1
|
Refaya AK, Vetrivel U, Palaniyandi K. Genomic Characterization of IS 6110 Insertions in Mycobacterium orygis. Evol Bioinform Online 2024; 20:11769343241240558. [PMID: 38586439 PMCID: PMC10996354 DOI: 10.1177/11769343241240558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Mycobacterium orygis, a subspecies of the Mycobacterium tuberculosis complex (MTBC), has emerged as a significant concern in the context of One Health, with implications for zoonosis or zooanthroponosis or both. MTBC strains are characterized by the unique insertion element IS6110, which is widely used as a diagnostic marker. IS6110 transposition drives genetic modifications in MTBC, imparting genome plasticity and profound biological consequences. While IS6110 insertions are customarily found in the MTBC genomes, the evolutionary trajectory of strains seems to correlate with the number of IS6110 copies, indicating enhanced adaptability with increasing copy numbers. Here, we present a comprehensive analysis of IS6110 insertions in the M. orygis genome, utilizing ISMapper, and elucidate their genetic consequences in promoting successful host adaptation. Our study encompasses a panel of 67 paired-end reads, comprising 11 isolates from our laboratory and 56 sequences downloaded from public databases. Among these sequences, 91% exhibited high-copy, 4.5% low-copy, and 4.5% lacked IS6110 insertions. We identified 255 insertion loci, including 141 intragenic and 114 intergenic insertions. Most of these loci were either unique or shared among a limited number of isolates, potentially influencing strain behavior. Furthermore, we conducted gene ontology and pathway analysis, using eggNOG-mapper 5.0, on the protein sequences disrupted by IS6110 insertions, revealing 63 genes involved in diverse functions of Gene Ontology and 45 genes participating in various KEGG pathways. Our findings offer novel insights into IS6110 insertions, their preferential insertion regions, and their impact on metabolic processes and pathways, providing valuable knowledge on the genetic changes underpinning IS6110 transposition in M. orygis.
Collapse
Affiliation(s)
- Ahmed Kabir Refaya
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Umashankar Vetrivel
- Department of Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| |
Collapse
|
2
|
Charles C, Conde C, Biet F, Boschiroli ML, Michelet L. IS6110 Copy Number in Multi-Host Mycobacterium bovis Strains Circulating in Bovine Tuberculosis Endemic French Regions. Front Microbiol 2022; 13:891902. [PMID: 35814675 PMCID: PMC9260277 DOI: 10.3389/fmicb.2022.891902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
IS6110 is an insertion sequence found in the Mycobacterium tuberculosis complex, to which Mycobacterium bovis belongs, which can play a role in genome plasticity and in bacterial evolution. In this study, the abundance and location of IS6110 on M. bovis genomic data of French animal field strains were studied. A first analysis was performed on a panel of 81 strains that reflect the national M. bovis population’s genetic diversity. The results show that more than one-third of them are IS6110 multicopy and that 10% have IS6110 in a high copy number (more than 6 copies). Multicopy strains are those circulating in the regions where prevalence was above the national average. Further study of 93 such strains, with an IS6110 copy number of 10-12, showed stability of IS6110 copy number and genome location over time and between host species. The correlation between M. bovis multicopy strains and high bovine tuberculosis (bTB) prevalence leads us to consider whether their epidemiological success could be partly due to genetic changes originated by IS6110 transposition.
Collapse
Affiliation(s)
- Ciriac Charles
- ANSES, Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, Paris, France
- INRAE, ISP, Université de Tours, Nouzilly, France
| | - Cyril Conde
- INRAE, ISP, Université de Tours, Nouzilly, France
| | - Franck Biet
- INRAE, ISP, Université de Tours, Nouzilly, France
| | - Maria Laura Boschiroli
- ANSES, Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, Paris, France
| | - Lorraine Michelet
- ANSES, Animal Health Laboratory, National Reference Laboratory for Tuberculosis, Paris-Est University, Paris, France
- *Correspondence: Lorraine Michelet,
| |
Collapse
|
3
|
Comín J, Madacki J, Rabanaque I, Zúñiga-Antón M, Ibarz D, Cebollada A, Viñuelas J, Torres L, Sahagún J, Klopp C, Gonzalo-Asensio J, Brosch R, Iglesias MJ, Samper S. The MtZ Strain: Molecular Characteristics and Outbreak Investigation of the Most Successful Mycobacterium tuberculosis Strain in Aragon Using Whole-Genome Sequencing. Front Cell Infect Microbiol 2022; 12:887134. [PMID: 35685752 PMCID: PMC9173592 DOI: 10.3389/fcimb.2022.887134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Since 2004, a tuberculosis surveillance protocol has been carried out in Aragon, thereby managing to detect all tuberculosis outbreaks that take place in the community. The largest outbreak was caused by a strain named Mycobacterium tuberculosis Zaragoza (MtZ), causing 242 cases as of 2020. The main objective of this work was to analyze this outbreak and the molecular characteristics of this successful strain that could be related to its greater transmission. To do this, we first applied whole-genome sequencing to 57 of the isolates. This revealed two principal transmission clusters and six subclusters arising from them. The MtZ strain belongs to L4.8 and had eight specific single nucleotide polymorphisms (SNPs) in genes considered to be virulence factors [ptpA, mc3D, mc3F, VapB41, pks15 (two SNPs), virS, and VapC50]. Second, a transcriptomic study was carried out to better understand the multiple IS6110 copies present in its genome. This allowed us to observe three effects of IS6110: the disruption of the gene in which the IS6110 is inserted (desA3), the overexpression of a gene (ppe38), and the absence of transcription of genes (cut1:Rv1765c) due to the recombination of two IS6110 copies. Finally, because of the disruption of ppe38 and ppe71 genes by an IS6110, a study of PE_PGRS secretion was carried out, showing that MtZ secretes these factors in higher amounts than the reference strain, thereby differing from the hypervirulent phenotype described for the Beijing strains. In conclusion, MtZ consists of several SNPs in genes related to virulence, pathogenesis, and survival, as well as other genomic polymorphisms, which may be implicated in its success among our population.
Collapse
Affiliation(s)
- Jessica Comín
- Grupo de Genética de Micobacterias, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Jan Madacki
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Université de Paris, CNRS UMR 3525, Paris, France
| | - Isabel Rabanaque
- Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - María Zúñiga-Antón
- Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Daniel Ibarz
- Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Alberto Cebollada
- Unidad de Biocomputación, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Jesús Viñuelas
- Hospital Universitario Miguel Servet, Zaragoza, Spain.,Grupo de Estudio de Infecciones por Micobacterias (GEIM), Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica, Madrid, Spain
| | | | - Juan Sahagún
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Université de Paris, CNRS UMR 3525, Paris, France
| | - María-José Iglesias
- Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain.,Grupo de Genética de Micobacterias, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Sofía Samper
- Grupo de Genética de Micobacterias, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.,Fundación Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
4
|
Comín J, Otal I, Samper S. In-depth Analysis of IS 6110 Genomic Variability in the Mycobacterium tuberculosis Complex. Front Microbiol 2022; 13:767912. [PMID: 35283840 PMCID: PMC8912993 DOI: 10.3389/fmicb.2022.767912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The insertion sequence (IS) 6110 is a repetitive mobile element specific for the Mycobacterium tuberculosis complex (MTBC) used for years to diagnose and genotype this pathogen. It contains the overlapping reading frames orfA and orfB that encode a transposase. Its genetic variability is difficult to study because multiple copies are present in the genome. IS6110 is randomly located, nevertheless some preferential locations have been reported, which could be related to the behaviour of the strains. The aim of this work was to determine the intra- and inter-strain genetic conservation of this element in the MTBC. For this purpose, we analysed 158 sequences of IS6110 copies from 55 strains. Eighty-four copies were from 17 strains for which we knew all the locations in their genome. In addition, we studied 74 IS6110 copies in 38 different MTBC strains in which the location was characteristic of different families including Haarlem, LAM, S, and L6 strains. We observed mutation in 13.3% of the copies studied and we found 10 IS6110 variants in 21 copies belonging to 16 strains. The high copy number strains showed 6.2% of their IS6110 copies mutated, in contrast with the 31.1% in the low-copy-number strains. The apparently more ancient copy localised in the DR region was that with more variant copies, probably because this was the most studied location. Notably, all Haarlem and X family strains studied have an IS6110 in Rv0403c, suggesting a common origin for both families. Nevertheless, we detected a variant specific for the X family that would have occurred in this location after the phylogenetic separation. This variant does not prevent transposition although it may occur at a lower frequency, as X strains remain with low copy number (LCN) of IS6110.
Collapse
Affiliation(s)
- Jessica Comín
- Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
| | - Isabel Otal
- Fundación IIS Aragón, Zaragoza, Spain
- Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Sofía Samper
- Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
5
|
Sao Emani C, Williams MJ, Van Helden PD, Taylor MJC, Carolis C, Wiid IJ, Baker B. Generation and characterization of thiol-deficient Mycobacterium tuberculosis mutants. Sci Data 2018; 5:180184. [PMID: 30251996 PMCID: PMC6154287 DOI: 10.1038/sdata.2018.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022] Open
Abstract
Mycothiol (MSH) and ergothioneine (ERG) are thiols able to compensate for each other to protect mycobacteria against oxidative stress. Gamma-glutamylcysteine (GGC), another thiol and an intermediate in ERG biosynthesis has detoxification abilities. Five enzymes are involved in ERG biosynthesis, namely EgtA, EgtB, EgtC, EgtD and EgtE. The role of these enzymes in the production of ERG had been unclear. On the other hand, the enzyme MshA is known to be essential for MSH biosynthesis. In this manuscript, we describe the raw data of the generation and characterization of Mycobacterium tuberculosis (M.tb) mutants harbouring a deletion of the gene coding for each of these enzymes, and the raw data of the phenotypic characterization of the obtained thiol-deficient M.tb mutants. High throughput screening (HTS) of off-patent drugs and natural compounds revealed few compounds that displayed a higher activity against the thiol-deficient mutants relative to the wild-type strain. The mode of action of these drugs was further investigated. Raw data displaying these results are described here.
Collapse
Affiliation(s)
- C Sao Emani
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa.,Barcelona Biomedical Research Park, Centre for Genomic Regulation, Biomolecular Screening & Protein Technologies Unit, 88 Dr.aiguider, 08003 Barcelona, Spain
| | - M J Williams
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa
| | - P D Van Helden
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa
| | - M J C Taylor
- Central Analytical Facilities, Mass Spectrometry Unit, Stellenbosch University, Stellenbosch 7600, Cape Town, South Africa
| | - C Carolis
- Barcelona Biomedical Research Park, Centre for Genomic Regulation, Biomolecular Screening & Protein Technologies Unit, 88 Dr.aiguider, 08003 Barcelona, Spain
| | - I J Wiid
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa
| | - B Baker
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 8000, Cape Town, South Africa
| |
Collapse
|
6
|
Heunis T, Dippenaar A, Warren RM, van Helden PD, van der Merwe RG, Gey van Pittius NC, Pain A, Sampson SL, Tabb DL. Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates. J Proteome Res 2017; 16:3841-3851. [PMID: 28820946 DOI: 10.1021/acs.jproteome.7b00483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of the utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study, we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach, we identified 59 peptides containing single amino acid variants, which covered ∼9% of all coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here, we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e., large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.
Collapse
Affiliation(s)
- Tiaan Heunis
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town 7505, South Africa
| | - Anzaan Dippenaar
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town 7505, South Africa
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town 7505, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town 7505, South Africa
| | - Ruben G van der Merwe
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town 7505, South Africa
| | - Nicolaas C Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town 7505, South Africa
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology , Thuwal 23955, Saudi Arabia
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town 7505, South Africa
| | - David L Tabb
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town 7505, South Africa
| |
Collapse
|
7
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|
8
|
Transposition mechanism, molecular characterization and evolution of IS6110, the specific evolutionary marker of Mycobacterium tuberculosis complex. Mol Biol Rep 2016; 44:25-34. [DOI: 10.1007/s11033-016-4084-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
|
9
|
Analysis of IS6110 insertion sites provide a glimpse into genome evolution of Mycobacterium tuberculosis. Sci Rep 2015. [PMID: 26215170 PMCID: PMC4517164 DOI: 10.1038/srep12567] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Insertion sequence (IS) 6110 is found at multiple sites in the Mycobacterium tuberculosis genome and displays a high degree of polymorphism with respect to copy number and insertion sites. Therefore, IS6110 is considered to be a useful molecular marker for diagnosis and strain typing of M. tuberculosis. Generally IS6110 elements are identified using experimental methods, useful for analysis of a limited number of isolates. Since short read genome sequences generated using next-generation sequencing (NGS) platforms are available for a large number of isolates, a computational pipeline for identification of IS6110 elements from these datasets was developed. This study shows results from analysis of NGS data of 1377 M. tuberculosis isolates. These isolates represent all seven major global lineages of M. tuberculosis. Lineage specific copy number patterns and preferential insertion regions were observed. Intra-lineage differences were further analyzed for identifying spoligotype specific variations. Copy number distribution and preferential locations of IS6110 in different lineages imply independent evolution of IS6110, governed mainly through ancestral insertion, fitness (gene truncation, promoter activity) and recombinational loss of some copies. A phylogenetic tree based on IS6110 insertion data of different isolates was constructed in order to understand genome level variations of different markers across different lineages.
Collapse
|
10
|
Viljoen AJ, Kirsten CJ, Baker B, van Helden PD, Wiid IJF. The role of glutamine oxoglutarate aminotransferase and glutamate dehydrogenase in nitrogen metabolism in Mycobacterium bovis BCG. PLoS One 2013; 8:e84452. [PMID: 24367660 PMCID: PMC3868603 DOI: 10.1371/journal.pone.0084452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/15/2013] [Indexed: 01/18/2023] Open
Abstract
Recent evidence suggests that the regulation of intracellular glutamate levels could play an important role in the ability of pathogenic slow-growing mycobacteria to grow in vivo. However, little is known about the in vitro requirement for the enzymes which catalyse glutamate production and degradation in the slow-growing mycobacteria, namely; glutamine oxoglutarate aminotransferase (GOGAT) and glutamate dehydrogenase (GDH), respectively. We report that allelic replacement of the Mycobacterium bovis BCG gltBD-operon encoding for the large (gltB) and small (gltD) subunits of GOGAT with a hygromycin resistance cassette resulted in glutamate auxotrophy and that deletion of the GDH encoding-gene (gdh) led to a marked growth deficiency in the presence of L-glutamate as a sole nitrogen source as well as reduction in growth when cultured in an excess of L-asparagine.
Collapse
Affiliation(s)
- Albertus J. Viljoen
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
- *
| | - Catriona J. Kirsten
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Bienyameen Baker
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Ian J. F. Wiid
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| |
Collapse
|
11
|
Alonso H, Samper S, Martín C, Otal I. Mapping IS6110 in high-copy number Mycobacterium tuberculosis strains shows specific insertion points in the Beijing genotype. BMC Genomics 2013; 14:422. [PMID: 23800083 PMCID: PMC3701491 DOI: 10.1186/1471-2164-14-422] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis Beijing strains are characterized by a large number of IS6110 copies, suggesting the potential implication of this element in the virulence and capacity for rapid dissemination characteristic of this family. This work studies the insetion points of IS6110 in high-copy clinical isolates specifically focusing on the Beijing genotype. RESULTS In the present work we mapped the insertion points of IS6110 in all the Beijing strains available in the literature and in the DNA sequence databases. We generated a representative primer collection of the IS6110 locations, which was used to analyse 61 high-copy clinical isolates. A total of 440 points of insertion were identified and analysis of their flanking regions determined the exact location, the direct repeats (DRs), the orientation and the distance to neighboring genes of each copy of IS6110. We identified specific points of insertion in Beijing strains that enabled us to obtain a dendrogram that groups the Beijing genotype. CONCLUSIONS This work presents a detailed analysis of locations of IS6110 in high-copy clinical isolates, showing points of insertion present with high frequency in the Beijing family and absent in other strains.
Collapse
Affiliation(s)
- Henar Alonso
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, C/ Domingo Miral sn, 50009, Zaragoza, Spain
| | | | | | | |
Collapse
|
12
|
Reyes A, Sandoval A, Cubillos-Ruiz A, Varley KE, Hernández-Neuta I, Samper S, Martín C, García MJ, Ritacco V, López L, Robledo J, Zambrano MM, Mitra RD, Del Portillo P. IS-seq: a novel high throughput survey of in vivo IS6110 transposition in multiple Mycobacterium tuberculosis genomes. BMC Genomics 2012; 13:249. [PMID: 22703188 PMCID: PMC3443423 DOI: 10.1186/1471-2164-13-249] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background The insertion element IS6110 is one of the main sources of genomic variability in Mycobacterium tuberculosis, the etiological agent of human tuberculosis. Although IS 6110 has been used extensively as an epidemiological marker, the identification of the precise chromosomal insertion sites has been limited by technical challenges. Here, we present IS-seq, a novel method that combines high-throughput sequencing using Illumina technology with efficient combinatorial sample multiplexing to simultaneously probe 519 clinical isolates, identifying almost all the flanking regions of the element in a single experiment. Results We identified a total of 6,976 IS6110 flanking regions on the different isolates. When validated using reference strains, the method had 100% specificity and 98% positive predictive value. The insertions mapped to both coding and non-coding regions, and in some cases interrupted genes thought to be essential for virulence or in vitro growth. Strains were classified into families using insertion sites, and high agreement with previous studies was observed. Conclusions This high-throughput IS-seq method, which can also be used to map insertions in other organisms, extends previous surveys of in vivo interrupted loci and provides a baseline for probing the consequences of disruptions in M. tuberculosis strains.
Collapse
Affiliation(s)
- Alejandro Reyes
- Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St, Louis, MO 63108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
McEvoy CRE, Cloete R, Müller B, Schürch AC, van Helden PD, Gagneux S, Warren RM, Gey van Pittius NC. Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints. PLoS One 2012; 7:e30593. [PMID: 22496726 PMCID: PMC3319526 DOI: 10.1371/journal.pone.0030593] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis complex (MTBC) genomes contain 2 large gene families termed pe and ppe. The function of pe/ppe proteins remains enigmatic but studies suggest that they are secreted or cell surface associated and are involved in bacterial virulence. Previous studies have also shown that some pe/ppe genes are polymorphic, a finding that suggests involvement in antigenic variation. Using comparative sequence analysis of 18 publicly available MTBC whole genome sequences, we have performed alignments of 33 pe (excluding pe_pgrs) and 66 ppe genes in order to detect the frequency and nature of genetic variation. This work has been supplemented by whole gene sequencing of 14 pe/ppe (including 5 pe_pgrs) genes in a cohort of 40 diverse and well defined clinical isolates covering all the main lineages of the M. tuberculosis phylogenetic tree. We show that nsSNP's in pe (excluding pgrs) and ppe genes are 3.0 and 3.3 times higher than in non-pe/ppe genes respectively and that numerous other mutation types are also present at a high frequency. It has previously been shown that non-pe/ppe M. tuberculosis genes display a remarkably low level of purifying selection. Here, we also show that compared to these genes those of the pe/ppe families show a further reduction of selection pressure that suggests neutral evolution. This is inconsistent with the positive selection pressure of "classical" antigenic variation. Finally, by analyzing such a large number of genes we were able to detect large differences in mutation type and frequency between both individual genes and gene sub-families. The high variation rates and absence of selective constraints provides valuable insights into potential pe/ppe function. Since pe/ppe proteins are highly antigenic and have been studied as potential vaccine components these results should also prove informative for aspects of M. tuberculosis vaccine design.
Collapse
Affiliation(s)
- Christopher R E McEvoy
- Department of Science and Technology, Medical Research Council Centre for Molecular and Cellular Biology, Stellenbosch University, Tygerberg, Cape Town, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kanji A, Hasan Z, Tanveer M, Mahboob R, Jafri S, Hasan R. Presence of RD149 deletions in M. tuberculosis Central Asian Strain 1 isolates affect growth and TNFα induction in THP-1 monocytes. PLoS One 2011; 6:e24178. [PMID: 21904612 PMCID: PMC3163664 DOI: 10.1371/journal.pone.0024178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/02/2011] [Indexed: 12/17/2022] Open
Abstract
Central Asian Strain 1 (CAS1) is the prevalent Mycobacterium tuberculosis genogroup in South Asia. CAS1 strains carry deletions in RD149 and RD152 regions. Significance of these deletions is as yet unknown. We compared CAS1 strains with RD149 and concurrent RD149-RD152 deletions with CAS1 strains without deletions and with the laboratory reference strain, M. tuberculosis H37Rv for growth and for induction of TNFα, IL6, CCL2 and IL10 in THP-1 cells. Growth of CAS1 strains with deletions was slower in broth (RD149; p = 0.024 and RD149-RD152; p = 0.025) than that of strains without deletions. CAS1 strains with RD149 deletion strains further showed reduced intracellular growth (p = 0.013) in THP-1 cells as compared with strains without deletions, and also as compared with H37Rv (p = 0.007) and with CAS1 RD149-RD152 deletion strains (p = 0.029). All CAS1 strains induced higher levels of TNFα and IL10 secretion in THP-1 cells than H37Rv. Additionally, CAS1 strains with RD149 deletions induced more TNFα secretion than those without deletions (p = 0.013). CAS1 RD149 deletion strains from extrapulmonary sources showed more rapid growth and induced lower levels of TNFα and IL6 secretion in THP-1 cells than isolates from pulmonary sources. This data suggests that presence of RD149 reduces growth and increases the induction of TNFα in host cells by CAS1 strains. Differences observed for extrapulmonary strains may indicate an adaptation which increases potential for dissemination and tropism outside the lung. Overall, we hypothesise that RD149 deletions generate genetic diversity within strains and impact interactions of CAS1 strains with host cells with important clinical consequences.
Collapse
Affiliation(s)
- Akbar Kanji
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Zahra Hasan
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Mehnaz Tanveer
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Raunaq Mahboob
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Sana Jafri
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Microbiology, Aga Khan University, Karachi, Pakistan
- * E-mail:
| |
Collapse
|
15
|
Vishnoi A, Roy R, Prasad HK, Bhattacharya A. Anchor-based whole genome phylogeny (ABWGP): a tool for inferring evolutionary relationship among closely related microorganisms [corrected]. PLoS One 2010; 5:e14159. [PMID: 21152403 PMCID: PMC2994773 DOI: 10.1371/journal.pone.0014159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/21/2010] [Indexed: 12/03/2022] Open
Abstract
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species.
Collapse
Affiliation(s)
- Anchal Vishnoi
- School of Information Technology, Center for Computational Biology and Bioinformatics, Jawaharlal Nehru University, New Delhi, India
| | - Rahul Roy
- Indian Statistical Institute, New Delhi, India
| | - Hanumanthappa K. Prasad
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alok Bhattacharya
- School of Information Technology, Center for Computational Biology and Bioinformatics, Jawaharlal Nehru University, New Delhi, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Abstract
We describe a hot spot for the insertion of IS6110 in Mycobacterium tuberculosis located in the area of region of difference 724 (RD724). Because RD724 defines sublineage 724 of M. tuberculosis, caution must be exercised when screening for RD724, as different polymorphisms can be observed in this region.
Collapse
|
17
|
McEvoy CRE, Warren RM, van Helden PD, Gey van Pittius NC. Multiple, independent, identical IS6110 insertions in Mycobacterium tuberculosis PPE genes. Tuberculosis (Edinb) 2009; 89:439-42. [PMID: 19734099 DOI: 10.1016/j.tube.2009.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/12/2009] [Accepted: 08/16/2009] [Indexed: 11/30/2022]
Abstract
IS6110 is a transposable element found in Mycobacterium tuberculosis complex members. Regions of preferential IS6110 integration occur within the M. tuberculosis genome but the element has not previously been shown to exhibit any sequence-specific integration preferences. Here we provide evidence for multiple independent IS6110 insertions into identical, or near-identical, positions within the highly homologous 5' region of 3 PPE genes.
Collapse
Affiliation(s)
- Christopher R E McEvoy
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | | | | | | |
Collapse
|
18
|
Hayward D, van Helden PD, Wiid IJF. Glutamine synthetase sequence evolution in the mycobacteria and their use as molecular markers for Actinobacteria speciation. BMC Evol Biol 2009; 9:48. [PMID: 19245690 PMCID: PMC2667176 DOI: 10.1186/1471-2148-9-48] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/26/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the gene encoding for glutamine synthetase (glnA) is essential in several organisms, multiple glnA copies have been identified in bacterial genomes such as those of the phylum Actinobacteria, notably the mycobacterial species. Intriguingly, previous reports have shown that only one copy (glnA1) is essential for growth in M. tuberculosis, while the other copies (glnA2, glnA3 and glnA4) are not. RESULTS In this report it is shown that the glnA1 and glnA2 encoded glutamine synthetase sequences were inherited from an Actinobacteria ancestor, while the glnA4 and glnA3 encoded GS sequences were sequentially acquired during Actinobacteria speciation. The glutamine synthetase sequences encoded by glnA4 and glnA3 are undergoing reductive evolution in the mycobacteria, whilst those encoded by glnA1 and glnA2 are more conserved. CONCLUSION Different selective pressures by the ecological niche that the organisms occupy may influence the sequence evolution of glnA1 and glnA2 and thereby affecting phylogenies based on the protein sequences they encode. The findings in this report may impact the use of similar sequences as molecular markers, as well as shed some light on the evolution of glutamine synthetase in the mycobacteria.
Collapse
Affiliation(s)
- Don Hayward
- DST/NRF Centre for Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences - Stellenbosch University, South Africa.
| | | | | |
Collapse
|
19
|
Molle V, Reynolds RC, Alderwick LJ, Besra GS, Cozzone AJ, Fütterer K, Kremer L. EmbR2, a structural homologue of EmbR, inhibits the Mycobacterium tuberculosis kinase/substrate pair PknH/EmbR. Biochem J 2008; 410:309-17. [PMID: 17999640 DOI: 10.1042/bj20071384] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
EmbR is a transcriptional regulator that is phosphorylated by the cognate mycobacterial STPK (serine/threonine protein kinase) PknH. Recent studies demonstrated that PknH-dependent phosphorylation of EmbR enhances its DNA-binding activity and activates the transcription of the embCAB genes encoding arabinosyltransferases, which participate in arabinan biosynthesis. In the present study, we identified a genomic region of 4425 bp, which is present in Mycobacterium tuberculosis CDC1551, but absent from M. tuberculosis H37Rv, comprising the MT3428 gene, which is homologous with embR. Homology modelling of the MT3428 gene product illustrated its close relationship (56% identity) to EmbR, and it was hence termed EmbR2. In marked contrast with EmbR, EmbR2 was not phosphorylated by PknH, although it is a substrate of other M. tuberculosis kinases, including PknE and PknF. Tryptophan fluorescence emission of EmbR2 was monitored in the presence of three different PknH-derived phosphopeptides and demonstrated that EmbR2 binds to at least two of the threonine sites known to undergo autophosphorylation in PknH. We observed that the capacity of EmbR2 to interact physically with PknH without being phosphorylated was a result of EmbR2-mediated inhibition of kinase activity: incubation of PknH with increasing concentrations of EmbR2 led to a dose-response inhibition of the autokinase activity, similarly to O6-cyclohexylmethylguanine, a known inhibitor of eukaryotic cyclin-dependent kinases. Moreover, EmbR2 inhibited PknH-dependent phosphorylation of EmbR in a dose-dependent manner. Together, these results suggest that EmbR2 is a regulator of PknH activation, thus directly participating in the control of the PknH/EmbR pair and potentially in mycobacterial physiology/virulence of M. tuberculosis CDC1551.
Collapse
Affiliation(s)
- Virginie Molle
- Institut de Biologie et Chimie des Protéines, CNRS, Université de Lyon I, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
20
|
McEvoy CRE, Falmer AA, Gey van Pittius NC, Victor TC, van Helden PD, Warren RM. The role of IS6110 in the evolution of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2007; 87:393-404. [PMID: 17627889 DOI: 10.1016/j.tube.2007.05.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/15/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Members of the Mycobacterium tuberculosis complex contain the transposable element IS6110 which, due to its high numerical and positional polymorphism, has become a widely used marker in epidemiological studies. Here, we review the evidence that IS6110 is not simply a passive or 'junk' DNA sequence, but that, through its transposable activity, it is able to generate genotypic variation that translates into strain-specific phenotypic variation. We also speculate on the role that this variation has played in the evolution of M. tuberculosis and conclude that the presence of a moderate IS6110 copy number within the genome may provide the pathogen with a selective advantage that has aided its virulence.
Collapse
Affiliation(s)
- Christopher R E McEvoy
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | | | | | | | | | | |
Collapse
|
21
|
Vishnoi A, Roy R, Bhattacharya A. Comparative analysis of bacterial genomes: identification of divergent regions in mycobacterial strains using an anchor-based approach. Nucleic Acids Res 2007; 35:3654-67. [PMID: 17488849 PMCID: PMC1931498 DOI: 10.1093/nar/gkm209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Comparative genomic approaches are useful in identifying molecular differences between organisms. Currently available methods fail to identify small changes in genomes, such as expansion of short repetitive motifs and to analyse divergent sequences. In this report, we describe an anchor-based whole genome comparison (ABWGC) method. ABWGC is based on random sampling of anchor sequences from one genome, followed by analysis of sampled and homologous regions from the target genome. The method was applied to compare two strains of Mycobacterium tuberculosis CDC1551 and H37Rv. ABWGC was able to identify a total of 104 indels including 20 expansion of short repetitive sequences and five recombination events. It included 18 new unidentified genomic differences. ABWGC also identified 188 SNPs including eight new ones. The method was also used to compare M. tuberculosis H37Rv and M. avium genomes. ABWGC was able to correctly pick 1002 additional indels (size >100 nt) between the two organisms in contrast to MUMmer, a popular tool for comparative genomics. ABWGC was able to identify correctly repeat expansion and indels in a set of simulated sequences. The study also revealed important role of small repeat expansion in the evolution of M. tuberculosis strains.
Collapse
Affiliation(s)
- Anchal Vishnoi
- Center for Computational Biology and Bioinformatics, School of Information Technology, Indian Statistical Institute, New Delhi 110016, India.
| | | | | |
Collapse
|
22
|
Streicher EM, Victor TC, van der Spuy G, Sola C, Rastogi N, van Helden PD, Warren RM. Spoligotype signatures in the Mycobacterium tuberculosis complex. J Clin Microbiol 2006; 45:237-40. [PMID: 17065260 PMCID: PMC1828946 DOI: 10.1128/jcm.01429-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evolution of the direct repeat region in Mycobacterium tuberculosis has created unique spoligotype signatures specifically associated with IS6110-defined strain families. Spoligotyping signatures may enable the analysis of the strain population structure in different settings and will enable the rapid identification of strain families that acquire drug resistance or escape protective immunity in drug and vaccine trials.
Collapse
Affiliation(s)
- E M Streicher
- DST/NRF Centre of Excellence in Biomedical TB Research, Department of Medical Biochemistry, Stellenbosch University, Tygerberg, South Africa 7505
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Namouchi A, Mardassi H. A genomic library-based amplification approach (GL-PCR) for the mapping of multiple IS6110 insertion sites and strain differentiation of Mycobacterium tuberculosis. J Microbiol Methods 2006; 67:202-11. [PMID: 16725220 DOI: 10.1016/j.mimet.2006.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/09/2006] [Accepted: 03/09/2006] [Indexed: 11/25/2022]
Abstract
Evidence suggests that insertion of the IS6110 element is not without consequence to the biology of Mycobacterium tuberculosis complex strains. Thus, mapping of multiple IS6110 insertion sites in the genome of biomedically relevant clinical isolates would result in a better understanding of the role of this mobile element, particularly with regard to transmission, adaptability and virulence. In the present paper, we describe a versatile strategy, referred to as GL-PCR, that amplifies IS6110-flanking sequences based on the construction of a genomic library. M. tuberculosis chromosomal DNA is fully digested with HincII and then ligated into a plasmid vector between T7 and T3 promoter sequences. The ligation reaction product is transformed into Escherichia coli and selective PCR amplification targeting both 5' and 3' IS6110-flanking sequences are performed on the plasmid library DNA. For this purpose, four separate PCR reactions are performed, each combining an outward primer specific for one IS6110 end with either T7 or T3 primer. Determination of the nucleotide sequence of the PCR products generated from a single ligation reaction allowed mapping of 21 out of the 24 IS6110 copies of two 12 banded M. tuberculosis strains, yielding an overall sensitivity of 87,5%. Furthermore, by simply comparing the migration pattern of GL-PCR-generated products, the strategy proved to be as valuable as IS6110 RFLP for molecular typing of M. tuberculosis complex strains. Importantly, GL-PCR was able to discriminate between strains differing by a single IS6110 band.
Collapse
Affiliation(s)
- Amine Namouchi
- Laboratory of Mycobacteria, Institut Pasteur de Tunis, 13, Place Pasteur, BP 74, 1002, Tunis-Belvedre, Tunisie, Tunisia
| | | |
Collapse
|
25
|
Viana-Niero C, Rodriguez CAR, Bigi F, Zanini MS, Ferreira-Neto JS, Cataldi A, Leão SC. Identification of an IS6110 insertion site in plcD, the unique phospholipase C gene of Mycobacterium bovis. J Med Microbiol 2006; 55:451-457. [PMID: 16533994 DOI: 10.1099/jmm.0.46364-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The IS6110 repetitive element is present in multiple copies in most Mycobacterium tuberculosis complex bacteria, except for Mycobacterium bovis strains, which usually contain a single copy of IS6110 located on a 1·9 kb PvuII fragment of the direct repeat region. IS6110 transposition can disrupt coding regions and is a major force of genomic variation. In a previous work it was demonstrated that phospholipase C genes are preferential loci for IS6110 transposition in M. tuberculosis clinical strains. Bacterial phospholipase C enzymes participate in pathogenic mechanisms used by different organisms, and have been implicated in intracellular survival, cytolysis and cell-to-cell spread. Four phospholipase C genes (plcA, plcB, plcC and plcD) were detected in the genomes of M. tuberculosis, Mycobacterium africanum, Mycobacterium microti and ‘Mycobacterium canettii’. M. bovis and the vaccine strain M. bovis Bacillus Calmette–Guérin contain only the plcD gene. In the present work, the existence of IS6110 insertions within plcD, the unique phospholipase C gene of M. bovis, has been investigated by PCR, Southern blot hybridization and sequencing analysis. In 18 (7·3 %) of 245 isolates analysed, the plcD gene was interrupted by the insertion of one copy of IS6110, which in all cases was transposed in the same orientation and at the same position, 1 972 894, relative to the genome of M. bovis AF2122/97. These 18 isolates were distributed in 6 different spoligotype patterns and contained 4 to 8 IS6110 copies. In contrast, strains showing an intact plcD gene contained one (87 %), two (9·4 %) or three (2·4 %) IS6110 copies, and only a single isolate (1·2 %) had four IS6110 copies. The implications of plcD gene disruption in M. bovis have not been fully investigated, but no differences in the organ distribution of the disease were detected when animals infected with strains from the same spoligotype patterns bearing plcD : : IS6110 and intact plcD were compared.
Collapse
Affiliation(s)
- Cristina Viana-Niero
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu 862 3° andar, São Paulo, CEP 04023-062, Brazil
| | - Cesar Alejandro Rosales Rodriguez
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Professor Dr Orlando Marques de Paiva 87, São Paulo, CEP 05508-900, Brazil
| | - Fabiana Bigi
- Instituto de Microbiología y Zoología Agrícola del CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Marcos Santos Zanini
- Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, PO Box 16, Alegre, Espírito Santo, Brazil
| | - José Soares Ferreira-Neto
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Professor Dr Orlando Marques de Paiva 87, São Paulo, CEP 05508-900, Brazil
| | - Angel Cataldi
- Instituto de Microbiología y Zoología Agrícola del CICVyA - Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu 862 3° andar, São Paulo, CEP 04023-062, Brazil
| |
Collapse
|
26
|
Sholto-Douglas-Vernon C, Sandy J, Victor TC, Sim E, Helden PD. Mutational and expression analysis of tbnat and its response to isoniazid. J Med Microbiol 2006; 54:1189-1197. [PMID: 16278433 DOI: 10.1099/jmm.0.46153-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A gene (nat) encoding arylamine N-acetyltransferase (NAT) has been found in Mycobacterium tuberculosis. The gene is expressed and the enzyme is active in growing M. tuberculosis cells. N-Acetyltransferase acetylates and inactivates isoniazid (INH), which is a front-line drug used in tuberculosis (TB) therapy. In this study, it was shown that a previously reported G619A single nucleotide polymorphism (SNP) was conserved in two M. tuberculosis strain families found in the Western Cape Province of South Africa (strain families 3 and 28). Further sequence analysis of isolates in strain family 3 identified a new T529C SNP in NAT resulting in a histidine instead of a tyrosine at position 177. This SNP was found only in isolates from strain family 3, and this mutation affects the highly conserved tyrosine residue close to the active site. Using real-time PCR, the expression of M. tuberculosis nat (tbnat) was determined over a 28 day growth cycle of the M. tuberculosis reference strain (H37Rv). The expression of tbnat occurs early in growth and reaches maximum levels at mid-exponential phase. The exposure of INH-susceptible isolates to low levels of INH resulted in an increase of tbnat expression (reference strain H37Rv, which is wild-type for tbnat, and isolate 1430, containing both SNPs). An INH-resistant isolate (816) exposed to INH showed no change in tbnat expression. The increased expression in the susceptible isolates suggests that INH affects tbnat expression. tbnat may contribute to INH susceptibility, but in combination with other factors.
Collapse
Affiliation(s)
- Carolyn Sholto-Douglas-Vernon
- MRC Centre for Molecular and Cellular Biology and Department of Medical Biochemistry, University of Stellenbosch, Faculty of Health Sciences, PO Box 19063, Tygerberg, 7505, South Africa 2Department of Pharmacology, University of Oxford, Oxford, UK
| | - James Sandy
- MRC Centre for Molecular and Cellular Biology and Department of Medical Biochemistry, University of Stellenbosch, Faculty of Health Sciences, PO Box 19063, Tygerberg, 7505, South Africa 2Department of Pharmacology, University of Oxford, Oxford, UK
| | - Thomas C Victor
- MRC Centre for Molecular and Cellular Biology and Department of Medical Biochemistry, University of Stellenbosch, Faculty of Health Sciences, PO Box 19063, Tygerberg, 7505, South Africa 2Department of Pharmacology, University of Oxford, Oxford, UK
| | - Edith Sim
- MRC Centre for Molecular and Cellular Biology and Department of Medical Biochemistry, University of Stellenbosch, Faculty of Health Sciences, PO Box 19063, Tygerberg, 7505, South Africa 2Department of Pharmacology, University of Oxford, Oxford, UK
| | - Paul Dvan Helden
- MRC Centre for Molecular and Cellular Biology and Department of Medical Biochemistry, University of Stellenbosch, Faculty of Health Sciences, PO Box 19063, Tygerberg, 7505, South Africa 2Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Kong Y, Cave MD, Yang D, Zhang L, Marrs CF, Foxman B, Bates JH, Wilson F, Mukasa LN, Yang ZH. Distribution of insertion- and deletion-associated genetic polymorphisms among four Mycobacterium tuberculosis phospholipase C genes and associations with extrathoracic tuberculosis: a population-based study. J Clin Microbiol 2006; 43:6048-53. [PMID: 16333097 PMCID: PMC1317199 DOI: 10.1128/jcm.43.12.6048-6053.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis genome contains four phospholipase C (PLC)-encoding genes, designated plcA, plcB, plcC, and plcD, respectively. Each of the four genes contributes to the overall PLC activity of M. tuberculosis. PLC is hypothesized to contribute to M. tuberculosis virulence. Infection of M. tuberculosis strains carrying a truncated plcD gene is associated with the occurrence of extrathoracic tuberculosis. However, whether the other three plc genes are also associated with extrathoracic tuberculosis remains to be assessed. We investigated the insertion- and deletion-associated genetic diversity in all four plc genes among 682 epidemiologically and clinically well-characterized M. tuberculosis clinical isolates using PCR, DNA sequencing, and Southern hybridization. Two hundred sixty-six (39%) of the 682 isolates had an interruption in at least one of the four plc genes, most often associated with an IS6110 insertion. The plcD gene interruption was the most common: it was observed in 233 (34%) of the isolates, compared to 4.7%, 4.1%, and 5.9% for plcA, plcB, and plcC gene interruption, respectively. The association between the plc gene genotypes and disease presentation was adjusted for clustering using generalized estimating equations for both bivariate and multivariate analyses. After controlling for the genotypes of the plcABC genes and the host-related risk factors, interruption in the plcD gene remained significantly associated with extrathoracic tuberculosis (odds ratio, 3.27; 95% confidence interval, 1.32 to 8.14). The data suggest that the plcD gene might play a more important role in the pathogenesis of thoracic TB than it does in the pathogenesis of extrathoracic TB.
Collapse
Affiliation(s)
- Y Kong
- Epidemiology Department, School of Public Health, University of Michigan, 109 S. Observatory Street, Ann Arbor, MI 48109-2029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pheiffer C, Betts JC, Flynn HR, Lukey PT, van Helden P. Protein expression by a Beijing strain differs from that of another clinical isolate and Mycobacterium tuberculosis H37Rv. Microbiology (Reading) 2005; 151:1139-1150. [PMID: 15817781 DOI: 10.1099/mic.0.27518-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Beijing strain family has often been associated with tuberculosis (TB) outbreaks and drug resistance worldwide. In this study the authors have compared the protein expression and antigen recognition profiles of a local Beijing strain with a less prevalent clinical isolate belonging to the family 23 strain lineage, and the laboratory strain Mycobacterium tuberculosis H37Rv. Using two-dimensional electrophoresis, liquid chromatography tandem mass spectrometry and Western blot analysis several proteins were identified as quantitatively increased or decreased in both clinical strains compared to H37Rv. Remarkably, the Beijing strain showed increased expression of alpha-crystallin and decreased expression of Hsp65, PstS1, and the 47 kDa protein compared to the other clinical strain and H37Rv. One- and two-dimensional Western blot analysis of antigens expressed by the three strains, using plasma from TB patients, confirmed differential antigen expression by strains and patient-to-patient variation in humoral immunity. These observed protein differences could aid the elucidation of mechanisms underlying the success of the Beijing strain family, measured by global dissemination, compared to other M. tuberculosis strains.
Collapse
Affiliation(s)
- Carmen Pheiffer
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch Medical School, PO Box 19063, Tygerberg, 7505, South Africa
| | - Joanna C Betts
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire SG1 2NY, UK
| | - Helen R Flynn
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire SG1 2NY, UK
| | - Pauline T Lukey
- GlaxoSmithKline Research and Development, Stevenage, Hertfordshire SG1 2NY, UK
| | - Paul van Helden
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch Medical School, PO Box 19063, Tygerberg, 7505, South Africa
| |
Collapse
|
29
|
Warren RM, Victor TC, Streicher EM, Richardson M, van der Spuy GD, Johnson R, Chihota VN, Locht C, Supply P, van Helden PD. Clonal expansion of a globally disseminated lineage of Mycobacterium tuberculosis with low IS6110 copy numbers. J Clin Microbiol 2005; 42:5774-82. [PMID: 15583312 PMCID: PMC535222 DOI: 10.1128/jcm.42.12.5774-5782.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the clonal expansion of Mycobacterium tuberculosis and accurate identification of predominant evolutionary lineages in this species remain limited, especially with regard to low-IS6110-copy-number strains. In this study, 170 M. tuberculosis isolates with </=6 IS6110 insertions identified in Cape Town, South Africa, were characterized by principal genetic grouping, restriction fragment length polymorphism analysis, spoligotyping, IS6110 insertion site mapping, and variable-number tandem repeat (VNTR) typing. These analyses indicated that all but one of the isolates analyzed were members of principal genetic group 2 and of the same low-IS6110-copy-number lineage. The remaining isolate was a member of principal genetic group 1 and a different low-IS6110-copy-number lineage. Phylogenetic reconstruction suggests clonal expansion through sequential acquisition of additional IS6110 copies, expansion and contraction of VNTR sequences, and the deletion of specific direct-variable-repeat sequences. Furthermore, comparison of the genotypic data of 91 representative low-IS6110-copy-number isolates from Cape Town, other southern African regions, Europe, and the United States suggests that certain low-IS6110-copy-number strain spoligotypes and IS6110 fingerprints were acquired in the distant past. These clones have subsequently become widely disseminated and now play an important role in the global tuberculosis epidemic.
Collapse
Affiliation(s)
- R M Warren
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, University of Stellenbosch, P.O. Box 19063, Tygerberg, 7505, South Africa.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bhakta S, Besra GS, Upton AM, Parish T, Sholto-Douglas-Vernon C, Gibson KJC, Knutton S, Gordon S, DaSilva RP, Anderton MC, Sim E. Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. ACTA ACUST UNITED AC 2004; 199:1191-9. [PMID: 15117974 PMCID: PMC2211905 DOI: 10.1084/jem.20031956] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mycolic acids represent a major component of the unique cell wall of mycobacteria. Mycolic acid biosynthesis is inhibited by isoniazid, a key frontline antitubercular drug that is inactivated by mycobacterial and human arylamine N-acetyltransferase (NAT). We show that an in-frame deletion of Mycobacterium bovis BCG nat results in delayed entry into log phase, altered morphology, altered cell wall lipid composition, and increased intracellular killing by macrophages. In particular, deletion of nat perturbs biosynthesis of mycolic acids and their derivatives and increases susceptibility of M. bovis BCG to antibiotics that permeate the cell wall. Phenotypic traits are fully complemented by introduction of Mycobacterium tuberculosis nat. We infer from our findings that NAT is critical to normal mycolic acid synthesis and hence other derivative cell wall components and represents a novel target for antituberculosis therapy. In addition, this is the first report of an endogenous role for NAT in mycobacteria.
Collapse
Affiliation(s)
- Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Safi H, Barnes PF, Lakey DL, Shams H, Samten B, Vankayalapati R, Howard ST. IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis. Mol Microbiol 2004; 52:999-1012. [PMID: 15130120 DOI: 10.1111/j.1365-2958.2004.04037.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mobile insertion sequence, IS6110, is an important marker in tracking of Mycobacterium tuberculosis strains. Here, we demonstrate that IS6110 can upregulate downstream genes through an outward-directed promoter in its 3' end, thus adding to the significance of this element. Promoter activity was orientation dependent and was localized within a 110 bp fragment adjacent to the right terminal inverted repeat. Transcripts from this promoter, named OP6110, begin approximately 85 bp upstream of the 3' end of IS6110. Use of green fluorescent protein (GFP) expression constructs showed that OP6110 was upregulated in M. tuberculosis during growth in human monocytes and in late growth phases in broth. Analysis of natural insertion sites in M. tuberculosis showed that IS6110 upregulated expression of several downstream genes during growth in human monocytes, including Rv2280 in H37Rv and the PE-PGRS gene, Rv1468c, in the clinical strain 210, which is a member of the Beijing family. Transcription between IS6110 and downstream genes was confirmed by reverse transcription polymerase chain reaction. The ability to activate genes during infection suggests that IS6110 has the potential to influence growth characteristics of different strains, and indicates another mechanism by which IS6110 can impact M. tuberculosis evolution.
Collapse
Affiliation(s)
- Hassan Safi
- Department of Microbiology, Center for Pulmonary and Infectious Disease Control, University of Texas Health Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Victor TC, de Haas PEW, Jordaan AM, van der Spuy GD, Richardson M, van Soolingen D, van Helden PD, Warren R. Molecular characteristics and global spread of Mycobacterium tuberculosis with a western cape F11 genotype. J Clin Microbiol 2004; 42:769-72. [PMID: 14766851 PMCID: PMC344472 DOI: 10.1128/jcm.42.2.769-772.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to fully understand the global tuberculosis (TB) epidemic it is important to investigate the population structure and dissemination of the causative agent that drives the epidemic. Mycobacterium tuberculosis strain family 11 (F11) genotype isolates (found in 21.4% of all infected patients) are at least as successful as the Beijing genotype family isolates (16.5%) in contributing to the TB problem in some Western Cape communities of South Africa. This study describes key molecular characteristics that define the F11 genotype. A data-mining approach coupled with additional molecular analysis showed that members of F11 can easily and uniquely be identified by PCR-based techniques such as spoligotyping and dot blot screening for a specific rrs491 polymorphism. Isolates of F11 not only are a major contributor to the TB epidemic in South Africa but also are present in four different continents and at least 25 other countries in the world. Careful study of dominant compared to rare strains should provide clues to their success and possibly provide new ideas for combating TB.
Collapse
Affiliation(s)
- Thomas C Victor
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch, Tygerberg 7505, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Viana-Niero C, de Haas PE, van Soolingen D, Leão SC. Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiology (Reading) 2004; 150:967-978. [PMID: 15073306 DOI: 10.1099/mic.0.26778-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mycobacterium tuberculosis genome contains four highly related genes which present significant similarity to Pseudomonas aeruginosa genes encoding phospholipase C enzymes. Three of these genes, plcA, plcB and plcC, are organized in tandem (locus plcABC). The fourth gene, plcD, is located in a different region. This study investigates variations in plcABC and plcD genes in clinical isolates of M. tuberculosis, Mycobacterium africanum and ‘Mycobacterium canettii’. Genetic polymorphisms were examined by PCR, Southern blot hybridization, sequence analysis and RT-PCR. Seven M. tuberculosis isolates contain insertions of IS6110 elements within plcA, plcC or plcD. In 19 of 25 M. tuberculosis isolates examined, genomic deletions were identified, resulting in loss of parts of genes or complete genes from the plcABC and/or plcD loci. Partial plcD deletion was observed in one M. africanum isolate. In each case, deletions were associated with the presence of a copy of the IS6110 element and in all occurrences IS6110 was transposed in the same orientation. A mechanism of deletion resulting from homologous recombination of two copies of IS6110 was recognized in a group of genetically related M. tuberculosis isolates. Five M. tuberculosis isolates presented major polymorphisms in the plcABC and plcD regions, along with loss of expression competence that affected all four plc genes. Phospholipase C is a well-known bacterial virulence factor. The precise role of phospholipase C in the pathogenicity of M. tuberculosis is unknown, but considering the potential importance that the plc genes may have in the virulence of the tubercle bacillus, the study of isolates cultured from patients with active tuberculosis bearing genetic variations affecting these genes may provide insights into the significance of phospholipase C enzymes for tuberculosis pathogenicity.
Collapse
Affiliation(s)
- C Viana-Niero
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM), Rua Botucatu, 862 3° andar, 04023-062, São Paulo, Brazil
| | - P E de Haas
- Diagnostic Laboratory of Infectious Diseases and Perinatal Screening, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA, The Netherlands
| | - D van Soolingen
- Diagnostic Laboratory of Infectious Diseases and Perinatal Screening, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA, The Netherlands
| | - S C Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM), Rua Botucatu, 862 3° andar, 04023-062, São Paulo, Brazil
| |
Collapse
|
34
|
Phyu S, Jureen R, Ti T, Dahle UR, Grewal HMS. Heterogeneity of Mycobacterium tuberculosis isolates in Yangon, Myanmar. J Clin Microbiol 2004; 41:4907-8. [PMID: 14532259 PMCID: PMC254380 DOI: 10.1128/jcm.41.10.4907-4908.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Warren RM, Victor TC, Streicher EM, Richardson M, Beyers N, Gey van Pittius NC, van Helden PD. Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med 2003; 169:610-4. [PMID: 14701710 DOI: 10.1164/rccm.200305-714oc] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is generally accepted that tuberculosis results from a single infection with a single Mycobacterium tuberculosis strain. Such infections are thought to confer protective immunity against exogenous reinfection. In this study, a novel polymerase chain reaction method was developed to specifically identify M. tuberculosis strains belonging to the Beijing and non-Beijing evolutionary lineages in sputum specimens collected from tuberculosis patients resident in an epidemiologic field site in Cape Town, South Africa. The sensitivity and specificity of the polymerase chain reaction-based strain classification method were 100% (95% confidence interval, 85-100%) when compared with DNA fingerprinting and spacer oligotyping (spoligotyping). Application of this method showed that 19% of all patients were simultaneously infected with Beijing and non-Beijing strains, and 57% of patients infected with a Beijing strain were also infected with a non-Beijing strain. Multiple infections were more frequent in retreatment cases (23%) as compared with new cases (17%), but were not associated with sex, age, or smear grading. These results suggest that multiple infections are frequent, implying high reinfection rates and the absence of efficient protective immunity conferred by the initial infection. This finding could influence our understanding of the epidemiology of disease in high-incidence regions and our understanding for vaccine development.
Collapse
Affiliation(s)
- Robin M Warren
- Medical Research Council Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Stellenbosch University, Tygerberg, South Africa.
| | | | | | | | | | | | | |
Collapse
|
36
|
Sampson SL, Warren RM, Richardson M, Victor TC, Jordaan AM, van der Spuy GD, van Helden PD. IS6110-mediated deletion polymorphism in the direct repeat region of clinical isolates of Mycobacterium tuberculosis. J Bacteriol 2003; 185:2856-66. [PMID: 12700265 PMCID: PMC154393 DOI: 10.1128/jb.185.9.2856-2866.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigates the phenomenon of IS6110-mediated deletion polymorphism in the direct repeat (DR) region of the genome of Mycobacterium tuberculosis. Clinical isolates and their putative predecessors were compared using a combination of DR region restriction fragment length polymorphism, IS6110 DNA fingerprinting, spoligotyping, and DNA sequencing, which allowed the mapping of chromosome structure and deletion junctions. The data suggest that adjacently situated IS6110 elements mediate genome deletion. However, in contrast to previous reports, deletions appear to be mediated by inversely oriented IS6110 elements. This suggests that these events may occur via mechanisms other than RecA-mediated homologous recombination. The results underscore the important role of IS6110-associated deletion hypervariability in driving M. tuberculosis genome evolution.
Collapse
Affiliation(s)
- S L Sampson
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | | | | | | | | | | | | |
Collapse
|
37
|
Dale JW, Al-Ghusein H, Al-Hashmi S, Butcher P, Dickens AL, Drobniewski F, Forbes KJ, Gillespie SH, Lamprecht D, McHugh TD, Pitman R, Rastogi N, Smith AT, Sola C, Yesilkaya H. Evolutionary relationships among strains of Mycobacterium tuberculosis with few copies of IS6110. J Bacteriol 2003; 185:2555-62. [PMID: 12670980 PMCID: PMC152614 DOI: 10.1128/jb.185.8.2555-2562.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular typing of Mycobacterium tuberculosis by using IS6110 shows low discrimination when there are fewer than five copies of the insertion sequence. Using a collection of such isolates from a study of the epidemiology of tuberculosis in London, we have shown a substantial degree of congruence between IS6110 patterns and both spoligotype and PGRS type. This indicates that the IS6110 types mainly represent distinct families of strains rather than arising through the convergent insertion of IS6110 into favored positions. This is supported by identification of the genomic sites of the insertion of IS6110 in these strains. The combined data enable identification of the putative evolutionary relationships of these strains, comprising three lineages broadly associated with patients born in South Asia (India and Pakistan), Africa, and Europe, respectively. These lineages appear to be quite distinct from M. tuberculosis isolates with multiple copies of IS6110.
Collapse
Affiliation(s)
- Jeremy W Dale
- School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Supply P, Warren RM, Bañuls AL, Lesjean S, Van Der Spuy GD, Lewis LA, Tibayrenc M, Van Helden PD, Locht C. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol 2003; 47:529-38. [PMID: 12519202 DOI: 10.1046/j.1365-2958.2003.03315.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deciphering the structure of pathogen populations is instrumental for the understanding of the epidemiology and history of infectious diseases and for their control. Although Mycobacterium tuberculosis is the most widespread infectious agent in humans, its actual population structure has remained hypothetical until now because: (i) its structural genes are poorly polymorphic; (ii) adequate samples and appropriate statistics for population genetic analysis have not been considered. To investigate this structure, we analysed the statistical associations (linkage disequilibrium) between 12 independent M. tuberculosis minisatellite-like loci by high-throughput genotyping within a model population of 209 isolates representative of the genetic diversity in an area with a very high incidence of tuberculosis. These loci contain variable number tandem repeats (VNTRs) of genetic elements named mycobacterial interspersed repetitive units (MIRUs). Highly significant linkage disequilibrium was detected among the MIRU-VNTR loci in this model. This linkage disequilibrium was also evident when the MIRU-VNTR types were compared with the IS6110 restriction fragment length polymorphism types. These results support a predominant clonal evolution of M. tuberculosis.
Collapse
Affiliation(s)
- Philip Supply
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Warren RM, Streicher EM, Sampson SL, van der Spuy GD, Richardson M, Nguyen D, Behr MA, Victor TC, van Helden PD. Microevolution of the direct repeat region of Mycobacterium tuberculosis: implications for interpretation of spoligotyping data. J Clin Microbiol 2002; 40:4457-65. [PMID: 12454136 PMCID: PMC154636 DOI: 10.1128/jcm.40.12.4457-4465.2002] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The direct repeat (DR) region has been determined to be an important chromosomal domain for studying the evolution of Mycobacterium tuberculosis. Despite this, very little is known about microevolutionary events associated with clonal expansion and how such events influence the interpretation of both restriction fragment length polymorphism (RFLP) and spoligotype data. This study examined the structure of the DR region in three independently evolving lineages of M. tuberculosis with a combination of DR-RFLP, spoligotyping, and partial DNA sequencing. The results show that the duplication of direct variable repeat (DVR) sequences and single-nucleotide polymorphisms is rare; conversely, the deletion of DVR sequences and IS6110-mediated mutation is observed frequently. Deletion of either single or contiguous DVR sequences was observed. The deletion of adjacent DVR sequences occurred in a dependent manner rather than as an accumulation of independent events. Insertion of IS6110 into either the direct repeat or spacer sequences influenced the spoligotype pattern, resulting in apparent deletion of DVR sequences. Homologous recombination between adjacent IS6110 elements led to extensive deletion in the DR region, again demonstrating a dependent evolutionary mechanism. Different isolates from the same strain family and isolates from different strain families were observed to converge to the same spoligotype pattern. In conclusion, the binary data of the spoligotype are unable to provide sufficient information to accurately establish genotypic relationships between certain clinical isolates of M. tuberculosis. This has important implications for molecular epidemiologic strain tracking and for the application of spoligotype data to phylogenetic analysis of M. tuberculosis isolates.
Collapse
Affiliation(s)
- R. M. Warren
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa, Department of Medicine, McGill University Health Centre, Montreal H3G 1A4, Canada
| | - E. M. Streicher
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa, Department of Medicine, McGill University Health Centre, Montreal H3G 1A4, Canada
| | - S. L. Sampson
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa, Department of Medicine, McGill University Health Centre, Montreal H3G 1A4, Canada
| | - G. D. van der Spuy
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa, Department of Medicine, McGill University Health Centre, Montreal H3G 1A4, Canada
| | - M. Richardson
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa, Department of Medicine, McGill University Health Centre, Montreal H3G 1A4, Canada
| | - D. Nguyen
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa, Department of Medicine, McGill University Health Centre, Montreal H3G 1A4, Canada
| | - M. A. Behr
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa, Department of Medicine, McGill University Health Centre, Montreal H3G 1A4, Canada
| | - T. C. Victor
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa, Department of Medicine, McGill University Health Centre, Montreal H3G 1A4, Canada
| | - P. D. van Helden
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa, Department of Medicine, McGill University Health Centre, Montreal H3G 1A4, Canada
- Corresponding author. Mailing address: MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Stellenbosch University, P.O. Box 19063, Tygerberg 7505, South Africa. Phone: 27 21 9389401. Fax: 27 21 9389467. E-mail:
| |
Collapse
|
40
|
Mokrousov I, Narvskaya O, Otten T, Vyazovaya A, Limeschenko E, Steklova L, Vyshnevskyi B. Phylogenetic reconstruction within Mycobacterium tuberculosis Beijing genotype in northwestern Russia. Res Microbiol 2002; 153:629-37. [PMID: 12558181 DOI: 10.1016/s0923-2508(02)01374-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A selection of genetic markers was used to study the evolution of Mycobacterium tuberculosis Beijing family strains in northwestern Russia. A total of 221 of 434 epidemiologically unlinked isolates studied in 1996-2001 belonged to the Beijing family as determined by standard spoligotyping (signals 35-43). Ninety-six percent of these Beijing isolates ("typical") were closely related in IS6110-RFLP (D > 0.85) while 9 remaining isolates (2 different profiles, "atypical") were more distant from the rest (D = 0.6-0.7). Further analysis was performed on a selection of 12 typical and both atypical Beijing strains with different IS6110-RFLP profiles (2 isolates each). All 28 Beijing isolates studied had the KatG 463Leu allele, an intact mtp40 fragment of the mpcA gene, and an identical structure of the DR locus (15 DVRs) with an upstream IS6110 copy in opposite orientation. The IS6110-RFLP based neighbor-joining (distance) and quartet-puzzling (maximum-likelihood) trees showed that the branch lengths were considerably longer for atypical Beijing strains. Typical Beijing strains had the 1.02 kb Rv3135 PPE-family gene and two IS1547 copies (iplA and iplB) one of them (iplB) disrupted by IS6110 insertion. Atypical Beijing strains had the 1.97 kb Rv3135 gene and a single intact IS1547/iplA copy. We suggest that the M. tuberculosis Beijing family strains currently circulating in the northwest of Russia are relatively ancient and thus appear to be endemic in this region since evolutionarily distant time. The prevalent typical Beijing strains (96%) are likely to be of monophyletic origin and their ongoing dissemination has started recently: these strains differ in rapidly evolving IS6110-RFLP but have identical structure of other polymorphic genome regions studied. The atypical Beijing strains (4%) are evolutionary older; they probably had a common (unknown) ancestor with typical Beijing strains.
Collapse
Affiliation(s)
- Igor Mokrousov
- Laboratory of Molecular Microbiology Pasteur Institute, St. Petersburg, 197101, Russia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Savine E, Warren RM, van der Spuy GD, Beyers N, van Helden PD, Locht C, Supply P. Stability of variable-number tandem repeats of mycobacterial interspersed repetitive units from 12 loci in serial isolates of Mycobacterium tuberculosis. J Clin Microbiol 2002; 40:4561-6. [PMID: 12454152 PMCID: PMC154626 DOI: 10.1128/jcm.40.12.4561-4566.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Revised: 07/31/2002] [Accepted: 09/02/2002] [Indexed: 11/20/2022] Open
Abstract
Variable number tandem repeats (VNTRs) of elements named mycobacterial interspersed repetitive units (MIRUs) have previously been identified in 12 minisatellite loci of the Mycobacterium tuberculosis genome. These markers allow reliable high-throughput genotyping of M. tuberculosis and represent a portable approach to global molecular epidemiology of M. tuberculosis. To assess their temporal stability, we genotyped 123 serial isolates, separated by up to 6 years and belonging to a variety of distinct IS6110 restriction fragment length polymorphism (RFLP) families, from 56 patients who had positive sputum cultures. All 12 MIRU VNTR loci were completely identical within the groups of serial isolates in 55 out of 56 groups (98.2%), although 11 pairs of isolates from the same patients with conserved MIRU VNTRs displayed slightly different IS6110 RFLP profiles. In a single case, serial isolates with an unchanged IS6110 RFLP profile showed a change in 1 out of 12 MIRU VNTR loci. These results indicate that MIRU VNTRs are stable over time and therefore are suitable for reliable follow-up of patients chronically infected with tuberculosis over long periods. Moreover, they support MIRU VNTR genotyping as a powerful first-line method followed by subtyping by IS6110 RFLP to define ongoing transmission clusters.
Collapse
Affiliation(s)
- Evgueni Savine
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex, France, MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Department of Pediatrics and Child Health, Stellenbosch University, Tygerberg 7505, South Africa
| | - Robin M. Warren
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex, France, MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Department of Pediatrics and Child Health, Stellenbosch University, Tygerberg 7505, South Africa
| | - Gian D. van der Spuy
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex, France, MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Department of Pediatrics and Child Health, Stellenbosch University, Tygerberg 7505, South Africa
| | - Nulda Beyers
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex, France, MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Department of Pediatrics and Child Health, Stellenbosch University, Tygerberg 7505, South Africa
| | - Paul D. van Helden
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex, France, MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Department of Pediatrics and Child Health, Stellenbosch University, Tygerberg 7505, South Africa
| | - Camille Locht
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex, France, MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Department of Pediatrics and Child Health, Stellenbosch University, Tygerberg 7505, South Africa
| | - Philip Supply
- Laboratoire des Mécanismes Moléculaires de la Pathogenèse Bactérienne, INSERM U447, Institut Pasteur de Lille, F-59019 Lille Cedex, France, MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, Department of Pediatrics and Child Health, Stellenbosch University, Tygerberg 7505, South Africa
| |
Collapse
|
42
|
Moström P, Gordon M, Sola C, Ridell M, Rastogi N. Methods used in the molecular epidemiology of tuberculosis. Clin Microbiol Infect 2002; 8:694-704. [PMID: 12445006 DOI: 10.1046/j.1469-0691.2002.00460.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- P Moström
- Department of Medical Microbiology and Immunology, Göteborg University, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
43
|
Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR, Venter JC, Fraser CM. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 2002; 184:5479-90. [PMID: 12218036 PMCID: PMC135346 DOI: 10.1128/jb.184.19.5479-5490.2002] [Citation(s) in RCA: 492] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence and immunity are poorly understood in Mycobacterium tuberculosis. We sequenced the complete genome of the M. tuberculosis clinical strain CDC1551 and performed a whole-genome comparison with the laboratory strain H37Rv in order to identify polymorphic sequences with potential relevance to disease pathogenesis, immunity, and evolution. We found large-sequence and single-nucleotide polymorphisms in numerous genes. Polymorphic loci included a phospholipase C, a membrane lipoprotein, members of an adenylate cyclase gene family, and members of the PE/PPE gene family, some of which have been implicated in virulence or the host immune response. Several gene families, including the PE/PPE gene family, also had significantly higher synonymous and nonsynonymous substitution frequencies compared to the genome as a whole. We tested a large sample of M. tuberculosis clinical isolates for a subset of the large-sequence and single-nucleotide polymorphisms and found widespread genetic variability at many of these loci. We performed phylogenetic and epidemiological analysis to investigate the evolutionary relationships among isolates and the origins of specific polymorphic loci. A number of these polymorphisms appear to have occurred multiple times as independent events, suggesting that these changes may be under selective pressure. Together, these results demonstrate that polymorphisms among M. tuberculosis strains are more extensive than initially anticipated, and genetic variation may have an important role in disease pathogenesis and immunity.
Collapse
Affiliation(s)
- R D Fleischmann
- The Institute for Genomic Research, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pheiffer C, Betts J, Lukey P, van Helden P. Protein expression in Mycobacterium tuberculosis differs with growth stage and strain type. Clin Chem Lab Med 2002; 40:869-75. [PMID: 12435102 DOI: 10.1515/cclm.2002.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Different phenotypes are displayed by Mycobacterium tuberculosis (M. tuberculosis) strains, fuelling speculation that certain strains are "hypervirulent" and able to evade host defenses better than others. Furthermore, differential antigen expression by M. tuberculosis strains may explain why certain patients are susceptible to a repeat episode of tuberculosis. The objective of this study was to compare protein expression by M. tuberculosis H37Rv and clinical isolates in order to determine whether differential protein expression contributes to the different phenotypes expressed by these strains. Expression of alpha-crystallin, the antigen 85 complex, PstS-1, L-alanine dehydrogenase and the 65 kDa antigen was analysed by Western blotting and enzyme-linked immunosorbent assays, using mouse monoclonal antibodies. We found no significant difference in the growth rate of the M. tuberculosis strains in vitro, and although M. tuberculosis protein expression showed phase variation during growth, expression seemed to be qualitatively, but not quantitatively, conserved in the strains investigated. These results have potentially important implications for vaccine development and serodiagnosis.
Collapse
Affiliation(s)
- Carmen Pheiffer
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch, Tygerberg, South Africa
| | | | | | | |
Collapse
|
45
|
Warren RM, van der Spuy GD, Richardson M, Beyers N, Booysen C, Behr MA, van Helden PD. Evolution of the IS6110-based restriction fragment length polymorphism pattern during the transmission of Mycobacterium tuberculosis. J Clin Microbiol 2002; 40:1277-82. [PMID: 11923345 PMCID: PMC140391 DOI: 10.1128/jcm.40.4.1277-1282.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interpretation of the molecular epidemiological data of Mycobacterium tuberculosis is dependent on the validity of the assumptions that have been made. It is assumed that the IS6110 banding pattern is sufficiently stable to define epidemiological events representing ongoing transmission. However, molecular epidemiological data also support the observation that the IS6110 banding pattern may change over time. Factors affecting this rate may include the nature and duration of disease in a host and the opportunity to experience different host environments during the transmission cycle. To estimate the rate of IS6110 change occurring during the process of transmission, M. tuberculosis isolates from epidemiologically linked patients were genotypically characterized by restriction fragment length polymorphism (RFLP) analysis. The identification of IS6110 banding pattern changes during ongoing transmission suggested that a rate could be estimated. IS6110 change was significantly associated with strains with >5 IS6110 elements (P = 0.013) and was not observed in low-copy-number isolates. The minimum rate of appearance of variant strains was calculated to be 0.14 variant cases per source-case per year. This data suggest that clustering of isolates based on identical RFLP patterns is expected to underestimate transmission in patients infected with high-copy-number isolates. A model based on the rate of appearance of both variant and invariant strains demonstrates that the genotypically defined population structure may change by 18.6% during the study period of approximately 6.5 years. The implications for the use of RFLP data for epidemiologic study are discussed.
Collapse
Affiliation(s)
- R M Warren
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch, Tygerberg, South Africa
| | | | | | | | | | | | | |
Collapse
|
46
|
van Helden PD, Warren RM, Victor TC, van der Spuy G, Richardson M, Hoal-van Helden E. Strain families of Mycobacterium tuberculosis. Trends Microbiol 2002; 10:167-8; author reply 168. [PMID: 11912020 DOI: 10.1016/s0966-842x(02)02317-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Saves I, Lewis LA, Westrelin F, Warren R, Daffé M, Masson JM. Specificities and functions of the recA and pps1 intein genes of Mycobacterium tuberculosis and application for diagnosis of tuberculosis. J Clin Microbiol 2002; 40:943-50. [PMID: 11880421 PMCID: PMC120251 DOI: 10.1128/jcm.40.3.943-950.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The worldwide recrudescence of tuberculosis and the widespread appearance of antibiotic resistance have strengthened the need for rapid and specific diagnostic tools. The prevailing microbiological identification of Mycobacterium tuberculosis, the causative agent of tuberculosis, which implies the use of in vitro cultures and acid-fast staining microscopy, is time-consuming. Detection of M. tuberculosis directly in clinical samples through PCR amplification of mycobacterium-specific genes, designed to shorten diagnostic delay, demonstrated reliability and high sensitivity. However, the quality of the diagnosis depends on the specificity of the target sequence for M. tuberculosis complex strains. In the present study, we demonstrated the specificity of recA and pps1 inteins for this complex and thus the feasibility of using intein-coding sequences as a new target for PCR diagnosis. Indeed, the recA and pps1 genes of 36 clinical isolates of M. tuberculosis and 10 field strains of M. bovis were found to be interrupted by an intein sequence at the RecA-a and Pps1-b sites, respectively, while a large number of nontuberculous mycobacterial species failed to demonstrate these insertions. Besides, the MtuPps1, which was cloned and expressed in Escherichia coli, was shown to possess an endonuclease activity. The intein cleaves the 40-bp sequence spanning the intein insertion site Pps1-b in the inteinless pps1 gene. In addition to the PCR amplification of recA and pps1 intein genes as a tool for diagnosis, the specific endonuclease activity could represent a new molecular approach to identify M. tuberculosis.
Collapse
Affiliation(s)
- Isabelle Saves
- Institut de Pharmacologie et Biologie Structurale (UMR5089), CNRS/Université Paul Sabatier Toulouse III, France.
| | | | | | | | | | | |
Collapse
|
48
|
Warren RM, Richardson M, Sampson SL, van der Spuy GD, Bourn W, Hauman JH, Heersma H, Hide W, Beyers N, van Helden PD. Molecular evolution of Mycobacterium tuberculosis: phylogenetic reconstruction of clonal expansion. Tuberculosis (Edinb) 2001; 81:291-302. [PMID: 11584597 DOI: 10.1054/tube.2001.0300] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SETTING M. tuberculosis isolates were collected from patients attending health clinics in a high incidence urban community and in a low incidence rural setting in South Africa. OBJECTIVE To reconstruct the evolutionary history of a group of closely related M. tuberculosis isolates using IS6110, DRr and MTB484(1) restriction fragment length polymorphism (RFLP) data. DESIGN Mycobacterium tuberculosis isolates containing an average of ten IS6110 elements, with a similarity index of > or = 65% were genotypically classified by DNA fingerprinting using the IS6110 derived probes IS-3' and IS-5', as well as the DRr and MTB484(1) probes, in combination with PvuII or Hinfl endonuclease digestion. These RFLP data were subjected to phylogenetic analysis using both genetic distance and parsimony algorithms. RESULTS Phylogenetic analysis predicted the existence of two independently evolving lineages, possibly evolving from a common ancestral strain. The topology of the phylogenetic tree was supported by comprehensive bootstrapping and the specific partitioning of DNA methylation phenotypes. The observed difference in the branch lengths of the two lineages may suggest differential evolutionary rates. Isolates collected from different geographical regions demonstrate independent evolution, suggesting that it is highly unlikely that strains have been recently transmitted between the two regions. The number of evolutionary events identified in this strain family differs significantly from that of previously characterized strain families, implying that evolutionary rate may be strain family dependent. CONCLUSION Based on this analysis we propose that the algorithm used to calculate recent epidemiological events should be revised to incorporate the evolutionary characteristics of individual strain families, thereby enhancing the accuracy of molecular epidemiological calculations.
Collapse
Affiliation(s)
- R M Warren
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch, PO Box 19063, Tygerberg, 7505, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Victor TC, van Rie A, Jordaan AM, Richardson M, van Der Spuy GD, Beyers N, van Helden PD, Warren R. Sequence polymorphism in the rrs gene of Mycobacterium tuberculosis is deeply rooted within an evolutionary clade and is not associated with streptomycin resistance. J Clin Microbiol 2001; 39:4184-6. [PMID: 11682556 PMCID: PMC88513 DOI: 10.1128/jcm.39.11.4184-4186.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutation (C-to-T transition) at position 491 of the rrs gene was identified in a Mycobacterium tuberculosis strain family (n = 208 isolates) that was predominant in a suburb of Cape Town, South Africa. This nucleotide change is not involved in streptomycin resistance, and we suggest caution in assuming that all mutations in genes targeted by antituberculosis drugs confer drug resistance.
Collapse
Affiliation(s)
- T C Victor
- MRC Centre for Molecular and Cellular Biology, Department of Medical Biochemistry, University of Stellenbosch, Stellenbosch, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Upton AM, Mushtaq A, Victor TC, Sampson SL, Sandy J, Smith DM, van Helden PV, Sim E. Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol Microbiol 2001; 42:309-17. [PMID: 11703656 DOI: 10.1046/j.1365-2958.2001.02648.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arylamine N-acetyltransferases (NATs; E.C 2.3.1.5) N-acetylate arylhydralazine and arylamine substrates using acetyl coenzyme A. Human NAT2 acetylates and inactivates the antituberculosis drug, isoniazid (INH), and is polymorphic. We previously demonstrated that there is a homologue of human NAT2 in Mycobacterium tuberculosis, whose product N-acetylates INH in vitro. We now demonstrate that the nat gene is expressed in M. tuberculosis and M. bovis Bacille Calmette-Guerin (BCG), using reverse transcription-polymerase chain reaction and Western blotting. The NAT protein is active in M. bovis BCG in vivo, as detected by the presence of N-acetyl INH in M. bovis BCG lysates grown in INH. Sequence analysis of the M. tuberculosis nat coding region reveals a single nucleotide polymorphism in 18% of a random cohort of M. tuberculosis clinical isolates, conferring a G to R change. The recombinant mutant protein appears less stable than the wild type, and has an apparent affinity for INH of 10-fold less than the wild type. Modelling the change in M. tuberculosis NAT shows that the G to R change is close to the active site, and supports the experimental findings. Minimum inhibitory concentration data suggest that this polymorphism in nat is linked to low-level changes in the INH susceptibility of M. tuberculosis clinical isolates.
Collapse
Affiliation(s)
- A M Upton
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|