1
|
Noori M, Azimirad M, Ghorbaninejad M, Meyfour A, Zali MR, Yadegar A. PPAR-γ agonist mitigates intestinal barrier dysfunction and inflammation induced by Clostridioides difficile SlpA in vitro. Sci Rep 2024; 14:32087. [PMID: 39738433 PMCID: PMC11686163 DOI: 10.1038/s41598-024-83815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Clostridioides difficile is the leading cause of healthcare- and antibiotic-associated diarrhea. Surface layer protein A (SlpA), an essential component of the bacterium's outermost layer, contributes to colonization and inflammation. The peroxisome proliferator-activated receptor gamma (PPAR-γ) has been demonstrated to improve intestinal integrity and prevent inflammation in host cells. Here, we investigated the role of PPAR-γ in SlpA-mediated inflammation in Caco-2 cells and THP-1 derived macrophages. The extraction of SlpA was carried out for three toxigenic C. difficile clinical strains (RT126, RT001, RT084) and a non-toxigenic strain (ATCC 700057). The gene expression of tight junction (TJ) proteins and inflammatory markers was determined using RT-qPCR. The production of proinflammatory cytokines and nitric oxide was measured by ELISA and Griss reaction, respectively. Western blotting was performed to detect PPAR-γ level before and after adding its agonist, pioglitazone. SlpA of C. difficile strains enhanced the expression of TLR-4, NF-κB, MyD88, IL-17, MCP-1, IL-8, IL-6, TNF-α, IL-1β, whilst the gene expression level of JAM-A, claudin-1, occludin, PPAR-γ and its receptor (CD36) was decreased in both Caco-2 cells and THP-1 derived macrophages. Moreover, pioglitazone caused a notable elevation in the expression level of PPAR-γ, only following treatment with RT126 SlpA. Besides, pioglitazone pretreatment improved TJ impairment in Caco-2 cells and attenuated proinflammatory cytokine expression in both SlpA-treated cell lines. SlpA can attenuate PPAR-γ expression, trigger TJ disruption, and stimulate inflammatory response in host cells. Notably, these events could be reversed by pretreatment of cells with PPAR-γ agonist. Further experiments are required to corroborate the present findings.
Collapse
Affiliation(s)
- Maryam Noori
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center , Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang S, Heuler J, Bullock J, Qin J, Chakraborty S, Nathaniel AL, Wang S, Sun X. Cell Wall Protein 2 as a Vaccine Candidate Protects Mice Against Clostridioides difficile Infection. Vaccines (Basel) 2024; 13:21. [PMID: 39852800 PMCID: PMC11768939 DOI: 10.3390/vaccines13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Clostridioides difficile is a Gram-positive, spore-forming enteric pathogen that causes intestinal disorders, including inflammation and diarrhea, primarily through toxin production. Standard treatment options for C. difficile infection (CDI) involve a limited selection of antibiotics that are not fully effective, leading to high recurrence rates. Vaccination presents a promising strategy for preventing both CDI and its recurrence. Cell wall protein 2 (Cwp2), a highly immunogenic and abundant surface-exposed C. difficile cell wall protein, plays an important role in the bacterium's adherence in vitro. In this study, we aimed to analyze the homology and immunogenicity of Cwp2 and its protection efficacy as a vaccine candidate against CDI in mice. METHODS we conducted in silico analyses to assess the homology and immunogenicity of Cwp2, and we evaluated its potential as a vaccine candidate against CDI using a mouse model of immunization and infection. RESULTS Our in silico analyses predicted the immunogenic region (functional domain) of Cwp2 and revealed its high homology among various toxinotypes and ribotypes (R.T.s) or sequence types (S.T.s). Immunizations of mice with the Cwp2 functional domain (Cwp2_A) induced potent IgG/A antibody responses against Cwp2_A, protected mice from CDI, and reduced C. difficile spore and toxin levels in feces post-infection. Additionally, anti-Cwp2_A sera inhibited the binding of C. difficile vegetative cells to HCT8 cells. CONCLUSIONS Our report demonstrates for the first time the potential of Cwp2_A as an effective vaccine candidate against CDI in mice.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Joshua Heuler
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Jessica Bullock
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Junling Qin
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Soumyadeep Chakraborty
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Agbendeh Lubem Nathaniel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 33620, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
3
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
4
|
Wang S, Courreges MC, Xu L, Gurung B, Berryman M, Gu T. Revealing roles of S-layer protein (SlpA) in Clostridioides difficile pathogenicity by generating the first slpA gene deletion mutant. Microbiol Spectr 2024; 12:e0400523. [PMID: 38709045 PMCID: PMC11237437 DOI: 10.1128/spectrum.04005-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Clostridioides difficile infection (CDI) with high morbidity and high mortality is an urgent threat to public health, and C. difficile pathogenesis studies are eagerly required for CDI therapy. The major surface layer protein, SlpA, was supposed to play a key role in C. difficile pathogenesis; however, a lack of isogenic slpA mutants has greatly hampered analysis of SlpA functions. In this study, the whole slpA gene was successfully deleted for the first time via CRISPR-Cas9 system. Deletion of slpA in C. difficile resulted in smaller, smother-edged colonies, shorter bacterial cell size, and aggregation in suspension. For life cycle, the mutant demonstrated lower growth (changes of optical density at 600 nm, OD600) but higher cell density (colony-forming unit, CFU), decreased toxins production, and inhibited sporulation. Moreover, the mutant was more impaired in motility, more sensitive to vancomycin and Triton X-100-induced autolysis, releasing more lactate dehydrogenase. In addition, SlpA deficiency led to robust biofilm formation but weak adhesion to human host cells.IMPORTANCEClostridioides difficile infection (CDI) has been the most common hospital-acquired infection, with a high rate of antibiotic resistance and recurrence incidences, become a debilitating public health threat. It is urgently needed to study C. difficile pathogenesis for developing efficient strategies as CDI therapy. SlpA was indicated to play a key role in C. difficile pathogenesis. However, analysis of SlpA functions was hampered due to lack of isogenic slpA mutants. Surprisingly, the first slpA deletion C. difficile strain was generated in this study via CRISPR-Cas9, further negating the previous thought about slpA being essential. Results in this study will provide direct proof for roles of SlpA in C. difficile pathogenesis, which will facilitate future investigations for new targets as vaccines, new therapeutic agents, and intervention strategies in combating CDI.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA
| | - Maria C. Courreges
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Lingjun Xu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio, USA
| | - Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Mark Berryman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio, USA
| |
Collapse
|
5
|
Zbylicki BR, Murphy CE, Petsche JA, Müh U, Dobrila HA, Ho TD, Daum MN, Pannullo AG, Weiss DS, Ellermeier CD. Identification of Clostridioides difficile mutants with increased daptomycin resistance. J Bacteriol 2024; 206:e0036823. [PMID: 38376203 PMCID: PMC10955854 DOI: 10.1128/jb.00368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic used to treat infections caused by some Gram-positive bacteria. Daptomycin disrupts synthesis of the peptidoglycan (PG) cell wall by inserting into the cytoplasmic membrane and binding multiple forms of the undecaprenyl carrier lipid required for PG synthesis. Membrane insertion requires phosphatidylglycerol, so studies of daptomycin can provide insight into assembly and maintenance of the cytoplasmic membrane. Here, we studied the effects of daptomycin on Clostridioides difficile, the leading cause of healthcare-associated diarrhea. We observed that growth of C. difficile strain R20291 in the presence of sub-MIC levels of daptomycin resulted in a chaining phenotype, minicell formation, and lysis-phenotypes broadly consistent with perturbation of membranes and PG synthesis. We also selected for and characterized eight mutants with elevated daptomycin resistance. The mutations in these mutants were mapped to four genes: cdsA (cdr20291_2041), ftsH2 (cdr20291_3396), esrR (cdr20291_1187), and draS (cdr20291_2456). Of these four genes, only draS has been characterized previously. Follow-up studies indicate these mutations confer daptomycin resistance by two general mechanisms: reducing the amount of phosphatidylglycerol in the cytoplasmic membrane (cdsA) or altering the regulation of membrane processes (ftsH2, esrR, and draS). Thus, the mutants described here provide insights into phospholipid synthesis and identify signal transduction systems involved in cell envelope biogenesis and stress response in C. difficile. IMPORTANCE C. difficile is the leading cause of healthcare-associated diarrhea and is a threat to public health due to the risk of recurrent infections. Understanding biosynthesis of the atypical cell envelope of C. difficile may provide insight into novel drug targets to selectively inhibit C. difficile. Here, we identified mutations that increased daptomycin resistance and allowed us to better understand phospholipid synthesis, cell envelope biogenesis, and stress response in C. difficile.
Collapse
Affiliation(s)
- Brianne R. Zbylicki
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Claire E. Murphy
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Jennifer A. Petsche
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ute Müh
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Horia A. Dobrila
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Theresa D. Ho
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Mikaela N. Daum
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Anthony G. Pannullo
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Hunault L, England P, Barbut F, Iannascoli B, Godon O, Déjardin F, Thomas C, Dupuy B, Guo C, Macdonald L, Gorochov G, Sterlin D, Bruhns P. A monoclonal antibody collection for C. difficile typing ? Gut Pathog 2024; 16:4. [PMID: 38243246 PMCID: PMC10797914 DOI: 10.1186/s13099-023-00592-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in adults. Various C. difficile strains circulate currently, associated with different outcomes and antibiotic resistance profiles. However, most studies still focus on the reference strain 630 that does not circulate anymore, partly due to the lack of immunological tools to study current clinically important C. difficile PCR ribotypes. The goal of this study was to generate monoclonal antibodies recognizing various epidemic ribotypes of C. difficile. To do so, we immunized mice expressing human variable antibody genes with the Low Molecular Weight (LMW) subunit of the surface layer protein SlpA from various C. difficile strains. Monoclonal antibodies purified from hybridomas bound LMW with high-affinity and whole bacteria from current C. difficile ribotypes with different cross-specificities. This first collection of anti-C. difficile mAbs represent valuable tools for basic and clinical research.
Collapse
Affiliation(s)
- Lise Hunault
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris Cité, INSERM UMR1222, 75015, Paris, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, CNRS, 75013, Paris, France
- Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015, Paris, France
| | - Frédéric Barbut
- National Reference Laboratory for Clostridium difficile, 75012, Paris, France
- Université Paris Cité, INSERM UMR-1139, Paris, France
| | - Bruno Iannascoli
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris Cité, INSERM UMR1222, 75015, Paris, France
| | - Ophélie Godon
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris Cité, INSERM UMR1222, 75015, Paris, France
| | - François Déjardin
- Production and Purification of Recombinant Proteins Facility, Institut Pasteur, 75015, Paris, France
| | - Christophe Thomas
- Production and Purification of Recombinant Proteins Facility, Institut Pasteur, 75015, Paris, France
| | - Bruno Dupuy
- UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris-Cité, 75015, Paris, France
| | | | | | - Guy Gorochov
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, CNRS, 75013, Paris, France.
| | - Delphine Sterlin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, CNRS, 75013, Paris, France
| | - Pierre Bruhns
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris Cité, INSERM UMR1222, 75015, Paris, France.
| |
Collapse
|
7
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Bharathkar SK, Miller MJ, Stadtmueller BM. Engineered Secretory Immunoglobulin A provides insights on antibody-based effector mechanisms targeting Clostridiodes difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566291. [PMID: 37986930 PMCID: PMC10659285 DOI: 10.1101/2023.11.08.566291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Secretory (S) Immunoglobin (Ig) A is the predominant mucosal antibody, which mediates host interactions with commensal and pathogenic microbes, including Clostridioides difficile. SIgA adopts a polymeric IgA structure that is bound by secretory component (SC). Despite significance, how SIgA supports diverse effector mechanisms is poorly characterized and SIgA-based therapies nonexistent. We engineered chimeric (c) SIgAs, in which we replaced SC domain D2 with a single domain antibody or a monomeric fluorescent protein, allowing us to investigate and enhance SIgA effector mechanisms. cSIgAs exhibited increased neutralization potency against C. difficile toxins, promoted bacterial clumping and cell rupture, and decreased cytotoxicity. cSIgA also allowed us to visualize and/or quantify C. difficile morphological changes and clumping events. Results reveal mechanisms by which SIgA combats C. difficile infection, demonstrate that cSIgA design can modulate these mechanisms, and demonstrate cSIgA's adaptability to modifications that might target a broad range of antigens and effector mechanisms.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Michael J. Miller
- Carle R. Woese Institute of Genomic Biology
- Department of food science and Human Nutrition, University of Illinois Urbana-Champaign, Illinois 61801 USA
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carle R. Woese Institute of Genomic Biology
| |
Collapse
|
9
|
Rubio-Mendoza D, Martínez-Meléndez A, Maldonado-Garza HJ, Córdova-Fletes C, Garza-González E. Review of the Impact of Biofilm Formation on Recurrent Clostridioides difficile Infection. Microorganisms 2023; 11:2525. [PMID: 37894183 PMCID: PMC10609348 DOI: 10.3390/microorganisms11102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile infection (CDI) may recur in approximately 10-30% of patients, and the risk of recurrence increases with each successive recurrence, reaching up to 65%. C. difficile can form biofilm with approximately 20% of the bacterial genome expressed differently between biofilm and planktonic cells. Biofilm plays several roles that may favor recurrence; for example, it may act as a reservoir of spores, protect the vegetative cells from the activity of antibiotics, and favor the formation of persistent cells. Moreover, the expression of several virulence genes, including TcdA and TcdB toxins, has been associated with recurrence. Several systems and structures associated with adhesion and biofilm formation have been studied in C. difficile, including cell-wall proteins, quorum sensing (including LuxS and Agr), Cyclic di-GMP, type IV pili, and flagella. Most antibiotics recommended for the treatment of CDI do not have activity on spores and do not eliminate biofilm. Therapeutic failure in R-CDI has been associated with the inadequate concentration of drugs in the intestinal tract and the antibiotic resistance of a biofilm. This makes it challenging to eradicate C. difficile in the intestine, complicating antibacterial therapies and allowing non-eliminated spores to remain in the biofilm, increasing the risk of recurrence. In this review, we examine the role of biofilm on recurrence and the challenges of treating CDI when the bacteria form a biofilm.
Collapse
Affiliation(s)
- Daira Rubio-Mendoza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Adrián Martínez-Meléndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Héctor Jesús Maldonado-Garza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Carlos Córdova-Fletes
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Elvira Garza-González
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| |
Collapse
|
10
|
Assandri MH, Malamud M, Trejo FM, Serradell MDLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100187. [PMID: 37064268 PMCID: PMC10102220 DOI: 10.1016/j.crmicr.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
Collapse
|
11
|
Chandra H, Kovall RA, Yadav JS, Sun X. Host Immune Responses to Surface S-Layer Proteins (SLPs) of Clostridioides difficile. Microorganisms 2023; 11:380. [PMID: 36838345 PMCID: PMC9963625 DOI: 10.3390/microorganisms11020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile, a nosocomial pathogen, is an emerging gut pathobiont causing antibiotic-associated diarrhea. C. difficile infection involves gut colonization and disruption of the gut epithelial barrier, leading to the induction of inflammatory/immune responses. The expression of two major exotoxins, TcdA and TcdB is the major cause of C. difficile pathogenicity. Attachment of bacterial abundant cell wall proteins or surface S-layer proteins (SLPs) such as SlpA with host epithelial cells is critical for virulence. In addition to being toxins, these surface components have been shown to be highly immunogenic. Recent studies indicate that C. difficile SLPs play important roles in the adhesion of the bacteria to the intestinal epithelial cells, disruption of tight junctions, and modulation of the immune response of the host cells. These proteins might serve as new targets for vaccines and new therapeutic agents. This review summarizes our current understanding of the immunological role of SLPs in inducing host immunity and their use in the development of vaccines and novel therapeutics to combat C. difficile infection.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, UP, India
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rhett A. Kovall
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jagjit S. Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
12
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
13
|
Noori M, Azimirad M, Eslami G, Looha MA, Yadegar A, Ghalavand Z, Zali MR. Surface layer protein A from hypervirulent Clostridioides difficile ribotypes induce significant changes in the gene expression of tight junctions and inflammatory response in human intestinal epithelial cells. BMC Microbiol 2022; 22:259. [PMID: 36303110 PMCID: PMC9608920 DOI: 10.1186/s12866-022-02665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Surface layer protein A (SlpA), the primary outermost structure of Clostridioides difficile, plays an essential role in C. difficile pathogenesis, although its interaction with host intestinal cells are yet to be understood. The aim of this study was to investigate the effects of SlpA extracted from C. difficile on tight junction (TJ) proteins expression and induction of pro-inflammatory cytokines in human colon carcinoma cell line HT-29. SlpA was extracted from three toxigenic C. difficile clinical strains including RT126, RT001, RT084 as well as C. difficile ATCC 700057 as non-toxigenic strain. Cell viability was performed by MTT assay, and the mRNA expression of TJ proteins and inflammation-associated genes was determined using quantitative RT-PCR. Additionally, the secretion of IL-8, IL-1β and TNF-α cytokines was measured by ELISA. RESULTS C. difficile SlpA from selected RTs variably downregulated the expression level of TJs-assassinated genes and increased the expression level of TLR-4 and pro-inflammatory cytokines in HT-29 treated cells. SlpA from RT126 significantly (padj<0.05) decreased the gene expression level of claudins family and JAM-A and increased the secretion of IL-8, TNF-α and IL1-β as compared to untreated cells. Moreover, only SlpA from RT001 could significantly induce the expression of IL-6 (padj<0.05). CONCLUSION The results of the present study highlighted the importance of SlpA in the pathogenesis of CDI and C. difficile-induced inflammatory response in the gut. Further studies are required to unravel the significance of the observed results in promoting the intestinal inflammation and immune response induced by C. difficile SlpA from different RTs.
Collapse
Affiliation(s)
- Maryam Noori
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Phetruen T, Chanarat S, Janvilisri T, Phanchana M, Charoensutthivarakul S, Phothichaisri W, Chankhamhaengdecha S. Receptor binding protein of prophage reversibly recognizes the low-molecular weight subunit of the surface-layer protein SlpA in Clostridioides difficile. Front Microbiol 2022; 13:998215. [PMID: 36312948 PMCID: PMC9615553 DOI: 10.3389/fmicb.2022.998215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor-binding proteins (RBPs) are located at the viral tail and mediate the initial recognition of phage to a specific bacterial host. Phage RBPs have co-evolved with numerous types of host receptors resulting in the formation of a diverse assortment of cognate pairs of RBP-receptors that function during the phage attachment step. Although several Clostridioides difficile bacteriophages have been discovered, their RBPs are poorly described. Using homology analysis, putative prophage-tail structure (pts) genes were identified from the prophage genome of the C. difficile HN10 strain. Competition and enzyme-linked immunosorbent assays, using recombinant PtsHN10M, demonstrated the interaction of this Pts to C. difficile cells, suggesting a role as a phage RBP. Gel filtration and cross-linking assay revealed the native form of this protein as a homotrimer. Moreover, truncated variants indicated that the C-terminal domain of PtsHN10M was important for binding to C. difficile cells. Interaction of PtsHN10M was also observed to the low-molecular weight subunit of surface-layer protein A (SlpA), located at the outermost surface of C. difficile cells. Altogether, our study highlights the function of PtsHN10M as an RBP and potentially paves the way toward phage engineering and phage therapy against C. difficile infection.
Collapse
Affiliation(s)
- Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sitthivut Charoensutthivarakul
- Faculty of Science, School of Bioinnovation and Bio-Based Product Intelligence, Mahidol University, Bangkok, Thailand
- Faculty of Science, Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Surang Chankhamhaengdecha
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Surang Chankhamhaengdecha,
| |
Collapse
|
15
|
Uskoković V, Wu VM. Altering Microbiomes with Hydroxyapatite Nanoparticles: A Metagenomic Analysis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5824. [PMID: 36079205 PMCID: PMC9456825 DOI: 10.3390/ma15175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAp), the most abundant biological material among mammals, has been recently demonstrated to possess moderate antibacterial properties. Metagenomics provides a series of tools for analyzing the simultaneous interaction of materials with larger communities of microbes, which may aid in optimizing the antibacterial activity of a material such as HAp. Here, a microbiome intrinsic to the sample of sandy soil collected from the base of an African Natal plum (Carissa macrocarpa) shrub surrounding the children's sandbox at the Arrowhead Park in Irvine, California was challenged with HAp nanoparticles and analyzed with next-generation sequencing for hypervariable 16S ribosomal DNA base pair homologies. HAp nanoparticles overwhelmingly reduced the presence of Gram-negative phyla, classes, orders, families, genera and species, and consequently elevated the relative presence of their Gram-positive counterparts. Thermodynamic, electrostatic and chemical bonding arguments were combined in a model proposed to explain this selective affinity. The ability of amphiphilic surface protrusions of lipoteichoic acid in Gram-positive bacteria and mycolic acid in mycobacteria to increase the dispersibility of the bacterial cells and assist in their resistance to capture by the solid phase is highlighted. Within the Gram-negative group, the variability of the distal, O-antigen portion of the membrane lipopolysaccharide was shown to be excessive and the variability of its proximal, lipid A portion insufficient to explain the selectivity based on chemical sequence arguments. Instead, flagella-driven motility proves to be a factor favoring the evasion of binding to HAp. HAp displayed a preference toward binding to less pathogenic bacteria than those causative of disease in humans, while taxa having a positive agricultural effect were largely captured by HAp, indicating an evolutionary advantage this may have given it as a biological material. The capacity to selectively sequester Gram-negative microorganisms and correspondingly alter the composition of the microbiome may open up a new avenue in environmental and biomedical applications of HAp.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC, Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | | |
Collapse
|
16
|
Surface layer protein A from hypervirulent Clostridioides difficile ribotype 001 can induce autophagy process in human intestinal epithelial cells. Microb Pathog 2022; 169:105681. [PMID: 35850375 DOI: 10.1016/j.micpath.2022.105681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
Abstract
Clostridioides difficile is the leading cause of nosocomial diarrhea with high morbidity and mortality worldwide. C. difficile strains produce a crystalline surface layer protein A (SlpA), which is an absolute necessity for its pathogenesis. However, its pathogenic mechanisms and its pro-inflammatory behavior are not yet fully elucidated. Herein, we report for the first time that SlpA extracted from C. difficile can induce autophagy process in Caco-2 cells. SlpA protein was purified from two C. difficile strains (RT001 and ATCC 700075). The cell viability of Caco-2 cells after exposure with different concentrations (15, 20, 25 μg/mL) of SlpA at various time points (3, 6, 12, 24 h) was measured by MTT assay. Acridine orange staining was used to visualize the hypothetical acidic vesicular organelles. The gene expression of autophagy mediators including LC3B, Atg5, Atg16L, and Beclin-1 was determined by quantitative real-time PCR assay. Western blotting assay was used to detect the expression of LC3B protein. MTT assay showed that different concentrations of SlpA did not induce significant changes in the viability of Caco-2 cells. SlpA at concentration of 20 μg/mL enhanced the formation of acidic vesicular organelles in Caco-2 cells after 12 h of exposure. Moreover, SlpA treatment significantly increased the expression of autophagy-associated genes, and increased the expression of LC3B protein in Caco-2 cells. In conclusion, our study demonstrated that SlpA is capable to induce autophagy in intestinal epithelial cells. These findings reveal a novel mechanism for the pathogenesis of C. difficile mediated by its SLPs.
Collapse
|
17
|
Wang S, Zhu D, Sun X. Development of an Effective Nontoxigenic Clostridioides difficile-Based Oral Vaccine against C. difficile Infection. Microbiol Spectr 2022; 10:e0026322. [PMID: 35583336 PMCID: PMC9241731 DOI: 10.1128/spectrum.00263-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
The symptoms of Clostridioides difficile infection (CDI) are largely attributed to two C. difficile toxins, TcdA and TcdB. Significant efforts have been devoted to developing vaccines targeting both toxins through parenteral immunization routes. Recently, we generated a novel chimeric protein (designated Tcd169), comprised of the glucosyltransferase domain (GT), the cysteine protease domain (CPD), and the receptor binding domain (RBD) of TcdB, and the RBD of TcdA. Parenteral immunizations with Tcd169 provide mice effective protection against infection with a ribotype (RT) 027 C. difficile strain. In this study, we expressed Tcd169 in a nontoxigenic C. difficile CCUG37785 strain (designated NTCD), resulting in strain NTCD_Tcd169 to develop an oral vaccine that can target both C. difficile toxins and colonization/adhesion factors. Oral immunizations with NTCD_Tcd169 spores induced systematic and mucosal antibody responses against, not only both toxins, but also C. difficile flagellins (FliC/FliD). Intriguingly yet importantly, anti-Tcd169 sera raised against Tcd169 protein were significantly cross-reactive with FliC/FliD and two surface layer proteins (SlpA and Cwp2). Oral immunizations with NTCD_Tcd169 spores provided mice effective protection against infection with a hypervirulent RT027 C. difficile strain R20291and significantly reduced R20291spore numbers in feces compared with NTCD or PBS immunized mice. These results imply that the genetically modified, nontoxigenic C. difficile strain expressing Tcd169 may represent a novel mucosal vaccine candidate against CDI. IMPORTANCE Clostridioides difficile is an enteric pathogen, and symptoms of C. difficile infection (CDI) are mainly by two exotoxins TcdA and TcdB. Active vaccination is cost-effective approach to prevent CDI and high rates of recurrence. Ideally, vaccines should target both C. difficile toxins and cell/spore colonization. In this study, we expressed immunodominant fragments of TcdA and TcdB (i.e., Tcd169) in a nontoxigenic C. difficile CCUG37785 strain, generating a promising oral/mucosal vaccine candidate against CDI, by targeting both toxins and colonization of pathogenic C. difficile strains. Importantly, anti-Tcd169 sera raised against Tcd169 protein were significantly cross-reactive with FliC/FliD and two surface layer proteins (SlpA and Cwp2), and all of which are involved in C. difficile adhesion/colonization in vitro and in vivo.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Duolong Zhu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
18
|
Santos MGDC, Trindade CNDR, Vommaro RC, Domingues RMCP, Ferreira EDO. Binding of the extracellular matrix laminin-1 to Clostridioides difficile strains. Mem Inst Oswaldo Cruz 2022; 117:e220035. [PMID: 35730804 PMCID: PMC9208321 DOI: 10.1590/0074-02760220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Clostridioides difficile is the most common cause of nosocomial diarrhea associated with antibiotic use. The disease’s symptoms are caused by enterotoxins, but other surface adhesion factors also play a role in the pathogenesis. These adhesins will bind to components of extracellular matrix. OBJECTIVE There is a lack of knowledge on MSCRAMM, this work set-out to determine the adhesive properties of several C. difficile ribotypes (027, 133, 135, 014, 012) towards laminin-1 (LMN-1). METHODS A binding experiment revealed that different ribotypes have distinct adhesion capabilities. To identify this adhesin, an affinity chromatography column containing LMN-1 was prepared and total protein extracts were analysed using mass spectrometry. FINDINGS Strains from ribotypes 012 and 027 had the best adhesion when incubated with glucose supplementations (0.2%, 0.5%, and 1%), while RT135 had a poor adherence. The criteria were not met by RT014 and RT133. In the absence of glucose, there was no adhesion for any ribotype, implying that glucose is required and plays a significant role in adhesion. MAIN CONCLUSIONS These findings show that in the presence of glucose, each C. difficile ribotype interacts differently with LMN-1, and the adhesin responsible for recognition could be SlpA protein.
Collapse
Affiliation(s)
- Mayara Gil de Castro Santos
- Universidade Federal do Rio de Janeiro, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| | - Camilla Nunes Dos Reis Trindade
- Universidade Federal do Rio de Janeiro, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| | - Rossiane Cláudia Vommaro
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho e Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, Brasil
| | | | - Eliane de Oliveira Ferreira
- Universidade Federal do Rio de Janeiro, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
19
|
Anwar F, Vedantam G. Surface-displayed glycopolymers of Clostridioides difficile. Curr Opin Microbiol 2022; 66:86-91. [DOI: 10.1016/j.mib.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
20
|
Lanzoni-Mangutchi P, Banerji O, Wilson J, Barwinska-Sendra A, Kirk JA, Vaz F, O'Beirne S, Baslé A, El Omari K, Wagner A, Fairweather NF, Douce GR, Bullough PA, Fagan RP, Salgado PS. Structure and assembly of the S-layer in C. difficile. Nat Commun 2022; 13:970. [PMID: 35217634 PMCID: PMC8881574 DOI: 10.1038/s41467-022-28196-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacteria and archaea possess a two-dimensional protein array, or S-layer, that covers the cell surface and plays crucial roles in cell physiology. Here, we report the crystal structure of SlpA, the main S-layer protein of the bacterial pathogen Clostridioides difficile, and use electron microscopy to study S-layer organisation and assembly. The SlpA crystal lattice mimics S-layer assembly in the cell, through tiling of triangular prisms above the cell wall, interlocked by distinct ridges facing the environment. Strikingly, the array is very compact, with pores of only ~10 Å in diameter, compared to other S-layers (30-100 Å). The surface-exposed flexible ridges are partially dispensable for overall structure and assembly, although a mutant lacking this region becomes susceptible to lysozyme, an important molecule in host defence. Thus, our work gives insights into S-layer organisation and provides a basis for development of C. difficile-specific therapeutics.
Collapse
Affiliation(s)
- Paola Lanzoni-Mangutchi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oishik Banerji
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Royal Society of Chemistry, Burlington House, Piccadilly, London, UK
| | - Jason Wilson
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Anna Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph A Kirk
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Filipa Vaz
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Shauna O'Beirne
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Gillian R Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Per A Bullough
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Robert P Fagan
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Paula S Salgado
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
21
|
Noori M, Ghalavand Z, Azimirad M, Yadegar A, Eslami G, Krutova M, Brajerova M, Goudarzi M, Zali MR. Genetic diversity and phylogenetic analysis of the surface layer protein A gene (slpA) among Clostridioides difficile clinical isolates from Tehran, Iran. Anaerobe 2021; 70:102403. [PMID: 34111549 DOI: 10.1016/j.anaerobe.2021.102403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile is the most common causative agent of healthcare-associated diarrhea. C. difficile strains produce a crystalline surface layer protein (SlpA), encoded by the slpA gene. Previous studies have shown that SlpA varies among C. difficile strains. In this study, we used the SlpA sequence-based typing system (SlpAST) for the molecular genotyping of C. difficile clinical isolates identified in Iran; the PCR ribotypes (RTs) and toxin profiles of the isolates were also characterized. Forty-eight C. difficile isolates were obtained from diarrheal patients, and characterized by capillary electrophoresis (CE) PCR ribotyping and the detection of toxin genes. In addition, the genetic diversity of the slpA gene was investigated by Sanger sequencing. The most common RTs were RT126 (20.8%), followed by RT001 (12.5%) and RT084 (10.4%). The intact PaLoc arrangement representing cdu2+/tcdR+/tcdB+/tcdE+/tcdA+/tcdC+/cdd3+ profile was the predominant pattern and cdtA and cdtB genes were found in one-third of the isolates. Using the SlpA genotyping, 12 main genotypes and 16 subtypes were identified. The SlpA type 078-1 was the most prevalent genotype (20.8%), and identified within the isolates of RT126. The yok-1, gr-1, cr-1 and kr-3 genotypes were detected in 14.5%, 12.5%, 12.5% and 8.3% of isolates, respectively. Almost all the isolates with the same RT were clustered in similar SlpA sequence types. In comparison to PCR ribotyping, SlpAST, as a simple and highly reproducible sequenced-based technique, can discriminate well between C. difficile isolates. This typing method appears to be a valuable tool for the epidemiological study of C. difficile isolates worldwide.
Collapse
Affiliation(s)
- Maryam Noori
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Marie Brajerova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Ravi J, Fioravanti A. S-layers: The Proteinaceous Multifunctional Armors of Gram-Positive Pathogens. Front Microbiol 2021; 12:663468. [PMID: 33889148 PMCID: PMC8056022 DOI: 10.3389/fmicb.2021.663468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
S-layers are self-assembled crystalline 2D lattices enclosing the cell envelopes of several bacteria and archaea. Despite their abundance, the landscape of S-layer structure and function remains a land of wonder. By virtue of their location, bacterial S-layers have been hypothesized to add structural stability to the cell envelope. In addition, S-layers are implicated in mediating cell-environment and cell-host interactions playing a key role in adhesion, cell growth, and division. Significant strides in the understanding of these bacterial cell envelope components were made possible by recent studies that have provided structural and functional insights on the critical S-layer and S-layer-associated proteins (SLPs and SLAPs), highlighting their roles in pathogenicity and their potential as therapeutic or vaccine targets. In this mini-review, we revisit the sequence-structure-function relationships of S-layers, SLPs, and SLAPs in Gram-positive pathogens, focusing on the best-studied classes, Bacilli (Bacillus anthracis) and Clostridia (Clostridioides difficile). We delineate the domains and their architectures in archetypal S-layer proteins across Gram-positive genera and reconcile them with experimental findings. Similarly, we highlight a few key "flavors" of SLPs displayed by Gram-positive pathogens to assemble and support the bacterial S-layers. Together, these findings indicate that S-layers are excellent candidates for translational research (developing diagnostics, antibacterial therapeutics, and vaccines) since they display the three crucial characteristics: accessible location at the cell surface, abundance, and unique lineage-specific signatures.
Collapse
Affiliation(s)
- Janani Ravi
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
23
|
Stewart D, Anwar F, Vedantam G. Anti-virulence strategies for Clostridioides difficile infection: advances and roadblocks. Gut Microbes 2020; 12:1802865. [PMID: 33092487 PMCID: PMC7588222 DOI: 10.1080/19490976.2020.1802865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/03/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a common healthcare- and antibiotic-associated diarrheal disease. If mis-diagnosed, or incompletely treated, CDI can have serious, indeed fatal, consequences. The clinical and economic burden imposed by CDI is great, and the US Centers for Disease Control and Prevention has named the causative agent, C. difficile (CD), as an Urgent Threat To US healthcare. CDI is also a significant problem in the agriculture industry. Currently, there are no FDA-approved preventives for this disease, and the only approved treatments for both human and veterinary CDI involve antibiotic use, which, ironically, is associated with disease relapse and the threat of burgeoning antibiotic resistance. Research efforts in multiple laboratories have demonstrated that non-toxin factors also play key roles in CDI, and that these are critical for disease. Specifically, key CD adhesins, as well as other surface-displayed factors have been shown to be major contributors to host cell attachment, and as such, represent attractive targets for anti-CD interventions. However, research on anti-virulence approaches has been more limited, primarily due to the lack of genetic tools, and an as-yet nascent (but increasingly growing) appreciation of immunological impacts on CDI. The focus of this review is the conceptualization and development of specific anti-virulence strategies to combat CDI. Multiple laboratories are focused on this effort, and the field is now at an exciting stage with numerous products in development. Herein, however, we focus only on select technologies (Figure 1) that have advanced near, or beyond, pre-clinical testing (not those that are currently in clinical trial), and discuss roadblocks associated with their development and implementation.
Collapse
Affiliation(s)
- David Stewart
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
- Bio5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, USA
- Southern Arizona VA Healthcare System, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
24
|
Hernández Del Pino RE, Barbero AM, Español LÁ, Morro LS, Pasquinelli V. The adaptive immune response to Clostridioides difficile: A tricky balance between immunoprotection and immunopathogenesis. J Leukoc Biol 2020; 109:195-210. [PMID: 32829520 DOI: 10.1002/jlb.4vmr0720-201r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile (C. difficile) is the major cause of hospital-acquired gastrointestinal infections in individuals following antibiotics treatment. The pathogenesis of C. difficile infection (CDI) is mediated mainly by the production of toxins that induce tissue damage and host inflammatory responses. While innate immunity is well characterized in human and animal models of CDI, adaptive immune responses remain poorly understood. In this review, the current understanding of adaptive immunity is summarized and its influence on pathogenesis and disease outcome is discussed. The perspectives on what we believe to be the main pending questions and the focus of future research are also provided. There is no doubt that the innate immune response provides a first line of defense to CDI. But, is the adaptive immune response a friend or a foe? Probably it depends on the course of the disease. Adaptive immunity is essential for pathogen eradication, but may also trigger uncontrolled or pathological inflammation. Most of the understanding of the role of T cells is based on findings from experimental models. While they are a very valuable tool for research studies, more studies in human are needed to translate these findings into human disease. Another main challenge is to unravel the role of the different T cell populations on protection or induction of immunopathogenesis.
Collapse
Affiliation(s)
- Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laureano Ángel Español
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Lorenzo Sebastián Morro
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Quesada-Gómez C, Murillo T, Arce G, Badilla-Lobo A, Castro-Peña C, Molina J, López-Ureña D, González-Camacho S, Lomonte B, Chacón-Díaz C, Rodríguez C, Chaves-Olarte E. Proteogenomic analysis of the Clostridium difficile exoproteome reveals a correlation between phylogenetic distribution and virulence potential. Anaerobe 2020; 62:102151. [DOI: 10.1016/j.anaerobe.2020.102151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/28/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
26
|
Abstract
In addition to SecA of the general Sec system, many Gram-positive bacteria, including mycobacteria, express SecA2, a second, transport-associated ATPase. SecA2s can be subdivided into two mechanistically distinct types: (i) SecA2s that are part of the accessory Sec (aSec) system, a specialized transporter mediating the export of a family of serine-rich repeat (SRR) glycoproteins that function as adhesins, and (ii) SecA2s that are part of multisubstrate systems, in which SecA2 interacts with components of the general Sec system, specifically the SecYEG channel, to export multiple types of substrates. Found mainly in streptococci and staphylococci, the aSec system also contains SecY2 and novel accessory Sec proteins (Asps) that are required for optimal export. Asp2 also acetylates glucosamine residues on the SRR domains of the substrate during transport. Targeting of the SRR substrate to SecA2 and the aSec translocon is mediated by a specialized signal peptide. Multisubstrate SecA2 systems are present in mycobacteria, corynebacteria, listeriae, clostridia, and some bacillus species. Although most substrates for this SecA2 have canonical signal peptides that are required for export, targeting to SecA2 appears to depend on structural features of the mature protein. The feature of the mature domains of these proteins that renders them dependent on SecA2 for export may be their potential to fold in the cytoplasm. The discovery of aSec and multisubstrate SecA2 systems expands our appreciation of the diversity of bacterial export pathways. Here we present our current understanding of the mechanisms of each of these SecA2 systems.
Collapse
|
27
|
Pizarro-Guajardo M, Chamorro-Veloso N, Vidal RM, Paredes-Sabja D. New insights for vaccine development against Clostridium difficile infections. Anaerobe 2019; 58:73-79. [DOI: 10.1016/j.anaerobe.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
|
28
|
Zhu D, Bullock J, He Y, Sun X. Cwp22, a novel peptidoglycan cross-linking enzyme, plays pleiotropic roles in Clostridioides difficile. Environ Microbiol 2019; 21:3076-3090. [PMID: 31173438 DOI: 10.1111/1462-2920.14706] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, toxin-producing anaerobe pathogen, and can induce nosocomial antibiotic-associated intestinal disease. While production of toxin A (TcdA) and toxin B (TcdB) contribute to the main pathogenesis of C. difficile, adhesion and colonization of C. difficile in the host gut are prerequisites for disease onset. Previous cell wall proteins (CWPs) were identified that were implicated in C. difficile adhesion and colonization. In this study, we predicted and characterized Cwp22 (CDR20291_2601) from C. difficile R20291 to be involved in bacterial adhesion based on the Vaxign reverse vaccinology tool. The ClosTron-generated cwp22 mutant showed decreased TcdA and TcdB production during early growth, and increased cell permeability and autolysis. Importantly, the cwp22 mutation impaired cellular adherence in vitro and decreased cytotoxicity and fitness over the parent strain in a mouse infection model. Furthermore, lactate dehydrogenase cytotoxicity assay, live-dead cell staining and transmission electron microscopy confirmed the decreased cell viability of the cwp22 mutant. Thus, Cwp22 is involved in cell wall integrity and cell viability, which could affect most phenotypes of R20291. Our data suggest that Cwp22 is an attractive target for C. difficile infection therapeutics and prophylactics.
Collapse
Affiliation(s)
- Duolong Zhu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jessica Bullock
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yongqun He
- Department of Microbiology and Immunology, and Center for Computational Medicine and Bioinformatics, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
29
|
Arato V, Gasperini G, Giusti F, Ferlenghi I, Scarselli M, Leuzzi R. Dual role of the colonization factor CD2831 in Clostridium difficile pathogenesis. Sci Rep 2019; 9:5554. [PMID: 30944377 PMCID: PMC6447587 DOI: 10.1038/s41598-019-42000-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/12/2019] [Indexed: 01/01/2023] Open
Abstract
Clostridium difficile is a Gram-positive, anaerobic bacterium and the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis. C. difficile modulates its transition from a motile to a sessile lifestyle through a mechanism of riboswitches regulated by cyclic diguanosine monophosphate (c-di-GMP). Previously described as a sortase substrate positively regulated by c-di-GMP, CD2831 was predicted to be a collagen-binding protein and thus potentially involved in sessility. By overexpressing CD2831 in C. difficile and heterologously expressing it on the surface of Lactococcus lactis, here we further demonstrated that CD2831 is a collagen-binding protein, able to bind to immobilized collagen types I, III and V as well as native collagen produced by human fibroblasts. We also observed that the overexpression of CD2831 raises the ability to form biofilm on abiotic surface in both C. difficile and L. lactis. Notably, we showed that CD2831 binds to the collagen-like domain of the human complement component C1q, suggesting a role in preventing complement cascade activation via the classical pathway. This functional characterization places CD2831 in the Microbial Surface Components Recognizing Adhesive Matrix Molecule (MSCRAMMs) family, a class of virulence factors with a dual role in adhesion to collagen-rich tissues and in host immune evasion by binding to human complement components.
Collapse
Affiliation(s)
- Vanessa Arato
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy.,University of Padova, Department of Biomedical Sciences, 35131, Padua, Italy
| | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100, Siena, Italy
| | - Fabiola Giusti
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy
| | - Ilaria Ferlenghi
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy
| | - Maria Scarselli
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy
| | - Rosanna Leuzzi
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
30
|
Richards E, Bouché L, Panico M, Arbeloa A, Vinogradov E, Morris H, Wren B, Logan SM, Dell A, Fairweather NF. The S-layer protein of a Clostridium difficile SLCT-11 strain displays a complex glycan required for normal cell growth and morphology. J Biol Chem 2018; 293:18123-18137. [PMID: 30275012 PMCID: PMC6254364 DOI: 10.1074/jbc.ra118.004530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Indexed: 12/16/2022] Open
Abstract
Clostridium difficile is a bacterial pathogen that causes major health challenges worldwide. It has a well-characterized surface (S)-layer, a para-crystalline proteinaceous layer surrounding the cell wall. In many bacterial and archaeal species, the S-layer is glycosylated, but no such modifications have been demonstrated in C. difficile. Here, we show that a C. difficile strain of S-layer cassette type 11, Ox247, has a complex glycan attached via an O-linkage to Thr-38 of the S-layer low-molecular-weight subunit. Using MS and NMR, we fully characterized this glycan. We present evidence that it is composed of three domains: (i) a core peptide-linked tetrasaccharide with the sequence -4-α-Rha-3-α-Rha-3-α-Rha-3-β-Gal-peptide; (ii) a repeating pentasaccharide with the sequence -4-β-Rha-4-α-Glc-3-β-Rha-4-(α-Rib-3-)β-Rha-; and (iii) a nonreducing end-terminal 2,3 cyclophosphoryl-rhamnose attached to a ribose-branched sub-terminal rhamnose residue. The Ox247 genome contains a 24-kb locus containing genes for synthesis and protein attachment of this glycan. Mutations in genes within this locus altered or completely abrogated formation of this glycan, and their phenotypes suggested that this S-layer modification may affect sporulation, cell length, and biofilm formation of C. difficile In summary, our findings indicate that the S-layer protein of SLCT-11 strains displays a complex glycan and suggest that this glycan is required for C. difficile sporulation and control of cell shape, a discovery with implications for the development of antimicrobials targeting the S-layer.
Collapse
Affiliation(s)
- Emma Richards
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Laura Bouché
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Maria Panico
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Ana Arbeloa
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Evgeny Vinogradov
- the Vaccine Program, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Howard Morris
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,; Biopharmaspec, Suite 3.1, Lido Medical Centre, St. Saviours Road, JE2 7LA Jersey, United Kingdom, and
| | - Brendan Wren
- the London School of Hygiene and Tropical Medicine, WC1E 7HT, London, United Kingdom
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Anne Dell
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,.
| | - Neil F Fairweather
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,.
| |
Collapse
|
31
|
Lawry BM, Johnson CL, Flanagan K, Spoors JA, McNeil CJ, Wipat A, Keegan N. Species-Specific Detection of C. difficile Using Targeted Antibody Design. Anal Chem 2018; 90:13475-13482. [DOI: 10.1021/acs.analchem.8b03349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- B. M. Lawry
- School of Biomedical Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom
| | - C. L. Johnson
- Diagnostic and Therapeutic Technologies, Institute of Cellular Medicine, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom
| | - K. Flanagan
- School of Computing, Urban Sciences Building, Newcastle University, Newcastle-Upon-Tyne, NE4 5TG, United Kingdom
| | - J. A. Spoors
- Diagnostic and Therapeutic Technologies, Institute of Cellular Medicine, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom
| | - C. J. McNeil
- Diagnostic and Therapeutic Technologies, Institute of Cellular Medicine, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom
| | - A. Wipat
- School of Computing, Urban Sciences Building, Newcastle University, Newcastle-Upon-Tyne, NE4 5TG, United Kingdom
| | - N. Keegan
- Diagnostic and Therapeutic Technologies, Institute of Cellular Medicine, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
32
|
Murillo T, Ramírez-Vargas G, Riedel T, Overmann J, Andersen JM, Guzmán-Verri C, Chaves-Olarte E, Rodríguez C. Two Groups of Cocirculating, Epidemic Clostridiodes difficile Strains Microdiversify through Different Mechanisms. Genome Biol Evol 2018; 10:982-998. [PMID: 29617810 PMCID: PMC5888409 DOI: 10.1093/gbe/evy059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridiodes difficile strains from the NAPCR1/ST54 and NAP1/ST01 types have caused outbreaks despite of their notable differences in genome diversity. By comparing whole genome sequences of 32 NAPCR1/ST54 isolates and 17 NAP1/ST01 recovered from patients infected with C. difficile we assessed whether mutation, homologous recombination (r) or nonhomologous recombination (NHR) through lateral gene transfer (LGT) have differentially shaped the microdiversification of these strains. The average number of single nucleotide polymorphisms (SNPs) in coding sequences (NAPCR1/ST54 = 24; NAP1/ST01 = 19) and SNP densities (NAPCR1/ST54 = 0.54/kb; NAP1/ST01 = 0.46/kb) in the NAPCR1/ST54 and NAP1/ST01 isolates was comparable. However, the NAP1/ST01 isolates showed 3× higher average dN/dS rates (8.35) that the NAPCR1/ST54 isolates (2.62). Regarding r, whereas 31 of the NAPCR1/ST54 isolates showed 1 recombination block (3,301–8,226 bp), the NAP1/ST01 isolates showed no bases in recombination. As to NHR, the pangenome of the NAPCR1/ST54 isolates was larger (4,802 gene clusters, 26% noncore genes) and more heterogeneous (644 ± 33 gene content changes) than that of the NAP1/ST01 isolates (3,829 gene clusters, ca. 6% noncore genes, 129 ± 37 gene content changes). Nearly 55% of the gene content changes seen among the NAPCR1/ST54 isolates (355 ± 31) were traced back to MGEs with putative genes for antimicrobial resistance and virulence factors that were only detected in single isolates or isolate clusters. Congruently, the LGT/SNP rate calculated for the NAPCR1/ST54 isolates (26.8 ± 2.8) was 4× higher than the one obtained for the NAP1/ST1 isolates (6.8 ± 2.0). We conclude that NHR-LGT has had a greater role in the microdiversification of the NAPCR1/ST54 strains, opposite to the NAP1/ST01 strains, where mutation is known to play a more prominent role.
Collapse
Affiliation(s)
- Tatiana Murillo
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Ramírez-Vargas
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Joakim M Andersen
- Department of Food, Processing and Nutritional Sciences, North Carolina State University
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
33
|
Vedantam G, Kochanowsky J, Lindsey J, Mallozzi M, Roxas JL, Adamson C, Anwar F, Clark A, Claus-Walker R, Mansoor A, McQuade R, Monasky RC, Ramamurthy S, Roxas B, Viswanathan VK. An Engineered Synthetic Biologic Protects Against Clostridium difficile Infection. Front Microbiol 2018; 9:2080. [PMID: 30233548 PMCID: PMC6134020 DOI: 10.3389/fmicb.2018.02080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.
Collapse
Affiliation(s)
- Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Joshua Kochanowsky
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Michael Mallozzi
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Chelsea Adamson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Andrew Clark
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rebecca McQuade
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Ross Calvin Monasky
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Bryan Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona, Tucson, AZ, United States
- Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
34
|
Phothichaisri W, Ounjai P, Phetruen T, Janvilisri T, Khunrae P, Singhakaew S, Wangroongsarb P, Chankhamhaengdecha S. Characterization of Bacteriophages Infecting Clinical Isolates of Clostridium difficile. Front Microbiol 2018; 9:1701. [PMID: 30108562 PMCID: PMC6079236 DOI: 10.3389/fmicb.2018.01701] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Clostridium difficile is recognized as a problematic pathogen, causing severe enteric diseases including antibiotic-associated diarrhea and pseudomembranous colitis. The emergence of antibiotic resistant C. difficile has driven a search for alternative anti-infection modalities. A promising strategy for controlling bacterial infection includes the use of bacteriophages and their gene products. Currently, knowledge of phages active against C. difficile is still relatively limited by the fact that the isolation of phages for this organism is a technically demanding method since bacterial host themselves are difficult to culture. To isolate and characterize phages specific to C. difficile, a genotoxic agent, mitomycin C, was used to induce temperate phages from 12 clinical isolates of C. difficile. Five temperate phages consisting of ΦHR24, ΦHN10, ΦHN16-1, ΦHN16-2, and ΦHN50 were successfully induced and isolated. Spotting assays were performed against a panel of 92 C. difficile isolates to screen for susceptible bacterial hosts. The results revealed that all the C. difficile phages obtained in this work displayed a relatively narrow host range of 0-6.5% of the tested isolates. Electron microscopic characterization revealed that all isolated phages contained an icosahedral head connected to a long contractile tail, suggesting that they belonged to the Myoviridae family. Restriction enzyme analysis indicated that these phages possess unique double-stranded DNA genome. Further electron microscopic characterization revealed that the ΦHN10 absorbed to the bacterial surface via attachment to cell wall, potentially interacting with S-layer protein. Bacteriophages isolated from this study could lead to development of novel therapeutic agents and detection strategies for C. difficile.
Collapse
Affiliation(s)
- Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sombat Singhakaew
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Piyada Wangroongsarb
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
| | | |
Collapse
|
35
|
Mori N, Takahashi T. Characteristics and Immunological Roles of Surface Layer Proteins in Clostridium difficile. Ann Lab Med 2018; 38:189-195. [PMID: 29401552 PMCID: PMC5820062 DOI: 10.3343/alm.2018.38.3.189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/07/2017] [Accepted: 12/28/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a major causative agent of antibiotic-associated diarrhea and has become the most common pathogen of healthcare-associated infection worldwide. The pathogenesis of C. difficile infection (CDI) is mediated by many factors such as colonization involving attachment to host intestinal epithelial cells, sporulation, germination, and toxin production. Bacterial cell surface components are crucial for the interaction between the bacterium and host cells. C. difficile has two distinct surface layer proteins (SLPs): a conserved high-molecular-weight SLP and a highly variable low-molecular-weight SLP. Recent studies have shown that C. difficile SLPs play roles not only in growth and survival, but also in adhesion to host epithelial cells and induction of cytokine production. Sequence typing of the variable region of the slpA gene, which encodes SLPs, is one of the methods currently used for typing C. difficile. SLPs have received much attention in recent years as vaccine candidates and new therapeutic agents in the treatment of C. difficile-associated diseases. Gaining mechanistic insights into the molecular functions of C. difficile SLPs will help advance our understanding of CDI pathogenesis and the development of vaccines and new therapeutic approaches. In this review, we summarize the characteristics and immunological roles of SLPs in C. difficile.
Collapse
Affiliation(s)
- Nobuaki Mori
- Department of General Internal Medicine, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences and Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo, Japan.
| | - Takashi Takahashi
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences and Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
36
|
Bradshaw WJ, Roberts AK, Shone CC, Acharya KR. The structure of the S-layer of Clostridium difficile. J Cell Commun Signal 2018; 12:319-331. [PMID: 29170885 PMCID: PMC5842191 DOI: 10.1007/s12079-017-0429-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022] Open
Abstract
The nosocomially acquired pathogen Clostridium difficile is the primary causative agent of antibiotic associated diarrhoea and causes tens of thousands of deaths globally each year. C. difficile presents a paracrystalline protein array on the surface of the cell known as an S-layer. S-layers have been demonstrated to possess a wide range of important functions, which, combined with their inherent accessibility, makes them a promising drug target. The unusually complex S-layer of C. difficile is primarily comprised of the high- and low- molecular weight S-layer proteins, HMW SLP and LMW SLP, formed from the cleavage of the S-layer precursor protein, SlpA, but may also contain up to 28 SlpA paralogues. A model of how the S-layer functions as a whole is required if it is to be exploited in fighting the bacterium. Here, we provide a summary of what is known about the S-layer of C. difficile and each of the paralogues and, considering some of the domains present, suggest potential roles for them.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
37
|
Bradshaw WJ, Kirby JM, Roberts AK, Shone CC, Acharya KR. The molecular structure of the glycoside hydrolase domain of Cwp19 from Clostridium difficile. FEBS J 2017; 284:4343-4357. [PMID: 29083543 PMCID: PMC5765458 DOI: 10.1111/febs.14310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Clostridium difficile is a burden to healthcare systems around the world, causing tens of thousands of deaths annually. The S‐layer of the bacterium, a layer of protein found of the surface of cells, has received a significant amount of attention over the past two decades as a potential target to combat the growing threat presented by C. difficile infections. The S‐layer contains a wide range of proteins, each of which possesses three cell wall‐binding domains, while many also possess a “functional” region. Here, we present the high resolution structure of the functional region of one such protein, Cwp19 along with preliminary functional characterisation of the predicted glycoside hydrolase. Cwp19 has a TIM barrel fold and appears to possess a high degree of substrate selectivity. The protein also exhibits peptidoglycan hydrolase activity, an order of magnitude slower than that of lysozyme and is the first member of glycoside hydrolase‐like family 10 to be characterised. This research goes some way to understanding the role of Cwp19 in the S‐layer of C. difficile. Database Structural data are available in the PDB under the accession numbers 5OQ2 and 5OQ3.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Salisbury, UK
| | | | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
38
|
Dembek M, Willing SE, Hong HA, Hosseini S, Salgado PS, Cutting SM. Inducible Expression of spo0A as a Universal Tool for Studying Sporulation in Clostridium difficile. Front Microbiol 2017; 8:1793. [PMID: 28983286 PMCID: PMC5613124 DOI: 10.3389/fmicb.2017.01793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Clostridium difficile remains a leading nosocomial pathogen, putting considerable strain on the healthcare system. The ability to form endospores, highly resistant to environmental insults, is key to its persistence and transmission. However, important differences exist between the sporulation pathways of C. difficile and the model Gram-positive organism Bacillus subtilis. Amongst the challenges in studying sporulation in C. difficile is the relatively poor levels of sporulation and high heterogeneity in the sporulation process. To overcome these limitations we placed Ptet regulatory elements upstream of the master regulator of sporulation, spo0A, generating a new strain that can be artificially induced to sporulate by addition of anhydrotetracycline (ATc). We demonstrate that this strain is asporogenous in the absence of ATc, and that ATc can be used to drive faster and more efficient sporulation. Induction of Spo0A is titratable and this can be used in the study of the spo0A regulon both in vitro and in vivo, as demonstrated using a mouse model of C. difficile infection (CDI). Insights into differences between the sporulation pathways in B. subtilis and C. difficile gained by study of the inducible strain are discussed, further highlighting the universal interest of this tool. The Ptet-spo0A strain provides a useful background in which to generate mutations in genes involved in sporulation, therefore providing an exciting new tool to unravel key aspects of sporulation in C. difficile.
Collapse
Affiliation(s)
- Marcin Dembek
- Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Stephanie E Willing
- School of Biological Sciences, Royal Holloway, University of LondonLondon, United Kingdom
| | - Huynh A Hong
- School of Biological Sciences, Royal Holloway, University of LondonLondon, United Kingdom
| | - Siamand Hosseini
- School of Biological Sciences, Royal Holloway, University of LondonLondon, United Kingdom
| | - Paula S Salgado
- Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway, University of LondonLondon, United Kingdom
| |
Collapse
|
39
|
Bradshaw WJ, Kirby JM, Roberts AK, Shone CC, Acharya KR. Cwp2 from Clostridium difficile exhibits an extended three domain fold and cell adhesion in vitro. FEBS J 2017; 284:2886-2898. [PMID: 28677344 PMCID: PMC5601205 DOI: 10.1111/febs.14157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 02/04/2023]
Abstract
Colonization of the gut by Clostridium difficile requires the adhesion of the bacterium to host cells. A range of cell surface located factors have been linked to adhesion including the S‐layer protein LMW SLP and the related protein Cwp66. As well as these proteins, the S‐layer of C. difficile may contain many others. One such protein is Cwp2. Here, we demonstrate the production of a C. difficile strain 630 cwp2 knockout mutant and assess the effect on the bacterium. The mutant results in increased TcdA (toxin A) release and impaired cellular adherence in vitro. We also present the extended three domain structure of the ‘functional’ region of Cwp2, consisting of residues 29–318 at 1.9 Å, which is compared to that of LMW SLP and Cwp8. The adhesive properties of Cwp2 and LMW SLP, which are likely to be shared by Cwp8, are predicted to be mediated by the variable loop regions in domain 2. Databases Structural data are available in the PDB under the accession number 5NJL.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Salisbury, UK
| | | | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
40
|
Corver J, Cordo' V, van Leeuwen HC, Klychnikov OI, Hensbergen PJ. Covalent attachment and Pro-Pro endopeptidase (PPEP-1)-mediated release of Clostridium difficile cell surface proteins involved in adhesion. Mol Microbiol 2017. [PMID: 28636257 DOI: 10.1111/mmi.13736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past decade, Clostridium difficile has emerged as an important gut pathogen. This anaerobic, Gram-positive bacterium is the main cause of infectious nosocomial diarrhea. Whereas much is known about the mechanism through which the C. difficile toxins cause diarrhea, relatively little is known about the dynamics of adhesion and motility, which is mediated by cell surface proteins. This review will discuss the recent advances in our understanding of the sortase-mediated covalent attachment of cell surface (adhesion) proteins to the peptidoglycan layer of C. difficile and their release through the action of a highly specific secreted metalloprotease (Pro-Pro endopeptidase 1, PPEP-1). Specific emphasis will be on a model in which PPEP-1 and its substrates control the switch from a sessile to motile phenotype in C. difficile, and how this is regulated by the cyclic dinucleotide c-di-GMP (3'-5' cyclic dimeric guanosine monophosphate).
Collapse
Affiliation(s)
- Jeroen Corver
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Valentina Cordo'
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Hans C van Leeuwen
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Oleg I Klychnikov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
41
|
Ferreira TG, Moura H, Barr JR, Pilotto Domingues RMC, Ferreira EDO. Ribotypes associated with Clostridium difficile outbreaks in Brazil display distinct surface protein profiles. Anaerobe 2017; 45:120-128. [PMID: 28435010 DOI: 10.1016/j.anaerobe.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 11/18/2022]
Abstract
Clostridium difficile is a spore-forming anaerobic intestinal pathogen that causes Clostridium difficile infection (CDI). C. difficile is the leading cause of toxin-mediated nosocomial antibiotic-associated diarrhea. The pathogenesis of CDI is attributed to two major virulence factors, TcdA and TcdB toxins, that cause the symptomatic infection. C. difficile also expresses a number of key proteins, including cell wall proteins (CWPs). S-layer proteins (SLPs) are CWPs that form a paracrystalline surface array that coats the surface of the bacterium. SLPs have a role in C. difficile binding to the gastrointestinal tract, but their importance in virulence need to be better elucidated. Here, we describe bottom-up proteomics analysis of surface-enriched proteins fractions obtained through glycine extraction of five C. difficile clinical isolates from Brazil using gel-based and gel-free approaches. We were able to identify approximately 250 proteins for each strain, among them SlpA, Cwp2, Cwp6, CwpV and Cwp84. Identified CWPs presented different amino acid coverage, which might suggest differences in post-translational modifications. Proteomic analysis of SLPs from ribotype 133, agent of C. difficile outbreaks in Brazil, revealed unique proteins and provided additional information towards in depth characterization of the strains causing CDI in Brazil.
Collapse
Affiliation(s)
- Thais Gonçalves Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil
| | - Hercules Moura
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - John R Barr
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Regina M C Pilotto Domingues
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil.
| | - Eliane de Oliveira Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro - Polo Xerém, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Elliott B, Androga GO, Knight DR, Riley TV. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 49:1-11. [PMID: 28012982 DOI: 10.1016/j.meegid.2016.12.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era.
Collapse
Affiliation(s)
- Briony Elliott
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Grace O Androga
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Daniel R Knight
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia; School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia; Department of Microbiology, PathWest Laboratory Medicine, Perth, Australia.
| |
Collapse
|
43
|
Lynch M, Walsh TA, Marszalowska I, Webb AE, Mac Aogain M, Rogers TR, Windle H, Kelleher D, O'Connell MJ, Loscher CE. Surface layer proteins from virulent Clostridium difficile ribotypes exhibit signatures of positive selection with consequences for innate immune response. BMC Evol Biol 2017; 17:90. [PMID: 28335725 PMCID: PMC5364705 DOI: 10.1186/s12862-017-0937-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clostridium difficile is a nosocomial pathogen prevalent in hospitals worldwide and increasingly common in the community. Sequence differences have been shown to be present in the Surface Layer Proteins (SLPs) from different C. difficile ribotypes (RT) however whether these differences influence severity of infection is still not clear. RESULTS We used a molecular evolutionary approach to analyse SLPs from twenty-six C. difficile RTs representing different slpA sequences. We demonstrate that SLPs from RT 027 and 078 exhibit evidence of positive selection (PS). We compared the effect of these SLPs to those purified from RT 001 and 014, which did not exhibit PS, and demonstrate that the presence of sites under positive selection correlates with ability to activate macrophages. SLPs from RTs 027 and 078 induced a more potent response in macrophages, with increased levels of IL-6, IL-12p40, IL-10, MIP-1α, MIP-2 production relative to RT 001 and 014. Furthermore, RTs 027 and 078 induced higher expression of CD40, CD80 and MHC II on macrophages with decreased ability to phagocytose relative to LPS. CONCLUSIONS These results tightly link sequence differences in C. difficile SLPs to disease susceptibility and severity, and suggest that positively selected sites in the SLPs may play a role in driving the emergence of hyper-virulent strains.
Collapse
Affiliation(s)
- Mark Lynch
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Thomas A Walsh
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Izabela Marszalowska
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Micheál Mac Aogain
- Department of Clinical Microbiology, Trinity College Dublin, St James Hospital Dublin, Dublin, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, St James Hospital Dublin, Dublin, Ireland
| | - Henry Windle
- Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Dermot Kelleher
- Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. .,Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK.
| | - Christine E Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
44
|
The CWB2 Cell Wall-Anchoring Module Is Revealed by the Crystal Structures of the Clostridium difficile Cell Wall Proteins Cwp8 and Cwp6. Structure 2017; 25:514-521. [PMID: 28132783 DOI: 10.1016/j.str.2016.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/10/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022]
Abstract
Bacterial cell wall proteins play crucial roles in cell survival, growth, and environmental interactions. In Gram-positive bacteria, cell wall proteins include several types that are non-covalently attached via cell wall binding domains. Of the two conserved surface-layer (S-layer)-anchoring modules composed of three tandem SLH or CWB2 domains, the latter have so far eluded structural insight. The crystal structures of Cwp8 and Cwp6 reveal multi-domain proteins, each containing an embedded CWB2 module. It consists of a triangular trimer of Rossmann-fold CWB2 domains, a feature common to 29 cell wall proteins in Clostridium difficile 630. The structural basis of the intact module fold necessary for its binding to the cell wall is revealed. A comparison with previously reported atomic force microscopy data of S-layers suggests that C. difficile S-layers are complex oligomeric structures, likely composed of several different proteins.
Collapse
|
45
|
Barbanti F, Spigaglia P. Characterization of Clostridium difficile PCR-ribotype 018: A problematic emerging type. Anaerobe 2016; 42:123-129. [PMID: 27725230 DOI: 10.1016/j.anaerobe.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Recent surveys indicate that the majority of toxigenic Clostridium difficile strains isolated in European hospitals belonged to PCR-ribotypes (RTs) different from RT 027 or RT 078. Among these types, RT 018 has been reported in Italy and, more recently, in Korea and Japan. In Italy, strains RT 018 have become predominant in the early 2000s, whereas the majority of strains isolated before were RT 126, a type belonging to the same lineage as the RT 078. In this study, we have found that Italian strains RT 018 are resistant to erythromycin, clindamycin, moxifloxacin and rifampicin. Rifampicin resistance is rarely observed in strains RT 018 from other countries and in Italian strains RT 078 and RT 126, therefore the decennial use of rifamycin antibiotics in Italy may be one of the driving factors for the spread of RT 018 in our country. The strains RT 018 examined showed a significant higher adhesion to Caco-2 cells compared to strains RT 078 and RT 126. Furthermore, strains RT 018 became predominant in in vitro competition assays with strains RT 078 or RT 126. If maintained in vivo, these characteristics could lead to a rapid colonization of the intestine by strains RT 018. Under the conditions used, isolates RT 018 produced significantly higher toxins levels compared to strains RT 078 and RT 126, while heat-resistant CFUs production seems to be strain-dependent. Robust toxin production and enhanced sporulation could in part explain the high diffusion and interpatient transmissibility observed for strains RT 018 in the hospital environment. In conclusion, the characteristics observed in the Italian isolates RT 018 seem to contribute in conferring an adaptive advantage to these strains, allowing their successful spread in our country.
Collapse
Affiliation(s)
- Fabrizio Barbanti
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Spigaglia
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
46
|
Péchiné S, Collignon A. Immune responses induced by Clostridium difficile. Anaerobe 2016; 41:68-78. [PMID: 27108093 DOI: 10.1016/j.anaerobe.2016.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
Abstract
The spectrum of Clostridium difficile infections is highly variable, ranging from asymptomatic carriage to fatal colitis depending on the strain virulence and on the host, its gut microbiota and its immune response. After disruption of the gut microbiota, C. difficile pathogenesis can be divided into three steps: 1) contamination by spores and their germination; 2) multiplication of vegetative cells and intestinal colonization using colonization factors; 3) production of the toxins TcdA and TcdB, and for some strains, the binary toxin, which are responsible for the clinical signs. Three lines of defense counteract C. difficile. The first line is the epithelial barrier, which is breached by the toxins. Then, a rapid innate immune response follows, which forms the second line of defense. It provides very quick defense reactions against C. difficile but is non-specific and does not confer memory. C. difficile and its virulence factors, the toxins and colonization factors, induce a highly pro-inflammatory response, which can be either beneficial or harmful, but triggers the adaptive immunity as the third line of defense required to control the infectious process. Adaptive immunity provides a highly specific immune response against C. difficile with memory and long lasting immunity. The innate and adaptive immune responses against the toxins and surface components are analyzed as well as their role in disease susceptibility, severity and recurrences.
Collapse
Affiliation(s)
- Séverine Péchiné
- Faculté de pharmacie, EA 4043 "Unité Bactéries Pathogènes et Santé", Univ. Paris-Sud, Université Paris-Saclay, 5 Rue Jean Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Anne Collignon
- Faculté de pharmacie, EA 4043 "Unité Bactéries Pathogènes et Santé", Univ. Paris-Sud, Université Paris-Saclay, 5 Rue Jean Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
47
|
Zhu C, Guo G, Ma Q, Zhang F, Ma F, Liu J, Xiao D, Yang X, Sun M. Diversity in S-layers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 123:1-15. [PMID: 27498171 DOI: 10.1016/j.pbiomolbio.2016.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/16/2016] [Accepted: 08/02/2016] [Indexed: 01/29/2023]
Abstract
Surface layers, referred simply as S-layers, are the two-dimensional crystalline arrays of protein or glycoprotein subunits on cell surface. They are one of the most common outermost envelope components observed in prokaryotic organisms (Archaea and Bacteria). Over the past decades, S-layers have become an issue of increasing interest due to their ubiquitousness, special features and functions. Substantial work in this field provides evidences of an enormous diversity in S-layers. This paper reviews and illustrates the diversity from several different aspects, involving the S-layer-carrying strains, the structure of S-layers, the S-layer proteins and genes, as well as the functions of S-layers.
Collapse
Affiliation(s)
- Chaohua Zhu
- College of Environment and Plant protection, Hainan University/Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources (Hainan University), Ministry of Education, Haikou, 570228, Hainan, PR China
| | - Gang Guo
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China; State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Qiqi Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Fengjuan Zhang
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Funing Ma
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Jianping Liu
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm 17177, Sweden
| | - Dao Xiao
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Xiaolin Yang
- College of Environment and Plant protection, Hainan University/Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources (Hainan University), Ministry of Education, Haikou, 570228, Hainan, PR China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
48
|
Abstract
Clostridium difficile continues to be one of the most prevalent hospital-acquired bacterial infections in the developed world, despite the recent introduction of a novel and effective antibiotic agent (fidaxomicin). Alternative approaches under investigation to combat the anaerobic Gram-positive bacteria include fecal transplantation therapy, vaccines, and antibody-based immunotherapies. In this review, we catalog the recent advances in antibody-based approaches under development and in the clinic for the treatment of C. difficile infection. By and large, inhibitory antibodies that recognize the primary C. difficile virulence factors, toxin A and toxin B, are the most popular passive immunotherapies under investigation. We provide a detailed summary of the toxin epitopes recognized by various antitoxin antibodies and discuss general trends on toxin inhibition efficacy. In addition, antibodies to other C. difficile targets, such as surface-layer proteins, binary toxin, motility factors, and adherence and colonization factors, are introduced in this review.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa; School of Environmental Sciences, University of Guelph, Guelph; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
49
|
Gooyit MD, Janda KD. Modulation of the Surface-Layer Protein of Clostridium difficile through Cwp84 Inhibition. ACS Infect Dis 2016; 2:465-70. [PMID: 27626098 DOI: 10.1021/acsinfecdis.6b00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cysteine protease Cwp84 is responsible for surface-layer processing in Clostridium difficile and was also shown to cleave several human extracellular matrix components in vitro. To enable the facile identification and characterization of Cwp84 inhibitors, we developed a fluorogenic 10-mer peptide based on the enzyme's natural substrate SlpA that is amenable for use in FRET-based high-throughput screening. The design of substrate-mimetic inhibitors led to epoxysuccinate 8c, which displayed an inactivation efficiency (kinact/KI) of (4.7 ± 0.3) × 10(4) M(-1) min(-1). Further evaluation of 8c demonstrated its ability to inhibit fibronectin cleavage and, more importantly, subvert surface-layer biogenesis in C. difficile.
Collapse
Affiliation(s)
- Major D. Gooyit
- Departments of Chemistry and Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute
of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute
of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
50
|
Kirk JA, Banerji O, Fagan RP. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb Biotechnol 2016; 10:76-90. [PMID: 27311697 PMCID: PMC5270738 DOI: 10.1111/1751-7915.12372] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a challenging threat to human health. Infections occur after disruption of the normal microbiota, most commonly through the use of antibiotics. Current treatment for CDI largely relies on the broad‐spectrum antibiotics vancomycin and metronidazole that further disrupt the microbiota resulting in frequent recurrence, highlighting the need for C. difficile‐specific antimicrobials. The cell surface of C. difficile represents a promising target for the development of new drugs. C. difficile possesses a highly deacetylated peptidoglycan cell wall containing unique secondary cell wall polymers. Bound to the cell wall is an essential S‐layer, formed of SlpA and decorated with an additional 28 related proteins. In addition to the S‐layer, many other cell surface proteins have been identified, including several with roles in host colonization. This review aims to summarize our current understanding of these different C. difficile cell surface components and their viability as therapeutic targets.
Collapse
Affiliation(s)
- Joseph A Kirk
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Oishik Banerji
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Robert P Fagan
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|