1
|
Has EG, Akçelik N, Akçelik M. Comparative global gene expression analysis of biofilm forms of Salmonella Typhimurium ATCC 14028 and its seqA mutant. Gene X 2023; 853:147094. [PMID: 36470486 DOI: 10.1016/j.gene.2022.147094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, comparative transcriptomic analyzes (mRNA and miRNA) were performed on the biofilm forms of S. Typhimurium ATCC 14028 wild-type strain and its seqA gene mutant in order to determine the regulation characteristics of the seqA gene in detail. The results of global gene expression analyses showed an increase in the expression level of 54 genes and a decrease in the expression level of 155 genes (p < 0.05) in the seqA mutant compared to the wild-type strain. 10 of the 48 miRNAs identified on behalf of sequence analysis are new miRNA records for Salmonella. Transcripts of 14 miRNAs differed between wild-type strain and seqA mutant (p < 0.05), of which eight were up-regulated and six were down-regulated. Bioinformatic analyzes showed that differentially expressed genes in the wild-type strain and its seqA gene mutant play a role in different metabolic processes as well as biofilm formation, pathogenicity and virulence. When the transcriptomic data were interpreted together with the findings obtained from phenotypic tests such as motility, attachment to host cells and biofilm morphotyping, it was determined that the seqA gene has a critical function especially for the adhesion and colonization stages of biofilm formation, as well as for biofilm stability. Transcriptomic data pointing out that the seqA gene is also a general positive regulator of T3SS effector proteins active in cell invasion in S. Typhimurium wild-type biofilm, proves that this gene is involved in Salmonella host cell invasion.
Collapse
Affiliation(s)
- Elif Gamze Has
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135 Ankara, Turkey
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey.
| |
Collapse
|
2
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during the repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and the regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential, and, in C. crescentus, it is important for temporal gene expression, which, in turn, is required for coordinating chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage, decrease transformation frequency in certain bacteria, and decrease the stability of short direct repeats and are necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
3
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
4
|
Donczew R, Zakrzewska-Czerwińska J, Zawilak-Pawlik A. Beyond DnaA: the role of DNA topology and DNA methylation in bacterial replication initiation. J Mol Biol 2014; 426:2269-82. [PMID: 24747048 DOI: 10.1016/j.jmb.2014.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
The replication of chromosomal DNA is a fundamental event in the life cycle of every cell. The first step of replication, initiation, is controlled by multiple factors to ensure only one round of replication per cell cycle. The process of initiation has been described most thoroughly for bacteria, especially Escherichia coli, and involves many regulatory proteins that vary considerably between different species. These proteins control the activity of the two key players of initiation in bacteria: the initiator protein DnaA and the origin of chromosome replication (oriC). Factors involved in the control of the availability, activity, or oligomerization of DnaA during initiation are generally regarded as the most important and thus have been thoroughly characterized. Other aspects of the initiation process, such as origin accessibility and susceptibility to unwinding, have been less explored. However, recent findings indicate that these factors have a significant role. This review focuses on DNA topology, conformation, and methylation as important factors that regulate the initiation process in bacteria. We present a comprehensive summary of the factors involved in the modulation of DNA topology, both locally at oriC and more globally at the level of the entire chromosome. We show clearly that the conformation of oriC dynamically changes, and control of this conformation constitutes another, important factor in the regulation of bacterial replication initiation. Furthermore, the process of initiation appears to be associated with the dynamics of the entire chromosome and this association is an important but largely unexplored phenomenon.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-138 Wrocław, Poland.
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
5
|
Lluch-Senar M, Luong K, Lloréns-Rico V, Delgado J, Fang G, Spittle K, Clark TA, Schadt E, Turner SW, Korlach J, Serrano L. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. PLoS Genet 2013; 9:e1003191. [PMID: 23300489 PMCID: PMC3536716 DOI: 10.1371/journal.pgen.1003191] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/08/2012] [Indexed: 11/18/2022] Open
Abstract
In the bacterial world, methylation is most commonly associated with restriction-modification systems that provide a defense mechanism against invading foreign genomes. In addition, it is known that methylation plays functionally important roles, including timing of DNA replication, chromosome partitioning, DNA repair, and regulation of gene expression. However, full DNA methylome analyses are scarce due to a lack of a simple methodology for rapid and sensitive detection of common epigenetic marks (ie N6-methyladenine (6 mA) and N4-methylcytosine (4 mC)), in these organisms. Here, we use Single-Molecule Real-Time (SMRT) sequencing to determine the methylomes of two related human pathogen species, Mycoplasma genitalium G-37 and Mycoplasma pneumoniae M129, with single-base resolution. Our analysis identified two new methylation motifs not previously described in bacteria: a widespread 6 mA methylation motif common to both bacteria (5′-CTAT-3′), as well as a more complex Type I m6A sequence motif in M. pneumoniae (5′-GAN7TAY-3′/3′-CTN7ATR-5′). We identify the methyltransferase responsible for the common motif and suggest the one involved in M. pneumoniae only. Analysis of the distribution of methylation sites across the genome of M. pneumoniae suggests a potential role for methylation in regulating the cell cycle, as well as in regulation of gene expression. To our knowledge, this is one of the first direct methylome profiling studies with single-base resolution from a bacterial organism. DNA methylation in bacteria plays important roles in cell division, DNA repair, regulation of gene expression, and pathogenesis. Here, we use a novel sequencing technique, Single-Molecule Real-Time (SMRT) sequencing, to determine the methylomes of two related human pathogen species, Mycoplasma genitalium G-37 and Mycoplasma pneumoniae M129. Our analysis identified two novel methylation motifs, one of them present uniquely in M. pneumoniae and the other common to both bacteria. We also identify the methyltransferase responsible for the common methylation motif and suggest the one associated with the M. pneumoniae unique motif. Functional analysis of the data suggests a potential role for methylation in regulating the cell cycle of M. pneumoniae, as well as in regulation of gene expression. To our knowledge, this is one of the first genome-wide approaches to study the biological role of methylation in a bacterial organism.
Collapse
Affiliation(s)
- Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Regev T, Myers N, Zarivach R, Fishov I. Association of the chromosome replication initiator DnaA with the Escherichia coli inner membrane in vivo: quantity and mode of binding. PLoS One 2012; 7:e36441. [PMID: 22574163 PMCID: PMC3344877 DOI: 10.1371/journal.pone.0036441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022] Open
Abstract
DnaA initiates chromosome replication in most known bacteria and its activity is controlled so that this event occurs only once every cell division cycle. ATP in the active ATP-DnaA is hydrolyzed after initiation and the resulting ADP is replaced with ATP on the verge of the next initiation. Two putative recycling mechanisms depend on the binding of DnaA either to the membrane or to specific chromosomal sites, promoting nucleotide dissociation. While there is no doubt that DnaA interacts with artificial membranes in vitro, it is still controversial as to whether it binds the cytoplasmic membrane in vivo. In this work we looked for DnaA-membrane interaction in E. coli cells by employing cell fractionation with both native and fluorescent DnaA hybrids. We show that about 10% of cellular DnaA is reproducibly membrane-associated. This small fraction might be physiologically significant and represent the free DnaA available for initiation, rather than the vast majority bound to the datA reservoir. Using the combination of mCherry with a variety of DnaA fragments, we demonstrate that the membrane binding function is delocalized on the surface of the protein's domain III, rather than confined to a particular sequence. We propose a new binding-bending mechanism to explain the membrane-induced nucleotide release from DnaA. This mechanism would be fundamental to the initiation of replication.
Collapse
Affiliation(s)
- Tomer Regev
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Myers
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
A mathematical model for timing the release from sequestration and the resultant Brownian migration of SeqA clusters in E. coli. Bull Math Biol 2010; 73:1271-91. [PMID: 20640526 DOI: 10.1007/s11538-010-9558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
DNA replication in Escherichia coli is initiated by DnaA binding to oriC, the replication origin. During the process of assembly of the replication factory, the DnaA is released back into the cytoplasm, where it is competent to reinitiate replication. Premature reinitiation is prevented by binding SeqA to newly formed GATC sites near the replication origin. Resolution of the resulting SeqA cluster is one aspect of timing for reinitiation. A Markov model accounting for the competition between SeqA binding and methylation for one or several GATC sites relates the timing to reaction rates, and consequently to the concentrations of SeqA and methylase. A model is proposed for segregation, the motion of the two daughter DNAs into opposite poles of the cell before septation. This model assumes that the binding of SeqA and its subsequent clustering results in loops from both daughter nucleoids attached to the SeqA cluster at the GATC sites. As desequestration occurs, the cluster is divided in two, one associated with each daughter. As the loops of DNA uncoil, the two subclusters migrate apart due to the Brownian ratchet effect of the DNA loop.
Collapse
|
8
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcmmethyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholera and Caulobactercrescentus) adenine methylation is essential, and in C.crescentus it is important for temporal gene expression which, in turn, is required for coordination of chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage,decrease transformation frequency in certain bacteria,and decrease the stability of short direct repeats andare necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
9
|
Rotman E, Bratcher P, Kuzminov A. Reduced lipopolysaccharide phosphorylation in Escherichia coli lowers the elevated ori/ter ratio in seqA mutants. Mol Microbiol 2009; 72:1273-92. [PMID: 19432803 PMCID: PMC2691451 DOI: 10.1111/j.1365-2958.2009.06725.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The seqA defect in Escherichia coli increases the ori/ter ratio and causes chromosomal fragmentation, making seqA mutants dependent on recombinational repair (the seqA recA colethality). To understand the nature of this chromosomal fragmentation, we characterized DeltaseqA mutants and isolated suppressors of the DeltaseqA recA lethality. We demonstrate that our DeltaseqA alleles have normal function of the downstream pgm gene and normal ratios of the major phospholipids in the membranes, but increased surface lipopolysaccharide (LPS) phosphorylation. The predominant class of DeltaseqA recA suppressors disrupts the rfaQGP genes, reducing phosphorylation of the inner core region of LPS. The rfaQGP suppressors also reduce the elevated ori/ter ratio of the DeltaseqA mutants but, unexpectedly, the suppressed mutants still exhibit the high levels of chromosomal fragmentation and SOS induction, characteristic of the DeltaseqA mutants. We also found that colethality of rfaP with defects in the production of acidic phospholipids is suppressed by alternative initiation of chromosomal replication, suggesting that LPS phosphorylation stimulates replication initiation. The rfaQGP suppression of the seqA recA lethality provides genetic support for the surprising physical evidence that the oriC DNA forms complexes with the outer membrane.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Illinois at Urbana-Champaign
| | | | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign
| |
Collapse
|
10
|
Waldminghaus T, Skarstad K. The Escherichia coli SeqA protein. Plasmid 2009; 61:141-50. [PMID: 19254745 DOI: 10.1016/j.plasmid.2009.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
The Escherichia coli SeqA protein contributes to regulation of chromosome replication by preventing re-initiation at newly replicated origins. SeqA protein binds to new DNA which is hemimethylated at the adenine of GATC sequences. Most of the cellular SeqA is found complexed with the new DNA at the replication forks. In vitro the SeqA protein binds as a dimer to two GATC sites and is capable of forming a helical fiber of dimers through interactions of the N-terminal domain. SeqA can also bind, with less affinity, to fully methylated origins and affect timing of "primary" initiations. In addition to its roles in replication, the SeqA protein may also act in chromosome organization and gene regulation.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | |
Collapse
|
11
|
Cell-cycle-dependent spatial sequestration of the DnaA replication initiator protein in Bacillus subtilis. Dev Cell 2009; 15:935-41. [PMID: 19081080 DOI: 10.1016/j.devcel.2008.09.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 07/16/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022]
Abstract
Initiation of DNA replication must be restricted to occur only once per cell cycle. In most bacteria, DnaA protein binds replication origins and promotes the initiation of DNA replication. We have found that in Bacillus subtilis, DnaA only colocalizes with origin regions at early or late stages of the cell cycle, when the replication machinery is assembling or disassembling, respectively. In contrast, DnaA colocalizes with the DNA replication machinery during most of the cell cycle. Indeed, we present evidence that a primary function of YabA, a negative regulator of replication initiation, is to tether DnaA to the polymerase-clamp protein DnaN. Thus, YabA ensures that once the origin is duplicated, it moves away from the replisome and from DnaA. We propose that DnaA colocalization with origins is specific to the time of initiation, and that replisome/YabA-mediated spatial sequestration of DnaA prevents inappropriate reinitiation of DNA replication.
Collapse
|
12
|
Ferullo DJ, Lovett ST. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet 2008; 4:e1000300. [PMID: 19079575 PMCID: PMC2586660 DOI: 10.1371/journal.pgen.1000300] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/07/2008] [Indexed: 11/18/2022] Open
Abstract
The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions.
Collapse
Affiliation(s)
- Daniel J. Ferullo
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Susan T. Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kato JI. Regulatory Network of the Initiation of Chromosomal Replication inEscherichia coli. Crit Rev Biochem Mol Biol 2008; 40:331-42. [PMID: 16338685 DOI: 10.1080/10409230500366090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacterial chromosome is replicated once during the division cycle, a process ensured by the tight regulation of initiation at oriC. In prokaryotes, the initiator protein DnaA plays an essential role at the initiation step, and feedback control is critical in regulating initiation. Three systems have been identified that exert feedback control in Escherichia coli, all of which are necessary for tight strict regulation of the initiation step. In particular, the ATP-dependent control of DnaA activity is essential. A missing link in initiator activity regulation has been identified, facilitating analysis of the reaction mechanism. Furthermore, key components of this regulatory network have also been described. Because the eukaryotic initiator complex, ORC, is also regulated by ATP, the bacterial system provides an important model for understanding initiation in eukaryotes. This review summarizes recent studies on the regulation of initiator activity.
Collapse
Affiliation(s)
- Jun-ichi Kato
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, Japan
| |
Collapse
|
14
|
Cho E, Ogasawara N, Ishikawa S. The functional analysis of YabA, which interacts with DnaA and regulates initiation of chromosome replication in Bacillus subtils. Genes Genet Syst 2008; 83:111-25. [PMID: 18506095 DOI: 10.1266/ggs.83.111] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The initiation of bacterial chromosome DNA replication and its regulation are critical events. DnaA is essential for initiation of DNA replication and is conserved throughout bacteria. In Escherichia coli, hydrolysis of ATP-DnaA is promoted by Hda through formation of a ternary complex with DnaA and DnaN, ensuring the timely inactivation of DnaA during the replication cycle. In Bacillus subtilis, YabA also forms a ternary complex with DnaA and DnaN, and negatively regulates the initiation step of DNA replication. However, YabA shares no structural homology with Hda and the regulatory mechanism itself has not been clarified. Here, in contrast to Hda, we observed that dnaA transcription was stable during under- and overexpression of YabA. ChAP-chip assays showed that the depletion of YabA did not affect DNA binding by DnaA. On the other hand, yeast two-hybrid analysis indicated that the DnaA ATP-binding domain interacts with YabA. Moreover, mutations in YabA interaction-deficient mutants, isolated by yeast two-hybrid analysis, are located at the back of the ATP-binding domain, whereas Hda is thought to interact with the ATP-binding pocket itself. The introduction into B. subtilis of a dnaA(Y144C) mutation, which disabled the interaction with YabA but did not affect interactions either with DnaA itself or with DnaD, resulted in over-initiation and asynchronous initiation of replication and disabled the formation of YabA foci, further demonstrating that the amino acid on the opposite side to the ATP-binding pocket is important for YabA binding. These results indicate that YabA indeed regulates the initiation of DNA replication by a different mechanism from that used by Hda in the E. coli RIDA system. Interestingly, all DnaA mutants deficient in YabA binding also displayed reduced DnaD binding in yeast two-hybrid assays, suggesting that YabA can inhibit replication initiation through competitive inhibition of DnaD binding to DnaA.
Collapse
Affiliation(s)
- Eunha Cho
- Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | |
Collapse
|
15
|
Coffin SR, Reich NO. Modulation of Escherichia coli DNA methyltransferase activity by biologically derived GATC-flanking sequences. J Biol Chem 2008; 283:20106-16. [PMID: 18502761 DOI: 10.1074/jbc.m802502200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli DNA adenine methyltransferase (EcoDam) methylates the N-6 position of the adenine in the sequence 5'-GATC-3' and plays vital roles in gene regulation, mismatch repair, and DNA replication. It remains unclear how the small number of critical GATC sites involved in the regulation of replication and gene expression are differentially methylated, whereas the approximately 20,000 GATCs important for mismatch repair and dispersed throughout the genome are extensively methylated. Our prior work, limited to the pap regulon, showed that methylation efficiency is controlled by sequences immediately flanking the GATC sites. We extend these studies to include GATC sites involved in diverse gene regulatory and DNA replication pathways as well as sites previously shown to undergo differential in vivo methylation but whose function remains to be assigned. EcoDam shows no change in affinity with variations in flanking sequences derived from these sources, but methylation kinetics varied 12-fold. A-tracts immediately adjacent to the GATC site contribute significantly to these differences in methylation kinetics. Interestingly, only when the poly(A) is located 5' of the GATC are the changes in methylation kinetics revealed. Preferential methylation is obscured when two GATC sites are positioned on the same DNA molecule, unless both sites are surrounded by large amounts of nonspecific DNA. Thus, facilitated diffusion and sequences immediately flanking target sites contribute to higher order specificity for EcoDam; we suggest that the diverse biological roles of the enzyme are in part regulated by these two factors, which may be important for other enzymes that sequence-specifically modify DNA.
Collapse
Affiliation(s)
- Stephanie R Coffin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | |
Collapse
|
16
|
Narajczyk M, Barańska S, Szambowska A, Glinkowska M, Węgrzyn A, Węgrzyn G. Modulation of lambda plasmid and phage DNA replication by Escherichia coli SeqA protein. MICROBIOLOGY-SGM 2007; 153:1653-1663. [PMID: 17464080 DOI: 10.1099/mic.0.2006/005546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SeqA protein, a main negative regulator of the replication initiation of the Escherichia coli chromosome, also has several other functions which are still poorly understood. It was demonstrated previously that in seqA mutants the copy number of another replicon, the lambda plasmid, is decreased, and that the activity of the lambda p(R) promoter (whose function is required for stimulation of ori lambda) is lower than that in the wild-type host. Here, SeqA-mediated regulation of lambda phage and plasmid replicons was investigated in more detail. No significant influence of SeqA on ori lambda-dependent DNA replication in vitro was observed, indicating that a direct regulation of lambda DNA replication by this protein is unlikely. On the other hand, density-shift experiments, in which the fate of labelled lambda DNA was monitored after phage infection of host cells, strongly suggested the early appearance of sigma replication intermediates and preferential rolling-circle replication of phage DNA in seqA mutants. The directionality of lambda plasmid replication in such mutants was, however, only slightly affected. The stability of the heritable lambda replication complex was decreased in the seqA mutant relative to the wild-type host, but a stable fraction of the lambda O protein was easily detectable, indicating that such a heritable complex can function in the mutant. To investigate the influence of seqA gene function on heritable complex- and transcription-dependent lambda DNA replication, the efficiency of lambda plasmid replication in amino acid-starved relA seqA mutants was measured. Under these conditions, seqA dysfunction resulted in impairment of lambda plasmid replication. These results indicate that unlike oriC, SeqA modulates lambda DNA replication indirectly, most probably by influencing the stability of the lambda replication complex and the transcriptional activation of ori lambda.
Collapse
Affiliation(s)
- Magdalena Narajczyk
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Anna Szambowska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Monika Glinkowska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 80-822 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| |
Collapse
|
17
|
Grimwade JE, Torgue JJC, McGarry KC, Rozgaja T, Enloe ST, Leonard AC. Mutational analysis reveals Escherichia coli oriC interacts with both DnaA-ATP and DnaA-ADP during pre-RC assembly. Mol Microbiol 2007; 66:428-39. [PMID: 17850252 PMCID: PMC2391298 DOI: 10.1111/j.1365-2958.2007.05930.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prior to initiating DNA synthesis, Escherichia coli oriC switches from ORC, comprising initiator DnaA bound at three high-affinity sites, to pre-RC, when additional DnaA molecules interact with low-affinity sites. Two types of low-affinity sites exist: R boxes that bind DnaA-ATP and DnaA-ADP with equal affinity, and I-sites with a three- to fourfold preference for DnaA-ATP. To assess the regulatory role of weak DnaA interactions during pre-RC assembly in vivo, we compared the behaviour of plasmid-borne wild-type oriC with mutants having an increased or decreased number of DnaA-ATP discriminatory I-sites. Increasing the number of discriminatory sites by replacing R5M with I2 inactivated extrachromosomal oriC function. Mutants with no discriminatory sites perturbed host growth and rapidly replaced wild-type chromosomal oriC, but normal function returned if one I-site was restored at either the I2, I3 or R5M position. These observations are consistent with assembly of E. coli pre-RC in vivo from mixtures of DnaA-ATP and DnaA-ADP, with I-site interactions coupling pre-RC assembly to DnaA-ATP levels.
Collapse
Affiliation(s)
- Julia E. Grimwade
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, Florida 32901
| | - Julien J-C. Torgue
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, Florida 32901
| | | | - Tanya Rozgaja
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, Florida 32901
| | - Sareena T. Enloe
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, Florida 32901
| | - Alan C. Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, Florida 32901
| |
Collapse
|
18
|
Chatti A, Daghfous D, Landoulsi A. Effect of seqA mutation on Salmonella typhimurium virulence. J Infect 2007; 54:e241-5. [PMID: 17327135 DOI: 10.1016/j.jinf.2007.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 11/20/2022]
Abstract
It is well established that lack of SeqA protein leads to reinitiation at the same origin more than once per cell cycle, in E. coli. Aberrant cell division and filament formation in SeqA-deficient strains suggest that this protein might be involved in cell cycle process other than transient inhibition of replication initiation. The aim of our work was to examine the effect of lack of this protein on Salmonella typhimurium virulence. In the present study, Swiss albino mice were used for the determination of LD50, the competitive index and detection of bacteria in target organs. In vitro assays were used to determine the sensitivity of either wild-type and seqA mutant to hydrogen peroxide and bile salts. The seqA mutant strain of Salmonella typhimurium is attenuated for virulence in mice. seqA mutant is highly sensitive towards hydrogen peroxide and bile salts compared with the isogenic wild-type. The 50% lethal dose of seqA mutant were found to be significantly increased compared to the wild-type strain. In addition, enumeration of bacteria from target organs (spleen and liver) showed that the number of wild-type bacteria recovered from these organs was higher than SeqA-deficient cells during the infection. Also, competitive index demonstrated that seqA mutant was significantly out competed by the wild-type strain in both intraperitoneal and oral infections. In addition, our data showed that both adhesion and invasion of Salmonella typhimurium seqA mutant are reduced. According to these results, we can suggest that Salmonella typhimurium seqA mutant is attenuated for virulence in mice.
Collapse
Affiliation(s)
- Abdelwaheb Chatti
- Département des Sciences de la Vie, 03/UR/0902, Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia.
| | | | | |
Collapse
|
19
|
Abstract
In all organisms, multi-subunit replicases are responsible for the accurate duplication of genetic material during cellular division. Initiator proteins control the onset of DNA replication and direct the assembly of replisomal components through a series of precisely timed protein-DNA and protein-protein interactions. Recent structural studies of the bacterial protein DnaA have helped to clarify the molecular mechanisms underlying initiator function, and suggest that key structural features of cellular initiators are universally conserved. Moreover, it appears that bacteria use a diverse range of regulatory strategies dedicated to tightly controlling replication initiation; in many cases, these mechanisms are intricately connected to the activities of DnaA at the origin of replication. This Review presents an overview of both the mechanism and regulation of bacterial DNA replication initiation, with emphasis on the features that are similar in eukaryotic and archaeal systems.
Collapse
Affiliation(s)
- Melissa L Mott
- Department of Molecular and Cell Biology, Quantitative Biology Institute, University of California, Berkeley, 237 Hildebrand Hall #3220, California 94720-3220, USA
| | | |
Collapse
|
20
|
Łyżeń R, Wȩgrzyn G, Wȩgrzyn A, Szalewska-Pałasz A. Stimulation of the lambda pR promoter by Escherichia coli SeqA protein requires downstream GATC sequences and involves late stages of transcription initiation. MICROBIOLOGY-SGM 2007; 152:2985-2992. [PMID: 17005979 DOI: 10.1099/mic.0.29110-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli SeqA protein is a major negative regulator of chromosomal DNA replication acting by sequestration, and thus inactivation, of newly formed oriC regions. However, other activities of this protein have been discovered recently, one of which is regulation of transcription. SeqA has been demonstrated to be a specific transcription factor acting at bacteriophage lambda promoters p(I), p(aQ) and p(R). While SeqA-mediated stimulation of p(I) and p(aQ) occurs by facilitating functions of another transcription activator protein, cII, a mechanism for stimulation of p(R) remains largely unknown. Here, it has been demonstrated that two GATC sequences, located 82 and 105 bp downstream of the p(R) transcription start site, are necessary for this stimulation both in vivo and in vitro. SeqA-mediated activation of p(R) was as effective on a linear DNA template as on a supercoiled one, indicating that alterations in DNA topology are not likely to facilitate the SeqA effect. In vitro transcription analysis demonstrated that the most important regulatory effect of SeqA in p(R) transcription occurs after open complex formation, namely during promoter clearance. SeqA did not influence the appearance and level of abortive transcripts or the pausing during transcription elongation. Interestingly, SeqA is one of few known prokaryotic transcription factors which bind downstream of the regulated promoter and still act as transcription activators.
Collapse
Affiliation(s)
- Robert Łyżeń
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Alicja Wȩgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdansk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kladki 24, 80-822 Gdansk, Poland
| | | |
Collapse
|
21
|
Abstract
Escherichia coli is a model system to study the mechanism of DNA replication and its regulation during the cell cycle. One regulatory pathway ensures that initiation of DNA replication from the chromosomal origin, oriC, is synchronous and occurs at the proper time in the bacterial cell cycle. A major player in this pathway is SeqA protein and involves its ability to bind preferentially to oriC when it is hemi-methylated. The second pathway modulates DnaA activity by stimulating the hydrolysis of ATP bound to DnaA protein. The regulatory inactivation of DnaA function involves an interaction with Hda protein and the beta dimer, which functions as a sliding clamp for the replicase, DNA polymerase III holoenzyme. The datA locus represents a third mechanism, which appears to influence the availability of DnaA protein in supporting rifampicin-resistant initiations.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
22
|
Nievera C, Torgue JJC, Grimwade JE, Leonard AC. SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC. Mol Cell 2006; 24:581-92. [PMID: 17114060 PMCID: PMC1939805 DOI: 10.1016/j.molcel.2006.09.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/02/2006] [Accepted: 09/25/2006] [Indexed: 11/23/2022]
Abstract
DnaA occupies only the three highest-affinity binding sites in E. coli oriC throughout most of the cell cycle. Immediately prior to initiation of chromosome replication, DnaA interacts with additional recognition sites, resulting in localized DNA-strand separation. These two DnaA-oriC complexes formed during the cell cycle are functionally and temporally analogous to yeast ORC and pre-RC. After initiation, SeqA binds to hemimethylated oriC, sequestering oriC while levels of active DnaA are reduced, preventing reinitiation. In this paper, we investigate how resetting of oriC to the ORC-like complex is coordinated with SeqA-mediated sequestration. We report that oriC resets to ORC during sequestration. This was possible because SeqA blocked DnaA binding to hemimethylated oriC only at low-affinity recognition sites associated with GATC but did not interfere with occupation of higher-affinity sites. Thus, during the sequestration period, SeqA repressed pre-RC assembly while ensuring resetting of E. coli ORC.
Collapse
Affiliation(s)
- Christian Nievera
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd. Melbourne, Florida 32901 USA
| | - Julien J-C. Torgue
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd. Melbourne, Florida 32901 USA
| | - Julia E. Grimwade
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd. Melbourne, Florida 32901 USA
| | - Alan C. Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd. Melbourne, Florida 32901 USA
| |
Collapse
|
23
|
Odsbu I, Klungsøyr HK, Fossum S, Skarstad K. Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells 2006; 10:1039-49. [PMID: 16236133 DOI: 10.1111/j.1365-2443.2005.00898.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli SeqA protein binds preferentially to hemimethylated DNA and is required for inactivation (sequestration) of newly formed origins. A mutant SeqA protein, SeqA4 (A25T), which is deficient in origin sequestration in vivo, was found here to have lost the ability to form multimers, but could bind as dimers with wild-type affinity to a pair of hemimethylated GATC sites. In vitro, binding of SeqA dimers to a plasmid first generates a topology change equivalent to a few positive supercoils, then the binding leads to a topology change in the "opposite" direction, resulting in a restraint of negative supercoils. Binding of SeqA4 mutant dimers produced the former effect, but not the latter, showing that a topology change equivalent to positive supercoiling is caused by the binding of single dimers, whereas restraint of negative supercoils requires multimerization via the N-terminus. In vivo, mutant SeqA4 protein was not capable of forming foci observed by immunofluorescence microscopy, showing that N-terminus-dependent multimerization is required for building SeqA foci. Overproduction of SeqA4 led to partially restored initiation synchrony, indicating that origin sequestration may not depend on efficient higher-order multimerization into foci, but do require a high local concentration of SeqA.
Collapse
Affiliation(s)
- Ingvild Odsbu
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
24
|
Camara JE, Breier AM, Brendler T, Austin S, Cozzarelli NR, Crooke E. Hda inactivation of DnaA is the predominant mechanism preventing hyperinitiation of Escherichia coli DNA replication. EMBO Rep 2006; 6:736-41. [PMID: 16041320 PMCID: PMC1369143 DOI: 10.1038/sj.embor.7400467] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/30/2005] [Accepted: 06/02/2005] [Indexed: 11/09/2022] Open
Abstract
Initiation of DNA replication from the Escherichia coli chromosomal origin is highly regulated, assuring that replication occurs precisely once per cell cycle. Three mechanisms for regulation of replication initiation have been proposed: titration of free DnaA initiator protein by the datA locus, sequestration of newly replicated origins by SeqA protein and regulatory inactivation of DnaA (RIDA), in which active ATP-DnaA is converted to the inactive ADP-bound form. DNA microarray analyses showed that the level of initiation in rapidly growing cells that lack datA was indistinguishable from that in wild-type cells, and that the absence of SeqA protein caused only a modest increase in initiation, in agreement with flow-cytometry data. In contrast, cells lacking Hda overinitiated replication twofold, implicating RIDA as the predominant mechanism preventing extra initiation events in a cell cycle.
Collapse
Affiliation(s)
- Johanna E Camara
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, District of Columbia 20007, USA
| | - Adam M Breier
- Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, California 94720, USA
| | - Therese Brendler
- NCI-DBS, Frederick Cancer Research and Development Center, Box B, Building 539/223, Frederick, Maryland 21702, USA
| | - Stuart Austin
- NCI-DBS, Frederick Cancer Research and Development Center, Box B, Building 539/223, Frederick, Maryland 21702, USA
| | - Nicholas R Cozzarelli
- Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, California 94720, USA
| | - Elliott Crooke
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, District of Columbia 20007, USA
- Tel: +1 202 687 1644; Fax: +1 202 687 7186; E-mail:
| |
Collapse
|
25
|
Kim MS, Bae SH, Yun SH, Lee HJ, Ji SC, Lee JH, Srivastava P, Lee SH, Chae H, Lee Y, Choi BS, Chattoraj DK, Lim HM. Cnu, a novel oriC-binding protein of Escherichia coli. J Bacteriol 2005; 187:6998-7008. [PMID: 16199570 PMCID: PMC1251610 DOI: 10.1128/jb.187.20.6998-7008.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have found, using a newly developed genetic method, a protein (named Cnu, for oriC-binding nucleoid-associated) that binds to a specific 26-base-pair sequence (named cnb) in the origin of replication of Escherichia coli, oriC. Cnu is composed of 71 amino acids (8.4 kDa) and shows extensive amino acid identity to a group of proteins belonging to the Hha/YmoA family. Cnu was previously discovered as a protein that, like Hha, complexes with H-NS in vitro. Our in vivo and in vitro assays confirm the results and further suggest that the complex formation with H-NS is involved in Cnu/Hha binding to cnb. Unlike the hns mutants, elimination of either the cnu or hha gene did not disturb the growth rate, origin content, and synchrony of DNA replication initiation of the mutants compared to the wild-type cells. However, the cnu hha double mutant was moderately reduced in origin content. The Cnu/Hha complex with H-NS thus could play a role in optimal activity of oriC.
Collapse
Affiliation(s)
- Myung Suk Kim
- Department of Biology, School of Biological Sciences and Biotechnology, Chungnam National University, Taejon, 305-764 Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yamazoe M, Adachi S, Kanaya S, Ohsumi K, Hiraga S. Sequential binding of SeqA protein to nascent DNA segments at replication forks in synchronized cultures of Escherichia coli. Mol Microbiol 2005; 55:289-98. [PMID: 15612935 DOI: 10.1111/j.1365-2958.2004.04389.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To demonstrate that sequestration A (SeqA) protein binds preferentially to hemimethylated GATC sequences at replication forks and forms clusters in Escherichia coli growing cells, we analysed, by the chromatin immunoprecipitation (ChIP) assay using anti-SeqA antibody, a synchronized culture of a temperature-sensitive dnaC mutant strain in which only one round of chromosomal DNA replication was synchronously initiated. After synchronized initiation of chromosome replication, the replication origin oriC was first detected by the ChIP assay, and other six chromosomal regions having multiple GATC sequences were sequentially detected according to bidirectional replication of the chromosome. In contrast, DNA regions lacking the GATC sequence were not detected by the ChIP assay. These results indicate that SeqA binds hemimethylated nascent DNA segments according to the proceeding of replication forks in the chromosome, and SeqA releases from the DNA segments when fully methylated. Immunofluorescence microscopy reveals that a single SeqA focus containing paired replication apparatuses appears at the middle of the cell immediately after initiation of chromosome replication and the focus is subsequently separated into two foci that migrate to 1/4 and 3/4 cellular positions, when replication forks proceed bidirectionally an approximately one-fourth distance from the replication origin towards the terminus. This supports the translocating replication apparatuses model.
Collapse
Affiliation(s)
- Mitsuyoshi Yamazoe
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Konoe, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
27
|
Guarné A, Brendler T, Zhao Q, Ghirlando R, Austin S, Yang W. Crystal structure of a SeqA-N filament: implications for DNA replication and chromosome organization. EMBO J 2005; 24:1502-11. [PMID: 15933720 PMCID: PMC1142570 DOI: 10.1038/sj.emboj.7600634] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 03/01/2005] [Indexed: 11/09/2022] Open
Abstract
Escherichia coli SeqA binds clusters of transiently hemimethylated GATC sequences and sequesters the origin of replication, oriC, from methylation and premature reinitiation. Besides oriC, SeqA binds and organizes newly synthesized DNA at replication forks. Binding to multiple GATC sites is crucial for the formation of stable SeqA-DNA complexes. Here we report the crystal structure of the oligomerization domain of SeqA (SeqA-N). The structural unit of SeqA-N is a dimer, which oligomerizes to form a filament. Mutations that disrupt filament formation lead to asynchronous DNA replication, but the resulting SeqA dimer can still bind two GATC sites separated from 5 to 34 base pairs. Truncation of the linker between the oligomerization and DNA-binding domains restricts SeqA to bind two GATC sites separated by one or two full turns. We propose a model of a SeqA filament interacting with multiple GATC sites that accounts for both origin sequestration and chromosome organization.
Collapse
Affiliation(s)
- Alba Guarné
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Dasgupta S, Løbner-Olesen A. Host controlled plasmid replication: Escherichia coli minichromosomes. Plasmid 2005; 52:151-68. [PMID: 15518873 DOI: 10.1016/j.plasmid.2004.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 08/06/2004] [Indexed: 11/26/2022]
Abstract
Escherichia coli minichromosomes are plasmids replicating exclusively from a cloned copy of oriC, the chromosomal origin of replication. They are therefore subject to the same types of replication control as imposed on the chromosome. Unlike natural plasmid replicons, minichromosomes do not adjust their replication rate to the cellular copy number and they do not contain information for active partitioning at cell division. Analysis of mutant strains where minichromosomes cannot be established suggest that their mere existence is dependent on the factors that ensure timely once per cell cycle initiation of replication. These observations indicate that replication initiation in E. coli is normally controlled in such a way that all copies of oriC contained within the cell, chromosomal and minichromosomal, are initiated within a fairly short time interval of the cell cycle. Furthermore, both replication and segregation of the bacterial chromosome seem to be controlled by sequences outside the origin itself.
Collapse
Affiliation(s)
- Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24, Sweden
| | | |
Collapse
|
29
|
Molina F, Skarstad K. Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Mol Microbiol 2005; 52:1597-612. [PMID: 15186411 DOI: 10.1111/j.1365-2958.2004.04097.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication from the origin of Escherichia coli has traditionally been visualized as two replisomes moving away from each other, each containing a leading and a lagging strand polymerase. Fluorescence microscopy studies of tagged polymerases or forks have, however, indicated that the polymerases may be confined to a single location (or a few locations in cells with overlapping replication cycles). Here, we have analysed the exact replication patterns of cells growing with four different growth and replication rates, and compared these with the distributions of SeqA foci. The SeqA foci represent replication forks because the SeqA protein binds to the newly formed hemimethylated DNA immediately following the forks. The results show that pairs of forks originating from the same origin stay coupled for most of the cell cycle and thus support the replication factory model. They also suggest that the factories consisting of four polymerases are, at the time immediately after initiation, organized into higher order structures consisting of eight or 12 polymerases. The organization into replication factories was lost when replication forks experienced a limitation in the supply of nucleotides or when the thymidylate synthetase gene was mutated. These results support the idea that the nucleotide synthesis apparatus co-localizes with the replisomes forming a 'hyperstructure' and further suggest that the integrity of the replication factories and hyperstructures is dependent on nucleotide metabolism.
Collapse
Affiliation(s)
- Felipe Molina
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | |
Collapse
|
30
|
Bravo A, Serrano-Heras G, Salas M. Compartmentalization of prokaryotic DNA replication. FEMS Microbiol Rev 2005; 29:25-47. [PMID: 15652974 DOI: 10.1016/j.femsre.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022] Open
Abstract
It becomes now apparent that prokaryotic DNA replication takes place at specific intracellular locations. Early studies indicated that chromosomal DNA replication, as well as plasmid and viral DNA replication, occurs in close association with the bacterial membrane. Moreover, over the last several years, it has been shown that some replication proteins and specific DNA sequences are localized to particular subcellular regions in bacteria, supporting the existence of replication compartments. Although the mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown, the docking of replication factors to large organizing structures may be important for the assembly of active replication complexes. In this article, we review the current state of this subject in two bacterial species, Escherichia coli and Bacillus subtilis, focusing our attention in both chromosomal and extrachromosomal DNA replication. A comparison with eukaryotic systems is also presented.
Collapse
Affiliation(s)
- Alicia Bravo
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
31
|
Klungsøyr HK, Skarstad K. Positive supercoiling is generated in the presence of Escherichia coli SeqA protein. Mol Microbiol 2004; 54:123-31. [PMID: 15458410 DOI: 10.1111/j.1365-2958.2004.04239.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Escherichia coli, the SeqA protein is known as a negative regulator of chromosome replication. This protein is also suggested to have a role in chromosome organization. SeqA preferentially binds to hemi-methylated DNA and is by immunofluorescence microscopy seen as foci situated at the replication factories. Loss of SeqA leads to increased negative supercoiling of the DNA. We show that purified SeqA protein bound to fully methylated, covalently closed or nicked circular DNA generates positive supercoils in vitro in the presence of topoisomerase I or ligase respectively. This means that binding of SeqA changes either the twist or the writhe of the DNA. The ability to affect the topology of DNA suggests that SeqA may take part in the organization of the chromosome in vivo. The topology change performed by SeqA occurred also on unmethylated plasmids. It is, however, reasonable to suppose that in vivo the major part of such activity is performed on hemi-methylated DNA at the replication factories and presumably forms the basis for the characteristic SeqA foci observed by fluorescence microscopy.
Collapse
|
32
|
Ishida T, Akimitsu N, Kashioka T, Hatano M, Kubota T, Ogata Y, Sekimizu K, Katayama T. DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J Biol Chem 2004; 279:45546-55. [PMID: 15326179 DOI: 10.1074/jbc.m402762200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DnaA protein is the initiator of Escherichia coli chromosomal replication. In this study, we identify a novel DnaA-associating protein, DiaA, that is required for the timely initiation of replication during the cell cycle. DiaA promotes the growth of specific temperature-sensitive dnaA mutants and ensures stable minichromosome maintenance, whereas DiaA does not decrease the cellular DnaA content. A diaA::Tn5 mutation suppresses the cold-sensitive growth of an overinitiation type dnaA mutant independently of SeqA, a negative modulator of initiation. Flow cytometry analyses revealed that the timing of replication initiation is disrupted in the diaA mutant cells as well as wild-type cells with pBR322 expressing the diaA gene. Gel filtration and chemical cross-linking experiments showed that purified DiaA forms a stable homodimer. Immunoblotting analysis indicated that a single cell contains about 280 DiaA dimers. DiaA stimulates minichromosome replication in an in vitro system especially when the level of DnaA included is limited. Moreover, specific and direct binding between DnaA and DiaA was observed, which requires a DnaA N-terminal region. DiaA binds to both ATP- and ADP-bound forms of DnaA with a similar affinity. Thus, we conclude that DiaA is a novel DnaA-associating factor that is crucial to ensure the timely initiation of chromosomal replication.
Collapse
Affiliation(s)
- Takuma Ishida
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bach T, Skarstad K. Re-replication from non-sequesterable origins generates three-nucleoid cells which divide asymmetrically. Mol Microbiol 2004; 51:1589-600. [PMID: 15009887 DOI: 10.1111/j.1365-2958.2003.03943.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In rapidly growing Escherichia coli cells replication cycles overlap and initiation occurs at multiple replication origins (oriCs). All origins within a cell are initiated essentially in synchrony and only once per cell cycle. Immediate re-initiation of new origins is avoided by sequestration, a mechanism dependent on the SeqA protein and Dam methylation of GATC sites in oriC. Here, GATC sites in oriC were changed to GTTC. This reduced the sequestration to essentially the level found in SeqA-less cells. The mutant origins underwent re-initiation, showing that the GATC sites in oriC are required for sequestration. Each re-initiation eventually gave rise to a cell containing an extra nucleoid. The three-nucleoid cells displayed one asymmetrically placed FtsZ-ring and divided into a two-nucleoid cell and a one-nucleoid cell. The three nucleoid-cells thus divided into three daughters by two consecutive divisions. The results show that extra rounds of replication cause extra daughter cells to be formed prematurely. The fairly normal mutant growth rate and size distribution show, however, that premature rounds of replication, chromosome segregation, and cell division are flexibly accommodated by the existing cell cycle controls.
Collapse
Affiliation(s)
- Trond Bach
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
34
|
Løbner-Olesen A, Skarstad K. Titration of the Escherichia coli DnaA protein to excess datA sites causes destabilization of replication forks, delayed replication initiation and delayed cell division. Mol Microbiol 2003; 50:349-62. [PMID: 14507385 DOI: 10.1046/j.1365-2958.2003.03695.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the level of the initiator protein DnaA is limiting for initiation of replication at oriC. A high-affinity binding site for DnaA, datA, plays an important role. Here, the effect of extra datA sites was studied. A moderate increase in datA dosage ( approximately fourfold) delayed initiation of replication and cell division, but increased the rate of replication fork movement about twofold. At a further increase in the datA gene dosage, the SOS response was induced, and incomplete rounds of chromosome replication were detected. Overexpression of DnaA protein suppressed the SOS response and restored normal replication timing and rate of fork movement. In the presence of extra datA sites, cells showed a dependency on PriA and RecA proteins, indicating instability of the replication fork. The results suggest that wild-type replication fork progression normally includes controlled pausing, and that this is a prerequisite for normal replication fork function.
Collapse
|
35
|
Kang S, Han JS, Park JH, Skarstad K, Hwang DS. SeqA protein stimulates the relaxing and decatenating activities of topoisomerase IV. J Biol Chem 2003; 278:48779-85. [PMID: 14512422 DOI: 10.1074/jbc.m308843200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SeqA protein, which prevents overinitiation of chromosome replication, has been suggested to also participate in the segregation of chromosomes in Escherichia coli. Using a bacterial two-hybrid system, we found that SeqA interacts with the ParC subunit of topoisomerase IV (topo IV), a type II topoisomerase involved in decatenation of daughter chromosomes and relief of topological constraints generated by replication and transcription. We demonstrated that purified SeqA protein stimulates the activities of topo IV, both in relaxing supercoiled plasmid DNA and converting catenanes to monomers. The same moderate levels of SeqA protein did not affect the activities of DNA gyrase or topoisomerase I. At higher levels of SeqA, topo IV favored the formation of catenanes, caused by intermolecular strand exchange among plasmid DNA aggregates formed by SeqA. Excess SeqA inhibited the activity of all topoisomerases. We also found that stimulation of topo IV was dependent upon the affinity of SeqA for DNA. Our results suggest that this stimulation is mediated by the specific interaction of topo IV with SeqA. Some of the known phenotypes of mutant cells lacking SeqA, such as deficient chromosome segregation and increased negative superhelicity, support that the SeqA protein is required for topo IV-mediated relaxation and decatenation of chromosomes and plasmids, during and after their replication.
Collapse
Affiliation(s)
- Sukhyun Kang
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
36
|
Han JS, Kang S, Lee H, Kim HK, Hwang DS. Sequential binding of SeqA to paired hemi-methylated GATC sequences mediates formation of higher order complexes. J Biol Chem 2003; 278:34983-9. [PMID: 12824161 DOI: 10.1074/jbc.m304923200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preferential binding of the SeqA protein to hemi-methylated GATC sequences functions as a negative regulator for Escherichia coli initiation of chromosomal replication at oriC and is implicated in segregating replicated chromosomes for cell division. We demonstrate that sequential binding of one SeqA tetramer to a set of two hemi-methylated sites mediates formation of higher-order complexes. The absence of cross-binding to separate DNAs suggests that two monomers of a SeqA tetramer bind to two hemi-methylated sites on DNA. The interaction among SeqA proteins bound to at least six adjacent hemi-methylated sites induces aggregation of free proteins to bound proteins. Aggregation might be indicative of SeqA foci, which appear to track replication forks in vivo. Studies of the properties of SeqA binding will contribute to our understanding of the function of SeqA.
Collapse
Affiliation(s)
- Joo Seok Han
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
37
|
Su'etsugu M, Emoto A, Fujimitsu K, Keyamura K, Katayama T. Transcriptional control for initiation of chromosomal replication in Escherichia coli: fluctuation of the level of origin transcription ensures timely initiation. Genes Cells 2003; 8:731-45. [PMID: 12940821 DOI: 10.1046/j.1365-2443.2003.00671.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND During the cell cycle, the initiation of chromosomal replication is strictly controlled. In Escherichia coli, the initiator DnaA and the replication origin oriC are major targets for this regulation. Here, we assessed the role of transcription of the mioC gene, which reads through the adjacent oriC region. This mioC-oriC transcription is regulated in coordination with the replication cycle so that it is activated after initiation and repressed before initiation. RESULTS We isolated a strain bearing a mioC promoter mutation that causes constitutive mioC-oriC transcription from the chromosome. A quantitative S1 nuclease assay indicated that in this mutant, the level of transcription does not fluctuate. Introduction of this mutation suppressed the growth defect of an overinitiation-type dnaAcos mutant, and severely inhibited the growth of initiation-defective dnaA mutants at semipermissive temperatures in a dnaA allele-specific manner. These results suggest that mioC-oriC transcription inhibits initiation at oriC. Indeed, flow cytometry analysis and quantification of DNA replication in synchronized cultures revealed that the mioC promoter mutation alters the control of the initiation of chromosomal replication, for instance by delaying replication within the cell cycle. CONCLUSIONS These results suggest that the transcriptional regulation of the mioC gene is required for cell cycle-coordinated initiation of chromosomal replication.
Collapse
Affiliation(s)
- Masayuki Su'etsugu
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
38
|
Taylor VL, Oyston PCF, Titball RW. DNA adenine methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 529:13-7. [PMID: 12756720 DOI: 10.1007/0-306-48416-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Słomińska M, Konopa G, Barańska S, Wegrzyn G, Wegrzyn A. Interplay between DnaA and SeqA proteins during regulation of bacteriophage lambda pR promoter activity. J Mol Biol 2003; 329:59-68. [PMID: 12742018 DOI: 10.1016/s0022-2836(03)00378-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DnaA and SeqA proteins are main regulators (positive and negative, respectively) of the chromosome replication in Escherichia coli. Nevertheless, both these replication regulators were found recently to be also transcription factors. Interestingly, both DnaA and SeqA control activity of the bacteriophage lambdap(R) promoter by binding downstream of the transcription start site, which is unusual among prokaryotic systems. Here we asked what are functional relationships between these two transcription regulators at one promoter region. Both in vivo and in vitro studies revealed that DnaA and SeqA can activate the p(R) promoter independently and separately rather than in co-operation, however, increased concentrations of one of these proteins negatively influenced the transcription stimulation mediated by the second regulator. This may suggest a competition between DnaA and SeqA for binding to the p(R) regulatory region. The physiological significance of this DnaA and SeqA-mediated regulation of p(R) is demonstrated by studies on lambda plasmid DNA replication in vivo.
Collapse
Affiliation(s)
- Monika Słomińska
- Department of Molecular Biology, University of Gdańsk, Klz.shtsls;adki 24, 80-822, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
40
|
Slominska M, Wahl A, Wegrzyn G, Skarstad K. Degradation of mutant initiator protein DnaA204 by proteases ClpP, ClpQ and Lon is prevented when DNA is SeqA-free. Biochem J 2003; 370:867-71. [PMID: 12479794 PMCID: PMC1223233 DOI: 10.1042/bj20021161] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Revised: 12/05/2002] [Accepted: 12/13/2002] [Indexed: 11/17/2022]
Abstract
A mutant form of the Escherichia coli replication initiator protein, DnaA204, is unstable. At low growth rates, the dnaA204 mutant cells experience a limitation of initiator protein and grow with reduced initiation frequency and DNA concentration. The mutant DnaA protein is stabilized by the lack of SeqA protein. This stabilization was also observed in a dam mutant where the chromosome remains unmethylated. Since unmethylated DNA is not bound by SeqA, this indicates that DnaA204 is not stabilized by the lack of SeqA protein by itself, but rather by lack of SeqA complexed with DNA. Thus the destabilization of DnaA204 may be due either to interaction with SeqA-DNA complexes or changes in nucleoid organization and superhelicity caused by SeqA. The DnaA204 protein was processed through several chaperone/protease pathways. The protein was stabilized by the presence of the chaperones ClpA and ClpX and degraded by their cognate protease ClpP. The dnaA204 mutant was not viable in the absence of ClpY, indicating that this chaperone is essential for DnaA204 stability or function. Its cognate protease ClpQ, as well as Lon protease, degraded DnaA204 to the same degree as ClpP. The chaperones GroES, GroEL and DnaK contributed to stabilization of DnaA204 protein.
Collapse
Affiliation(s)
- Monika Slominska
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
41
|
Słomińska M, Konopa G, Ostrowska J, Kedzierska B, Wegrzyn G, Wegrzyn A. SeqA-mediated stimulation of a promoter activity by facilitating functions of a transcription activator. Mol Microbiol 2003; 47:1669-79. [PMID: 12622820 DOI: 10.1046/j.1365-2958.2003.03392.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It was demonstrated recently that the SeqA protein, a main negative regulator of Escherichia coli chromosome replication initiation, is also a specific transcription factor. SeqA specifically activates the bacteriophage lambda pR promoter while revealing no significant effect on the activity of another lambda promoter, pL. Here, we demonstrate that lysogenization by bacteriophage lambda is impaired in E. coli seqA mutants. Genetic analysis demonstrated that CII-mediated activation of the phage pI and paQ promoters, which are required for efficient lysogenization, is less efficient in the absence of seqA function. This was confirmed in in vitro transcription assays. Interestingly, SeqA stimulated CII-dependent transcription from pI and paQ when it was added to the reaction mixture before CII, although having little effect if added after a preincubation of CII with the DNA template. This SeqA-mediated stimulation was absolutely dependent on DNA methylation, as no effects of this protein were observed when using unmethylated DNA templates. Also, no effects of SeqA on transcription from pI and paQ were observed in the absence of CII. Binding of SeqA to templates containing the tested promoters occurs at GATC sequences located downstream of promoters, as revealed by electron microscopic studies. In contrast to pI and paQ, the activity of the third CII-dependent promoter, pE, devoid of neighbouring downstream GATC sequences, was not affected by SeqA both in vivo and in vitro. We conclude that SeqA stimulates transcription from pI and paQ promoters in co-operation with CII by facilitating functions of this transcription activator, most probably by allowing more efficient binding of CII to the promoter region.
Collapse
Affiliation(s)
- Monika Słomińska
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Fossum S, Søreide S, Skarstad K. Lack of SeqA focus formation, specific DNA binding and proper protein multimerization in the Escherichia coli sequestration mutant seqA2. Mol Microbiol 2003; 47:619-32. [PMID: 12535065 DOI: 10.1046/j.1365-2958.2003.t01-1-03329.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli wild-type cells newly formed origins cannot be reinitiated. The prevention of reinitiation is termed sequestration and is dependent on the hemimethylated state of newly replicated DNA. Several mutants discovered in a screen for the inability to sequester hemimethylated origins have been mapped to the seqA gene. Here, one of these mutants, seqA2, harbouring a single amino acid change in the C-terminal end of the SeqA protein, was found to also be unable to form foci in vivo. The SeqA foci seen in the wild-type cells are believed to arise from multimerization of SeqA on hemimethylated DNA at the replication fork, presumably representing organization of newly formed DNA by SeqA. The result suggests that the process of origin sequestration is closely tied to the process of focus maintenance at the replication fork. In vitro, purified SeqA2 protein was found incapable of forming highly ordered multimers that bind hemimethylated oriC. The mutant protein was also incapable of restraining negative supercoils. Both in vivo and in vitro results support the idea that origin sequestration is an integral part of organization of newly formed DNA performed by SeqA.
Collapse
Affiliation(s)
- Solveig Fossum
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | | | |
Collapse
|
43
|
Fujikawa N, Kurumizaka H, Yamazoe M, Hiraga S, Yokoyama S. Identification of functional domains of the Escherichia coli SeqA protein. Biochem Biophys Res Commun 2003; 300:699-705. [PMID: 12507506 DOI: 10.1016/s0006-291x(02)02891-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli SeqA protein, a negative regulator of chromosomal DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated G-mA-T-C sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the functional domains responsible for the DNA-binding and self-association activities, we performed a deletion analysis of the SeqA protein and found that the N-terminal (amino acid residues 1-59) and the C-terminal (amino acid residues 71-181) regions form structurally distinct domains. The N-terminal domain, which is not involved in DNA binding, has the self-association activity. In contrast, the C-terminal domain, which lacks the self-association activity, specifically binds to the hemimethylated G-mA-T-C sequence. Therefore, two essential SeqA activities, self-association and DNA-binding, are independently performed by the structurally distinct N-terminal and C-terminal domains, respectively.
Collapse
Affiliation(s)
- Norie Fujikawa
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
44
|
Bach T, Krekling MA, Skarstad K. Excess SeqA prolongs sequestration of oriC and delays nucleoid segregation and cell division. EMBO J 2003; 22:315-23. [PMID: 12514137 PMCID: PMC140095 DOI: 10.1093/emboj/cdg020] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following initiation of chromosomal replication in Escherichia coli, newly initiated origins (oriCs) are prevented from further initiations by a mechanism termed sequestration. During the sequestration period (which lasts about one-third of a cell cycle), the origins remain hemimethylated. The SeqA protein binds hemimethylated oriC in vitro. In vivo, the absence of SeqA causes overinitiation and strongly reduces the duration of hemimethylation. The pattern of immunostained SeqA complexes in vivo suggests that SeqA has a role in organizing hemimethylated DNA at the replication forks. We have examined the effects of overexpressing SeqA under different cellular conditions. Our data demonstrate that excess SeqA significantly increases the time oriC is hemimethylated following initiation of replication. In some cells, sequestration continued for more than one generation and resulted in inhibition of primary initiation. SeqA overproduction also interfered with the segregation of sister nucleoids and caused a delay in cell division. These results suggest that SeqA's function in regulation of replication initiation is linked to chromosome segregation and possibly cell division.
Collapse
Affiliation(s)
| | - Martin A. Krekling
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway
Present address: Medtronic Wingmed AS, Fjordveien 1, 1342 Oslo, Norway Corresponding author e-mail:
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway
Present address: Medtronic Wingmed AS, Fjordveien 1, 1342 Oslo, Norway Corresponding author e-mail:
| |
Collapse
|
45
|
Messer W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 2002; 26:355-74. [PMID: 12413665 DOI: 10.1111/j.1574-6976.2002.tb00620.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The initiation of replication is the central event in the bacterial cell cycle. Cells control the rate of DNA synthesis by modulating the frequency with which new chains are initiated, like all macromolecular synthesis. The end of the replication cycle provides a checkpoint that must be executed for cell division to occur. This review summarizes recent insight into the biochemistry, genetics and control of the initiation of replication in bacteria, and the central role of the initiator protein DnaA.
Collapse
Affiliation(s)
- Walter Messer
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin-Dahlem, Germany.
| |
Collapse
|
46
|
Marc F, Sandman K, Lurz R, Reeve JN. Archaeal histone tetramerization determines DNA affinity and the direction of DNA supercoiling. J Biol Chem 2002; 277:30879-86. [PMID: 12058041 DOI: 10.1074/jbc.m203674200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA binding and the topology of DNA have been determined in complexes formed by >20 archaeal histone variants and archaeal histone dimer fusions with residue replacements at sites responsible for histone fold dimer:dimer interactions. Almost all of these variants have decreased affinity for DNA. They have also lost the flexibility of the wild type archaeal histones to wrap DNA into a negative or positive supercoil depending on the salt environment; they wrap DNA into positive supercoils under all salt conditions. The histone folds of the archaeal histones, HMfA and HMfB, from Methanothermus fervidus are almost identical, but (HMfA)(2) and (HMfB)(2) homodimers assemble into tetramers with sequence-dependent differences in DNA affinity. By construction and mutagenesis of HMfA+HMfB and HMfB+HMfA histone dimer fusions, the structure formed at the histone dimer:dimer interface within an archaeal histone tetramer has been shown to determine this difference in DNA affinity. Therefore, by regulating the assembly of different archaeal histone dimers into tetramers that have different sequence affinities, the assembly of archaeal histone-DNA complexes could be localized and used to regulate gene expression.
Collapse
Affiliation(s)
- Frederic Marc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The classical Meselson-Stahl density shift experiment was used to determine the length of the eclipse period in Escherichia coli, the minimum time period during which no new initiation is allowed from a newly replicated origin of chromosome replication, oriC. Populations of bacteria growing exponentially in heavy ((15)NH(4)+ and (13)C(6)-glucose) medium were shifted to light ((14)NH(4)+ and (12)C(6)-glucose) medium. The HH-, HL- and LL-DNA were separated by CsCl density gradient centrifugation, and their relative amounts were determined using radioactive gene-specific probes. The eclipse period, estimated from the kinetics of conversion of HH-DNA to HL- and LL-DNA, turned out to be 0.60 generation times for the wild-type strain. This was invariable for widely varying doubling times (35, 68 and 112 min) and was independent of the chromosome locus at which the eclipse period was measured. For strains with seqA, dam and damseqA mutants, the length of the eclipse period was 0.16, 0.40 and 0.32 generation times respectively. Thus, initiations from oriC were repressed for a considerable proportion of the generation time even when the sequestration function seemed to be severely compromised. The causal relationship between the length of the eclipse period and the synchrony of initiations from oriC is discussed.
Collapse
Affiliation(s)
- Jan Olsson
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
48
|
Park K, Han E, Paulsson J, Chattoraj DK. Origin pairing ('handcuffing') as a mode of negative control of P1 plasmid copy number. EMBO J 2001; 20:7323-32. [PMID: 11743008 PMCID: PMC125786 DOI: 10.1093/emboj/20.24.7323] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In one family of bacterial plasmids, multiple initiator binding sites, called iterons, are used for initiation of plasmid replication as well as for the control of plasmid copy number. Iterons can also pair in vitro via the bound initiators. This pairing, called handcuffing, has been suggested to cause steric hindrance to initiation and thereby control the copy number. To test this hypothesis, we have compared copy numbers of isogenic miniP1 plasmid monomer and dimer. The dimer copy number was only one-quarter that of the monomer, suggesting that the higher local concentration of origins in the dimer facilitated their pairing. Physical evidence consistent with iteron-mediated pairing of origins preferentially in the dimer was obtained in vivo. Thus, origin handcuffing can be a mechanism to control P1 plasmid replication.
Collapse
Affiliation(s)
- Kyusung Park
- Laboratory of Biochemistry, NCI, NIH, Bethesda, MD 20892-4255 and
Princeton University, Department of Molecular Biology, Princeton, NJ 08544, USA Present address: Invitrogen, 1610 Faraday Avenue, Carlsbad, CA 92008, USA Corresponding author e-mail:
| | | | - Johan Paulsson
- Laboratory of Biochemistry, NCI, NIH, Bethesda, MD 20892-4255 and
Princeton University, Department of Molecular Biology, Princeton, NJ 08544, USA Present address: Invitrogen, 1610 Faraday Avenue, Carlsbad, CA 92008, USA Corresponding author e-mail:
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry, NCI, NIH, Bethesda, MD 20892-4255 and
Princeton University, Department of Molecular Biology, Princeton, NJ 08544, USA Present address: Invitrogen, 1610 Faraday Avenue, Carlsbad, CA 92008, USA Corresponding author e-mail:
| |
Collapse
|
49
|
Abstract
We constructed a hybrid replication origin that consists of the main part of oriC from Escherichia coli, the DnaA box region and the AT-rich region from Bacillus subtilis oriC. The AT-rich region could be unwound by E. coli DnaA protein, and the DnaB helicase was loaded into the single-stranded bubble. The results show that species specificity, i.e. which DnaA protein can do the unwinding, resides within the DnaA box region of oriC.
Collapse
Affiliation(s)
- H Seitz
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | |
Collapse
|
50
|
Lee H, Kang S, Bae SH, Choi BS, Hwang DS. SeqA protein aggregation is necessary for SeqA function. J Biol Chem 2001; 276:34600-6. [PMID: 11457824 DOI: 10.1074/jbc.m101339200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of SeqA protein to hemimethylated GATC sequences is important in the negative modulation of chromosomal initiation at oriC, and in the formation of SeqA foci necessary for Escherichia coli chromosome segregation. Using gel-filtration chromotography and glycerol gradient sedimentation, we demonstrate that SeqA exists as a homotetramer. SeqA tetramers are able to aggregate or multimerize in a reversible, concentration-dependent manner. Using a bacterial two-hybrid system, we demonstrate that the N-terminal region of SeqA, especifically the 9th amino acid residue, glutamic acid, is required for functional SeqA-SeqA interaction. Although the SeqA(E9K) mutant protein, containing lysine rather than glutamic acid at the 9th amino acid residue, exists as a tetramer, the mutant protein binds to hemimethylated DNA with altered binding patterns as compared with wild-type SeqA. Aggregates of SeqA(E9K) are defective in hemimethylated DNA binding. Here we demonstrate that proper interaction between SeqA tetramers is required for both hemimethylated DNA binding and formation of active aggregates. SeqA tetramers and aggregates might be involved in the formation of SeqA foci required for the segregation of chromosomal DNA as well as the regulation of chromosomal initiation.
Collapse
Affiliation(s)
- H Lee
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|