1
|
Sleutel M, Sogues A, Van Gerven N, Jonsmoen UL, Aspholm M, Van Molle I, Fislage M, Theunissen L, Bellis N, Baquero D, Egelman E, Krupovic M, Wang J, Remaut H. Cryo-EM analysis of the Bacillus thuringiensis extrasporal matrix identifies F-ENA as a widespread family of endospore appendages across Firmicutes. RESEARCH SQUARE 2025:rs.3.rs-6050303. [PMID: 40162231 PMCID: PMC11952670 DOI: 10.21203/rs.3.rs-6050303/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
For over 100 years, Bacillus thuringiensis (Bt) has been used as an agricultural biopesticide to control pests caused by insect species in the orders of Lepidoptera, Diptera and Coleoptera. Under nutrient starvation, Bt cells differentiate into spores and associated toxin crystals that can adopt biofilm-like aggregates. We reveal that such Bt spore/toxin biofilms are embedded in a fibrous extrasporal matrix (ESM), and using cryoID, we resolved the structure and molecular identity of an uncharacterized type of pili, referred to here as Fibrillar ENdospore Appendages or 'F-ENA'. F-ENA are monomolecular protein polymers tethered to the exosporium of Bt and are decorated with a flexible tip fibrillum. Phylogenetic analysis reveals that F-ENA is widespread not only in the class Bacilli, but also in the class Clostridia, and the cryoEM structures of F-ENA filaments from Bacillus, Anaerovorax and Paenibaccilus reveal subunits with a generic head-neck domain structure, where the b-barrel neck of variable length latch onto a preceding head domain through short N-terminal hook peptides. In Bacillus, two collagen-like proteins (CLP) respectively tether F-ENA to the exosporium (F-Anchor), or constitute the tip fibrillum at the distal terminus of F-ENA (F-BclA). Sedimentation assays point towards F-ENA involvement in spore-spore clustering, likely mediated via F-BclA contacts and F-ENA bundling through the antiparallel interlocking of the head-neck units.
Collapse
|
2
|
Sleutel M, Sogues A, Van Gerven N, Jonsmoen UL, Van Molle I, Fislage M, Theunissen LD, Bellis NF, Baquero DP, Egelman EH, Krupovic M, Wang F, Aspholm M, Remaut H. Cryo-EM analysis of the Bacillus thuringiensis extrasporal matrix identifies F-ENA as a widespread family of endospore appendages across the Firmicutes phylum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637640. [PMID: 39990323 PMCID: PMC11844507 DOI: 10.1101/2025.02.11.637640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
For over 100 years, Bacillus thuringiensis (Bt) has been used as an agricultural biopesticide to control pests caused by insect species in the orders of Lepidoptera, Diptera and Coleoptera. Under nutrient starvation, Bt cells differentiate into spores and associated toxin crystals that can adopt biofilm-like aggregates. We reveal that such Bt spore/toxin biofilms are embedded in a fibrous extrasporal matrix (ESM), and using cryoID, we resolved the structure and molecular identity of an uncharacterized type of pili, referred to here as Fibrillar ENdospore Appendages or 'F-ENA'. F-ENA are monomolecular protein polymers tethered to the exosporium of Bt and are decorated with a flexible tip fibrillum. Phylogenetic analysis reveals that F-ENA is widespread not only in the class Bacilli, but also in the class Clostridia, and the cryoEM structures of F-ENA filaments from Bacillus, Anaerovorax and Paenibaccilus reveal subunits with a generic head-neck domain structure, where the β-barrel neck of variable length latch onto a preceding head domain through short N-terminal hook peptides. In Bacillus, two collagen-like proteins (CLP) respectively tether F-ENA to the exosporium (F-Anchor), or constitute the tip fibrillum at the distal terminus of F-ENA (F-BclA). Sedimentation assays point towards F-ENA involvement in spore-spore clustering, likely mediated via F-BclA contacts and F-ENA bundling through the antiparallel interlocking of the head-neck units.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Adrià Sogues
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Laurent Dirk Theunissen
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nathan F. Bellis
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham Birmingham, AL 35233, USA
| | - Diana P. Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics University of Virginia School of Medicine Charlottesville, VA 22903, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham Birmingham, AL 35233, USA
- Department of Biochemistry and Molecular Genetics University of Virginia School of Medicine Charlottesville, VA 22903, USA
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Sleutel M, Zegeye ED, Llarena AK, Pradhan B, Fislage M, O'Sullivan K, Van Gerven N, Aspholm M, Remaut H. Helical ultrastructure of the L-ENA spore aggregation factor of a Bacillus paranthracis foodborne outbreak strain. Nat Commun 2024; 15:7514. [PMID: 39209852 PMCID: PMC11362473 DOI: 10.1038/s41467-024-51804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
In pathogenic Bacillota, spores can form an infectious particle and can take up a central role in the environmental persistence and dissemination of disease. A poorly understood aspect of spore-mediated infection is the fibrous structures or 'endospore appendages' (ENAs) that have been seen to decorate the spores of pathogenic Bacilli and Clostridia. Current methodological approaches are opening a window on these long enigmatic structures. Using cryoID, Alphafold modelling and genetic approaches we identify a sub-class of robust ENAs in a Bacillus paranthracis foodborne outbreak strain. We demonstrate that L-ENA are encoded by a rare three-gene cluster (ena3) that contains all components for the self-assembly of ladder-like protein nanofibers of stacked heptameric rings, their anchoring to the exosporium, and their termination in a trimeric 'ruffle' made of a complement C1Q-like BclA paralogue. The role of ENA fibers in spore-spore interaction and the distribution of L-ENA operon as mobile genetic elements in B. cereus s.l. strains suggest that L-ENA fibers may increase the survival, spread and virulence of these strains.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium.
| | - Ephrem Debebe Zegeye
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Brajabandhu Pradhan
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium
| | - Kristin O'Sullivan
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium.
| |
Collapse
|
4
|
Kim TD, Khanal S, Bäcker LE, Lood C, Kerremans A, Gorivale S, Begyn K, Cambré A, Rajkovic A, Devlieghere F, Heyndrickx M, Michiels C, Duitama J, Aertsen A. Rapid evolutionary tuning of endospore quantity versus quality trade-off via a phase-variable contingency locus. Curr Biol 2024; 34:3077-3085.e5. [PMID: 38925118 DOI: 10.1016/j.cub.2024.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
The UV resistance of bacterial endospores is an important quality supporting their survival in inhospitable environments and therefore constitutes an essential driver of the ecological success of spore-forming bacteria. Nevertheless, the variability and evolvability of this trait are poorly understood. In this study, directed evolution and genetics approaches revealed that the Bacillus cereus pdaA gene (encoding the endospore-specific peptidoglycan-N-acetylmuramic acid deacetylase) serves as a contingency locus in which the expansion and contraction of short tandem repeats can readily compromise (PdaAOFF) or restore (PdaAON) the pdaA open reading frame. Compared with B. cereus populations in the PdaAON state, populations in the PdaAOFF state produced a lower yield of viable endospores but endowed them with vastly increased UV resistance. Moreover, selection pressures based on either quantity (i.e., yield of viable endospores) or quality (i.e., UV resistance of viable endospores) aspects could readily shift populations between PdaAON and PdaAOFF states, respectively. Bioinformatic analysis also revealed that pdaA homologs within the Bacillus and Clostridium genera are often equipped with several short tandem repeat regions, suggesting a wider implementation of the pdaA-mediated phase variability in other sporeformers as well. These results for the first time reveal (1) pdaA as a phase-variable contingency locus in the adaptive evolution of endospore properties and (2) bet-hedging between what appears to be a quantity versus quality trade-off in endospore crops.
Collapse
Affiliation(s)
- Tom Dongmin Kim
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sadhana Khanal
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Cédric Lood
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Alison Kerremans
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sayali Gorivale
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Katrien Begyn
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Frank Devlieghere
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marc Heyndrickx
- ILVO-Flanders Research Institute for Agriculture, Fishery and Food, Technology and Food Science, Unit-Food Safety, 9090 Melle, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Chris Michiels
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; Leuven Food Science and Nutritional Research Centre (LeFoRCe), Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
5
|
Huessy B, Bumann D, Ebert D. Ectopical expression of bacterial collagen-like protein supports its role as adhesin in host-parasite coevolution. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231441. [PMID: 38577215 PMCID: PMC10987987 DOI: 10.1098/rsos.231441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
For a profound understanding of antagonistic coevolution, it is necessary to identify the coevolving genes. The bacterium Pasteuria and its host, the microcrustacean Daphnia, are a well-characterized paradigm for co-evolution, but the underlying genes remain largely unknown. A genome-wide association study suggested a Pasteuria collagen-like protein 7 (Pcl7) as a candidate mediating parasite attachment and driving its coevolution with the host. Since Pasteuria ramosa cannot currently be genetically manipulated, we used Bacillus thuringiensis to express a fusion protein of a Pcl7 carboxy-terminus from P. ramosa and the amino-terminal domain of a B. thuringiensis collagen-like protein (CLP). Mutant B. thuringiensis (Pcl7-Bt) spores but not wild-type B. thuringiensis (WT-Bt) spores attached to the same site of susceptible hosts as P. ramosa. Furthermore, Pcl7-Bt spores attached readily to susceptible host genotypes, but only slightly to resistant host genotypes. These findings indicated that the fusion protein was properly expressed and folded and demonstrated that indeed the C-terminus of Pcl7 mediates attachment in a host genotype-specific manner. These results provide strong evidence for the involvement of a CLP in the coevolution of Daphnia and P. ramosa and open new avenues for genetic epidemiological studies of host-parasite interactions.
Collapse
Affiliation(s)
- Benjamin Huessy
- Department of Environmental Sciences, Zoology, University of Basel, Basel4051, Switzerland
- University of Basel, Basel4056, Switzerland
| | | | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel4051, Switzerland
| |
Collapse
|
6
|
Goossens PL. Bacillus anthracis, "la maladie du charbon", Toxins, and Institut Pasteur. Toxins (Basel) 2024; 16:66. [PMID: 38393144 PMCID: PMC10891547 DOI: 10.3390/toxins16020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024] Open
Abstract
Institut Pasteur and Bacillus anthracis have enjoyed a relationship lasting almost 120 years, starting from its foundation and the pioneering work of Louis Pasteur in the nascent fields of microbiology and vaccination, and blooming after 1986 following the molecular biology/genetic revolution. This contribution will give a historical overview of these two research eras, taking advantage of the archives conserved at Institut Pasteur. The first era mainly focused on the production, characterisation, surveillance and improvement of veterinary anthrax vaccines; the concepts and technologies with which to reach a deep understanding of this research field were not yet available. The second period saw a new era of B. anthracis research at Institut Pasteur, with the anthrax laboratory developing a multi-disciplinary approach, ranging from structural analysis, biochemistry, genetic expression, and regulation to bacterial-host cell interactions, in vivo pathogenicity, and therapy development; this led to the comprehensive unravelling of many facets of this toxi-infection. B. anthracis may exemplify some general points on how science is performed in a given society at a given time and how a scientific research domain evolves. A striking illustration can be seen in the additive layers of regulations that were implemented from the beginning of the 21st century and their impact on B. anthracis research. B. anthracis and anthrax are complex systems that raise many valuable questions regarding basic research. One may hope that B. anthracis research will be re-initiated under favourable circumstances later at Institut Pasteur.
Collapse
|
7
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
8
|
Davies KG, Mohan S, Phani V, Srivastava A. Exploring the mechanisms of host-specificity of a hyperparasitic bacterium ( Pasteuria spp.) with potential to control tropical root-knot nematodes ( Meloidogyne spp.): insights from Caenorhabditis elegans. Front Cell Infect Microbiol 2023; 13:1296293. [PMID: 38173791 PMCID: PMC10761439 DOI: 10.3389/fcimb.2023.1296293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Plant-parasitic nematodes are important economic pests of a range of tropical crops. Strategies for managing these pests have relied on a range of approaches, including crop rotation, the utilization of genetic resistance, cultural techniques, and since the 1950's the use of nematicides. Although nematicides have been hugely successful in controlling nematodes, their toxicity to humans, domestic animals, beneficial organisms, and the environment has raised concerns regarding their use. Alternatives are therefore being sought. The Pasteuria group of bacteria that form endospores has generated much interest among companies wanting to develop microbial biocontrol products. A major challenge in developing these bacteria as biocontrol agents is their host-specificity; one population of the bacterium can attach to and infect one population of plant-parasitic nematode but not another of the same species. Here we will review the mechanism by which infection is initiated with the adhesion of endospores to the nematode cuticle. To understand the genetics of the molecular processes between Pasteuria endospores and the nematode cuticle, the review focuses on the nature of the bacterial adhesins and how they interact with the nematode cuticle receptors by exploiting new insights gained from studies of bacterial infections of Carnorhabditis elegans. A new Velcro-like multiple adhesin model is proposed in which the cuticle surface coat, which has an important role in endospore adhesion, is a complex extracellular matrix containing glycans originating in seam cells. The genes associated with these seam cells appear to have a dual role by retaining some characteristics of stem cells.
Collapse
Affiliation(s)
- Keith G. Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, India
| | - Arohi Srivastava
- Dr. D. Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
9
|
Nakaya Y, Uchiike M, Hattori M, Moriyama M, Abe K, Kim E, Eichenberger P, Imamura D, Sato T. Identification of CgeA as a glycoprotein that anchors polysaccharides to the spore surface in Bacillus subtilis. Mol Microbiol 2023; 120:384-396. [PMID: 37485949 DOI: 10.1111/mmi.15126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
The Bacillus subtilis spore is composed of a core, containing chromosomal DNA, surrounded by a cortex layer made of peptidoglycan, and a coat composed of concentric proteinaceous layers. A polysaccharide layer is added to the spore surface, and likely anchored to the crust, the coat outermost layer. However, the identity of the coat protein(s) to which the spore polysaccharides (SPS) are attached is uncertain. First, we showed that the crust proteins CotVWXYZ and CgeA were all contained in the peeled SPS layer obtained from a strain missing CotE, the outer coat morphogenetic protein, suggesting that the SPS is indeed bound to at least one of the spore surface proteins. Second, CgeA is known to be located at the most downstream position in the crust assembly pathway. An analysis of truncated variants of CgeA suggested that its N-terminal half is required for localization to the spore surface, while its C-terminal half is necessary for SPS addition. Third, an amino acid substitution strategy revealed that SPS was anchored at threonine 112 (T112), which constitutes a probable O-glycosylation site on CgeA. Our results indicated that CgeA is a glycoprotein required to initiate SPS assembly and serves as an anchor protein linking the crust and SPS layers.
Collapse
Affiliation(s)
- Yusei Nakaya
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Miu Uchiike
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Mayuko Hattori
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Momoka Moriyama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Ella Kim
- Department of Biology, New York University, New York, New York, USA
| | | | - Daisuke Imamura
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Tsutomu Sato
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
10
|
Hamiot A, Lemy C, Krzewinski F, Faille C, Dubois T. Sporulation conditions influence the surface and adhesion properties of Bacillus subtilis spores. Front Microbiol 2023; 14:1219581. [PMID: 37720141 PMCID: PMC10502511 DOI: 10.3389/fmicb.2023.1219581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Spore-forming bacteria of the Bacillus subtilis group are responsible for recurrent contamination of processing lines in the food industry which can lead to food spoilage. The persistence of B. subtilis would be due to the high resistance of spores to extreme environmental condition and their propensity to contaminate surfaces. While it is well known that sporulation conditions modulate spore resistance properties, little is known about their effect on surface and adhesion properties. Here, we studied the impact of 13 sporulation conditions on the surface and adhesion properties of B. subtilis 168 spores. We showed that Ca2+ or Mg2+ depletion, lower oxygen availability, acidic pH as well as oxidative stresses during sporulation lead to the release of more hydrophobic and adherent spores. The consequences of these sporulation conditions on crust composition in carbohydrates and proteins were also evaluated. The crust glycans of spores produced in a sporulation medium depleted in Ca2+ or Mg2+ or oxygen-limited conditions were impaired and contained lower amounts of rhamnose and legionaminic acid. In addition, we showed that lower oxygen availability or addition of hydrogen peroxide during sporulation decreases the relative amount of two crust proteins (CgeA and CotY) and the changes observed in these conditions could be due to transcriptional repression of genes involved in crust synthesis in late stationary phase. The fact that sporulation conditions affect the ease with which spores can contaminate surfaces could explain the frequent and recurrent presence of B. subtilis spores in food processing lines.
Collapse
Affiliation(s)
- Audrey Hamiot
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Christelle Lemy
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Frederic Krzewinski
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christine Faille
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Thomas Dubois
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| |
Collapse
|
11
|
Chattopadhyay D, Walker DR, Rich-New ST, Kearney JF, Turnbough, Jr. CL. Crystal structure and induced stability of trimeric BxpB: implications for the assembly of BxpB-BclA complexes in the exosporium of Bacillus anthracis. mBio 2023; 14:e0117223. [PMID: 37382447 PMCID: PMC10470788 DOI: 10.1128/mbio.01172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
The outermost exosporium layer of Bacillus anthracis spores, the causative agents of anthrax, is comprised of a basal layer and an external hair-like nap. The nap includes filaments composed of trimers of the collagen-like glycoprotein BclA. Essentially all BclA trimers are attached to the spore in a process in which part of the 38-residue amino-terminal domain (NTD) of BclA forms an extremely stable interaction with the basal layer protein BxpB. Evidence indicates that the BclA-BxpB interaction is direct and requires trimeric BxpB. To further investigate the nature of the BclA-BxpB interaction, we determined the crystal structure of BxpB. The structure was trimeric with each monomer consisting of 11 β strands with connecting loops. The structure did not include apparently disordered amino acids 1-19, which contain the only two cysteine residues of the 167-residue BxpB. The orientation of the structure reveals regions of BxpB that could be involved in interacting with the BclA NTD and with adjacent cysteine-rich proteins in the basal layer. Furthermore, the BxpB structure closely resembles that of the 134-residue carboxyl-terminal domain of BclA, which forms trimers that are highly resistant to heat and detergent. We demonstrated that BxpB trimers do not share this resistance. However, when BxpB trimers are mixed with a peptide containing residues 20-38 of BclA, they form a complex that is as stable as BclA-BxpB complexes extracted from spores. Together, our results provide new insights into the mechanism of BclA-BxpB attachment and incorporation into the exosporium. IMPORTANCE The B. anthracis exosporium plays major roles in spore survival and infectivity, but the complex mechanism of its assembly is poorly understood. Key steps in this process are the stable attachment of collagen-like BclA filaments to the major basal layer structural protein BxpB and the insertion of BxpB into an underlying basal layer scaffold. The goal of this study is to further elucidate these interactions thereby advancing our understanding of exosporium assembly, a process shared by many spore-forming bacteria including important human pathogens.
Collapse
Affiliation(s)
| | - Dionna R. Walker
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shane T. Rich-New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
12
|
Fastenackels S, Mock M, Tournier JN, Goossens PL. Early expression of capsule during Bacillus anthracis germination. Res Microbiol 2023; 174:104054. [PMID: 37003307 DOI: 10.1016/j.resmic.2023.104054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Bacillus anthracis is a spore-forming bacterium that produces two major virulence factors, a tripartite toxin with two enzymatic toxic activities and a pseudo-proteic capsule. One of the main described functions of the poly-gamma-d-glutamate capsule is to enable B. anthracis bacilli to escape phagocytosis. Thus, kinetics of expression of the capsule filaments at the surface of the emerging bacillus during germination is an important step for the protection of the nascent bacilli. In this study, through immunofluorescence and electron microscopic approaches, we show the emergence of the capsule through a significant surface of the exosporium in the vast majority of the germinating spores, with co-detection of BclA and capsular material. This suggests that, due to an early capsule expression, the extracellular life of B. anthracis might occur earlier than previously thought, once germination is triggered. This raises the prospect that an anti-capsular vaccine may play a protective role at the initial stage of infection by opsonisation of the nascent encapsulated bacilli before their emergence from the exosporium.
Collapse
Affiliation(s)
- Solène Fastenackels
- Laboratory "Immune Microenvironment and Immunotherapy", INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.
| | - Michèle Mock
- Institut Pasteur, Yersinia Unit, 26 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | - Pierre L Goossens
- Institut Pasteur, Yersinia Unit, 26 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
13
|
Oh SY, Château A, Tomatsidou A, Elli D, Gula H, Schneewind O, Missiakas D. Modeling gastrointestinal anthrax disease. Res Microbiol 2023; 174:104026. [PMID: 36646261 PMCID: PMC10338639 DOI: 10.1016/j.resmic.2023.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Bacillus anthracis is a spore-forming microbe that persists in soil and causes anthrax disease. The most natural route of infection is ingestion by grazing animals. Gastrointestinal (GI) anthrax also occurs in their monogastric predators, including humans. Exposure of carcasses to oxygen triggers sporulation and contamination of the surrounding soil completing the unusual life cycle of this microbe. The pathogenesis of GI anthrax is poorly characterized. Here, we use B. anthracis carrying the virulence plasmids pXO1 and pXO2, to model gastrointestinal disease in Guinea pigs and mice. We find that spores germinate in the GI tract and precipitate disease in a dose-dependent manner. Inoculation of vegetative bacilli also results in GI anthrax. Virulence is impacted severely by the loss of capsule (pXO2-encoded) but only moderately in absence of toxins (pXO1-encoded). Nonetheless, the lack of toxins leads to reduced bacterial replication in infected hosts. B. cereus Elc4, a strain isolated from a fatal case of inhalational anthrax-like disease, was also found to cause GI anthrax. Because transmission to new hosts depends on the release of large numbers of spores in the environment, we propose that the acquisition of pXO1- and pXO2-like plasmids may promote the successful expansion of members of the Bacillus cereus sensu lato group able to cause anthrax-like disease.
Collapse
Affiliation(s)
- So Young Oh
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Alice Château
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Anastasia Tomatsidou
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Derek Elli
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Haley Gula
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Olaf Schneewind
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA
| | - Dominique Missiakas
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL, USA.
| |
Collapse
|
14
|
Norris MH, Bluhm AP, Metrailer MC, Jiranantasak T, Kirpich A, Hadfield T, Ponciano JM, Blackburn JK. Beyond the spore, the exosporium sugar anthrose impacts vegetative Bacillus anthracis gene regulation in cis and trans. Sci Rep 2023; 13:5060. [PMID: 36977718 PMCID: PMC10050317 DOI: 10.1038/s41598-023-32162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The Bacillus anthracis exosporium nap is the outermost portion of spore that interacts with the environment and host systems. Changes to this layer have the potential to impact wide-ranging physiological and immunological processes. The unique sugar, anthrose, normally coats the exosporium nap at its most distal points. We previously identified additional mechanisms rendering B. anthracis anthrose negative. In this work, several new ant - B. anthracis strains are identified and the impact of anthrose negativity on spore physiology is investigated. We demonstrate that live-attenuated Sterne vaccines as well as culture filtrate anthrax vaccines generate antibodies targeting non-protein components of the spore. The role of anthrose as a vegetative B. anthracis Sterne signaling molecule is implicated by luminescent expression strain assays, RNA-seq experiments, and toxin secretion analysis by western blot. Pure anthrose and the sporulation-inducing nucleoside analogue decoyinine had similar effects on toxin expression. Co-culture experiments demonstrated gene expression changes in B. anthracis depend on intracellular anthrose status (cis) in addition to anthrose status of extracellular interactions (trans). These findings provide a mechanism for how a unique spore-specific sugar residue affects physiology, expression and genetics of vegetative B. anthracis with impacts on the ecology, pathogenesis, and vaccinology of anthrax.
Collapse
Affiliation(s)
- Michael H Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Andrew P Bluhm
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Morgan C Metrailer
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Treenate Jiranantasak
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Alexander Kirpich
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Ted Hadfield
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | - Jason K Blackburn
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Durand-Heredia J, Hsieh HY, Spreng KA, Stewart GC. Roles and Organization of BxpB (ExsFA) and ExsFB in the Exosporium Outer Basal Layer of Bacillus anthracis. J Bacteriol 2022; 204:e0029022. [PMID: 36394311 PMCID: PMC9765029 DOI: 10.1128/jb.00290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
BxpB (also known as ExsFA) and ExsFB are an exosporium basal layer structural protein and a putative interspace protein of Bacillus anthracis that are known to be required for proper incorporation of the BclA collagen-like glycoprotein on the spore surface. Despite extensive similarity of the two proteins, their distribution in the spore is markedly different. We utilized a fluorescent fusion approach to examine features of the two genes that affect spore localization. The timing of expression of the bxpB and exsFB genes and their distinct N-terminal sequences were both found to be important for proper assembly into the exosporium basal layer. Results of this study provided evidence that the BclA nap glycoprotein is not covalently attached to BxpB protein despite the key role that the latter plays in BclA incorporation. Assembly of the BxpB- and ExsFB-containing outer basal layer appears not to be completely abolished in mutants lacking the ExsY and CotY basal layer structural proteins despite these spores lacking a visible exosporium. The BxpB and, to a lesser extent, the ExsFB proteins, were found to be capable of self-assembly in vitro into higher-molecular-weight forms that are stable to boiling in SDS under reducing conditions. IMPORTANCE The genus Bacillus consists of spore-forming bacteria. Some species of this genus, especially those that are pathogens of animals or insects, contain an outermost spore layer called the exosporium. The zoonotic pathogen B. anthracis is an example of this group. The exosporium likely contributes to virulence and environmental persistence of these pathogens. This work provides important new insights into the exosporium assembly process and the interplay between BclA and BxpB in this process.
Collapse
Affiliation(s)
- Jorge Durand-Heredia
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Hsin-Yeh Hsieh
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Krista A. Spreng
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - George C. Stewart
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
16
|
Kim S, Oiler J, Xing Y, O'Doherty GA. De novo asymmetric Achmatowicz approach to oligosaccharide natural products. Chem Commun (Camb) 2022; 58:12913-12926. [PMID: 36321854 PMCID: PMC9710213 DOI: 10.1039/d2cc05280f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The development and application of the asymmetric synthesis of oligosaccharides from achiral starting materials is reviewed. This de novo asymmetric approach centers around the use of asymmetric catalysis for the synthesis of optically pure furan alcohols in conjunction with Achmatowicz oxidative rearrangement for the synthesis of various pyranones. In addition, the use of a diastereoselective palladium-catalyzed glycosylation and subsequent diastereoselective post-glycosylation transformation was used for the synthesis of oligosaccharides. The application of this approach to oligosaccharide synthesis is discussed.
Collapse
Affiliation(s)
- Sugyeom Kim
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Jeremy Oiler
- Department of Chemistry, William Paterson University, Wayne, NJ, 07470, USA
| | - Yalan Xing
- Department of Chemistry, Hofstra University, Hempstead, NY, 11549, USA.
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
ExsY, CotY, and CotE Effects on Bacillus anthracis Outer Spore Layer Architecture. J Bacteriol 2022; 204:e0029122. [PMID: 36194010 PMCID: PMC9664949 DOI: 10.1128/jb.00291-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are the major pathogens of the spore-forming genus Bacillus and possess an outer spore layer, the exosporium, not found in many of the nonpathogenic species. The exosporium consists of a basal layer with the ExsY, CotY, and BxpB proteins being the major structural components and an exterior nap layer containing the BclA glycoprotein. During the assembly process, the nascent exosporium basal layer is attached to the spore coat by a protein linker that includes the CotO and CotE proteins. Using transmission electron microscopy, Western blotting, immunofluorescence, and fluorescent fusion protein approaches, we examined the impact of single, double, and triple mutants of the major exosporium proteins on exosporium protein content and distribution. Plasmid-based expression of exsY and cotE resulted in increased production of exosporium lacking spores, and the former also resulted in outer spore coat disruptions. The exosporium bottlecap produced by exsY null spores was found to be more stable than previously reported, and its spore association was partially dependent on CotE. Deletion mutants of five putative spore genes (bas1131, bas1142, bas1143, bas2277, and bas3594) were created and shown not to have obvious effects on spore morphology or BclA and BxpB content. The BclC collagen-like glycoprotein was found to be present in the spore and possibly localized to the interspace region. IMPORTANCE B. anthracis is an important zoonotic animal pathogen causing sporadic outbreaks of anthrax worldwide. Spores are the infectious form of the bacterium and can persist in soil for prolonged periods of time. The outermost B. anthracis spore layer is the exosporium, a protein shell that is the site of interactions with both the soil and with the innate immune system of infected hosts. Although much is known regarding the sporulation process among members of the genus Bacillus, significant gaps in our understanding of the exosporium assembly process exist. This study provides evidence for the properties of key exosporium basal layer structural proteins. The results of this work will guide future studies on exosporium protein-protein interactions during the assembly process.
Collapse
|
18
|
Durand‐Heredia J, Stewart GC. Localization of the CotY and ExsY proteins to the exosporium basal layer of Bacillus anthracis. Microbiologyopen 2022; 11:e1327. [PMID: 36314748 PMCID: PMC9562818 DOI: 10.1002/mbo3.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Spores are an infectious form of the zoonotic bacterial pathogen, Bacillus anthracis. The outermost spore layer is the exosporium, comprised of a basal layer and an external glycoprotein nap layer. The major structural proteins of the inner basal layer are CotY (at the mother cell central pole or bottlecap) and ExsY around the rest of the spore. The basis for the cap or noncap specificity of the CotY and ExsY proteins is currently unknown. We investigated the role of sequence differences between these proteins in localization during exosporium assembly. We found that sequence differences were less important than the timing of expression of the respective genes in the positioning of these inner basal layer structural proteins. Fusion constructs with the fluorescent protein fused at the N-terminus resulted in poor incorporation whereas fusions at the carboxy terminus of CotY or ExsY resulted in good incorporation. However, complementation studies revealed that fusion constructs, although accurate indicators of protein localization, were not fully functional. A model is presented that explains the localization patterns observed. Bacterial two-hybrid studies in Escherichia coli hosts were used to examine protein-protein interactions with full-length and truncated proteins. The N-terminus amino acid sequences of ExsY and CotY appear to be recognized by spore proteins located in the spore interspace, consistent with interactions seen with ExsY and CotY with the interspace proteins CotE and CotO, known to be involved with exosporium attachment.
Collapse
Affiliation(s)
- Jorge Durand‐Heredia
- Department of Veterinary Pathobiology and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| | - George C. Stewart
- Department of Veterinary Pathobiology and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
19
|
Lehmann D, Sladek M, Khemmani M, Boone TJ, Rees E, Driks A. Role of novel polysaccharide layers in assembly of the exosporium, the outermost protein layer of the Bacillus anthracis spore. Mol Microbiol 2022; 118:258-277. [PMID: 35900297 PMCID: PMC9549345 DOI: 10.1111/mmi.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
A fundamental question in cell biology is how cells assemble their outer layers. The bacterial endospore is a well-established model for cell layer assembly. However, the assembly of the exosporium, a complex protein shell comprising the outermost layer in the pathogen Bacillus anthracis, remains poorly understood. Exosporium assembly begins with the deposition of proteins at one side of the spore surface, followed by the progressive encirclement of the spore. We seek to resolve a major open question: the mechanism directing exosporium assembly to the spore, and then into a closed shell. We hypothesized that material directly underneath the exosporium (the interspace) directs exosporium assembly to the spore and drives encirclement. In support of this, we show that the interspace possesses at least two distinct layers of polysaccharide. Secondly, we show that putative polysaccharide biosynthetic genes are required for exosporium encirclement, suggesting a direct role for the interspace. These results not only significantly clarify the mechanism of assembly of the exosporium, an especially widespread bacterial outer layer, but also suggest a novel mechanism in which polysaccharide layers drive the assembly of a protein shell.
Collapse
Affiliation(s)
- Dörte Lehmann
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Margaret Sladek
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tyler J Boone
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
20
|
Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. Int J Mol Sci 2022; 23:ijms23063405. [PMID: 35328823 PMCID: PMC8953710 DOI: 10.3390/ijms23063405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have suggested a major role for endospore forming bacteria within the gut microbiota, not only as pathogens but also as commensal and beneficial members contributing to gut homeostasis. In this review the sporulation processes, spore properties, and germination processes will be explained within the scope of the human gut. Within the gut, spore-forming bacteria are known to interact with the host’s immune system, both in vegetative cell and spore form. Together with the resistant nature of the spore, these characteristics offer potential for spores’ use as delivery vehicles for therapeutics. In the last part of the review, the therapeutic potential of spores as probiotics, vaccine vehicles, and drug delivery systems will be discussed.
Collapse
|
21
|
Picker J, Lan Z, Arora S, Green M, Hahn M, Cosgriff-Hernandez E, Hook M. Prokaryotic Collagen-Like Proteins as Novel Biomaterials. Front Bioeng Biotechnol 2022; 10:840939. [PMID: 35372322 PMCID: PMC8968730 DOI: 10.3389/fbioe.2022.840939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Collagens are the major structural component in animal extracellular matrices and are critical signaling molecules in various cell-matrix interactions. Its unique triple helical structure is enabled by tripeptide Gly-X-Y repeats. Understanding of sequence requirements for animal-derived collagen led to the discovery of prokaryotic collagen-like protein in the early 2000s. These prokaryotic collagen-like proteins are structurally similar to mammalian collagens in many ways. However, unlike the challenges associated with recombinant expression of mammalian collagens, these prokaryotic collagen-like proteins can be readily expressed in E. coli and are amenable to genetic modification. In this review article, we will first discuss the properties of mammalian collagen and provide a comparative analysis of mammalian collagen and prokaryotic collagen-like proteins. We will then review the use of prokaryotic collagen-like proteins to both study the biology of conventional collagen and develop a new biomaterial platform. Finally, we will describe the application of Scl2 protein, a streptococcal collagen-like protein, in thromboresistant coating for cardiovascular devices, scaffolds for bone regeneration, chronic wound dressing and matrices for cartilage regeneration.
Collapse
Affiliation(s)
- Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Mykel Green
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| |
Collapse
|
22
|
Srivastava A, Mohan S, Davies KG. Exploring Bacillus thuringiensis as a model for endospore adhesion and its potential to investigate adhesins in Pasteuria penetrans. J Appl Microbiol 2022; 132:4371-4387. [PMID: 35286009 PMCID: PMC9311801 DOI: 10.1111/jam.15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Aims Phytonematodes are a constraint on crop production and have been controlled using nematicides; these are highly toxic and legislation in Europe and elsewhere is prohibiting their use and alternatives are being sought. Pasteuria penetrans is a hyperparasitic bacterium that form endospores and have potential to control root‐knot nematodes (Meloidogyne spp.), but their attachment to the nematode cuticle is host‐specific. Understanding host specificity has relied upon endospore inhibition bioassays using immunological and biochemical approaches. Phylogenetic analysis of survey sequences has shown P. penetrans to be closely related to Bacillus and to have a diverse range of collagen‐like fibres which we hypothesise to be involved in the endospore adhesion. However, due to the obligately hyperparasitic nature of Pasteuria species, identifying and characterizing these collagenous‐like proteins through gain of function has proved difficult and new approaches are required. Methods and Results Using antibodies raised to synthetic peptides based on Pasteuria collagen‐like genes we show similarities between P. penetrans and the more easily cultured bacterium Bacillus thuringiensis and suggest it be used as a gain of function platform/model. Using immunological approaches similar proteins between P. penetrans and B. thuringiensis are identified and characterized, one >250 kDa and another ~72 kDa are glycosylated with N‐acetylglucosamine and both of which are digested if treated with collagenase. These treatments also affected endospore attachment and suggest these proteins are involved in adhesion of endospores to nematode cuticle. Conclusion There are conserved similarities in the collagen‐like proteins present on the surface of endospores of both P. penetrans and B. thuringiensis. Significance and Impact of Study As B. thuringiensis is relatively easy to culture and can be transformed, it could be developed as a platform for studying the role of the collagen‐like adhesins from Pasteuria in endospore adhesion.
Collapse
Affiliation(s)
- Arohi Srivastava
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, Pusa Campus, New Delhi110012, India
| | - Keith G Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
23
|
Moteshareie H, Hassen WM, Vermette J, Dubowski JJ, Tayabali AF. Strategies for capturing Bacillus thuringiensis spores on surfaces of (001) GaAs-based biosensors. Talanta 2022; 236:122813. [PMID: 34635209 DOI: 10.1016/j.talanta.2021.122813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/18/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Bacillus thuringiensis (Bt) is used as a bioinsecticide since it effectively kills insect larvae. Bt is also genetically similar to Bacillus cereus (Bc), a well recognized foodborne human pathogen; they are both members of the Bacillus cereus group (BC group). Although approved Bt bioinsecticide products have been confirmed to be non-pathogenic to humans, close monitoring of Bt during dissemination is important for cost considerations and to limit impact on biodiversity towards nontarget organisms. As such, developing rapid, sensitive, and specific tools for quantitative detection of Bt spores during and following spray operations is highly desirable. The goals of this study were to investigate commercially available detection reagents for sensitivity and selectivity in detecting Bt spores, and then functionalize a surface of (001) GaAs used in photonic biosensing. To achieve these goals, we (1) screened commercial antibodies for their capacity to bind recombinant proteins from Bt spores, (2) screened antibodies and aptamers for their sensitivity and selectivity against Bt spores, and (3) tested the efficiency of selected antibodies and aptamers in capturing Bt spores on the surface of functionalized GaAs biochips. Seven genes encoding Bt spore proteins were cloned and expressed in Escherichia coli. The binding of each purified spore antigen was tested by commercially available polyclonal and monoclonal antibodies claimed to exclusively target spores. Of the seven targets, Bacillus collagen-like protein A, was the most abundant protein on Bt spores and demonstrated the strongest binding affinity to all test antibodies. The commercial antibodies (Abs) were also tested for specificity to BC Group versus non-BC Group spores. Three of six commercial antibodies showed selectivity to Bt spores, with recombinant Abs providing the most robust lower range of detection (102 to 6 × 103 spores/mL). The sensitivity and selectivity of three published DNA aptamer sequences demonstrated a wide range of detection sensitivity for Bt spores. Two of the three test aptamers also showed reasonable selectivity towards Bt spores while the third demonstrated reactivity to non-BC Group B. megaterium and B. subtilis. Of the reagents tested, a thiolated aptamer and llama recombinant Ab showed highest Bt spore capture efficiency as measured by spore coverage of the GaAs surface. These results confirm that the selected aptamer and llama rAb can be considered strong candidates for the development of GaAs-based biosensing devices.
Collapse
Affiliation(s)
- Houman Moteshareie
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada; Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada.
| | - Walid M Hassen
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada
| | - Jonathan Vermette
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada
| | - Jan J Dubowski
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada.
| | - Azam F Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada; Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Sherbrooke, Québec, Canada.
| |
Collapse
|
24
|
Spore-Associated Proteins Involved in c-di-GMP Synthesis and Degradation of Bacillus anthracis. J Bacteriol 2021; 203:e0013521. [PMID: 34096779 DOI: 10.1128/jb.00135-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bis-(3'-5')-cyclic-dimeric GMP (c-di-GMP) is an important bacterial regulatory signaling molecule affecting biofilm formation, toxin production, motility, and virulence. The genome of Bacillus anthracis, the causative agent of anthrax, is predicted to encode ten putative GGDEF/EAL/HD-GYP-domain containing proteins. Heterologous expression in Bacillus subtilis hosts indicated that there are five active GGDEF domain-containing proteins and four active EAL or HD-GYP domain-containing proteins. Using an mCherry gene fusion-Western blotting approach, the expression of the c-di-GMP-associated proteins was observed throughout the in vitro life cycle. Of the six c-di-GMP-associated proteins found to be present in sporulating cells, four (CdgA, CdgB, CdgD, and CdgG) contain active GGDEF domains. The six proteins expressed in sporulating cells are retained in spores in a CotE-independent manner and thus are not likely to be localized to the exosporium layer of the spores. Individual deletion mutations involving the nine GGDEF/EAL protein-encoding genes and one HD-GYP protein-encoding gene did not affect sporulation efficiency, the attachment of the exosporium glycoprotein BclA, or biofilm production. Notably, expression of anthrax toxin was not affected by deletion of any of the cdg determinants. Three determinants encoding proteins with active GGDEF domains were found to affect germination kinetics. This study reveals a spore association of cyclic-di-GMP regulatory proteins and a likely role for these proteins in the biology of the B. anthracis spore. IMPORTANCE The genus Bacillus is composed of Gram-positive, rod shaped, soil-dwelling bacteria. As a mechanism for survival in the harsh conditions in soil, the organisms undergo sporulation, and the resulting spores permit the organisms to survive harsh environmental conditions. Although most species are saprophytes, Bacillus cereus and Bacillus anthracis are human pathogens and Bacillus thuringiensis is an insect pathogen. The bacterial c-di-GMP regulatory system is an important control system affecting motility, biofilm formation, and toxin production. The role of c-di-GMP has been studied in the spore-forming bacilli Bacillus subtilis, Bacillus amyloliquefaciens, B. cereus, and B. thuringiensis. However, this regulatory system has not heretofore been examined in the high-consequence zoonotic pathogen of this genus, B. anthracis.
Collapse
|
25
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
26
|
Andras JP, Fields PD, Du Pasquier L, Fredericksen M, Ebert D. Genome-Wide Association Analysis Identifies a Genetic Basis of Infectivity in a Model Bacterial Pathogen. Mol Biol Evol 2021; 37:3439-3452. [PMID: 32658956 PMCID: PMC7743900 DOI: 10.1093/molbev/msaa173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Knowledge of the genetic architecture of pathogen infectivity and host resistance is essential for a mechanistic understanding of coevolutionary processes, yet the genetic basis of these interacting traits remains unknown for most host-pathogen systems. We used a comparative genomic approach to explore the genetic basis of infectivity in Pasteuria ramosa, a Gram-positive bacterial pathogen of planktonic crustaceans that has been established as a model for studies of Red Queen host-pathogen coevolution. We sequenced the genomes of a geographically, phenotypically, and genetically diverse collection of P. ramosa strains and performed a genome-wide association study to identify genetic correlates of infection phenotype. We found multiple polymorphisms within a single gene, Pcl7, that correlate perfectly with one common and widespread infection phenotype. We then confirmed this perfect association via Sanger sequencing in a large and diverse sample set of P. ramosa clones. Pcl7 codes for a collagen-like protein, a class of adhesion proteins known or suspected to be involved in the infection mechanisms of a number of important bacterial pathogens. Consistent with expectations under Red Queen coevolution, sequence variation of Pcl7 shows evidence of balancing selection, including extraordinarily high diversity and absence of geographic structure. Based on structural homology with a collagen-like protein of Bacillus anthracis, we propose a hypothesis for the structure of Pcl7 and the physical location of the phenotype-associated polymorphisms. Our results offer strong evidence for a gene governing infectivity and provide a molecular basis for further study of Red Queen dynamics in this model host-pathogen system.
Collapse
Affiliation(s)
- Jason P Andras
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA
| | - Peter D Fields
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Louis Du Pasquier
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Maridel Fredericksen
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Dieter Ebert
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
The Morphogenetic Protein CotE Positions Exosporium Proteins CotY and ExsY during Sporulation of Bacillus cereus. mSphere 2021; 6:6/2/e00007-21. [PMID: 33883264 PMCID: PMC8546674 DOI: 10.1128/msphere.00007-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The exosporium is the outermost spore layer of some Bacillus and Clostridium species and related organisms. It mediates the interactions of spores with their environment, modulates spore adhesion and germination, and has been implicated in pathogenesis. In Bacillus cereus, the exosporium consists of a crystalline basal layer, formed mainly by the two cysteine-rich proteins CotY and ExsY, surrounded by a hairy nap composed of glycoproteins. The morphogenetic protein CotE is necessary for the integrity of the B. cereus exosporium, but how CotE directs exosporium assembly remains unknown. Here, we used super-resolution fluorescence microscopy to follow the localization of SNAP-tagged CotE, CotY, and ExsY during B. cereus sporulation and evidenced the interdependencies among these proteins. Complexes of CotE, CotY, and ExsY are present at all sporulation stages, and the three proteins follow similar localization patterns during endospore formation that are reminiscent of the localization pattern of Bacillus subtilis CotE. We show that B. cereus CotE guides the formation of one cap at both forespore poles by positioning CotY and then guides forespore encasement by ExsY, thereby promoting exosporium elongation. By these two actions, CotE ensures the formation of a complete exosporium. Importantly, we demonstrate that the assembly of the exosporium is not a unidirectional process, as previously proposed, but occurs through the formation of two caps, as observed during B. subtilis coat morphogenesis, suggesting that a general principle governs the assembly of the spore surface layers of Bacillaceae. IMPORTANCE Spores of Bacillaceae are enveloped in an outermost glycoprotein layer. In the B. cereus group, encompassing the Bacillus anthracis and B. cereus pathogens, this layer is easily recognizable by a characteristic balloon-like appearance and separation from the underlying coat by an interspace. In spite of its importance for the environmental interactions of spores, including those with host cells, the mechanism of assembly of the exosporium is poorly understood. We used super-resolution fluorescence microscopy to directly visualize the formation of the exosporium during the sporulation of B. cereus, and we studied the localization and interdependencies of proteins essential for exosporium morphogenesis. We discovered that these proteins form a morphogenetic scaffold before a complete exosporium or coat is detectable. We describe how the different proteins localize to the scaffold and how they subsequently assemble around the spore, and we present a model for the assembly of the exosporium.
Collapse
|
28
|
Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dearth of knowledge on the diverse structures and functions in bacterial collagen-like proteins is in stark contrast to the deep grasp of structures and functions in mammalian collagen, the ubiquitous triple-helical scleroprotein that plays a central role in tissue architecture, extracellular matrix organization, and signal transduction. To fill and highlight existing gaps due to the general paucity of data on bacterial CLPs, we comprehensively reviewed the latest insight into their functional and structural diversity from multiple perspectives of biology, computational simulations, and materials engineering. The origins and discovery of bacterial CLPs were explored. Their genetic distribution and molecular architecture were analyzed, and their structural and functional diversity in various bacterial genera was examined. The principal roles of computational techniques in understanding bacterial CLPs' structural stability, mechanical properties, and biological functions were also considered. This review serves to drive further interest and development of bacterial CLPs, not only for addressing fundamental biological problems in collagen but also for engineering novel biomaterials. Hence, both biology and materials communities will greatly benefit from intensified research into the diverse structures and functions in bacterial collagen-like proteins.
Collapse
Affiliation(s)
- Yimin Qiu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Ling Chen
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
29
|
Mikelonis AM, Ratliff K, Youn S. Laboratory results and mathematical modeling of spore surface interactions in stormwater runoff. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 235:103707. [PMID: 32916588 PMCID: PMC7704712 DOI: 10.1016/j.jconhyd.2020.103707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Development of numerical models to predict stormwater-mediated transport of pathogenic spores in the environment depends on an understanding of adhesion forces that dictate detachment after rain events. Zeta potential values were measured in the laboratory for Bacillus globigii and Bacillus thuringiensis kurstaki, two common surrogates used to represent Bacillus anthracis, in synthetic baseline ultrapure water and laboratory prepared stormwater. Zeta potential curves were also determined for materials representative of urban infrastructure (concrete and asphalt). These data were used to predict the interaction energy between the spores and urban materials using Derjaguin-Landau-Verwey-Overbeek (DLVO) modeling. B. globigii and B. thuringiensis kurstaki sourced from Yakibou Inc., were found to have similar zeta potential curves, whereas spores sourced from the U.S. military's Dugway laboratory were found to diverge. In the ultrapure water, the modeling results use the laboratory data to demonstrate that the energy barriers between the spores and the urban materials were tunable through compression of the electrical double layer of the spores via changes of ionic strength and pH of the water. In the runoff water, charge neutralization dominated surface processes. The cations, metals, and natural organic matter (NOM) in the runoff water contributed to equalizing the zeta potential values for Dugway B. globigii and B. thuringiensis kurstaki, and drastically modified the surface of the concrete and asphalt. All DLVO energy curves using the runoff water were repulsive. The highest energy barrier predicted in this study was for Dugway B. globigii spores interacting with a concrete surface in runoff water, suggesting that this would be the most challenging combination to detach through water-based decontamination.
Collapse
Affiliation(s)
- Anne M Mikelonis
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, Homeland Security and Materials Management Division, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Katherine Ratliff
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, Homeland Security and Materials Management Division, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Sungmin Youn
- Marshall University, Department of Civil Engineering, College of Engineering and Computer Sciences, 1 John Marshall Drive, Huntington, WV 25755, United States
| |
Collapse
|
30
|
Ziegler I, Vollmar P, Knüpfer M, Braun P, Stoecker K. Reevaluating limits of detection of 12 lateral flow immunoassays for the detection of Yersinia pestis, Francisella tularensis, and Bacillus anthracis spores using viable risk group-3 strains. J Appl Microbiol 2020; 130:1173-1180. [PMID: 32970936 DOI: 10.1111/jam.14863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 11/27/2022]
Abstract
AIM Rapid detection of biological agents in biodefense is critical for operational, tactical and strategic levels as well as for medical countermeasures. Yersinia pestis, Francisella tularensis, and Bacillus anthracis are high priority agents of biological warfare or bioterrorism and many response forces use lateral flow assays (LFAs) for their detection. Several companies produce these assays, which offer results in short time and are easy to use. Despite their importance, only few publications on the limits of detection (LOD) for LFAs are available. Most of these studies used inactivated bacteria or risk group-2 strains. As the inactivation process in previous studies might have affected the tests' performances, it was our aim in this study to determine and compare the LOD of several commercially available LFAs using viable risk group-3 strains. METHODS AND RESULTS Lateral flow assays from four different companies for the detection of following bacteria were evaluated: Y. pestis, F. tularensis and B. anthracis spores. Two independent quantification methods for each target organism were applied, in order to ensure high quantification accuracy. LODs varied greatly between tests and organisms and ranged between 104 for Y. pestis-tests and as high as >109 for one B. anthracis-test. CONCLUSION This work precisely determined the LODs of LFAs from four commercial suppliers. The herein determined LODs differed from results of previous studies. This illustrates the need for using accurately quantified viable risk group 3-strains for determining such LODs. SIGNIFICANCE AND IMPACT OF THE STUDY Our work bridges an important knowledge gap with regard to LFA LOD. The LODs determined in this study will facilitate better assessment of LFA-results. They illustrate that a negative LFA result is not suited to exclude the presence of the respective agent in the analyzed sample.
Collapse
Affiliation(s)
- I Ziegler
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - P Vollmar
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - M Knüpfer
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - P Braun
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - K Stoecker
- Bundeswehr Institute for Microbiology, Munich, Germany
| |
Collapse
|
31
|
A Bacillus Spore-Based Display System for Bioremediation of Atrazine. Appl Environ Microbiol 2020; 86:AEM.01230-20. [PMID: 32680864 DOI: 10.1128/aem.01230-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
Owing to human activities, a large number of organic chemicals, including petroleum products, industrial solvents, pesticides, herbicides (including atrazine [ATR]), and pharmaceuticals, contaminate soil and aquatic environments. Remediation of these pollutants by conventional approaches is both technically and economically challenging. Bacillus endospores are highly resistant to most physical assaults and are capable of long-term persistence in soil. Spores can be engineered to express, on their surface, important enzymes for bioremediation purposes. We have developed a Bacillus thuringiensis spore platform system that can display a high density of proteins on the spore surface. The spore surface-tethered enzymes exhibit enhanced activity and stability relative to free enzymes in soil and water environments. In this study, we evaluated a B. thuringiensis spore display platform as a bioremediation tool against ATR. The Pseudomonas sp. strain ADP atzA determinant, an ATR chlorohydrolase important to the detoxification of ATR, was expressed as a fusion protein linked to the attachment domain of the BclA spore surface nap layer protein and expressed in B. thuringiensis Spores from this strain are decorated with AtzA N-terminally linked on the surface of the spores. The recombinant spores were assayed for ATR detoxification in liquid and soil environments, and enzyme kinetics and stability were assessed. We successfully demonstrated the utility of this spore-based enzyme display system to detoxify ATR in water and laboratory soil samples.IMPORTANCE Atrazine is one of the most widely applied herbicides in the U.S. midwestern states. The long environmental half-life of atrazine has contributed to the contamination of surface water and groundwater by atrazine and its chlorinated metabolites. The toxic properties of ATR have raised public health and ecological concerns. However, remediation of ATR by conventional approaches has proven to be costly and inefficient. We developed a novel B. thuringiensis spore platform system that is capable of long-term persistence in soil and can be engineered to surface express a high density of enzymes useful for bioremediation purposes. The enzymes are stably attached to the surface of the spore exosporium layer. The spore-based system will likely prove useful for remediation of other environmental pollutants as well.
Collapse
|
32
|
Weilhammer DR, Dunkle AD, Boone T, Gilmore SF, Khemmani M, Peters SKG, Hoeprich PD, Fischer NO, Blanchette CD, Driks A, Rasley A. Characterization of Bacillus anthracis Spore Proteins Using a Nanoscaffold Vaccine Platform. Front Immunol 2020; 11:1264. [PMID: 32714323 PMCID: PMC7344197 DOI: 10.3389/fimmu.2020.01264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023] Open
Abstract
Subunit vaccines are theoretically safe and easy to manufacture but require effective adjuvants and delivery systems to yield protective immunity, particularly at critical mucosal sites such as the lung. We investigated nanolipoprotein particles (NLPs) containing the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) as a platform for intranasal vaccination against Bacillus anthracis. Modified lipids enabled attachment of disparate spore and toxin protein antigens. Intranasal vaccination of mice with B. anthracis antigen-MPLA-NLP constructs induced robust IgG and IgA responses in serum and in bronchoalveolar and nasal lavage. Typically, a single dose sufficed to induce sustained antibody titers over time. When multiple immunizations were required for sustained titers, specific antibodies were detected earlier in the boost schedule with MPLA-NLP-mediated delivery than with free MPLA. Administering combinations of constructs induced responses to multiple antigens, indicating potential for a multivalent vaccine preparation. No off-target responses to the NLP scaffold protein were detected. In summary, the NLP platform enhances humoral and mucosal responses to intranasal immunization, indicating promise for NLPs as a flexible, robust vaccine platform against B. anthracis and potentially other inhalational pathogens.
Collapse
Affiliation(s)
- Dina R Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Alexis D Dunkle
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Tyler Boone
- Department of Microbiology and Immunology, Loyola University Medical Center, Chicago, IL, United States
| | - Sean F Gilmore
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Medical Center, Chicago, IL, United States
| | - Sandra K G Peters
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Paul D Hoeprich
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicholas O Fischer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Craig D Blanchette
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Medical Center, Chicago, IL, United States
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
33
|
Aubry A, Zou W, Vinogradov E, Williams D, Chen W, Harris G, Zhou H, Schur MJ, Gilbert M, Douce GR, Logan SM. In vitro Production and Immunogenicity of a Clostridium Difficile Spore-Specific BclA3 Glycopeptide Conjugate Vaccine. Vaccines (Basel) 2020; 8:vaccines8010073. [PMID: 32046000 PMCID: PMC7157674 DOI: 10.3390/vaccines8010073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract: The BclA3 glycoprotein is a major component of the exosporangial layer of Clostridium difficile spores and in this study we demonstrate that this glycoprotein is a major spore surface associated antigen. Here, we confirm the role of SgtA glycosyltransferase (SgtA GT) in BclA3 glycosylation and recapitulate this process by expressing and purifying SgtA GT fused to MalE, the maltose binding protein from Escherichia coli. In vitro assays using the recombinant enzyme and BclA3 synthetic peptides demonstrated that SgtA GT was responsible for the addition of β-O-linked GlcNAc to threonine residues of each synthetic peptide. These peptide sequences were selected from the central, collagen repeat region of the BclA3 protein. Following optimization of SgtA GT activity, we generated sufficient glycopeptide (10 mg) to allow conjugation to KLH (keyhole limpet hemocyanin) protein. Glycosylated and unglycosylated versions of these conjugates were then used as antigens to immunize rabbits and mice. Immune responses to each of the conjugates were examined by Enzyme Linked Immunosorbent Assay ELISA. Additionally, the BclA3 conjugated peptide and glycopeptide were used as antigens in an ELISA assay with serum raised against formalin-killed spores. Only the glycopeptide was recognized by anti-spore polyclonal immune serum demonstrating that the glycan moiety is a predominant spore-associated surface antigen. To determine whether antibodies to these peptides could modify persistence of spores within the gut, animals immunized intranasally with either the KLH-glycopeptide or KLH-peptide conjugate in the presence of cholera toxin, were challenged with R20291 spores. Although specific antibodies were raised to both antigens, immunization did not provide any protection against acute or recurrent disease.
Collapse
Affiliation(s)
- Annie Aubry
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Wei Zou
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Evguenii Vinogradov
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Dean Williams
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Wangxue Chen
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Greg Harris
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Hongyan Zhou
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Melissa J. Schur
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Michel Gilbert
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Gillian R. Douce
- Institute of Infection, Immunity, Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, UK;
| | - Susan M. Logan
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
- Correspondence: ; Tel.: +613-990-0839
| |
Collapse
|
34
|
Zincke D, Norris MH, Kurmanov B, Hadfield TL, Blackburn JK. Nucleotide polymorphism assay for the identification of west African group Bacillus anthracis: a lineage lacking anthrose. BMC Microbiol 2020; 20:6. [PMID: 31910798 PMCID: PMC6947953 DOI: 10.1186/s12866-019-1693-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/24/2019] [Indexed: 11/14/2022] Open
Abstract
Background The exosporium of the anthrax-causing Bacillus anthracis endospores display a tetrasaccharide composed of three rhamnose residues and an unusual sugar termed anthrose. Anthrose is a proposed potential target for immunotherapy and for specific detection of B. anthracis. Although originally thought to be ubiquitous in B. anthracis, previous work identified an anthrose negative strain from a West African lineage isolated from cattle that could represent a vaccine escape mutant. These strains carry genes required for expression of the anthrose operon but premature stop codons resulting from an 8-bp insertion in BAS3320 (an amino-transferase) and a C/T substitution at position 892 of the BAS3321 (a glycosyltransferase) gene prevent anthrose expression. Various other single nucleotide polymorphisms (SNPs) have been identified throughout the operon and could be the basis for detection of anthrose-deficient strains. Results In this study, we evaluated rhAmp genotypic assays based on SNPs at positions 892 and 1352 of BAS3321 for detection and differentiation of anthrose negative (Ant−) West African strains. Discrimination of anthrose negative West African isolates was achieved with as low as 100 fg of DNA, whereas consistent genotyping of Sterne necessitated at least 1 pg of DNA. Conclusions Screening of a global panel of B. anthracis isolates showed anthrose-expressing alleles are prevalent worldwide whereas the anthrose-deficient phenotype is to date limited to West Africa. Our work also revealed a third, previously unreported anthrose genotype in which the operon is altogether missing from a Polish B. anthracis isolate.
Collapse
Affiliation(s)
- Diansy Zincke
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Michael H Norris
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Berzhan Kurmanov
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Ted L Hadfield
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jason K Blackburn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Srivastava A, Mohan S, Mauchline TH, Davies KG. Evidence for diversifying selection of genetic regions of encoding putative collagen-like host-adhesive fibers in Pasteuria penetrans. FEMS Microbiol Ecol 2019; 95:5149496. [PMID: 30380051 PMCID: PMC6238073 DOI: 10.1093/femsec/fiy217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
Pasteuria spp. belong to a group of genetically diverse endospore-forming bacteria (phylum: Firmicutes) that are known to parasitize plant-parasitic nematodes and water fleas (Daphnia spp.). Collagen-like fibres form the nap on the surface of endospores and the genes encoding these sequences have been hypothesised to be involved in the adhesion of the endospores of Pasteuria spp. to their hosts. We report a group of 17 unique collagen-like genes putatively encoded by Pasteuria penetrans (strain: Res148) that formed five different phylogenetic clusters and suggest that collagen-like proteins are an important source of genetic diversity in animal pathogenic Firmicutes including Pasteuria. Additionally, and unexpectedly, we identified a putative collagen-like sequence which had a very different sequence structure to the other collagen-like proteins but was similar to the protein sequences in Megaviruses that are involved in host-parasite interactions. We, therefore, suggest that these diverse endospore surface proteins in Pasteuria are involved in biological functions, such as cellular adhesion; however, they are not of monophyletic origin and were possibly obtained de novo by mutation or possibly through selection acting upon several historic horizontal gene transfer events.
Collapse
Affiliation(s)
- Arohi Srivastava
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Tim H Mauchline
- Department of AgroEcology, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Keith G Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Postboks 115, Ås-1431, Norway
- Corresponding author: Keith G Davies, Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK. E-mail:
| |
Collapse
|
36
|
Pizarro-Guajardo M, Chamorro-Veloso N, Vidal RM, Paredes-Sabja D. New insights for vaccine development against Clostridium difficile infections. Anaerobe 2019; 58:73-79. [DOI: 10.1016/j.anaerobe.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
|
37
|
Shuster B, Khemmani M, Abe K, Huang X, Nakaya Y, Maryn N, Buttar S, Gonzalez AN, Driks A, Sato T, Eichenberger P. Contributions of crust proteins to spore surface properties in Bacillus subtilis. Mol Microbiol 2019; 111:825-843. [PMID: 30582883 DOI: 10.1111/mmi.14194] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
Surface properties, such as adhesion and hydrophobicity, constrain dispersal of bacterial spores in the environment. In Bacillus subtilis, these properties are influenced by the outermost layer of the spore, the crust. Previous work has shown that two clusters, cotVWXYZ and cgeAB, encode the protein components of the crust. Here, we characterize the respective roles of these genes in surface properties using Bacterial Adherence to Hydrocarbons assays, negative staining of polysaccharides by India ink and Transmission Electron Microscopy. We showed that inactivation of crust genes caused increases in spore relative hydrophobicity, disrupted the spore polysaccharide layer, and impaired crust structure and attachment to the rest of the coat. We also found that cotO, previously identified for its role in outer coat formation, is necessary for proper encasement of the spore by the crust. In parallel, we conducted fluorescence microscopy experiments to determine the full network of genetic dependencies for subcellular localization of crust proteins. We determined that CotZ is required for the localization of most crust proteins, while CgeA is at the bottom of the genetic interaction hierarchy.
Collapse
Affiliation(s)
- Bentley Shuster
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Kimihiro Abe
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Xiaoyu Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Yusei Nakaya
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Nina Maryn
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Sally Buttar
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adriana N Gonzalez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Tsutomu Sato
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
38
|
Coordinated Assembly of the Bacillus anthracis Coat and Exosporium during Bacterial Spore Outer Layer Formation. mBio 2018; 9:mBio.01166-18. [PMID: 30401771 PMCID: PMC6222130 DOI: 10.1128/mbio.01166-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This work dramatically improves our understanding of the assembly of the outermost layer of the B. anthracis spore, the exosporium, a layer that encases spores from many bacterial species and likely plays important roles in the spore’s interactions with the environment, including host tissues. Nonetheless, the mechanisms directing exosporium assembly into a shell surrounding the spore are still very poorly understood. In this study, we clarify these mechanisms by the identification of a novel protein interaction network that directs assembly to initiate at a specific subcellular location in the developing cell. Our results further suggest that the presence or absence of an exosporium has a major impact on the assembly of other more interior spore layers, thereby potentially explaining long-noted differences in spore assembly between B. anthracis and the model organism B. subtilis. Bacterial spores produced by the Bacillales are composed of concentric shells, each of which contributes to spore function. Spores from all species possess a cortex and coat, but spores from many species possess additional outer layers. The outermost layer of Bacillus anthracis spores, the exosporium, is separated from the coat by a gap known as the interspace. Exosporium and interspace assembly remains largely mysterious. As a result, we have a poor understanding of the overarching mechanisms driving the assembly of one of the most ubiquitous cell types in nature. To elucidate the mechanisms directing exosporium assembly, we generated strains bearing mutations in candidate exosporium-controlling genes and analyzed the effect on exosporium formation. Biochemical and cell biological analyses argue that CotE directs the assembly of CotO into the spore and that CotO might be located at or close to the interior side of the cap. Taken together with data showing that CotE and CotO interact directly in vitro, we propose a model in which CotE and CotO are important components of a protein interaction network that connects the exosporium to the forespore during cap formation and exosporium elongation. Our data also suggest that the cap interferes with coat assembly at one pole of the spore, altering the pattern of coat deposition compared to the model organism Bacillus subtilis. We propose that the difference in coat assembly patterns between these two species is due to an inherent flexibility in coat assembly, which may facilitate the evolution of spore outer layer complexity.
Collapse
|
39
|
Anderson GP, Shriver-Lake LC, Walper SA, Ashford L, Zabetakis D, Liu JL, Breger JC, Brozozog Lee PA, Goldman ER. Genetic Fusion of an Anti-BclA Single-Domain Antibody with Beta Galactosidase. Antibodies (Basel) 2018; 7:antib7040036. [PMID: 31544886 PMCID: PMC6698959 DOI: 10.3390/antib7040036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
The Bacillus collagen-like protein of anthracis (BclA), found in Bacillus anthracis spores, is an attractive target for immunoassays. Previously, using phage display we had selected llama-derived single-domain antibodies that bound to B. anthracis spore proteins including BclA. Single-domain antibodies (sdAbs), the recombinantly expressed heavy domains from the unique heavy-chain-only antibodies found in camelids, provide stable and well-expressed binding elements with excellent affinity. In addition, sdAbs offer the important advantage that they can be tailored for specific applications through protein engineering. A fusion of a BclA targeting sdAb with the enzyme Beta galactosidase (β-gal) would enable highly sensitive immunoassays with no need for a secondary reagent. First, we evaluated five anti-BclA sdAbs, including four that had been previously identified but not characterized. Each was tested to determine its binding affinity, melting temperature, producibility, and ability to function as both capture and reporter in sandwich assays for BclA. The sdAb with the best combination of properties was constructed as a fusion with β-gal and shown to enable sensitive detection. This fusion has the potential to be incorporated into highly sensitive assays for the detection of anthrax spores.
Collapse
Affiliation(s)
- George P Anderson
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lisa C Shriver-Lake
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Scott A Walper
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lauryn Ashford
- The Washington Center for Internships and Academic Seminars, 1333 16th Street N.W., Washington, DC 20036, USA.
| | - Dan Zabetakis
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Jinny L Liu
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Joyce C Breger
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | | | - Ellen R Goldman
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| |
Collapse
|
40
|
Ghosh A, Manton JD, Mustafa AR, Gupta M, Ayuso-Garcia A, Rees EJ, Christie G. Proteins Encoded by the gerP Operon Are Localized to the Inner Coat in Bacillus cereus Spores and Are Dependent on GerPA and SafA for Assembly. Appl Environ Microbiol 2018; 84:e00760-18. [PMID: 29728391 PMCID: PMC6029093 DOI: 10.1128/aem.00760-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/24/2018] [Indexed: 02/04/2023] Open
Abstract
The germination of Bacillus spores is triggered by certain amino acids and sugar molecules which permeate the outermost layers of the spore to interact with receptor complexes that reside in the inner membrane. Previous studies have shown that mutations in the hexacistronic gerP locus reduce the rate of spore germination, with experimental evidence indicating that the defect stems from reduced permeability of the spore coat to germinant molecules. Here, we use the ellipsoid localization microscopy technique to reveal that all six Bacillus cereus GerP proteins share proximity with cortex-lytic enzymes within the inner coat. We also reveal that the GerPA protein alone can localize in the absence of all other GerP proteins and that it has an essential role for the localization of all other GerP proteins within the spore. Its essential role is also demonstrated to be dependent on SafA, but not CotE, for localization, which is consistent with an inner coat location. GerP-null spores are shown also to have reduced permeability to fluorescently labeled dextran molecules compared to wild-type spores. Overall, the results support the hypothesis that the GerP proteins have a structural role within the spore associated with coat permeability.IMPORTANCE The bacterial spore coat comprises a multilayered proteinaceous structure that influences the distribution, survival, and germination properties of spores in the environment. The results from the current study are significant since they increase our understanding of coat assembly and architecture while adding detail to existing models of germination. We demonstrate also that the ellipsoid localization microscopy (ELM) image analysis technique can be used as a novel tool to provide direct quantitative measurements of spore coat permeability. Progress in all of these areas should ultimately facilitate improved methods of spore control in a range of industrial, health care, and environmental sectors.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - James D Manton
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Amin R Mustafa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Mudit Gupta
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Alejandro Ayuso-Garcia
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Eric J Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Genes under positive selection in the core genome of pathogenic Bacillus cereus group members. INFECTION GENETICS AND EVOLUTION 2018; 65:55-64. [PMID: 30006047 DOI: 10.1016/j.meegid.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
In this comparative genomics study our aim was to unravel genes under positive selection in the core genome of the Bacillus cereus group. Indeed, the members of this group share close genetic relationships but display a rather large phenotypic and ecological diversity, providing a unique opportunity for studying how genomic changes reflect ecological adaptation during the divergence of a bacterial group. For this purpose, we screened ten completely sequenced genomes of four pathogenic Bacillus species, finding that 254 out of 3093 genes have codon sites with dN/dS (ω) values above one. These results remained unchanged after having disentangled the confounding effects of recombination and selection signature in a Bayesian framework. The presumably adaptive nucleotide polymorphisms are distributed over a wide range of biological functions, such as antibiotic resistance, DNA repair, nutrient uptake, metabolism, cell wall assembly and spore structure. Our results indicate that adaptation to animal hosts, whether as pathogens, saprophytes or symbionts, is the major driving force in the evolution of the Bacillus cereus group. Future work should seek to understand the evolutionary dynamics of both core and accessory genes in an integrative framework to ultimately unravel the key networks involved in host adaptation.
Collapse
|
42
|
Majumder S, Das S, Somani V, Makam SS, Joseph KJ, Bhatnagar R. A bivalent protein r-PB, comprising PA and BclA immunodominant regions for comprehensive protection against Bacillus anthracis. Sci Rep 2018; 8:7242. [PMID: 29740033 PMCID: PMC5940697 DOI: 10.1038/s41598-018-25502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Anthrax infection is primarily initiated by B. anthracis endospores that on entry into the host germinate to vegetative cells and cause severe bacteremia and toxaemia employing an array of host colonisation factors and the lethal tripartite toxin. The protective efficacy of conventional protective antigen (PA) based anthrax vaccines is improved by co-administration with inactivated spores or its components. In the present study, using structural vaccinology rationale we synthesized a bivalent protein r-PB encompassing toxin (PAIV) and spore components (BclACTD) and characterized its protective efficacy against B. anthracis infection. Active immunization of mice with r-PB generated high titer circulating antibodies which facilitated the phagocytic uptake of spores, inhibited their germination to vegetative cells and completely neutralized anthrax toxins in vivo resulting in 100 % survival against anthrax toxin challenge. Proliferation of CD4+ T cell subsets with up-regulation of Th1 (IFN-γ, IL-2, and IL-12), Th2 (IL-5, IL-10) cytokines and balanced expression of IgG1:IgG2a antibody isotypes indicated the stimulation of both Th1 and Th2 subsets. The immunized mice exhibited 100 % survival upon challenge with B. anthracis spores or toxin indicating the ability of r-PB to provide comprehensive protection against anthrax. Our results thus demonstrate r-PB an efficient vaccine candidate against anthrax infection.
Collapse
Affiliation(s)
- Saugata Majumder
- Microbiology Division, Defence Food Research Laboratory, Defence Research Development Organisation, Mysore, 570011, India
| | - Shreya Das
- Microbiology Division, Defence Food Research Laboratory, Defence Research Development Organisation, Mysore, 570011, India
| | - Vikas Somani
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shivakiran S Makam
- Microbiology Division, Defence Food Research Laboratory, Defence Research Development Organisation, Mysore, 570011, India
| | - Kingston J Joseph
- Microbiology Division, Defence Food Research Laboratory, Defence Research Development Organisation, Mysore, 570011, India.
| | - Rakesh Bhatnagar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
43
|
Rabi R, Larcombe S, Mathias R, McGowan S, Awad M, Lyras D. Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract. PLoS Pathog 2018; 14:e1007004. [PMID: 29668758 PMCID: PMC5927469 DOI: 10.1371/journal.ppat.1007004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/30/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial spores play an important role in disease initiation, transmission and persistence. In some species, the exosporium forms the outermost structure of the spore and provides the first point of contact between the spore and the environment. The exosporium may also be involved in spore adherence, protection and germination. Clostridium sordellii is a highly lethal, spore forming pathogen that causes soft-tissue infections, enteritis and toxic-shock syndrome. Despite the importance of C. sordellii spores in disease, spore proteins from this bacterium have not been defined or interrogated functionally. In this study, we identified the C. sordellii outer spore proteome and two of the identified proteins, CsA and CsB, were characterised using a genetic and phenotypic approach. Both proteins were essential for the correct formation and positioning of the C. sordellii spore coat and exosporium. The absence of CsA reduced sporulation levels and increased spore sensitivity to heat, sodium hydroxide and hydrochloric acid. By comparison, CsB was required for normal levels of spore adherence to cervical, but not vaginal, cells, with csB mutant spores having increased adherence properties. The establishment of a mouse infection model of the gastrointestinal tract for C. sordellii allowed the role of CsA and CsB to be interrogated in an infected host. Following the oral administration of spores to mice, the wild-type strain efficiently colonized the gastrointestinal tract, with the peak of bacterial numbers occurring at one day post-infection. Colonization was reduced by two logs at four days post-infection. By comparison, mice infected with the csB mutant did not show a reduction in bacterial numbers. We conclude that C. sordellii outer spore proteins are important for the structural and functional integrity of spores. Furthermore, outer spore proteins are required for wild-type levels of colonization during infection, possibly as a result of the role that the proteins play in spore structure and morphology.
Collapse
Affiliation(s)
- Rebecca Rabi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah Larcombe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Rommel Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sheena McGowan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Milena Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
44
|
Chateau A, Lunderberg JM, Oh SY, Abshire T, Friedlander A, Quinn CP, Missiakas DM, Schneewind O. Galactosylation of the Secondary Cell Wall Polysaccharide of Bacillus anthracis and Its Contribution to Anthrax Pathogenesis. J Bacteriol 2018; 200:e00562-17. [PMID: 29229702 PMCID: PMC5809694 DOI: 10.1128/jb.00562-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is essential for bacterial growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats with the structure, [→4)-β-ManNAc-(1→4)-β-GlcNAc(O3-α-Gal)-(1→6)-α-GlcNAc(O3-α-Gal, O4-β-Gal)-(1→]6-12 The genes whose products promote the galactosylation of B. anthracis SCWP are not yet known. We show here that the expression of galE1, encoding a UDP-glucose 4-epimerase necessary for the synthesis of UDP-galactose, is required for B. anthracis SCWP galactosylation. The galE1 mutant assembles surface (S) layer and S layer-associated proteins that associate with ketal-pyruvylated SCWP via their S layer homology domains similarly to wild-type B. anthracis, but the mutant displays a defect in γ-phage murein hydrolase binding to SCWP. Furthermore, deletion of galE1 diminishes the capsulation of B. anthracis with poly-d-γ-glutamic acid (PDGA) and causes a reduction in bacterial virulence. These data suggest that SCWP galactosylation is required for the physiologic assembly of the B. anthracis cell wall envelope and for the pathogenesis of anthrax disease.IMPORTANCE Unlike virulent Bacillus anthracis isolates, B. anthracis strain CDC684 synthesizes secondary cell wall polysaccharide (SCWP) trisaccharide repeats without galactosyl modification, exhibits diminished growth in vitro in broth cultures, and is severely attenuated in an animal model of anthrax. To examine whether SCWP galactosylation is a requirement for anthrax disease, we generated variants of B. anthracis strains Sterne 34F2 and Ames lacking UDP-glucose 4-epimerase by mutating the genes galE1 and galE2 We identified galE1 as necessary for SCWP galactosylation. Deletion of galE1 decreased the poly-d-γ-glutamic acid (PDGA) capsulation of the vegetative form of B. anthracis and increased the bacterial inoculum required to produce lethal disease in mice, indicating that SCWP galactosylation is indeed a determinant of anthrax disease.
Collapse
Affiliation(s)
- Alice Chateau
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Justin Mark Lunderberg
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - So Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Teresa Abshire
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Arthur Friedlander
- Headquarters, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dominique M Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
45
|
Fulton KM, Li J, Tomas JM, Smith JC, Twine SM. Characterizing bacterial glycoproteins with LC-MS. Expert Rev Proteomics 2018; 15:203-216. [PMID: 29400572 DOI: 10.1080/14789450.2018.1435276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Though eukaryotic glycoproteins have been studied since their discovery in the 1930s, the first bacterial glycoprotein was not identified until the 1970s. As a result, their role in bacterial pathogenesis is still not well understood and they remain an understudied component of bacterial virulence. In recent years, mass spectrometry has emerged as a leading technology for the study of bacterial glycoproteins, largely due to its sensitivity and versatility. Areas covered: Identification and comprehensive characterization of bacterial glycoproteins usually requires multiple complementary mass spectrometry approaches, including intact protein analysis, top-down analysis, and bottom-up methods used in combination with specialized liquid chromatography. This review provides an overview of liquid chromatography separation technologies, as well as current and emerging mass spectrometry approaches used specifically for bacterial glycoprotein identification and characterization. Expert commentary: Bacterial glycoproteins may have significant clinical utility as a result of their unique structures and exposure on the surface of the cells. Better understanding of these glycoconjugates is an essential first step towards that goal. These often unique structures, and by extension the key enzymes involved in their synthesis, represent promising targets for novel antimicrobials, while unique carbohydrate structures may be used as antigens in vaccines or as biomarkers.
Collapse
Affiliation(s)
- Kelly M Fulton
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Jianjun Li
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Juan M Tomas
- b Departament de Microbiologia, Facultat de Biologia , Universitat de Barcelona , Barcelona , Spain
| | - Jeffrey C Smith
- c Department of Chemistry , Carleton University , Ottawa , Canada
| | - Susan M Twine
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| |
Collapse
|
46
|
Stelder SK, Benito de Moya C, Hoefsloot HCJ, de Koning LJ, Brul S, de Koster CG. Stoichiometry, Absolute Abundance, and Localization of Proteins in the Bacillus cereus Spore Coat Insoluble Fraction Determined Using a QconCAT Approach. J Proteome Res 2018; 17:903-917. [PMID: 29260567 PMCID: PMC5799878 DOI: 10.1021/acs.jproteome.7b00732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Spores of Bacillus cereus pose a threat to food
safety due to their high resistance to the heat or acid treatments
commonly used to make food microbiologically safe. Spores may survive
these treatments and later resume growth either on foodstuffs or,
after ingestion, upon entering the gut they are capable of producing
toxins, which cause either vomiting or diarrhea. The outer layers
of the spore, the spore coat and exosporium, consist primarily of
proteins that may serve as potential biomarkers for detection. The
major morphogenetic protein CotE is important for correct assembly
and attachment of the outermost layer, the exosporium, and by extension
retention of many proteins. However, characterization of the proteins
affected by deletion of CotE has been limited to electrophoretic patterns.
Here we report the effect of CotE deletion on the insoluble fraction
of the spore proteome through liquid chromatography–Fourier
transform tandem mass spectrometry (LC–FTMS/MS) analysis. A total of 560 proteins have been identified in both mutant
and wild-type spore coat isolates. A further 163 proteins were identified
exclusively in wild-type spore isolates indicating that they are dependent
on CotE for their association with the spore. Several of these are
newly confirmed as associated with the exosporium, namely BC_2569
(BclF), BC_3345, BC_2427, BC_2878, BC_0666, BC_2984, BC_3481, and
BC_2570. A total of 153 proteins were only identified in ΔCotE
spore isolates. This was observed for proteins that are known or likely
to be interacting with or are encased by CotE. Crucial spore proteins
were quantified using a QconCAT reference standard, the first time
this was used in a biochemically heterogeneous system. This allowed
us to determine the absolute abundance of 21 proteins, which spanned
across three orders of magnitude and together covered 5.66% ±
0.51 of the total spore weight. Applying the QconCAT methodology to
the ΔCotE mutant allowed us to quantify 4.13% ± 0.14 of
the spore total weight and revealed a reduction in abundance for most
known exosporium associated proteins upon CotE deletion. In contrast,
several proteins, either known or likely to be interacting with or
encased by CotE (i.e., GerQ), were more abundant. The results obtained
provide deeper insight into the layered spore structure such as which
proteins are exposed on the outside of the spore. This information
is important for developing detection methods for targeting spores
in a food safety setting. Furthermore, protein stoichiometry and determination
of the abundance of germination mediating enzymes provides useful
information for germination and outgrowth model development.
Collapse
Affiliation(s)
- Sacha K Stelder
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Celia Benito de Moya
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Huub C J Hoefsloot
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J de Koning
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G de Koster
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
47
|
Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores. mSphere 2017; 2:mSphere00343-17. [PMID: 28989969 PMCID: PMC5628289 DOI: 10.1128/msphere.00343-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 01/26/2023] Open
Abstract
Clostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for structural studies of spores from other bacterial species. Clostridium sordellii is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of C. sordellii is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the C. sordellii spore are lacking. Here, we used a range of electron microscopy techniques together with superresolution optical microscopy to characterize the C. sordellii spore morphology with an emphasis on the exosporium. The C. sordellii spore is made up of multiple layers with the exosporium presenting as a smooth balloon-like structure that is open at the spore poles. Focusing on the outer spore layers, we compared the morphologies of C. sordellii spores derived from different strains and determined that there is some variation between the spores, most notably with spores of some strains having tubular appendages. Since Clostridium difficile is a close relative of C. sordellii, their spores were compared by electron microscopy and their exosporia were found to be distinctly different from each other. This study therefore provides new structural details of the C. sordellii spore and offers insights into the physical structure of the exosporium across clostridial species. IMPORTANCEClostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for structural studies of spores from other bacterial species.
Collapse
|
48
|
Wang L, Xia Q, Li Y. The effects of high pressure processing and slightly acidic electrolysed water on the structure of Bacillus cereus spores. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, Herman EK, Eme L, Arias MC, Henrissat B, Hilliou F, Klute MJ, Suga H, Malik SB, Pightling AW, Kolisko M, Rachubinski RA, Schlacht A, Soanes DM, Tsaousis AD, Archibald JM, Ball SG, Dacks JB, Clark CG, van der Giezen M, Roger AJ. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol 2017; 15:e2003769. [PMID: 28892507 PMCID: PMC5608401 DOI: 10.1371/journal.pbio.2003769] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than β-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
Collapse
Affiliation(s)
- Eleni Gentekaki
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bruce A. Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Courtney W. Stairs
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dayana E. Salas-Leiva
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emily K. Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Eme
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maria C. Arias
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, Villeneuve d’Ascq Cedex, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mary J. Klute
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka 562, Shobara, Hiroshima, Japan
| | - Shehre-Banoo Malik
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arthur W. Pightling
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin Kolisko
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Alexander Schlacht
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren M. Soanes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Anastasios D. Tsaousis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M. Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, Canada
| | - Steven G. Ball
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, Villeneuve d’Ascq Cedex, France
| | - Joel B. Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - C. Graham Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Andrew J. Roger
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, Canada
| |
Collapse
|
50
|
Koehler SM, Buyuk F, Celebi O, Demiraslan H, Doganay M, Sahin M, Moehring J, Ndumnego OC, Otlu S, van Heerden H, Beyer W. Protection of farm goats by combinations of recombinant peptides and formalin inactivated spores from a lethal Bacillus anthracis challenge under field conditions. BMC Vet Res 2017; 13:220. [PMID: 28701192 PMCID: PMC5508662 DOI: 10.1186/s12917-017-1140-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 07/04/2017] [Indexed: 11/30/2022] Open
Abstract
Background Bacillus (B.) anthracis, the causal agent of anthrax, is effectively controlled by the Sterne live spore vaccine (34F2) in animals. However, live spore vaccines are not suitable for simultaneous vaccination and antibiotic treatment of animals being at risk of infection in an outbreak situation. Non-living vaccines could close this gap. Results In this study a combination of recombinant protective antigen and recombinant Bacillus collagen-like antigen (rBclA) with or without formalin inactivated spores (FIS), targeted at raising an immune response against both the toxins and the spore of B. anthracis, was tested for immunogenicity and protectiveness in goats. Two groups of goats received from local farmers of the Kars region of Turkey were immunized thrice in three weeks intervals and challenged together with non-vaccinated controls with virulent B. anthracis, four weeks after last immunization. In spite of low or none measurable toxin neutralizing antibodies and a surprisingly low immune response to the rBclA, 80% of the goats receiving the complete vaccine were protected against a lethal challenge. Moreover, the course of antibody responses indicates that a two-step vaccination schedule could be sufficient for protection. Conclusion The combination of recombinant protein antigens and FIS induces a protective immune response in goats. The non-living nature of this vaccine would allow for a concomitant antibiotic treatment and vaccination procedure. Further studies should clarify how this vaccine candidate performs in a post infection scenario controlled by antibiotics. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1140-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne M Koehler
- Department of Infectiology and Animal Hygiene, University of Hohenheim, Institute of Animal Science, 70593, Stuttgart, Germany.,Robert-Koch-Institut, 13353, Berlin, Germany
| | - Fatih Buyuk
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Ozgur Celebi
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Hayati Demiraslan
- Faculty of Medicine, Department of Infectious Diseases, Erciyes University, 38039, Kayseri, Turkey
| | - Mehmet Doganay
- Faculty of Medicine, Department of Infectious Diseases, Erciyes University, 38039, Kayseri, Turkey
| | - Mitat Sahin
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Jens Moehring
- Institute for Crop Science, University of Hohenheim, Biostatistical Unit, 70593, Stuttgart, Germany
| | - Okechukwu C Ndumnego
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110, South Africa.,Africa Health Research Institute, Durban, 4013, South Africa
| | - Salih Otlu
- Faculty of Veterinary Medicine, Department of Microbiology, Kafkas University, 36300, Kars, Turkey
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Wolfgang Beyer
- Department of Infectiology and Animal Hygiene, University of Hohenheim, Institute of Animal Science, 70593, Stuttgart, Germany.
| |
Collapse
|