1
|
Pasinato A, Singh G. Lichens are a treasure chest of bioactive compounds: fact or fake? THE NEW PHYTOLOGIST 2025; 246:389-395. [PMID: 40013383 PMCID: PMC11923404 DOI: 10.1111/nph.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Affiliation(s)
- Anna Pasinato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133, Palermo, Italy
| | - Garima Singh
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133, Palermo, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, 15, 35123, Padova, Italy
| |
Collapse
|
2
|
Agati G, Brunetti C, dos Santos Nascimento LB, Gori A, Lo Piccolo E, Tattini M. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. THE NEW PHYTOLOGIST 2025; 245:11-26. [PMID: 39434218 PMCID: PMC11617662 DOI: 10.1111/nph.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’ (IFAC)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | | | - Antonella Gori
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Ermes Lo Piccolo
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| |
Collapse
|
3
|
Ancajas CMF, Oyedele AS, Butt CM, Walker AS. Advances, opportunities, and challenges in methods for interrogating the structure activity relationships of natural products. Nat Prod Rep 2024; 41:1543-1578. [PMID: 38912779 PMCID: PMC11484176 DOI: 10.1039/d4np00009a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/25/2024]
Abstract
Time span in literature: 1985-early 2024Natural products play a key role in drug discovery, both as a direct source of drugs and as a starting point for the development of synthetic compounds. Most natural products are not suitable to be used as drugs without further modification due to insufficient activity or poor pharmacokinetic properties. Choosing what modifications to make requires an understanding of the compound's structure-activity relationships. Use of structure-activity relationships is commonplace and essential in medicinal chemistry campaigns applied to human-designed synthetic compounds. Structure-activity relationships have also been used to improve the properties of natural products, but several challenges still limit these efforts. Here, we review methods for studying the structure-activity relationships of natural products and their limitations. Specifically, we will discuss how synthesis, including total synthesis, late-stage derivatization, chemoenzymatic synthetic pathways, and engineering and genome mining of biosynthetic pathways can be used to produce natural product analogs and discuss the challenges of each of these approaches. Finally, we will discuss computational methods including machine learning methods for analyzing the relationship between biosynthetic genes and product activity, computer aided drug design techniques, and interpretable artificial intelligence approaches towards elucidating structure-activity relationships from models trained to predict bioactivity from chemical structure. Our focus will be on these latter topics as their applications for natural products have not been extensively reviewed. We suggest that these methods are all complementary to each other, and that only collaborative efforts using a combination of these techniques will result in a full understanding of the structure-activity relationships of natural products.
Collapse
Affiliation(s)
| | | | - Caitlin M Butt
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Ledford SM, Meredith LK. Volatile Organic Compound Metabolism on Early Earth. J Mol Evol 2024; 92:605-617. [PMID: 39017923 PMCID: PMC11458752 DOI: 10.1007/s00239-024-10184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Biogenic volatile organic compounds (VOCs) constitute a significant portion of gas-phase metabolites in modern ecosystems and have unique roles in moderating atmospheric oxidative capacity, solar radiation balance, and aerosol formation. It has been theorized that VOCs may account for observed geological and evolutionary phenomena during the Archaean, but the direct contribution of biology to early non-methane VOC cycling remains unexplored. Here, we provide an assessment of all potential VOCs metabolized by the last universal common ancestor (LUCA). We identify enzyme functions linked to LUCA orthologous protein groups across eight literature sources and estimate the volatility of all associated substrates to identify ancient volatile metabolites. We hone in on volatile metabolites with confirmed modern emissions that exist in conserved metabolic pathways and produce a curated list of the most likely LUCA VOCs. We introduce volatile organic metabolites associated with early life and discuss their potential influence on early carbon cycling and atmospheric chemistry.
Collapse
Affiliation(s)
- S Marshall Ledford
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA.
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
5
|
Huang J, Li X, Zhan X, Pan S, Pan C, Li J, Fan S, Zhang L, Du K, Du Z, Zhang J, Huang H, Li J, Zhang H, Qin Z. A Streptomyces species from the ginseng rhizosphere exhibits biocontrol potential. PLANT PHYSIOLOGY 2024; 194:2709-2723. [PMID: 38206193 DOI: 10.1093/plphys/kiae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Plants and their associated microbes live in complicated, changeable, and unpredictable environments. They usually interact with each other in many ways through multidimensional, multiscale, and multilevel coupling manners, leading to challenges in the coexistence of randomness and determinism or continuity and discreteness. Gaining a deeper understanding of these diverse interaction mechanisms can facilitate the development of data-mining theories and methods for complex systems, coupled modeling for systems with different spatiotemporal scales and functional properties, or even a universal theory of information and information interactions. In this study, we use a "closed-loop" model to present a plant-microbe interaction system and describe the probable functions of microbial natural products. Specifically, we report a rhizosphere species, Streptomyces ginsengnesis G7, which produces polyketide lydicamycins and other active metabolites. Interestingly, these distinct molecules have the potential to function both as antibiotics and as herbicides for crop protection. Detailed laboratory experiments conducted in Arabidopsis (Arabidopsis thaliana), combined with a comprehensive bioinformatics analysis, allow us to rationalize a model for this specific plant-microbe interaction process. Our work reveals the benefits of exploring otherwise neglected resources for the identification of potential functional molecules and provides a reference to better understand the system biology of complex ecosystems.
Collapse
Affiliation(s)
- Jiaquan Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xiaojie Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xuanlin Zhan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Shiyu Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Chao Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jixiao Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Liner Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Kehan Du
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhiying Du
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiayu Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Han Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jie Li
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| |
Collapse
|
6
|
Hansen MH, Adamek M, Iftime D, Petras D, Schuseil F, Grond S, Stegmann E, Cryle MJ, Ziemert N. Resurrecting ancestral antibiotics: unveiling the origins of modern lipid II targeting glycopeptides. Nat Commun 2023; 14:7842. [PMID: 38030603 PMCID: PMC10687080 DOI: 10.1038/s41467-023-43451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotics are central to modern medicine, and yet they are mainly the products of intra and inter-kingdom evolutionary warfare. To understand how nature evolves antibiotics around a common mechanism of action, we investigated the origins of an extremely valuable class of compounds, lipid II targeting glycopeptide antibiotics (GPAs, exemplified by teicoplanin and vancomycin), which are used as last resort for the treatment of antibiotic resistant bacterial infections. Using a molecule-centred approach and computational techniques, we first predicted the nonribosomal peptide synthetase assembly line of paleomycin, the ancestral parent of lipid II targeting GPAs. Subsequently, we employed synthetic biology techniques to produce the predicted peptide and validated its antibiotic activity. We revealed the structure of paleomycin, which enabled us to address how nature morphs a peptide antibiotic scaffold through evolution. In doing so, we obtained temporal snapshots of key selection domains in nonribosomal peptide synthesis during the biosynthetic journey from ancestral, teicoplanin-like GPAs to modern GPAs such as vancomycin. Our study demonstrates the synergy of computational techniques and synthetic biology approaches enabling us to journey back in time, trace the temporal evolution of antibiotics, and revive these ancestral molecules. It also reveals the optimisation strategies nature has applied to evolve modern GPAs, laying the foundation for future efforts to engineer this important class of antimicrobial agents.
Collapse
Affiliation(s)
- Mathias H Hansen
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC, 3800, Australia
| | - Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Dumitrita Iftime
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Daniel Petras
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Frauke Schuseil
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC, 3800, Australia.
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Nguyen KU, Zhang Y, Liu Q, Zhang R, Jin X, Taniguchi M, Miller ES, Lindsey JS. Tolyporphins-Exotic Tetrapyrrole Pigments in a Cyanobacterium-A Review. Molecules 2023; 28:6132. [PMID: 37630384 PMCID: PMC10459692 DOI: 10.3390/molecules28166132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium-microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known-each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open β-pyrrole positions and two, one, or zero appended C-glycoside (or -OH or -OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins.
Collapse
Affiliation(s)
- Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Yunlong Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Qihui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Xiaohe Jin
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Eric S. Miller
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA;
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| |
Collapse
|
8
|
Kim D, Crippen TL, Jordan HR, Tomberlin JK. Quorum sensing gene regulation in Staphylococcus epidermidis reduces the attraction of Aedes aegypti (L.) (Diptera: Culicidae). Front Microbiol 2023; 14:1208241. [PMID: 37426032 PMCID: PMC10324375 DOI: 10.3389/fmicb.2023.1208241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Identifying mechanisms regulating mosquito attraction to hosts is key to suppressing pathogen transmission. Historically, the ecology of the host microbial community and its influence on mosquito attraction, specifically, whether bacterial communication through quorum sensing (QS) modulates VOC production that affects mosquito behavior have not been extensively considered. Methods Behavioral choice assays were applied along with volatile collection, followed by GC-MS and RNA transcriptome analyses of bacteria with and without a quorum-sensing inhibitor, furanone C-30. Results Utilizing the quorum-sensing inhibitor on a skin-inhabiting bacterium, Staphylococcus epidermidis, we disrupted its interkingdom communication with adult Aedes aegypti and mitigated their attraction to a blood-meal by 55.1%. Discussion One potential mechanism suppressing mosquito attraction could be the reduction (31.6% in our study) of bacterial volatiles and their associated concentrations by shifting S. epidermidis metabolic (12 of 29 up regulated genes) and stress (5 of 36 down regulated genes) responses. Manipulating the quorum-sensing pathways could serve as a mechanism to reduce mosquito attraction to a host. Such manipulations could be developed into novel control methods for pathogen-transmitting mosquitoes and other arthropods.
Collapse
Affiliation(s)
- Dongmin Kim
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| | - Heather R. Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Jeffery K. Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Barona-Gómez F, Chevrette MG, Hoskisson PA. On the evolution of natural product biosynthesis. Adv Microb Physiol 2023; 83:309-349. [PMID: 37507161 DOI: 10.1016/bs.ampbs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.
Collapse
Affiliation(s)
| | - Marc G Chevrette
- Department of Microbiology and Cell Sciences, University of Florida, Museum Drive, Gainesville, FL, United States; University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, FL, United States
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, United Kingdom.
| |
Collapse
|
10
|
Michael, Waturangi DE. Antibiofilm activity from endophyte bacteria, Vibrio cholerae strains, and actinomycetes isolates in liquid and solid culture. BMC Microbiol 2023; 23:83. [PMID: 36991312 PMCID: PMC10053847 DOI: 10.1186/s12866-023-02829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Biofilm-associated infections are a global threat to our economy and human health; as such, development of antibiofilm compounds is an urgent need. Our previous study identified eleven environmental isolates of endophyte bacteria, actinomycetes, and two strains of Vibrio cholerae as having strong antibiofilm activity, but only tested crude extracts from liquid culture. Here we grew the same bacteria in solid culture to induce the formation of colony biofilms and the expression of genes that may ultimately produce antibiofilm compounds. This research aimed to compare antibiofilm inhibition and destruction activities between liquid and solid cultures of these eleven environmental isolates against the biofilms of representative pathogenic bacteria.
Results
We measured antibiofilm activity using the static antibiofilm assay and crystal violet staining. The majority of our isolates exhibited higher inhibitory antibiofilm activity in liquid media, including all endophyte bacteria, V. cholerae V15a, and actinomycetes strains (CW01, SW03, CW17). However, for V. cholerae strain B32 and two actinomycetes bacteria (TB12 and SW12), the solid crude extracts showed higher inhibitory activity. Regarding destructive antibiofilm activity, many endophyte isolates and V. cholerae strains showed no significant difference between culture methods; the exceptions were endophyte bacteria isolate JerF4 and V. cholerae B32. The liquid extract of isolate JerF4 showed higher destructive activity relative to the corresponding solid culture extract, while for V. cholerae strain B32 the solid extract showed higher activity against some biofilms of pathogenic bacteria.
Conclusions
Culture conditions, namely solid or liquid culture, can influence the activity of culture extracts against biofilms of pathogenic bacteria. We compared the antibiofilm activity and presented the data that majority of isolates showed a higher antibiofilm activity in liquid culture. Interestingly, solid extracts from three isolates (B32, TB12, and SW12) have a better inhibition or/and destruction antibiofilm activity compared to their liquid culture. Further research is needed to characterize the activities of specific metabolites in solid and liquid culture extracts and to determine the mechanisms of their antibiofilm actions.
Collapse
|
11
|
Geller-McGrath D, Mara P, Taylor GT, Suter E, Edgcomb V, Pachiadaki M. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. Nat Commun 2023; 14:656. [PMID: 36746960 PMCID: PMC9902471 DOI: 10.1038/s41467-023-36026-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.
Collapse
Affiliation(s)
| | - Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth Suter
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- Biology, Chemistry and Environmental Studies Department, Molloy College, Rockville Centre, NY, USA
| | - Virginia Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
12
|
Lee ZY, Ng ZY, Mohd Nor MN, Teo WFA, Tan GYA. Streptomyces solincola sp. nov., isolated from soil in Malaysia. Int J Syst Evol Microbiol 2022; 72. [PMID: 36282570 DOI: 10.1099/ijsem.0.005594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A urease-producing Gram-stain-positive actinobacterium, designated strain T5T, was isolated from a soil sample collected at a highway hillslope in Selangor, Malaysia. The strain was found to produce pale yellowish-pink aerial mycelia with smooth long chain spores and extensively branched light yellowish-pink substrate mycelia on oatmeal agar. Strain T5T grew at 15-37 °C, pH 6-11, and tolerated up to 9 % (w/v) NaCl, with optimal growth occurring at 28 °C, pH 6-9 and without NaCl. The whole-cell sugar hydrolysate of strain T5T contained galactose, glucose and ribose. The ll-diaminopimelic acid isomer was detected in the cell wall. Diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol were found to be the predominant polar lipids. The main fatty acids were anteiso-C17 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C14 : 0. Comparative analysis of the 16S rRNA gene sequences indicated that strain T5T belonged to Streptomyces of the family Streptomycetaceae with the highest 16S rRNA gene sequence similarity to Streptomyces lichenis LCR6-01T (99.0 %). The overall genome relatedness indices revealed that the closest related species was S. lichenis LCR6-01T with 89.4 % average nucleotide identity and 33.7 % digital DNA-DNA hybridization. Phylogeny analyses showed that strain T5T was closely related to Streptomyces fradiae, Streptomyces lavendofoliae, Streptomyces lichenis, Streptomyces roseolilacinus and Streptomyces somaliensis. Based on these polyphasic data, strain T5T represents a novel species, for which the name Streptomyces solincola sp. nov. is proposed. The type strain is T5T (=TBRC 5137T= DSM 42166T).
Collapse
Affiliation(s)
- Zi Ying Lee
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zoe Yi Ng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhammad Nuruddin Mohd Nor
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA Cawangan Melaka, Kampus Jasin, 77300 Merlimau, Melaka, Malaysia
| | - Wee Fei Aaron Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Geok Yuan Annie Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Henriksen NNSE, Lindqvist LL, Wibowo M, Sonnenschein EC, Bentzon-Tilia M, Gram L. Role is in the eye of the beholder-the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteraceae. FEMS Microbiol Rev 2022; 46:fuac007. [PMID: 35099011 PMCID: PMC9075582 DOI: 10.1093/femsre/fuac007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA). TDA is a broad-spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio. The production of TDA is governed by the mode of growth and influenced by the availability of nutrient sources. The antibacterial effect of TDA is caused by disruption of the proton motive force of target microorganisms and, potentially, by its iron-chelating properties. TDA also acts as a signaling molecule, affecting gene expression in other bacteria, and altering phenotypic traits such as motility, biofilm formation, and antibiotic production in the producer. In microbial communities, TDA-producing bacteria cause a reduction of the relative abundance of closely related species and some fast-growing heterotrophic bacteria. Here, we summarize the current understanding of the chemical ecology of TDA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of TDA.
Collapse
Affiliation(s)
- Nathalie N S E Henriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Laura L Lindqvist
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Su YC, Cheng MJ, Weng JR. Cytotoxic polyhydroxylated sterol analogues from Dysidea aff. frondosa. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Alves C, Silva J, Afonso MB, Guedes RA, Guedes RC, Alvariño R, Pinteus S, Gaspar H, Goettert MI, Alfonso A, Rodrigues CMP, Alpoím MC, Botana L, Pedrosa R. Disclosing the antitumour potential of the marine bromoditerpene sphaerococcenol A on distinct cancer cellular models. Biomed Pharmacother 2022; 149:112886. [PMID: 35378501 DOI: 10.1016/j.biopha.2022.112886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Nature has revealed to be a key source of innovative anticancer drugs. This study evaluated the antitumour potential of the marine bromoditerpene sphaerococcenol A on different cancer cellular models. Dose-response analyses (0.1-100 µM; 24 h) were accomplished in eight different tumour cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-MEL-28). Deeper studies were conducted on MFC-7 cells, namely, determination of hydrogen peroxide (H2O2) levels and evaluation of apoptosis biomarkers (phosphatidylserine membrane translocation, mitochondrial dysfunction, Caspase-9 activity, and DNA changes). The ability of the compound to induce genotoxicity was verified in L929 fibroblasts. Sphaerococcenol A capacity to impact colorectal-cancer stem cells (CSCs) tumourspheres (HT29, HCT116, SW620) was evaluated by determining tumourspheres viability, number, and area, as well as the proteasome inhibitory activity. Sphaerococcenol A hepatoxicity was studied in AML12 hepatocytes. The compound exhibited cytotoxicity in all malignant cell lines (IC50 ranging from 4.5 to 16.6 µM). MCF-7 cells viability loss was accompanied by H2O2 generation, mitochondrial dysfunction, Caspase-9 activation and DNA nuclear morphology changes. Furthermore, the compound displayed the lowest IC50 on HT29-derived tumourspheres (0.70 µM), followed by HCT116 (1.77 µM) and SW620 (2.74 µM), impacting the HT29 tumoursphere formation by reducing their number and area. Finally, the compound displayed low cytotoxicity on AML12 hepatocytes without genotoxicity. Overall, sphaerococcenol A exhibits broad cytotoxic effects on different tumour cells, increasing H2O2 production and apoptosis. It also affects colorectal CSCs-enriched tumoursphere development. These data highlight the relevance to include sphaerococcenol A in further pharmacological studies aiming cancer treatments.
Collapse
Affiliation(s)
- Celso Alves
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal.
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Romina A Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rebeca Alvariño
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630 Peniche, Portugal; BioISI - Biosystems and Integrative Sciences Institute Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Márcia I Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS 95914-014, Brazil
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria C Alpoím
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal
| | - Luis Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-614 Peniche, Portugal.
| |
Collapse
|
16
|
Saini R, Kumar S, Sharma A, Kumar V, Sharma R, Janghu S, Suthar P. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajni Saini
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur India
| | - Vikas Kumar
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Rakesh Sharma
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Sandeep Janghu
- Department of Food Product Development Indian Institute of Food Processing Technology Thanjavur India
| | - Priyanka Suthar
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| |
Collapse
|
17
|
Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria. Nat Microbiol 2021; 6:1118-1128. [PMID: 34446927 DOI: 10.1038/s41564-021-00952-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Environmental bacteria, such as Streptomyces spp., produce specialized metabolites that are potent antibiotics and therapeutics. Selected specialized antimicrobials are co-produced and function together synergistically. Co-produced antimicrobials comprise multiple chemical classes and are produced by a wide variety of bacteria in different environmental niches, suggesting that their combined functions are ecologically important. Here, we highlight the exquisite mechanisms that underlie the simultaneous production and functional synergy of 16 sets of co-produced antimicrobials. To date, antibiotic and antifungal discovery has focused mainly on single molecules, but we propose that methods to target co-produced antimicrobials could widen the scope and applications of discovery programs.
Collapse
|
18
|
Vij R, Hube B, Brunke S. Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria. Comput Struct Biotechnol J 2021; 19:1244-1252. [PMID: 33680363 PMCID: PMC7905183 DOI: 10.1016/j.csbj.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Many fungi can cause deadly diseases in humans, and nearly every human will suffer from some kind of fungal infection in their lives. Only few antifungals are available, and some of these fail to treat intrinsically resistant species and the ever-increasing number of fungal strains that have acquired resistance. In nature, bacteria and fungi display versatile interactions that range from friendly co-existence to predation. The first antifungal drugs, nystatin and amphotericin B, were discovered in bacteria as mediators of such interactions, and bacteria continue to be an important source of antifungals. To learn more about the ecological bacterial-fungal interactions that drive the evolution of natural products and exploit them, we need to identify environments where such interactions are pronounced, and diverse. Here, we systematically analyze historic and recent developments in this field to identify potentially under-investigated niches and resources. We also discuss alternative strategies to treat fungal infections by utilizing the antagonistic potential of bacteria to target fungal stress pathways and virulence factors, and thereby suppress the evolution of antifungal resistance.
Collapse
Affiliation(s)
- Raghav Vij
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| |
Collapse
|
19
|
Tracing molecular properties throughout evolution: A chemoinformatic approach. J Theor Biol 2021; 515:110601. [PMID: 33508327 DOI: 10.1016/j.jtbi.2021.110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/24/2022]
Abstract
Evolution of metabolism is a longstanding yet unresolved question, and several hypotheses were proposed to address this complex process from a Darwinian point of view. Modern statistical bioinformatic approaches targeted to the comparative analysis of genomes are being used to detect signatures of natural selection at the gene and population level, as an attempt to understand the origin of primordial metabolism and its expansion. These studies, however, are still mainly centered on genes and the proteins they encode, somehow neglecting the small organic chemicals that support life processes. In this work, we selected steroids as an ancient family of metabolites widely distributed in all eukaryotes and applied unsupervised machine learning techniques to reveal the traits that natural selection has imprinted on molecular properties throughout the evolutionary process. Our results clearly show that sterols, the primal steroids that first appeared, have more conserved properties and that, from then on, more complex compounds with increasingly diverse properties have emerged, suggesting that chemical diversification parallels the expansion of biological complexity. In a wider context, these findings highlight the worth of chemoinformatic approaches to a better understanding the evolution of metabolism.
Collapse
|
20
|
Conte M, Fontana E, Nebbioso A, Altucci L. Marine-Derived Secondary Metabolites as Promising Epigenetic Bio-Compounds for Anticancer Therapy. Mar Drugs 2020; 19:md19010015. [PMID: 33396307 PMCID: PMC7824531 DOI: 10.3390/md19010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sessile organisms such as seaweeds, corals, and sponges continuously adapt to both abiotic and biotic components of the ecosystem. This extremely complex and dynamic process often results in different forms of competition to ensure the maintenance of an ecological niche suitable for survival. A high percentage of marine species have evolved to synthesize biologically active molecules, termed secondary metabolites, as a defense mechanism against the external environment. These natural products and their derivatives may play modulatory roles in the epigenome and in disease-associated epigenetic machinery. Epigenetic modifications also represent a form of adaptation to the environment and confer a competitive advantage to marine species by mediating the production of complex chemical molecules with potential clinical implications. Bioactive compounds are able to interfere with epigenetic targets by regulating key transcriptional factors involved in the hallmarks of cancer through orchestrated molecular mechanisms, which also establish signaling interactions of the tumor microenvironment crucial to cancer phenotypes. In this review, we discuss the current understanding of secondary metabolites derived from marine organisms and their synthetic derivatives as epigenetic modulators, highlighting advantages and limitations, as well as potential strategies to improve cancer treatment.
Collapse
|
21
|
Damaghi M, Mori H, Byrne S, Xu L, Chen T, Johnson J, Gallant ND, Marusyk A, Borowsky AD, Gillies RJ. Collagen production and niche engineering: A novel strategy for cancer cells to survive acidosis in DCIS and evolve. Evol Appl 2020; 13:2689-2703. [PMID: 33294017 PMCID: PMC7691473 DOI: 10.1111/eva.13075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
Growing tumors are dynamic and nonlinear ecosystems, wherein cancer cells adapt to their local microenvironment, and these adaptations further modify the environment, inducing more changes. From nascent intraductal neoplasms to disseminated metastatic disease, several levels of evolutionary adaptations and selections occur. Here, we focus on one example of such an adaptation mechanism, namely, "niche construction" promoted by adaptation to acidosis, which is a metabolic adaptation to the early harsh environment in intraductal neoplasms. The avascular characteristics of ductal carcinoma in situ (DCIS) make the periluminal volume profoundly acidic, and cancer cells must adapt to this to survive. Based on discovery proteomics, we hypothesized that a component of acid adaptation involves production of collagen by pre-cancer cells that remodels the extracellular matrix (ECM) and stabilizes cells under acid stress. The proteomic data were surprising as collagen production and deposition are commonly believed to be the responsibility of mesenchymally derived fibroblasts, and not cells of epithelial origin. Subsequent experiments in 3D culture, spinning disk and second harmonic generation microscopy of DCIS lesions in patients' samples are concordant. Collagen production assay by acid-adapted cells in vitro demonstrated that the mechanism of induction involves the RAS and SMAD pathways. Secretome analyses show upregulation of ECM remodeling enzymes such as TGM2 and LOXL2 that are collagen crosslinkers. These data strongly indicate that acidosis in incipient cancers induces collagen production by cancer cells and support the hypothesis that this adaptation initiates a tumor-permissive microenvironment promoting survival and growth of nascent cancers.
Collapse
Affiliation(s)
- Mehdi Damaghi
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
- Department of Oncologic SciencesMorsani College of MedicineUniversity of South FloridaTampaFLUSA
| | - Hidetoshi Mori
- Center for Immunology and Infectious DiseasesComprehensive Cancer CenterDepartment of Pathology and Laboratory MedicineSchool of MedicineUniversity of California, DavisSacramentoCAUSA
| | - Samantha Byrne
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Liping Xu
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Tingan Chen
- Analytic Microscopy CoreMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Joseph Johnson
- Analytic Microscopy CoreMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Nathan D. Gallant
- Department of Mechanical EngineeringUniversity of South FloridaTampaFLUSA
| | - Andriy Marusyk
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| | - Alexander D. Borowsky
- Center for Immunology and Infectious DiseasesComprehensive Cancer CenterDepartment of Pathology and Laboratory MedicineSchool of MedicineUniversity of California, DavisSacramentoCAUSA
| | - Robert J. Gillies
- Department of Cancer PhysiologyMoffitt Cancer Center and Research InstituteTampaFLUSA
| |
Collapse
|
22
|
Noda-Garcia L, Tawfik DS. Enzyme evolution in natural products biosynthesis: target- or diversity-oriented? Curr Opin Chem Biol 2020; 59:147-154. [PMID: 32771972 DOI: 10.1016/j.cbpa.2020.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Natural product biosynthesis (NPB) is the Panda's Thumb of evolutionary biochemistry. Arm races between organisms, and ever-changing environments, result in relentless innovation. This review focusses on enzyme evolution in NPB. First, we review cases of de novo emergence, whereby a completely new enzymatic activity arose in a ligand-binding protein, or a new enzyme emerged including a completely new scaffold. Second, we briefly review the current models for enzyme evolution, and how they explain the inherent promiscuity of NPB enzymes and their tendency to produce multiple related products. We thus suggest that NPB enzymes a priori evolved to generate a specific product; they are, however, trapped in a multifunctional, generalist evolutionary state and thereby produce a diversity of products.
Collapse
Affiliation(s)
- Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
23
|
Nji Wandi B, Siitonen V, Dinis P, Vukic V, Salminen TA, Metsä-Ketelä M. Evolution-guided engineering of non-heme iron enzymes involved in nogalamycin biosynthesis. FEBS J 2020; 287:2998-3011. [PMID: 31876382 DOI: 10.1111/febs.15192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 01/05/2023]
Abstract
Microbes are competent chemists that are able to generate thousands of chemically complex natural products with potent biological activities. The key to the formation of this chemical diversity has been the rapid evolution of secondary metabolism. Many enzymes residing on these metabolic pathways have acquired atypical catalytic properties in comparison with their counterparts found in primary metabolism. The biosynthetic pathway of the anthracycline nogalamycin contains two such proteins, SnoK and SnoN, belonging to nonheme iron and 2-oxoglutarate-dependent mono-oxygenases. In spite of structural similarity, the two proteins catalyze distinct chemical reactions; SnoK is a C2-C5″ carbocyclase, whereas SnoN catalyzes stereoinversion at the adjacent C4″ position. Here, we have identified four structural regions involved in the functional differentiation and generated 30 chimeric enzymes to probe catalysis. Our analyses indicate that the carbocyclase SnoK is the ancestral form of the enzyme from which SnoN has evolved to catalyze stereoinversion at the neighboring carbon. The critical step in the appearance of epimerization activity has likely been the insertion of three residues near the C-terminus, which allow repositioning of the substrate in front of the iron center. The loss of the original carbocyclization activity has then occurred with changes in four amino acids near the iron center that prohibit alignment of the substrate for the formation of the C2-C5″ bond. Our study provides detailed insights into the evolutionary processes that have enabled Streptomyces soil bacteria to become the major source of antibiotics and antiproliferative agents. ENZYMES: EC number 1.14.11.
Collapse
Affiliation(s)
| | - Vilja Siitonen
- Department of Biochemistry, University of Turku, Finland
| | - Pedro Dinis
- Department of Biochemistry, University of Turku, Finland
| | - Vladimir Vukic
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Faculty of Technology Novi Sad, University of Novi Sad, Serbia
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
24
|
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem Rev 2019; 119:12524-12547. [PMID: 31838842 PMCID: PMC6935866 DOI: 10.1021/acs.chemrev.9b00525] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Assembly-line polyketide synthases (PKSs) are among the most complex protein machineries known in nature, responsible for the biosynthesis of numerous compounds used in the clinic. Their present-day diversity is the result of an evolutionary path that has involved the emergence of a multimodular architecture and further diversification of assembly-line PKSs. In this review, we provide an overview of previous studies that investigated PKS evolution and propose a model that challenges the currently prevailing view that gene duplication has played a major role in the emergence of multimodularity. We also analyze the ensemble of orphan PKS clusters sequenced so far to evaluate how large the entire diversity of assembly-line PKS clusters and their chemical products could be. Finally, we examine the existing techniques to access the natural PKS diversity in natural and heterologous hosts and describe approaches to further expand this diversity through engineering.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Kai P. Yuet
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Jake Hsu
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Omeike SO, Kareem SO, Lasisi AA. Potential antibiotic-producing fungal strains isolated from pharmaceutical waste sludge. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1186/s43088-019-0026-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
Background
Antibiotic resistance and dearth of novel compounds from natural sources warrants the need to search other environments for potential antibiotic-producing microbial species. The study investigated isolation and identification of antibiotic-producing fungi from pharmaceutical waste sludge.
Results
Seven hundred and ninety-seven isolates obtained from sludge of seven pharmaceutical industries in Sango Ota, Ogun State using several growth media, with mould isolates highest (696). Isolated species were from genera Aspergillus (28.55%), Penicillium (18.35%), Trichoderma (13.44%), Rhizopus (10.21%) and Geotrichum (4.01%), and Stachybotrys (0.13%). The CFS of strains named Geotrichum candidum OMON-1, Talaromyces pinophilus OKHAIN-12, and Penicillium citrinum PETER-OOA1 had high reproducible bioactivity against Staphylococcus aureus (32 ± 0.12 mm) and Klebsiella pneumoniae (29 ± 0.12 mm) while P. citrinum MASTER-RAA2 had activity against K. pneumoniae only. Active metabolites were successfully extracted using Diaion HP-20 and methanol:iso-propanol:acetone (6:3:1 v/v). Antibacterial-active fractions of fungal extract successfully eluted with 40–60% NaCl on ion-exchange chromatography using a cation column.
Conclusions
The study successfully screened antibiotic-producing fungal species from pharmaceutical waste storage facilities. Study also showed that similar species from same toxic environment could potentially produce different metabolites.
Collapse
|
26
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
27
|
Schupfner M, Busch F, Wysocki VH, Sterner R. Generation of a Stand-Alone Tryptophan Synthase α-Subunit by Mimicking an Evolutionary Blueprint. Chembiochem 2019; 20:2747-2751. [PMID: 31090986 DOI: 10.1002/cbic.201900323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 11/05/2022]
Abstract
The αββα tryptophan synthase (TS), which is part of primary metabolism, is a paradigm for allosteric communication in multienzyme complexes. In particular, the intrinsically low catalytic activity of the α-subunit TrpA is stimulated several hundredfold through the interaction with the β-subunit TrpB1. The BX1 protein from Zea mays (zmBX1), which is part of secondary metabolism, catalyzes the same reaction as that of its homologue TrpA, but with high activity in the absence of an interaction partner. The intrinsic activity of TrpA can be significantly increased through the exchange of several active-site loop residues, which mimic the corresponding loop in zmBX1. The subsequent identification of activating amino acids in the generated "stand-alone" TrpA contributes to an understanding of allostery in TS. Moreover, findings suggest an evolutionary trajectory that describes the transition from a primary metabolic enzyme regulated by an interaction partner to a self-reliant, stand-alone, secondary metabolic enzyme.
Collapse
Affiliation(s)
- Michael Schupfner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Florian Busch
- Department of Chemistry and Biochemistry and, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
28
|
Mughal F, Caetano-Anollés G. MANET 3.0: Hierarchy and modularity in evolving metabolic networks. PLoS One 2019; 14:e0224201. [PMID: 31648227 PMCID: PMC6812854 DOI: 10.1371/journal.pone.0224201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/08/2019] [Indexed: 11/30/2022] Open
Abstract
Enzyme recruitment is a fundamental evolutionary driver of modern metabolism. We see evidence of recruitment at work in the metabolic Molecular Ancestry Networks (MANET) database, an online resource that integrates data from KEGG, SCOP and structural phylogenomic reconstruction. The database, which was introduced in 2006, traces the deep history of the structural domains of enzymes in metabolic pathways. Here we release version 3.0 of MANET, which updates data from KEGG and SCOP, links enzyme and PDB information with PDBsum, and traces evolutionary information of domains defined at fold family level of SCOP classification in metabolic subnetwork diagrams. Compared to SCOP folds used in the previous versions, fold families are cohesive units of functional similarity that are highly conserved at sequence level and offer a 10-fold increase of data entries. We surveyed enzymatic, functional and catalytic site distributions among superkingdoms showing that ancient enzymatic innovations followed a biphasic temporal pattern of diversification typical of module innovation. We grouped enzymatic activities of MANET into a hierarchical system of subnetworks and mesonetworks matching KEGG classification. The evolutionary growth of these modules of metabolic activity was studied using bipartite networks and their one-mode projections at enzyme, subnetwork and mesonetwork levels of organization. Evolving metabolic networks revealed patterns of enzyme sharing that transcended mesonetwork boundaries and supported the patchwork model of metabolic evolution. We also explored the scale-freeness, randomness and small-world properties of evolving networks as possible organizing principles of network growth and diversification. The network structure shows an increase in hierarchical modularity and scale-free behavior as metabolic networks unfold in evolutionary time. Remarkably, this evolutionary constraint on structure was stronger at lower levels of metabolic organization. Evolving metabolic structure reveals a 'principle of granularity', an evolutionary increase of the cohesiveness of lower-level parts of a hierarchical system. MANET is available at http://manet.illinois.edu.
Collapse
Affiliation(s)
- Fizza Mughal
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gustavo Caetano-Anollés
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
29
|
Allevato DM, Groppo M, Kiyota E, Mazzafera P, Nixon KC. Evolution of phytochemical diversity in Pilocarpus (Rutaceae). PHYTOCHEMISTRY 2019; 163:132-146. [PMID: 31078082 DOI: 10.1016/j.phytochem.2019.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
The evolution of phytochemical diversity and biosynthetic pathways in plants can be evaluated from a phylogenetic and environmental perspective. Pilocarpus Vahl (Rutaceae), an economically important medicinal plant in the family Rutaceae, has a great diversity of imidazole alkaloids and coumarins. In this study, we used phylogenetic comparative methods to determine whether there is a phylogenetic signal for chemical traits across the genus Pilocarpus; this included ancestral reconstructions of continuous and discrete chemical traits. Bioclimatic variables found to be associated with the distribution of this genus were used to perform OLS regressions between chemical traits and bioclimatic variables. Next, these regression models were evaluated to test whether bioclimatic traits could significantly predict compound concentrations. Our study found that in terms of compound concentration, variation is most significantly associated with adaptive environmental convergence rather than phylogenetic relationships. The best predictive model of chemical traits was the OLS regression that modeled the relationship between coumarin and precipitation in the coldest quarter. However, we also found one chemical trait was dependent on phylogenetic history and bioclimatic factors. These findings emphasize that consideration of both environmental and phylogenetic factors is essential to tease out the intricate processes in the evolution of chemical diversity in plants. These methods can benefit fields such as conservation management, ecology, and evolutionary biology.
Collapse
Affiliation(s)
- Daniella M Allevato
- Cornell University, L.H. Bailey Hortorium, Section of Plant Biology, School of Plant Sciences, Cornell University, Ithaca, NY, USA.
| | - Milton Groppo
- USP Ribeirão Preto, Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Eduardo Kiyota
- UNICAMP, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Brazil.
| | - Paulo Mazzafera
- UNICAMP, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Brazil; Escola Superior de Agricultura Luiz de Queiroz, Departamento de Produção Vegetal, Universidade de São Paulo, Piracicaba, Brazil.
| | - Kevin C Nixon
- Cornell University, L.H. Bailey Hortorium, Section of Plant Biology, School of Plant Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
30
|
Fessner ND. P450 Monooxygenases Enable Rapid Late-Stage Diversification of Natural Products via C-H Bond Activation. ChemCatChem 2019; 11:2226-2242. [PMID: 31423290 PMCID: PMC6686969 DOI: 10.1002/cctc.201801829] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/07/2019] [Indexed: 01/07/2023]
Abstract
The biological potency of natural products has been exploited for decades. Their inherent structural complexity and natural diversity might hold the key to efficiently address the urgent need for the development of novel pharmaceuticals. At the same time, it is that very complexity, which impedes necessary chemical modifications such as structural diversification, to improve the effectiveness of the drug. For this purpose, Cytochrome P450 enzymes, which possess unique abilities to activate inert sp3-hybridised C-H bonds in a late-stage fashion, offer an attractive synthetic tool. In this review the potential of cytochrome P450 enzymes in chemoenzymatic lead diversification is illustrated discussing studies reporting late-stage functionalisations of natural products and other high-value compounds. These enzymes were proven to extend the synthetic toolbox significantly by adding to the flexibility and efficacy of synthetic strategies of natural product chemists, and scientists of other related disciplines.
Collapse
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI GrazPetersgasse 148010GrazAustria
| |
Collapse
|
31
|
Nagabhishek SN, Madankumar A. A novel apoptosis-inducing metabolite isolated from marine sponge symbiont Monascus sp. NMK7 attenuates cell proliferation, migration and ROS stress-mediated apoptosis in breast cancer cells. RSC Adv 2019; 9:5878-5890. [PMID: 35517301 PMCID: PMC9060890 DOI: 10.1039/c8ra09886g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/27/2019] [Indexed: 01/19/2023] Open
Abstract
The marine environment has a remarkable source of natural products mainly from marine fungi, which have been a central source of novel pharmacologically bioactive secondary metabolites. In this study, the search for a new potential apoptosis-inducing metabolite is focused on marine sponge-associated symbionts. A total of sixteen different sponges were obtained from the Gulf of Mannar region, India, and twenty-three different marine fungal strains were isolated and tested for antiproliferative activity by the MTT assay. Out of these, Monascus sp. NMK7 associated with the marine sponge Clathria frondifera was found to have a promising antiproliferative property. Furthermore, to isolate the pure active metabolite, the crude material was subjected to column chromatography and HPLC. Structural characterization was conducted by a variety of spectroscopic techniques including UV, IR, MS and NMR. The obtained results from the MS and NMR spectroscopy determined 418.5 Da to be the molecular weight and C24H34O6 to be the molecular formula of the metabolite, indicating the presence of monacolin X (NMKD7). NMKD7 was found to induce dose-dependent cytotoxicity in different human breast cancer cell lines MCF-7, T47D, MDA-MB-231, MDA-MB-468 and MCF-10A normal breast cell after 24 h of exposure. For elucidating the possible mode of cell death, T47D and MDA-MB-468 cells were treated with NMKD7 for 24 h to examine the morphological change of the chromatin (PI & AO/EB). Therefore, it has been suggested as the possible mechanism of apoptosis, and apart from this, it has also exhibited antibacterial and anti-migratory properties as well as induced the ROS stress (DCFH-DA), which causes the mitochondrial membrane potential difference (Rhodamine-123), the loss of cell membrane integrity and eventually cell death. Thus, the present study features a novel promising apoptosis-inducing metabolite (NMKD7) with minimal toxicity, suggesting its potential for biotechnological applications, and substantiates that it should be further considered for the elucidation of molecular targets and signal transduction pathways.
Collapse
Affiliation(s)
- Sirpu Natesh Nagabhishek
- Cancer Biology Lab, Molecular and Nanomedicine Research Unit, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +919942110146
| | - Arumugam Madankumar
- Cancer Biology Lab, Molecular and Nanomedicine Research Unit, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +919942110146
| |
Collapse
|
32
|
Alternative Biosynthetic Starter Units Enhance the Structural Diversity of Cyanobacterial Lipopeptides. Appl Environ Microbiol 2019; 85:AEM.02675-18. [PMID: 30504214 DOI: 10.1128/aem.02675-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthetic gene clusters encode two alternative biosynthetic starter modules, and analysis of structural variants suggests that initiation by each of the starter modules results in lipopeptides of differing lengths and FA substitutions. Among additional modifications of the FA chain, chlorination of minutissamide D was explained by the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena minutissima strain UTEX B 1613. We detected PUW variants bearing an acetyl substitution in Symplocastrum muelleri strain NIVA-CYA 644, consistent with an O-acetyltransferase gene in its biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant antibacterial activity, and only the PUW F variant was moderately active against yeast, consistent with previously published data suggesting that PUWs/MINs interact preferentially with eukaryotic plasma membranes.IMPORTANCE Herein, we deciphered the most important biosynthetic traits of a prominent group of bioactive lipopeptides. We reveal evidence for initiation of biosynthesis by two alternative starter units hardwired directly in the same gene cluster, eventually resulting in the production of a remarkable range of lipopeptide variants. We identified several unusual tailoring genes potentially involved in modifying the fatty acid chain. Careful characterization of these biosynthetic gene clusters and their diverse products could provide important insight into lipopeptide biosynthesis in prokaryotes. Some of the variants identified exhibit cytotoxic and antifungal properties, and some are associated with a toxigenic biofilm-forming strain. The findings may prove valuable to researchers in the fields of natural product discovery and toxicology.
Collapse
|
33
|
Lascano S, Lopez M, Arimondo PB. Natural Products and Chemical Biology Tools: Alternatives to Target Epigenetic Mechanisms in Cancers. CHEM REC 2018; 18:1854-1876. [PMID: 30537358 DOI: 10.1002/tcr.201800133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
DNA methylation and histone acetylation are widely studied epigenetic modifications. They are involved in numerous pathologies such as cancer, neurological disease, inflammation, obesity, etc. Since the discovery of the epigenome, numerous compounds have been developed to reverse DNA methylation and histone acetylation aberrant profile in diseases. Among them several were inspired by Nature and have a great interest as therapeutic molecules. In the quest of finding new ways to target epigenetic mechanisms, the use of chemical tools is a powerful strategy to better understand epigenetic mechanisms in biological systems. In this review we will present natural products reported as DNMT or HDAC inhibitors for anticancer treatments. We will then discuss the use of chemical tools that have been used in order to explore the epigenome.
Collapse
Affiliation(s)
- Santiago Lascano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724, Paris cedex 15, France
| |
Collapse
|
34
|
Noda-Garcia L, Liebermeister W, Tawfik DS. Metabolite–Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Annu Rev Biochem 2018; 87:187-216. [DOI: 10.1146/annurev-biochem-062917-012023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How individual enzymes evolved is relatively well understood. However, individual enzymes rarely confer a physiological advantage on their own. Judging by its current state, the emergence of metabolism seemingly demanded the simultaneous emergence of many enzymes. Indeed, how multicomponent interlocked systems, like metabolic pathways, evolved is largely an open question. This complexity can be unlocked if we assume that survival of the fittest applies not only to genes and enzymes but also to the metabolites they produce. This review develops our current knowledge of enzyme evolution into a wider hypothesis of pathway and network evolution. We describe the current models for pathway evolution and offer an integrative metabolite–enzyme coevolution hypothesis. Our hypothesis addresses the origins of new metabolites and of new enzymes and the order of their recruitment. We aim to not only survey established knowledge but also present open questions and potential ways of addressing them.
Collapse
Affiliation(s)
- Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| | - Wolfram Liebermeister
- INRA, Unité MaIAGE, 78352 Jouy en Josas, France
- Institute of Biochemistry, Charité Universitätsmedizin, Berlin, 10117 Berlin, Germany
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| |
Collapse
|
35
|
Pais AL, Li X, (Jenny) Xiang Q. Discovering variation of secondary metabolite diversity and its relationship with disease resistance in Cornus florida L. Ecol Evol 2018; 8:5619-5636. [PMID: 29938079 PMCID: PMC6010843 DOI: 10.1002/ece3.4090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Understanding intraspecific relationships between genetic and functional diversity is a major goal in the field of evolutionary biology and is important for conserving biodiversity. Linking intraspecific molecular patterns of plants to ecological pressures and trait variation remains difficult due to environment-driven plasticity. Next-generation sequencing, untargeted liquid chromatography-mass spectrometry (LC-MS) profiling, and interdisciplinary approaches integrating population genomics, metabolomics, and community ecology permit novel strategies to tackle this problem. We analyzed six natural populations of the disease-threatened Cornus florida L. from distinct ecological regions using genotype-by-sequencing markers and LC-MS-based untargeted metabolite profiling. We tested the hypothesis that higher genetic diversity in C. florida yielded higher chemical diversity and less disease susceptibility (screening hypothesis), and we also determined whether genetically similar subpopulations were similar in chemical composition. Most importantly, we identified metabolites that were associated with candidate loci or were predictive biomarkers of healthy or diseased plants after controlling for environment. Subpopulation clustering patterns based on genetic or chemical distances were largely congruent. While differences in genetic diversity were small among subpopulations, we did observe notable similarities in patterns between subpopulation averages of rarefied-allelic and chemical richness. More specifically, we found that the most abundant compound of a correlated group of putative terpenoid glycosides and derivatives was correlated with tree health when considering chemodiversity. Random forest biomarker and genomewide association tests suggested that this putative iridoid glucoside and other closely associated chemical features were correlated to SNPs under selection.
Collapse
Affiliation(s)
- Andrew L. Pais
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| | - Xu Li
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNorth Carolina
| | - Qiu‐Yun (Jenny) Xiang
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
36
|
Analysis of Novel Antioxidant Sesquarterpenes (C 35 Terpenes) Produced in Recombinant Corynebacterium glutamicum. Appl Biochem Biotechnol 2018; 186:525-534. [PMID: 29663127 DOI: 10.1007/s12010-018-2756-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Novel synthetic isoprenoids have been synthesized in engineered microbial hosts by evolving terpene synthase or expressing heterologous terpene synthases. Recently, the native operon, crtNaNcM derived from Planococcus sp. PAMC 21323, has isolated for potential industrial applications of C35 carotenoids. For the first time, novel C35 carotenoids (sesquarterpene) were synthesized in Corynebacterium glutamicum expressing the crtNaNcM genes. The recombinant strains accumulate various sesquarterpene including 4-apolycopene (red color), 4-aponeurosporene (yellow color), and no pigmentation, depending on the expression of the genetic elements of the crtNaNcM genes. Subsequently, the carotenoid extract from the cells harboring pCES-H36-CrtNaNcM was analyzed, resulting in significantly higher antioxidant activity than those of other strains harboring pCES-H36-CrtNcM and pCES-H36-CrtNaNc, respectively. This study will promote further engineering of C. glutamicum to increase sesquarterpene productions.
Collapse
|
37
|
Liu Y, Friesen JB, McAlpine JB, Lankin DC, Chen SN, Pauli GF. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. JOURNAL OF NATURAL PRODUCTS 2018; 81:679-690. [PMID: 29513526 PMCID: PMC5913660 DOI: 10.1021/acs.jnatprod.7b00945] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As functional liquid media, natural deep eutectic solvent (NADES) species can dissolve natural or synthetic chemicals of low water solubility. Moreover, the special properties of NADES, such as biodegradability and biocompatibility, suggest that they are alternative candidates for concepts and applications involving some organic solvents and ionic liquids. Owing to the growing comprehension of the eutectic mechanisms and the advancing interest in the natural eutectic phenomenon, many NADES applications have been developed in the past several years. However, unlike organic solvents, the basic structural unit of NADES media primarily depends on the intermolecular interactions among their components. This makes NADES matrices readily influenced by various factors, such as water content, temperature, and component ratio and, thus, extends the metabolomic challenge of natural products (NPs). To enhance the understanding of the importance of NADES in biological systems, this review focuses on NADES properties and applications in NP research. The present thorough chronological and statistical analysis of existing report adds to the recognition of the distinctiveness of (NA)DES, involves a discussion of NADES-related observations in NP research, and reportes applications of these eutectic mixtures. The work identifies potential areas for future studies of (NA)DES by evaluating relevant applications, including their use as extraction and chromatographic media as well as their biomedical relevance. The chemical diversity of natural metabolites that generate or participate in NADES formation highlights the growing insight that biosynthetically primordial metabolites (PRIMs) are as essential to the biological function and bioactivity of unrefined natural products as the biosynthetically more highly evolutionary metabolites (HEVOs) that can be isolated from crude mixtures.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- UIC/NIH Botanical Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - J. Brent Friesen
- UIC/NIH Botanical Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Center for Natural Product Technologies (CENAPT), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Physical Sciences, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - James B. McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Center for Natural Product Technologies (CENAPT), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - David C. Lankin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- UIC/NIH Botanical Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Center for Natural Product Technologies (CENAPT), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- UIC/NIH Botanical Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Center for Natural Product Technologies (CENAPT), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- UIC/NIH Botanical Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Center for Natural Product Technologies (CENAPT), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Corresponding Author. Tel: (312) 355-1949. Fax: (312) 355-2693.
| |
Collapse
|
38
|
Lei C, Wang J, Liu Y, Liu X, Zhao G, Wang J. A feedback regulatory model for RifQ-mediated repression of rifamycin export in Amycolatopsis mediterranei. Microb Cell Fact 2018; 17:14. [PMID: 29375035 PMCID: PMC5787919 DOI: 10.1186/s12934-018-0863-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to the important role of rifamycin in curing tuberculosis infection, the study on rifamycin has never been stopped. Although RifZ, which locates within the rifamycin biosynthetic cluster, has recently been characterized as a pathway-specific regulator for rifamycin biosynthesis, little is known about the regulation of rifamycin export. RESULTS In this work, we proved that the expression of the rifamycin efflux pump (RifP) was regulated by RifQ, a TetR-family transcriptional regulator. Deletion of rifQ had little impact on bacterial growth, but resulted in improved rifamycin production, which was consistent with the reverse transcription PCR results that RifQ negatively regulated rifP's transcription. With electrophoretic mobility shift assay and DNase I Footprinting assay, RifQ was found to directly bind to the promoter region of rifP, and a typical inverted repeat was identified within the RifQ-protected sequences. The transcription initiation site of rifP was further characterized and found to be upstream of the RifQ binding sites, well explaining the RifQ-mediated repression of rifP's transcription in vivo. Moreover, rifamycin B (the end product of rifamycin biosynthesis) remarkably decreased the DNA binding affinity of RifQ, which led to derepression of rifamycin export, reducing the intracellular concentration of rifamycin B as well as its toxicity against the host. CONCLUSIONS Here, we proved that the export of rifamycin B was repressed by RifQ in Amycolatopsis mediterranei, and the RifQ-mediated repression could be specifically relieved by rifamycin B, the end product of rifamycin biosynthesis, based on which a feedback model was proposed for regulation of rifamycin export. With the findings here, one could improve the antibiotic yield by simply inactivating the negative regulator of the antibiotic transporter.
Collapse
Affiliation(s)
- Chao Lei
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233 China
| | - Jingzhi Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233 China
| | - Yuanyuan Liu
- Shanghai Tolo Biotechnology Company Limited, Shanghai, 200233 China
| | - Xinqiang Liu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233 China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233 China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR China
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233 China
| |
Collapse
|
39
|
Meyer S, Kehr JC, Mainz A, Dehm D, Petras D, Süssmuth RD, Dittmann E. Biochemical Dissection of the Natural Diversification of Microcystin Provides Lessons for Synthetic Biology of NRPS. Cell Chem Biol 2017; 23:462-71. [PMID: 27105282 DOI: 10.1016/j.chembiol.2016.03.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022]
Abstract
The cyanobacterial hepatotoxin microcystin is assembled at a non-ribosomal peptide synthetase (NRPS) complex. The enormous structural diversity of this peptide, which is also found in closely related strains, is the result of frequent recombination events and point mutations. Here, we have compared the in vitro activation profiles of related monospecific and multispecific modules that either strictly incorporate leucine or arginine or incorporate chemically diverse amino acids in parallel into microcystin. By analyzing di- and tri-domain proteins we have dissected the role of adenylation and condensation domains for substrate specificity. We have further analyzed the role of subdomains and provide evidence for an extended gatekeeping function for the condensation domains of multispecific modules. By reproducing natural point mutations, we could convert a monospecific module into a multispecific module. Our findings may inspire novel synthetic biology approaches and demonstrate how recombination platforms of NRPSs have developed in nature.
Collapse
Affiliation(s)
- Sabine Meyer
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24/25, 14476 Potsdam-Golm, Germany
| | - Jan-Christoph Kehr
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24/25, 14476 Potsdam-Golm, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Daniel Dehm
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24/25, 14476 Potsdam-Golm, Germany
| | - Daniel Petras
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24/25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
40
|
Hüttel W. Structural diversity in echinocandin biosynthesis: the impact of oxidation steps and approaches toward an evolutionary explanation. ACTA ACUST UNITED AC 2017; 72:1-20. [PMID: 27705900 DOI: 10.1515/znc-2016-0156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/28/2016] [Indexed: 11/15/2022]
Abstract
Echinocandins are an important group of cyclic non-ribosomal peptides with strong antifungal activity produced by filamentous fungi from Aspergillaceae and Leotiomycetes. Their structure is characterized by numerous hydroxylated non-proteinogenic amino acids. Biosynthetic clusters discovered in the last years contain up to six oxygenases, all of which are involved in amino acid modifications. Especially, variations in the oxidation pattern induced by these enzymes account for a remarkable structural diversity among the echinocandins. This review provides an overview of the current knowledge of echinocandin biosynthesis with a special focus on diversity-inducing oxidation steps. The emergence of metabolic diversity is further discussed on the basis of a comprehensive overview of the structurally characterized echinocandins, their producer strains and biosynthetic clusters. For the pneumocandins, echinocandins produced by Glarea lozoyensis, the formation of metabolic diversity in a single organism is analyzed. It is compared to two common models for the evolution of secondary metabolism: the 'target-based' approach and the 'diversity-based' model. Whereas the early phase of pneumocandin biosynthesis supports the target-based model, the diversity-inducing late steps and most oxidation reactions best fit the diversity-based approach. Moreover, two types of diversity-inducing steps can be distinguished. Although incomplete hydroxylation is a common phenomenon in echinocandin production and secondary metabolite biosynthesis in general, the incorporation of diverse hydroxyprolines at position 6 is apparently a unique feature of pneumocandin biosynthesis, which stands in stark contrast to the strict selectivity found in echinocandin biosynthesis by Aspergillaceae. The example of echinocandin biosynthesis shows that the existing models for the evolution of secondary metabolism can be well applied to parts of the pathway; however, thus far, there is no comprehensive theory that could explain the entire biosynthesis.
Collapse
Affiliation(s)
- Wolfgang Hüttel
- Wolfgang Hüttel, Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| |
Collapse
|
41
|
Hakeem Said I, Rezk A, Hussain I, Grimbs A, Shrestha A, Schepker H, Brix K, Ullrich MS, Kuhnert N. Metabolome Comparison of Bioactive and Inactive Rhododendron Extracts and Identification of an Antibacterial Cannabinoid(s) from Rhododendron collettianum. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:454-464. [PMID: 28612345 DOI: 10.1002/pca.2694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION The science of metabolomics offers the possibility to measure full secondary plant metabolomes with limited experimental effort to allow identification of metabolome differences using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of liquid chromatography mass spectrometry (LC-MS) data. OBJECTIVE To demonstrate a bioinformatics driven hypothesis generator for identification of biologically active compounds in plant crude extracts, which is validated by activity guided fractionation. METHODOLOGY Crude extracts of Rhododendron leaves were tested for their antibacterial activity using agar diffusion and minimum inhibitory concentration assays. Extracts were profiled by LC-MS. PCA and PLS-DA were used for differentiation of bioactive and inactive extracts and their metabolites. Preparative-high performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy were used for separation and structure elucidation of pure compound(s) respectively. RESULTS An antibacterial Rhododendron collettianum was compared to a series of inactive extracts. Three metabolites were found to distinguish R. collettianum from other species indicating the ability of PCA and PLS-DA to suggest potential bioactive substances. An activity-guided fractionation of R. collettianum extracts was carried out and cannabiorcichromenic acid (CCA) was identified as antibacterial compound thereby validating the PCA and PLS-DA generated hypothesis. Four mammalian cell lines were used to estimate possible cytotoxicity of CCA. CONCLUSION It was shown that bioinformatics tools facilitate early stage identification of a biologically active compound(s) using LC-MS data, which reduce complexity and number of separation steps in bioactive screening. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Inamullah Hakeem Said
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Ahmed Rezk
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Ishtiaq Hussain
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Anne Grimbs
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Abhinandan Shrestha
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Hartwig Schepker
- Stiftung Bremer Rhododendronpark, Deliusweg 40, 28359, Bremen, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Matthias S Ullrich
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759, Bremen, Germany
| |
Collapse
|
42
|
Varela JN, Lammoglia Cobo MF, Pawar SV, Yadav VG. Cheminformatic Analysis of Antimalarial Chemical Space Illuminates Therapeutic Mechanisms and Offers Strategies for Therapy Development. J Chem Inf Model 2017; 57:2119-2131. [PMID: 28810125 DOI: 10.1021/acs.jcim.7b00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The clear and present danger of malaria, which has been amplified in recent years by climate change, and the progressive thinning of our drug arsenal over the past two decades raise uncomfortable questions about the current state and future of antimalarial drug development. Besides suffering from many of the same technical challenges that affect drug development in other disease areas, the quest for new antimalarial therapies is also hindered by the complex, dynamic life cycle of the malaria parasite, P. falciparum, in its mosquito and human hosts, and its role thereof in the elicitation of drug resistance. New strategies are needed in order to ensure economical and expeditious development of new, more efficacious treatments. In the present study, we employ open-source cheminformatics tools to analyze the chemical space traversed by approved antimalarial drugs and promising candidates at various stages of development to uncover insights that could shape future endeavors in the field. Our scaffold-centric analysis reveals that the antimalarial chemical space is disjointed and segregated into a few dominant structural groups. In fact, the structures of antimalarial drugs and drug candidates are distributed according to Pareto's principle. This structural convergence can potentially be exploited for future drug discovery by incorporating it into bioinformatics workflows that are typically employed for solving problems in structural biology. Significantly, we demonstrate how molecular scaffold hunting can be applied to unearth putative mechanisms of action of drugs whose activities remain a mystery, and how scaffold-centric analysis of drug space can also provide a recipe for combination therapies that minimize the likelihood of emergence of drug resistance, as well as identify areas on which to focus efforts. Finally, we also observe that over half of the molecules in the antimalarial space bear no resemblance to other molecules in the collection, which suggests that the pharmacobiology of antimalarial drugs has not been entirely surveyed.
Collapse
Affiliation(s)
- Julia Nogueira Varela
- Department of Chemical & Biological Engineering, The University of British Columbia , Vancouver, BC, Canada , V6T 1Z3
| | - María Fernanda Lammoglia Cobo
- Department of Chemical & Biological Engineering, The University of British Columbia , Vancouver, BC, Canada , V6T 1Z3.,Life Sciences Department, Monterrey Institute of Technology and Higher Education , Mexico City Campus, Mexico City, Mexico , 14380
| | - Sandip V Pawar
- Department of Chemical & Biological Engineering, The University of British Columbia , Vancouver, BC, Canada , V6T 1Z3
| | - Vikramaditya G Yadav
- Department of Chemical & Biological Engineering, The University of British Columbia , Vancouver, BC, Canada , V6T 1Z3.,Neglected Global Diseases Initiative, The University of British Columbia , Vancouver, BC, Canada , V6T 1Z3
| |
Collapse
|
43
|
Pancrace C, Jokela J, Sassoon N, Ganneau C, Desnos-Ollivier M, Wahlsten M, Humisto A, Calteau A, Bay S, Fewer DP, Sivonen K, Gugger M. Rearranged Biosynthetic Gene Cluster and Synthesis of Hassallidin E in Planktothrix serta PCC 8927. ACS Chem Biol 2017; 12:1796-1804. [PMID: 28489343 DOI: 10.1021/acschembio.7b00093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria produce a wide range of natural products with antifungal bioactivity. The cyclic glycosylated lipopeptides of the hassallidin family have potent antifungal activity and display a great degree of chemical diversity. Here, we report the discovery of a hassallidin biosynthetic gene cluster from the filamentous cyanobacterium Planktothrix serta PCC 8927. The hassallidin gene cluster showed heavy rearrangement and marks of genomic plasticity. Nucleotide bias, differences in GC content, and phylogenetic incongruence suggested the acquisition of the hassallidin biosynthetic gene cluster in Planktothrix serta PCC 8927 by horizontal gene transfer. Chemical analyses by liquid chromatography and mass spectrometry demonstrated that this strain produced hassallidin E, a new glycosylated hassallidin variant. Hassallidin E was the only structural variant produced by Planktothrix serta PCC 8927 in all tested conditions. Further evaluated on human pathogenic fungi, hassallidin E showed an antifungal bioactivity. Hassallidin production levels correlated with nitrogen availability, in the only nitrogen-fixing Planktothrix described so far. Our results provide insights into the distribution and chemical diversity of cyanobacterial antifungal compounds as well as raise questions on their ecological relevance.
Collapse
Affiliation(s)
- Claire Pancrace
- Institut Pasteur, Collection of Cyanobacteria, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06,
UPEC, UDD, CNRS, INRA, IRD, IEES-Paris, Paris, France
| | - Jouni Jokela
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | | | - Christelle Ganneau
- Institut Pasteur, Unit Chemistry of Biomolecules, Paris, France
- CNRS UMR 3523, Paris, France
| | - Marie Desnos-Ollivier
- Institut Pasteur/CNRS URA3012, National Refence Center
for Invasive Mycoses and Antifungals, Molecular Mycology Unit, Paris, France
| | - Matti Wahlsten
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Anu Humisto
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Alexandra Calteau
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Genoscope/CNRS,
UMR 8030, Laboratoire d’Analyse Bioinformatique en Génomique
et Métabolisme, Evry, France
| | - Sylvie Bay
- Institut Pasteur, Unit Chemistry of Biomolecules, Paris, France
- CNRS UMR 3523, Paris, France
| | - David P. Fewer
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Kaarina Sivonen
- Microbiology
and Biotechnology Division, Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Muriel Gugger
- Institut Pasteur, Collection of Cyanobacteria, Paris, France
| |
Collapse
|
44
|
Wilson MB, Held BW, Freiborg AH, Blanchette RA, Salomon CE. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLoS One 2017; 12:e0178968. [PMID: 28617823 PMCID: PMC5472292 DOI: 10.1371/journal.pone.0178968] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/21/2017] [Indexed: 11/22/2022] Open
Abstract
White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.
Collapse
Affiliation(s)
- Michael B. Wilson
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin W. Held
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Amanda H. Freiborg
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Robert A. Blanchette
- Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Christine E. Salomon
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
45
|
Liu X, Klinkhamer PGL, Vrieling K. The effect of structurally related metabolites on insect herbivores: A case study on pyrrolizidine alkaloids and western flower thrips. PHYTOCHEMISTRY 2017; 138:93-103. [PMID: 28267991 DOI: 10.1016/j.phytochem.2017.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 05/20/2023]
Abstract
Plant specialised metabolites (SMs) are very diverse in terms of both their number and chemical structures with more than 200,000 estimated compounds. This chemical diversity occurs not only among different groups of compounds but also within the groups themselves. In the context of plant-insect interactions, the chemical diversity within a class of structurally related metabolites is generally also related to their bioactivity. In this study, we tested firstly whether individual SMs within the group of pyrrolizidine alkaloids (PAs) differ in their effects on insect herbivores (western flower thrips, Frankliniella occidentalis). Secondly, we tested combinations of PA N-oxides to determine whether they are more active than their individual components. We also evaluated the bioactivity of six PA free bases and their corresponding N-oxides. At concentrations similar to that in plants, several PAs reduced thrip's survival but the effect also differed strongly among PAs. In general, PA free bases caused a lower survival than their corresponding N-oxides. Among the tested PA free bases, we found jacobine and retrorsine to be the most active against second instar larvae of thrips, followed by erucifoline and seneciphylline, while senecionine and monocrotaline did not exhibit significant dose-dependent effects on thrip's survival. In the case of PA N-oxides, we found that only senecionine N-oxide and jacobine N-oxide reduced thrip's survival, although the effect of senecionine N-oxide was weak. Combinations of PA N-oxides showed no synergistic effects. These findings indicate the differences observed in the effect of structurally related SMs on insect herbivores. It is of limited value to study the bioactivity of combined groups, such as PAs, without taking their composition into account.
Collapse
Affiliation(s)
- Xiaojie Liu
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands.
| | - Peter G L Klinkhamer
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| | - Klaas Vrieling
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
46
|
Abstract
Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.
Collapse
|
47
|
Muchiri R, Walker KD. Paclitaxel Biosynthesis: Adenylation and Thiolation Domains of an NRPS TycA PheAT Module Produce Various Arylisoserine CoA Thioesters. Biochemistry 2017; 56:1415-1425. [PMID: 28230972 DOI: 10.1021/acs.biochem.6b01188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-activity relationship studies show that the phenylisoserinyl moiety of paclitaxel (Taxol) is largely necessary for the effective anticancer activity. Several paclitaxel analogues with a variant isoserinyl side chain have improved pharmaceutical properties versus those of the parent drug. To produce the isoserinyl CoAs as intermediates needed for enzyme catalysis on a semibiosynthetic pathway to paclitaxel analogues, we repurposed the adenylation and thiolation domains (Phe-AT) of a nonribosomal peptide synthetase (TycA) so that they would function as a CoA ligase. Twenty-eight isoserine analogue racemates were synthesized by an established procedure based on the Staudinger [2+2] cycloaddition reaction. Phe-AT converted 16 substituted phenylisoserines, one β-(heteroaryl)isoserine, and one β-(cyclohexyl)isoserine to their corresponding isoserinyl CoAs. We imagine that these CoA thioesters can likely serve as linchpin biosynthetic acyl donors transferred by a 13-O-acyltransferase to a paclitaxel precursor baccatin III to make drug analogues with better efficacy. It was also interesting to find that an active site mutant [Phe-AT (W227S)] turned over 2-pyridylisoserine and the sterically demanding p-methoxyphenylisoserine substrates to their CoA thioesters, while Phe-AT did not. This mutant is promising for further development to make 3-fluoro-2-pyridylisoserinyl CoA, a biosynthetic precursor of the oral pharmaceutical tesetaxel used for gastric cancers.
Collapse
Affiliation(s)
- Ruth Muchiri
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Kevin D Walker
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
48
|
Greule A, Marolt M, Deubel D, Peintner I, Zhang S, Jessen-Trefzer C, De Ford C, Burschel S, Li SM, Friedrich T, Merfort I, Lüdeke S, Bisel P, Müller M, Paululat T, Bechthold A. Wide Distribution of Foxicin Biosynthetic Gene Clusters in Streptomyces Strains - An Unusual Secondary Metabolite with Various Properties. Front Microbiol 2017; 8:221. [PMID: 28270798 PMCID: PMC5318452 DOI: 10.3389/fmicb.2017.00221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/31/2017] [Indexed: 01/13/2023] Open
Abstract
Streptomyces diastatochromogenes Tü6028 is known to produce the polyketide antibiotic polyketomycin. The deletion of the pokOIV oxygenase gene led to a non-polyketomycin-producing mutant. Instead, novel compounds were produced by the mutant, which have not been detected before in the wild type strain. Four different compounds were identified and named foxicins A–D. Foxicin A was isolated and its structure was elucidated as an unusual nitrogen-containing quinone derivative using various spectroscopic methods. Through genome mining, the foxicin biosynthetic gene cluster was identified in the draft genome sequence of S. diastatochromogenes. The cluster spans 57 kb and encodes three PKS type I modules, one NRPS module and 41 additional enzymes. A foxBII gene-inactivated mutant of S. diastatochromogenes Tü6028 ΔpokOIV is unable to produce foxicins. Homologous fox biosynthetic gene clusters were found in more than 20 additional Streptomyces strains, overall in about 2.6% of all sequenced Streptomyces genomes. However, the production of foxicin-like compounds in these strains has never been described indicating that the clusters are expressed at a very low level or are silent under fermentation conditions. Foxicin A acts as a siderophore through interacting with ferric ions. Furthermore, it is a weak inhibitor of the Escherichia coli aerobic respiratory chain and shows moderate antibiotic activity. The wide distribution of the cluster and the various properties of the compound indicate a major role of foxicins in Streptomyces strains.
Collapse
Affiliation(s)
- Anja Greule
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Marija Marolt
- Department of Pharmaceutical and Medical Chemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Denise Deubel
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Iris Peintner
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Christian De Ford
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of FreiburgFreiburg im Breisgau, Germany; Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of FreiburgFreiburg im Breisgau, Germany
| | - Sabrina Burschel
- Institute of Biochemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Shu-Ming Li
- Department of Pharmaceutical Biology, Philipps-University Marburg Marburg, Germany
| | - Thorsten Friedrich
- Institute of Biochemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Steffen Lüdeke
- Department of Pharmaceutical and Medical Chemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Philippe Bisel
- Department of Pharmaceutical and Medical Chemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Michael Müller
- Department of Pharmaceutical and Medical Chemistry, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| | - Thomas Paululat
- Department of Chemistry and Biology, University of Siegen Siegen, Germany
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg Freiburg im Breisgau, Germany
| |
Collapse
|
49
|
Decker VHG, Bandau F, Gundale MJ, Cole CT, Albrectsen BR. Aspen phenylpropanoid genes' expression levels correlate with genets' tannin richness and vary both in responses to soil nitrogen and associations with phenolic profiles. TREE PHYSIOLOGY 2017; 37:270-279. [PMID: 27986954 DOI: 10.1093/treephys/tpw118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Condensed tannin (CT) contents of European aspen (Populus tremula L.) vary among genotypes, and increases in nitrogen (N) availability generally reduce plants' tannin production in favor of growth, through poorly understood mechanisms. We hypothesized that intrinsic tannin production rates may co-vary with gene expression responses to soil N and resource allocation within the phenylpropanoid pathway (PPP). Thus, we examined correlations between soil N levels and both expression patterns of eight PPP genes (measured by quantitative-reverse transcription PCR) and foliar phenolic compounds (measured by liquid chromatography-mass spectrometry) in young aspen genets with intrinsically extreme CT levels. Monitored phenolics included salicinoids, lignins, flavones, flavonols, CT precursors and CTs. The PPP genes were consistently expressed more strongly in high-CT trees. Low N supplements reduced expression of genes throughout the PPP in all genets, while high N doses restored expression of genes at the beginning and end of the pathway. These PPP changes were not reflected in pools of tannin precursors, but varying correlations between gene expression and foliar phenolic pools were detected in young and mature leaves, suggesting that processes linking gene expression and the resulting phenolics vary spatially and temporally. Precursor fluxes suggested that CT-related metabolic rate or sink controls are linked to intrinsic carbon allocation strategies associated with N responses. Overall, we found more negative correlations (indicative of allocation trade-offs) between PPP gene expression and phenolic products following N additions in low-CT plants than in high-CT plants. The tannin-related expression dynamics suggest that, in addition to defense, relative tannin levels may also be indicative of intraspecific variations in the way aspen genets respond to soil fertility.
Collapse
Affiliation(s)
- Vicki H G Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, UmeåSE 90187, Sweden
| | - Franziska Bandau
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, UmeåSE 90187, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, UmeåSE 90183, Sweden
| | - Christopher T Cole
- Division of Science and Mathematics, University of Minnesota, Morris, MN56267, USA
| | - Benedicte R Albrectsen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, UmeåSE 90187, Sweden
| |
Collapse
|
50
|
Veprinskiy V, Heizinger L, Plach MG, Merkl R. Assessing in silico the recruitment and functional spectrum of bacterial enzymes from secondary metabolism. BMC Evol Biol 2017; 17:36. [PMID: 28125959 PMCID: PMC5270213 DOI: 10.1186/s12862-017-0886-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/16/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Microbes, plants, and fungi synthesize an enormous number of metabolites exhibiting rich chemical diversity. For a high-level classification, metabolism is subdivided into primary (PM) and secondary (SM) metabolism. SM products are often not essential for survival of the organism and it is generally assumed that SM enzymes stem from PM homologs. RESULTS We wanted to assess evolutionary relationships and function of bona fide bacterial PM and SM enzymes. Thus, we analyzed the content of 1010 biosynthetic gene clusters (BGCs) from the MIBiG dataset; the encoded bacterial enzymes served as representatives of SM. The content of 15 bacterial genomes known not to harbor BGCs served as a representation of PM. Enzymes were categorized on their EC number and for these enzyme functions, frequencies were determined. The comparison of PM/SM frequencies indicates a certain preference for hydrolases (EC class 3) and ligases (EC class 6) in PM and of oxidoreductases (EC class 1) and lyases (EC class 4) in SM. Based on BLAST searches, we determined pairs of PM/SM homologs and their functional diversity. Oxidoreductases, transferases (EC class 2), lyases and isomerases (EC class 5) form a tightly interlinked network indicating that many protein folds can accommodate different functions in PM and SM. In contrast, the functional diversity of hydrolases and especially ligases is significantly limited in PM and SM. For the most direct comparison of PM/SM homologs, we restricted for each BGC the search to the content of the genome it comes from. For each homologous hit, the contribution of the genomic neighborhood to metabolic pathways was summarized in BGC-specific html-pages that are interlinked with KEGG; this dataset can be downloaded from https://www.bioinf.ur.de . CONCLUSIONS Only few reaction chemistries are overrepresented in bacterial SM and at least 55% of the enzymatic functions present in BGCs possess PM homologs. Many SM enzymes arose in PM and Nature utilized the evolvability of enzymes similarly to establish novel functions both in PM and SM. Future work aimed at the elucidation of evolutionary routes that have interconverted a PM enzyme into an SM homolog can profit from our BGC-specific annotations.
Collapse
Affiliation(s)
- Valery Veprinskiy
- Faculty of Mathematics and Computer Science, University of Hagen, D-58084, Hagen, Germany
| | - Leonhard Heizinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040, Regensburg, Germany
| | - Maximilian G Plach
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040, Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040, Regensburg, Germany.
| |
Collapse
|