products of pro- and prebiotics on trans-epithelial electrical resistance in an in vitro model of the colon. Nutr Cancer 2005; 51:102-9. [PMID: 15749636 DOI: 10.1207/s15327914nc5101_14] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evidence from in vivo and in vitro studies suggests that the consumption of pro- and prebiotics may inhibit colon carcinogenesis; however, the mechanisms involved have, thus far, proved elusive. There are some indications from animal studies that the effects are being exerted during the promotion stage of carcinogenesis. One feature of the promotion stage of colorectal cancer is the disruption of tight junctions, leading to a loss of integrity across the intestinal barrier. We have used the Caco-2 human adenocarcinoma cell line as a model for the intestinal epithelia. Trans-epithelial electrical resistance measurements indicate Caco-2 monolayer integrity, and we recorded changes to this integrity following exposure to the fermentation products of selected probiotics and prebiotics, in the form of nondigestible oligosaccharides (NDOs). Our results indicate that NDOs themselves exert varying, but generally minor, effects upon the strength of the tight junctions, whereas the fermentation products of probiotics and NDOs tend to raise tight junction integrity above that of the controls. This effect was bacterial species and oligosaccharide specific. Bifidobacterium Bb 12 was particularly effective, as were the fermentation products of Raftiline and Raftilose. We further investigated the ability of Raftilose fermentations to protect against the negative effects of deoxycholic acid (DCA) upon tight junction integrity. We found protection to be species dependent and dependent upon the presence of the fermentation products in the media at the same time as or after exposure to the DCA. Results suggest that the Raftilose fermentation products may prevent disruption of the intestinal epithelial barrier function during damage by tumor promoters.
Collapse
|
35
|
Commane D, Hughes R, Shortt C, Rowland I. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat Res 2005; 591:276-89. [PMID: 16095630 DOI: 10.1016/j.mrfmmm.2005.02.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 02/10/2005] [Accepted: 02/17/2005] [Indexed: 01/04/2023]
Abstract
Probiotic bacteria are live microbial food ingredients that provide a health benefit to the consumer. In the past it was suggested that they served to benefit the host primarily through the prevention of intestinal infections. More recent studies have implicated probiotic bacteria in a number of other beneficial effects within the host including: *The suppression of allergies. *Control of blood cholesterol levels. *Modulation of immune function. *And the prevention of cancers of the colon. The reputed anti-carcinogenic effect of probiotics arises from in vivo studies in both animals and to a limited extent in man; this evidence is supported by in vitro studies with carcinoma cell lines and anti-mutagenicity assays. However, the mechanisms involved in any effect have thus far been difficult to elucidate; studies offer evidence for a variety of mechanisms; we have reviewed these and come to the opinion that, the anti-carcinogenic effect may not be attributable to a single mechanism but rather to a combination of events not yet fully elucidated or understood.
Collapse
Affiliation(s)
- Daniel Commane
- The University of Ulster, NICHE, Cromore Road, Coleraine, N. Ireland BT52 1SA, UK.
| | | | | | | |
Collapse
|
36
|
Rochat T, Gratadoux JJ, Corthier G, Coqueran B, Nader-Macias ME, Gruss A, Langella P. Lactococcus lactis SpOx spontaneous mutants: a family of oxidative-stress-resistant dairy strains. Appl Environ Microbiol 2005; 71:2782-8. [PMID: 15870374 PMCID: PMC1087537 DOI: 10.1128/aem.71.5.2782-2788.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous industrial bacteria generate hydrogen peroxide (H(2)O(2)), which may inhibit the growth of other bacteria in mixed ecosystems. We isolated spontaneous oxidative-stress-resistant (SpOx) Lactococcus lactis mutants by using a natural selection method with milk-adapted strains on dairy culture medium containing H(2)O(2). Three SpOx mutants displayed greater H(2)O(2) resistance. One of them, SpOx3, demonstrated better behavior in different oxidative-stress situations: (i) higher long-term survival upon aeration in LM17 and milk and (ii) the ability to grow with H(2)O(2)-producing Lactobacillus delbrueckii subsp. delbrueckii strains. Furthermore, the transit kinetics of the SpOx3 mutant in the digestive tract of a human flora-associated mouse model was not affected.
Collapse
Affiliation(s)
- Tatiana Rochat
- Unité de Recherches Laitières et de Génetique, INRA, Domaine de Vilvert, 78352 Jouy en Josas cedex, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004; 28:405-40. [PMID: 15374659 DOI: 10.1016/j.femsre.2004.01.003] [Citation(s) in RCA: 752] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/19/2003] [Accepted: 01/28/2004] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal tract is a complex ecosystem that associates a resident microbiota and cells of various phenotypes lining the epithelial wall expressing complex metabolic activities. The resident microbiota in the digestive tract is a heterogeneous microbial ecosystem containing up to 1 x 10(14) colony-forming units (CFUs) of bacteria. The intestinal microbiota plays an important role in normal gut function and maintaining host health. The host is protected from attack by potentially harmful microbial microorganisms by the physical and chemical barriers created by the gastrointestinal epithelium. The cells lining the gastrointestinal epithelium and the resident microbiota are two partners that properly and/or synergistically function to promote an efficient host system of defence. The gastrointestinal cells that make up the epithelium, provide a physical barrier that protects the host against the unwanted intrusion of microorganisms into the gastrointestinal microbiota, and against the penetration of harmful microorganisms which usurp the cellular molecules and signalling pathways of the host to become pathogenic. One of the basic physiological functions of the resident microbiota is that it functions as a microbial barrier against microbial pathogens. The mechanisms by which the species of the microbiota exert this barrier effect remain largely to be determined. There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence. The objective of this review is to analyze the in vitro and in vivo experimental and clinical studies in which the antimicrobial activities of selected lactobacilli and bifidobacteria strains have been documented.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Pathogénes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France.
| |
Collapse
|
38
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:1839-1841. [DOI: 10.11569/wcjd.v11.i11.1839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
39
|
Mercade M, Duperray F, Loubière P. Transient self-inhibition of the growth of Lactobacillus delbrueckii subsp. bulgaricus in a pH-regulated fermentor. Biotechnol Bioeng 2003; 84:78-87. [PMID: 12910546 DOI: 10.1002/bit.10751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An industrial strain of Lactobacillus delbrueckii subsp. bulgaricus was grown in a synthetic medium on lactose as carbon substrate, in a pH-regulated fermentor. Growth proceeded in two distinct phases separated by a transient stationary phase. Various experimental approaches were used to identify the cause of this growth arrest. Growth experiments in L. bulgaricus culture supernatant fluids collected at different cultivation times in fermentor, and supplemented or not with various nutritional solutions, enabled us to discard the possibility of a nutritional limitation. Tube cultures of L. bulgaricus in medium supplemented with various lactic acid concentrations showed a potential inhibition by this metabolic end product but confirmed that this inhibition was not responsible for the cessation of growth. It was concluded that at least one inhibitory compound was produced during the growth phase of the strain, and this compound disappeared from the medium in the transient stationary phase, enabling the growth to start again later in the culture. Indeed, the stoichiometric analysis of the culture showed, firstly, that unidentified carbon compounds were produced from lactose during growth, which were probably converted in lactic acid during the transient stationary phase and, secondly, that part of the amino acids consumed gave catabolic end products. Finally, bacteriocin-like compounds were not considered to be responsible for this growth arrest.
Collapse
Affiliation(s)
- Myriam Mercade
- Centre de Bioingénierie Gilbert Durand, UMR CNRS 5504, UMR INRA 792, Institut National des Sciences Appliquées, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | | | | |
Collapse
|
40
|
Mélançon D, Grenier D. Production and properties of bacteriocin-like inhibitory substances from the swine pathogen Streptococcus suis serotype 2. Appl Environ Microbiol 2003; 69:4482-8. [PMID: 12902232 PMCID: PMC169146 DOI: 10.1128/aem.69.8.4482-4488.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis serotype 2 is a major pathogen found in the upper respiratory tract of swine. In this study, isolates of this bacterial species were tested for the production of bacteriocin-like inhibitory substances (BLIS). Of the 38 strains tested, four inhibited the growth of other S. suis isolates according to a deferred-antagonism plate assay. Interestingly, three of the strains were originally isolated from healthy carrier pigs and were considered nonvirulent. Three isolates (94-623, 90-1330, and AAH4) that produced BLIS in liquid broth were selected for further characterization. None of the inhibitory activities was related to the production of either organic acids or hydrogen peroxide. The BLIS produced by these strains were heat stable and proteinase K, pronase, and elastase sensitive but were trypsin and chymotrypsin resistant. They were stable at pH 2 and 12 and had molecular masses in the range of 14 to 30 kDa. Maximum production was observed during the mid-log phase. Following a curing procedure with novobiocin, only 90-1330 lost the ability to produce BLIS, suggesting that the BLIS might be plasmid encoded. Analysis of the inhibitory spectra revealed that the BLIS-producing strains also inhibited the growth of Actinobacillus minor, Actinobacillus porcinus, Enterococcus durans, Micrococcus luteus, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. dysgalactiae, Streptococcus equi subsp. zooepidemicus, and S. dysgalactiae subsp. equisimilis. This study reports for the first time the ability of the swine pathogen S. suis serotype 2 to produce BLIS with the characteristics of classic bacteriocins. Further studies are required to investigate the possibility of using bacteriocin-producing strains to prevent swine infections caused by virulent strains of S. suis serotype 2.
Collapse
Affiliation(s)
- D Mélançon
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | | |
Collapse
|