1
|
Kim MJ, Moon EK, Jo HJ, Quan FS, Kong HH. Identifying the function of genes involved in excreted vesicle formation in Acanthamoeba castellanii containing Legionella pneumophila. Parasit Vectors 2023; 16:215. [PMID: 37380986 DOI: 10.1186/s13071-023-05824-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/28/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Legionella spp. can survive and replicate inside host cells such as protozoa and macrophages. After enough growth, Legionella is released from the host cells as free legionellae or Legionella-filled vesicles. The vesicles support Legionella to survive for a long time in the environment and transmit to a new host. In this study, we identified the differentially expressed genes of Acanthamoeba infected by Legionella (ACA1_114460, ACA1_091500, and ACA1_362260) and examined their roles in the formation of the excreted vesicles and escape of Legionella from the Acanthamoeba. METHODS After ingestion of Escherichia coli and Legionella pneumophila, expression levels of target genes in Acanthamoeba were measured by real-time polymerase chain reaction (PCR) analysis. The roles of target genes were investigated by transfection of small interfering RNA (siRNA). The formation of Legionella-containing excreted vesicles and the vesicular co-localization with the lysosomes were examined by Giemsa stain and LysoTracker stain. RESULTS ACA1_114460, ACA1_091500, and ACA1_362260 were upregulated after ingestion of Legionella in Acanthamoeba. ACA1_114460- and ACA1_091500-silenced Acanthamoeba failed to form the Legionella-containing excreted vesicles. Legionella was released as free legionellae from the Acanthamoeba. When the ACA1_362260 of Acanthamoeba was silenced, Legionella-containing excreted vesicles were fused with the lysosome. CONCLUSIONS These results indicated that ACA1_114460, ACA1_091500, and ACA1_362260 of Acanthamoeba played important roles in the formation of Legionella-containing excreted vesicles and inhibition of the lysosomal co-localization with the phagosome.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hye-Jeong Jo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
2
|
Mraz AL, Weir MH. Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Systematic Review Part II Growth within and Egress from a Host Cell. Microorganisms 2022; 10:141. [PMID: 35056590 PMCID: PMC8780890 DOI: 10.3390/microorganisms10010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is a pathogenic bacterium of increasing concern, due to its ability to cause a severe pneumonia, Legionnaires' Disease (LD), and the challenges in controlling the bacteria within premise plumbing systems. L. pneumophila can thrive within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from environmental stressors and to increase its growth rate, which increases the bacteria's infectivity to human host cells. Typical disinfectant techniques have proven to be inadequate in controlling L. pneumophila in the premise plumbing system, exposing users to LD risks. As the bacteria have limited infectivity to human macrophages without replicating within a host protozoan cell, the replication within, and egress from, a protozoan host cell is an integral part of the bacteria's lifecycle. While there is a great deal of information regarding how L. pneumophila interacts with protozoa, the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. This systematic review summarizes the information in the literature regarding L. pneumophila's growth within and egress from the host cell, summarizes the genes which affect these processes, and calculates how oxidative stress can downregulate those genes.
Collapse
Affiliation(s)
- Alexis L. Mraz
- School of Nursing, Health, Exercise Science, The College of New Jersey, P.O. Box 7718, 2000 Pennington Rd., Ewing, NJ 08628, USA
| | - Mark H. Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Striednig B, Lanner U, Niggli S, Katic A, Vormittag S, Brülisauer S, Hochstrasser R, Kaech A, Welin A, Flieger A, Ziegler U, Schmidt A, Hilbi H, Personnic N. Quorum sensing governs a transmissive Legionella subpopulation at the pathogen vacuole periphery. EMBO Rep 2021; 22:e52972. [PMID: 34314090 PMCID: PMC8419707 DOI: 10.15252/embr.202152972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023] Open
Abstract
The Gram‐negative bacterium Legionella pneumophila is the causative agent of Legionnaires' disease and replicates in amoebae and macrophages within a distinct compartment, the Legionella‐containing vacuole (LCV). The facultative intracellular pathogen switches between a replicative, non‐virulent and a non‐replicating, virulent/transmissive phase. Here, we show on a single‐cell level that at late stages of infection, individual motile (PflaA‐GFP‐positive) and virulent (PralF‐ and PsidC‐GFP‐positive) L. pneumophila emerge in the cluster of non‐growing bacteria within an LCV. Comparative proteomics of PflaA‐GFP‐positive and PflaA‐GFP‐negative L. pneumophila subpopulations reveals distinct proteomes with flagellar proteins or cell division proteins being preferentially produced by the former or the latter, respectively. Toward the end of an infection cycle (˜ 48 h), the PflaA‐GFP‐positive L. pneumophila subpopulation emerges at the cluster periphery, predominantly escapes the LCV, and spreads from the bursting host cell. These processes are mediated by the Legionella quorum sensing (Lqs) system. Thus, quorum sensing regulates the emergence of a subpopulation of transmissive L. pneumophila at the LCV periphery, and phenotypic heterogeneity underlies the intravacuolar bi‐phasic life cycle of L. pneumophila.
Collapse
Affiliation(s)
- Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Ulrike Lanner
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Selina Niggli
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Ana Katic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Simone Vormittag
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Sabrina Brülisauer
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Ramon Hochstrasser
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zürich, Zürich, Switzerland
| | - Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zürich, Zürich, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
5
|
Pei J, Kahl-McDonagh M, Ficht TA. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Front Cell Infect Microbiol 2014; 4:23. [PMID: 24634889 PMCID: PMC3942807 DOI: 10.3389/fcimb.2014.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022] Open
Abstract
It has long been observed that smooth Brucella can dissociate into rough mutants that are cytotoxic to macrophages. However, the in vivo biological significance and/or mechanistic details of Brucella dissociation and cytotoxicity remain incomplete. In the current report, a plaque assay was developed using Brucella strains exhibiting varying degrees of cytotoxicity. Infected monolayers were observed daily using phase contrast microscopy for plaque formation while Brucella uptake and replication were monitored using an immunofluorescence assay (IFA). Visible plaques were detected at 4-5 days post infection (p.i.) with cytotoxic Brucella 16MΔmanBA at an MOI of 0.1. IFA staining demonstrated that the plaques consisted of macrophages with replicating Brucella. Visible plaques were not detected in monolayers infected with non-cytotoxic 16MΔmanBAΔvirB2 at an MOI of 0.1. However, IFA staining did reveal small groups of macrophages (foci) with replicating Brucella in the monolayers infected with 16MΔmanBAΔvirB2. The size of the foci observed in macrophage monolayers infected with rough Brucella correlated directly with cytotoxicity measured in liquid culture, suggesting that cytotoxicity was essential for Brucella egress and dissemination. In monolayers infected with 16M, small and large foci were observed. Double antibody staining revealed spontaneous rough mutants within the large, but not the small foci in 16M infected monolayers. Furthermore, plaque formation was observed in the large foci derived from 16M infections. Finally, the addition of gentamicin to the culture medium inhibited plaque formation, suggesting that cell-to-cell spread occurred only following release of the organisms from the cells. Taken together, these results demonstrate that Brucella-induced cytotoxicity is critical for Brucella egress and dissemination.
Collapse
Affiliation(s)
| | | | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University and Texas Agricultural Experiment StationCollege Station, TX, USA
| |
Collapse
|
6
|
Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits. PLoS One 2010; 5:e11718. [PMID: 20661449 PMCID: PMC2908689 DOI: 10.1371/journal.pone.0011718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/17/2010] [Indexed: 01/05/2023] Open
Abstract
Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE) combined with Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry (MALDI-TOF-MS). Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB) biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins) were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs). Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.
Collapse
|
7
|
Abstract
The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
Collapse
|
8
|
Molmeret M, Jones S, Santic M, Habyarimana F, Esteban MTG, Kwaik YA. Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol. Environ Microbiol 2009; 12:704-15. [PMID: 19958381 DOI: 10.1111/j.1462-2920.2009.02114.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During late stages of infection and prior to lysis of the infected macrophages or amoeba, the Legionella pneumophila-containing phagosome becomes disrupted, followed by bacterial escape into the host cell cytosol, where the last few rounds of bacterial proliferation occur prior to lysis of the plasma membrane. This coincides with growth transition into the post-exponential (PE) phase, which is controlled by regulatory cascades including RpoS and the LetA/S two-component regulator. Whether the temporal expression of flagella by the regulatory cascades at the PE phase is exhibited within the phagosome or after bacterial escape into the host cell cytosol is not known. We have utilized fluorescence microscopy-based phagosome integrity assay to differentiate between vacuolar and cytosolic bacteria/or bacteria within disrupted phagosomes. Our data show that during late stages of infection, expression of FlaA is triggered after bacterial escape into the macrophage cytosol and the peak of FlaA expression is delayed for few hours after cytosolic residence of the bacteria. Importantly, bacterial escape into the host cell cytosol is independent of flagella, RpoS and the two-component regulator LetA/S, which are all triggered by L. pneumophila upon growth transition into the PE phase. Disruption of the phagosome and bacterial escape into the cytosol of macrophages is independent of the bacterial pore-forming activity, and occurs prior to the induction of apoptosis during late stages of infection. We conclude that the temporal and spatial engagement of virulence-associated regulatory cascades by L. pneumophila at the PE phase is temporally and spatially triggered after phagosomal escape and bacterial residence in the host cell cytosol.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, Room MS-410, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
9
|
Barysheva OV, Fujii J, Takaesu G, Yoshida SI. Application of unstable Gfp variants to the kinetic study of Legionella pneumophila icm gene expression during infection. MICROBIOLOGY-SGM 2008; 154:1015-1025. [PMID: 18375795 DOI: 10.1099/mic.0.2007/013144-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An unstable type of green fluorescent protein (Gfp) tagged with a C-terminal extension, which is a target for tail-specific protease, was used as a reporter gene in Legionella pneumophila. To analyse Gfp expression in legionellae, transcriptional fusions of unstable gfp with the Legionella-specific icm (intracellular multiplication) promoters (P(icmS), P(icmT) and P(icmQ)) were constructed. Infection studies using J774.1 macrophages as the host, and L. pneumophila strains carrying P(icmS)-gfp, P(icmT)-gfp and P(icmQ)-gfp fusions, indicated that the icmS, icmT and icmQ genes could be expressed intracellularly. Expression of icmS, icmT and icmQ genes in infected cells was examined by flow cytometry. Furthermore, fluorescent intracellular legionellae were detected directly by confocal microscopy. Real-time quantitative RT-PCR revealed the differences in the gene expression of icmS, and that of icmT and icmQ, during infection. Expression of icmS was high in the late stage of infection, while that of icmT and icmQ was high in the early phase only. We show that unstable gfp is a useful reporter gene whose expression in legionellae can be followed in real-time, and that it allows analysis of promoter activities in legionellae and monitoring of the infection process.
Collapse
Affiliation(s)
- Oksana V Barysheva
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jun Fujii
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Giichi Takaesu
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shin-Ichi Yoshida
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Cytotoxicity in macrophages infected with rough Brucella mutants is type IV secretion system dependent. Infect Immun 2007; 76:30-7. [PMID: 17938217 DOI: 10.1128/iai.00379-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Smooth Brucella spp. inhibit macrophage apoptosis, whereas rough Brucella mutants induce macrophage oncotic and necrotic cell death. However, the mechanisms and genes responsible for Brucella cytotoxicity have not been identified. In the current study, a random mutagenesis approach was used to create a mutant bank consisting of 11,354 mutants by mariner transposon mutagenesis using Brucella melitensis rough mutant 16M delta manBA as the parental strain. Subsequent screening identified 56 mutants (0.49% of the mutant bank) that failed to cause macrophage cell death (release of 10% or less of the lactate dehydrogenase). The absence of cytotoxicity during infection with these mutants was independent of demonstrable defects in in vitro bacterial growth or uptake and survival in macrophages. Interrupted genes in 51 mutants were identified by DNA sequence analysis, and the mutations included interruptions in virB encoding the type IV secretion system (T4SS) (n = 36) and in vjbR encoding a LuxR-like regulatory element previously shown to be required for virB expression (n = 3), as well as additional mutations (n = 12), one of which also has predicted roles in virB expression. These results suggest that the T4SS is associated with Brucella cytotoxicity in macrophages. To verify this, deletion mutants were constructed in B. melitensis 16M by removing genes encoding phosphomannomutase/phosphomannoisomerase (delta manBA) and the T4SS (delta virB). As predicted, deletion of virB from 16M delta manBA and 16M resulted in a complete loss of cytotoxicity in rough strains, as well as the low level cytotoxicity observed with smooth strains at extreme multiplicities of infection (>1,000). Taken together, these results demonstrate that Brucella cytotoxicity in macrophages is T4SS dependent.
Collapse
|
11
|
Molmeret M, Santic' M, Asare R, Carabeo RA, Abu Kwaik Y. Rapid escape of the dot/icm mutants of Legionella pneumophila into the cytosol of mammalian and protozoan cells. Infect Immun 2007; 75:3290-304. [PMID: 17438033 PMCID: PMC1932949 DOI: 10.1128/iai.00292-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 03/27/2007] [Accepted: 04/03/2007] [Indexed: 11/20/2022] Open
Abstract
The Legionella pneumophila-containing phagosome evades endocytic fusion and intercepts endoplasmic reticulum (ER)-to-Golgi vesicle traffic, which is believed to be mediated by the Dot/Icm type IV secretion system. Although phagosomes harboring dot/icm mutants are thought to mature through the endosomal-lysosomal pathway, colocalization studies with lysosomal markers have reported contradictory results. In addition, phagosomes harboring the dot/icm mutants do not interact with endocytosed materials, which is inconsistent with maturation of the phagosomes in the endosomal-lysosomal pathway. Using multiple strategies, we show that the dot/icm mutants defective in the Dot/Icm structural apparatus are unable to maintain the integrity of their phagosomes and escape into the cytoplasm within minutes of entry into various mammalian and protozoan cells in a process independent of the type II secretion system. In contrast, mutants defective in cytoplasmic chaperones of Dot/Icm effectors and rpoS, letA/S, and letE regulatory mutants are all localized within intact phagosomes. Importantly, non-dot/icm L. pneumophila mutants whose phagosomes acquire late endosomal-lysosomal markers are all located within intact phagosomes. Using high-resolution electron microscopy, we show that phagosomes harboring the dot/icm transporter mutants do not fuse to lysosomes but are free in the cytoplasm. Inhibition of ER-to-Golgi vesicle traffic by brefeldin A does not affect the integrity of the phagosomes harboring the parental strain of L. pneumophila. We conclude that the Dot/Icm transporter is involved in maintaining the integrity of the L. pneumophila phagosome, independent of interception of ER-to-Golgi vesicle traffic, which is a novel function of type IV secretion systems.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
12
|
Asare R, Abu Kwaik Y. Early trafficking and intracellular replication of Legionella longbeachaea within an ER-derived late endosome-like phagosome. Cell Microbiol 2007; 9:1571-87. [PMID: 17309675 DOI: 10.1111/j.1462-5822.2007.00894.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Legionella pneumophila is the predominant cause of Legionnaires' disease in the USA and Europe in contrast to Legionella longbeachaea, which is the leading cause of the disease in Western Australia. The ability of L. pneumophila to replicate intracellularly is triggered at the post-exponential phase along with expression of other virulence traits, such as motility. We show that while motility of L. longbeachaea is triggered upon growth transition into post-exponential phase, its ability to proliferate intracellularly is totally independent of the bacterial growth phase. Within macrophages, L. pneumophila replicates in a phagosome that excludes early and late endocytic markers and is surrounded by the rough endoplasmic reticulum (RER). In contrast, the L. longbeachaea phagosome colocalizes with the early endosomal marker early endosomal antigen 1 (EEA1) and the late endosomal markers lysosomal associated membrane glycoprotein 2 (LAMP-2) and mannose 6-phosphate receptor (M6PR), and is surrounded by the RER. The L. longbeachaea phagosome does not colocalize with the vacuolar ATPase (vATPase) proton pump, and the lysosomal luminal protease Cathepsin D, or the lysosomal tracer Texas red Ovalbumin (TROV). Intracellular proliferation of L. longbeachaea occurs in LAMP-2-positive phagosomes that are remodelled by the RER. Despite their distinct trafficking, both L. longbeachaea and L. pneumophila can replicate in communal phagosomes whose biogenesis is predominantly modulated by L. longbeachaea into LAMP-2-positive phagosomes. In addition, the L. pneumophila dotA mutant is rescued for intracellular replication if it co-inhabits the phagosome with L. longbeachaea. During late stages of infection, L. longbeachaea escape into the cytoplasm, prior to lysis of the macrophage, similar to L. pneumophila. We conclude that the L. longbeachaea phagosome matures to a non-acidified late endosome-like stage that is remodelled by the RER, indicating an idiosyncratic trafficking of L. longbeachaea compared with other intracellular pathogens, and a divergence in its intracellular lifestyle from L. pneumophila. In addition, re-routing biogenesis of the L. pneumophila phagosome into a late endosome controlled by L. longbeachaea has no effect on intracellular replication.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology, Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
13
|
Santic M, Asare R, Doric M, Abu Kwaik Y. Host-dependent trigger of caspases and apoptosis by Legionella pneumophila. Infect Immun 2007; 75:2903-13. [PMID: 17420236 PMCID: PMC1932860 DOI: 10.1128/iai.00147-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/23/2007] [Accepted: 03/26/2007] [Indexed: 12/24/2022] Open
Abstract
The Dot/Icm system of Legionella pneumophila triggers activation of caspase-3 during early stages of infection of human macrophages, but apoptosis is delayed until late stages of infection. During early stages of infection of mouse macrophages, the organism triggers rapid caspase-1-mediated cytotoxicity, which is mediated by bacterial flagellin. However, it is not known whether caspase-1 is triggered by L. pneumophila in human macrophages or whether caspase-3 is activated in permissive or nonpermissive mouse macrophages. Using single-cell analyses, we show that the wild-type strain of L. pneumophila does not trigger caspase-1 activation throughout the intracellular infection of human monocyte-derived macrophages (hMDMs), even when the flagellated bacteria escape into the cytoplasm during late stages. Using single-cell analyses, we show that the Dot/Icm system of L. pneumophila triggers caspase-3 but not caspase-1 within permissive A/J mouse bone marrow-derived primary macrophages by 2 to 8 h, but apoptosis is delayed until late stages of infection. While L. pneumophila triggers a Dot/Icm-dependent activation of caspase-1 in nonpermissive BALB/c mouse-derived macrophages, caspase-3 is not activated at any stage of infection. We show that robust intrapulmonary replication of the wild-type strain of L. pneumophila in susceptible A/J mice is associated with late-stage Dot/Icm-dependent pulmonary apoptosis and alveolar inflammation. In the lungs of nonpermissive BALB/c mice, L. pneumophila does not replicate and does not trigger pulmonary apoptosis or alveolar inflammation. Thus, similar to hMDMs, L. pneumophila does not trigger caspase-1 but triggers caspase-3 activation during early and exponential replication in permissive A/J mouse-derived macrophages, and apoptosis is delayed until late stages of infection. The Dot/Icm type IV secretion system is essential for pulmonary apoptosis in the genetically susceptible A/J mice.
Collapse
Affiliation(s)
- Marina Santic
- Department of Microbiology and Immunology, University of Louisville College of Medicine, 319 Abraham Flexner Way 55A, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
14
|
Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S. Environmental predators as models for bacterial pathogenesis. Environ Microbiol 2007; 9:563-75. [PMID: 17298357 DOI: 10.1111/j.1462-2920.2007.01238.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Environmental bacteria are constantly threatened by bacterivorous predators such as free-living protozoa and nematodes. In the course of their coevolution with environmental predators, some bacteria developed sophisticated defence mechanisms, including the secretion of toxins, or the capacity to avoid lysosomal killing and to replicate intracellularly within protozoa. To analyse the interactions with bacterial pathogens on a molecular, cellular or organismic level, protozoa and other non-mammalian hosts are increasingly used. These include amoebae, as well as genetically tractable hosts, such as the social amoeba Dictyostelium discoideum, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Using these hosts, the virulence mechanisms of opportunistic pathogenic bacteria such as Legionella, Mycobacterium, Pseudomonas or Vibrio were found to be not only relevant for the interactions of the bacteria with protozoa, nematodes and insect phagocytes, but also with mammalian hosts including humans. Thus, non-mammalian model hosts provide valuable insight into the pathogenesis of environmental bacteria.
Collapse
Affiliation(s)
- Hubert Hilbi
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli Strasse 10, 8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
15
|
Asare R, Santic M, Gobin I, Doric M, Suttles J, Graham JE, Price CD, Abu Kwaik Y. Genetic susceptibility and caspase activation in mouse and human macrophages are distinct for Legionella longbeachae and L. pneumophila. Infect Immun 2007; 75:1933-45. [PMID: 17261610 PMCID: PMC1865702 DOI: 10.1128/iai.00025-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Legionella pneumophila is the predominant cause of Legionnaires' disease in the United States and Europe, while Legionella longbeachae is the common cause of the disease in Western Australia. Although clinical manifestations by both intracellular pathogens are very similar, recent studies have shown that phagosome biogeneses of both species within human macrophages are distinct (R. Asare and Y. Abu Kwaik, Cell. Microbiol., in press). Most inbred mouse strains are resistant to infection by L. pneumophila, with the exception of the A/J mouse strain, and this genetic susceptibility is associated with polymorphism in the naip5 allele and flagellin-mediated early activation of caspase 1 and pyropoptosis in nonpermissive mouse macrophages. Here, we show that genetic susceptibility of mice to infection by L. longbeachae is independent of allelic polymorphism of naip5. L. longbeachae replicates within bone marrow-derived macrophages and in the lungs of A/J, C57BL/6, and BALB/c mice, while L. pneumophila replicates in macrophages in vitro and in the lungs of the A/J mouse strain only. Quantitative real-time PCR studies on infected A/J and C57BL/6 mouse bone marrow-derived macrophages show that both L. longbeachae and L. pneumophila trigger similar levels of naip5 expression, but the levels are higher in infected C57BL/6 mouse macrophages. In contrast to L. pneumophila, L. longbeachae has no detectable pore-forming activity and does not activate caspase 1 in A/J and C57BL/6 mouse or human macrophages, despite flagellation. Unlike L. pneumophila, L. longbeachae triggers only a modest activation of caspase 3 and low levels of apoptosis in human and murine macrophages in vitro and in the lungs of infected mice at late stages of infection. We conclude that despite flagellation, infection by L. longbeachae is independent of polymorphism in the naip5 allele and L. longbeachae does not trigger the activation of caspase 1, caspase 3, or late-stage apoptosis in mouse and human macrophages. Neither species triggers caspase 1 activation in human macrophages.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, University of Louisville College of Medicine, 319 Abraham Flexner Way, Louisville, KY 40292, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abu-Zant A, Asare R, Graham JE, Abu Kwaik Y. Role for RpoS but not RelA of Legionella pneumophila in modulation of phagosome biogenesis and adaptation to the phagosomal microenvironment. Infect Immun 2006; 74:3021-6. [PMID: 16622243 PMCID: PMC1459718 DOI: 10.1128/iai.74.5.3021-3026.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of virulence traits by Legionella pneumophila at the post-exponential phase has been proposed to be triggered by the stringent response mediated by RelA, which triggers RpoS. We show that L. pneumophila rpoS but not relA is required for early intracellular survival and replication within human monocyte-derived macrophages and Acanthamoeba polyphaga. In addition, L. pneumophila rpoS but not relA is required for expression of the pore-forming activity. We provide evidence that RpoS plays a role in the modulation of phagosome biogenesis and in adaptation to the phagosomal microenvironment. Thus, there is no functional link between the stringent response and RpoS in the pathogenesis of L. pneumophila.
Collapse
Affiliation(s)
- Alaeddin Abu-Zant
- Department of Microbiology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
17
|
Miyake M, Watanabe T, Koike H, Molmeret M, Imai Y, Abu Kwaik Y. Characterization of Legionella pneumophila pmiA, a gene essential for infectivity of protozoa and macrophages. Infect Immun 2005; 73:6272-82. [PMID: 16177298 PMCID: PMC1230894 DOI: 10.1128/iai.73.10.6272-6282.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ability of Legionella pneumophila to cause pneumonia is dependent on intracellular replication within alveolar macrophages. The Icm/Dot secretion apparatus is essential for the ability of L. pneumophila to evade endocytic fusion, to remodel the phagosome by the endoplasmic reticulum (ER), and to replicate intracellularly. Protozoan and macrophage infectivity (pmi) mutants of L. pneumophila, which include 11 dot/icm mutants, exhibit defects in intracellular growth and replication within both protozoa and macrophages. In this study we characterized one of the pmi loci, pmiA. In contrast to the parental strain, the pmiA mutant is defective in cytopathogenicity for protozoa and macrophages. This is a novel mutant that exhibits a partial defect in survival within U937 human macrophage-like cells but exhibits a severe growth defect within Acanthamoeba polyphaga, which results in elimination from this host. The intracellular defects of this mutant are complemented by the wild-type pmiA gene on a plasmid. In contrast to phagosomes harboring the wild-type strain, which exclude endosomal-lysosomal markers, the pmiA mutant-containing phagosomes acquire the late endosomal-lysosomal markers LAMP-1 and LAMP-2. In contrast to the parental strain-containing phagosomes that are remodeled by the ER, there was a decrease in the number of ER-remodeled phagosomes harboring the pmiA mutant. Among several Legionella species examined, the pmiA gene is specific for L. pneumophila. The predicted amino acid sequence of the PmiA protein suggests that it is a transmembrane protein with three membrane-spanning regions. PmiA is similar to several hypothetical proteins produced by bacteria with a type IV secretion apparatus. Importantly, the defect in pmiA abolishes the pore-forming activity, which has been attributed to the Icm/Dot type IV secretion system. However, the mutant is sensitive to NaCl, and this sensitivity is abrogated in the icm/dot mutants. These results suggest that PmiA is a novel virulence factor that is involved in intracellular survival and replication of L. pneumophila in macrophages and protozoan cells.
Collapse
Affiliation(s)
- Masaki Miyake
- Department of Microbiology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka-shi, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Molofsky AB, Shetron-Rama LM, Swanson MS. Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits, including lysosome avoidance and macrophage death. Infect Immun 2005; 73:5720-34. [PMID: 16113289 PMCID: PMC1231111 DOI: 10.1128/iai.73.9.5720-5734.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a motile intracellular pathogen of macrophages and amoebae. When nutrients become scarce, the bacterium induces expression of transmission traits, some of which are dependent on the flagellar sigma factor FliA (sigma(28)). To test how particular components of the L. pneumophila flagellar regulon contribute to virulence, we compared a fliA mutant with strains whose flagellar construction is disrupted at various stages. We find that L. pneumophila requires FliA to avoid lysosomal degradation in murine bone marrow-derived macrophages (BMM), to regulate production of a melanin-like pigment, and to regulate binding to the dye crystal violet, whereas motility, flagellar secretion, and external flagella or flagellin are dispensable for these activities. Thus, in addition to flagellar genes, the FliA sigma factor regulates an effector(s) or regulator(s) that contributes to other transmissive traits, notably inhibition of phagosome maturation. Whether or not the microbes produced flagellin, all nonmotile L. pneumophila mutants bound BMM less efficiently than the wild type, resulting in poor infectivity and a loss of contact-dependent death of BMM. Therefore, bacterial motility increases contact with host cells during infection, but flagellin is not an adhesin. When BMM contact by each nonmotile strain was promoted by centrifugation, all the mutants bound BMM similarly, but only those microbes that synthesized flagellin induced BMM death. Thus, the flagellar regulon equips the aquatic pathogen L. pneumophila to coordinate motility with multiple traits vital to virulence.
Collapse
Affiliation(s)
- A B Molofsky
- Department of Microbiology and Immunology, University of Michigan Medical School, 6734 Medical Sciences Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
19
|
Bitar DM, Molmeret M, Kwaik YA. Structure-function analysis of the C-terminus of IcmT of Legionella pneumophila in pore formation-mediated egress from macrophages. FEMS Microbiol Lett 2005; 242:177-84. [PMID: 15621435 DOI: 10.1016/j.femsle.2004.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/29/2004] [Accepted: 11/02/2004] [Indexed: 11/30/2022] Open
Abstract
We have recently shown an essential role of the 32 amino acids C-terminus domain of IcmT of Legionella pneumophila in bacterial egress from macrophages. Mutants expressing an IcmT protein with a truncation in the C-terminus, replicate intracellularly but are defective in pore formation-mediated egress. The C-terminus domain of IcmT is the only hydrophilic domain of IcmT that is predicted to be in the cytoplasm while the rest of the protein is in the cytoplasmic membrane. In order to characterize the structure-function of the C-terminus of IcmT in the pore-forming activity and bacterial egress, we constructed 10 icmT missense mutant alleles differing by a single amino acid in the C-terminus of icmT and introduced them into the null icmT mutant. The H58Q, W69L, R71I, R79I and R86I icmT mutant alleles showed significantly lower pore-forming activity as measured by hemolysis of sRBC. The Y59S, R68L and S77L mutant alleles showed significantly lower cytopathogenicity to U937 macrophages. All 10 mutant alleles enabled the icmT null mutant to replicate intracellularly as efficiently as icmT null mutant harboring the wild-type icmT. Seven of the icmT alleles enabled the icmT null mutant to egress from infected macrophages as efficiently as icmT null mutant harboring the wild-type icmT. The other 3 substitutions conferred a partial defect in hemolysis and two of them also conferred a defect in egress from macrophages. Thus, two amino acid residues in the C-terminus of IcmT are required for both pore formation and bacterial egress. However, certain single amino acid substitutions in the C-terminus reduce the pore-forming activity when tested in vitro, but may or may not have a detectable effect on egress of L. pneumophila from U937 macrophages.
Collapse
Affiliation(s)
- Dina M Bitar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Quds University, Jerusalem, Israel
| | | | | |
Collapse
|
20
|
Santic M, Molmeret M, Abu Kwaik Y. Maturation of the Legionella pneumophila-containing phagosome into a phagolysosome within gamma interferon-activated macrophages. Infect Immun 2005; 73:3166-71. [PMID: 15845527 PMCID: PMC1087382 DOI: 10.1128/iai.73.5.3166-3171.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen that modulates the biogenesis of its phagosome to evade endocytic vesicle traffic. The Legionella-containing phagosome (LCP) does not acquire any endocytic markers and is remodeled by the endoplasmic reticulum during early stages. Here we show that intracellular replication of L. pneumophila is inhibited in gamma interferon (IFN-gamma)-activated, bone marrow-derived mouse macrophages and IFN-gamma-activated, human monocyte-derived macrophages in a dose-dependent manner. This inhibition of intracellular replication is associated with the maturation of the LCP into a phagolysosome, as documented by the acquisition of LAMP-2, cathepsin D, and lysosomal tracer Texas Red ovalbumin, and with the failure of the LCP to be remodeled by the rough endoplasmic reticulum. We conclude that IFN-gamma-activated macrophages override the ability of L. pneumophila to evade endocytic fusion and that the LCP is processed through the "default" endosomal-lysosomal degradation pathway.
Collapse
Affiliation(s)
- Marina Santic
- Department of Microbiology and Immunology, Room 316, University of Louisville College of Medicine, 319 Abraham Flexner Way 55A, Louisville, KY 40202, USA
| | | | | |
Collapse
|
21
|
Molmeret M, Bitar DM, Han L, Kwaik YA. Disruption of the phagosomal membrane and egress of Legionella pneumophila into the cytoplasm during the last stages of intracellular infection of macrophages and Acanthamoeba polyphaga. Infect Immun 2004; 72:4040-51. [PMID: 15213149 PMCID: PMC427442 DOI: 10.1128/iai.72.7.4040-4051.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the early stages of intracellular infection by Legionella pneumophila are well established at the ultrastructural level, a detailed ultrastructural analysis of late stages of intracellular replication has never been done. Here we show that the membrane of the L. pneumophila-containing phagosome (LCP) is intact for up to 8 h postinfection of macrophages and Acanthamoeba polyphaga. At 12 h, 71 and 74% of the LCPs are disrupted within macrophages and A. polyphaga, respectively, while the plasma membrane remains intact. At 18 and 24 h postinfection, cytoplasmic elements such as mitochondria, lysosomes, vesicles, and amorphous material are dispersed among the bacteria and these bacteria are considered cytoplasmic. At 18 h, 77% of infected macrophages and 32% of infected A. polyphaga amoebae harbor cytoplasmic bacteria. At 24 h, 99 and 78% of infected macrophages and amoebae, respectively, contain cytoplasmic bacteria. On the basis of lysosomal acid phosphatase staining of infected macrophages and A. polyphaga, the lysosomal enzyme is present among the bacteria when host vesicles are dispersed among bacteria. Our data indicate that bacterial replication proceeds despite physical disruption of the phagosomal membrane. We also show that an lspG mutant that is defective in the type II secretion system and therefore does not secrete the hydrolytic enzymes metalloprotease, p-nitrophenol phosphorylcholine hydrolase, lipase, phospholipase A, and lysophospholipase A is as efficient as the wild-type strain in disruption of the LCP. Therefore, L. pneumophila disrupts the phagosomal membrane and becomes cytoplasmic at the last stages of infection in both macrophages and A. polyphaga. Lysosomal elements, mitochondria, cytoplasmic vesicles, and amorphous material are all dispersed among the bacteria, after phagosomal disruption, within both human macrophages and A. polyphaga. The disruption of the LCP is independent of the hydrolytic enzymes exported by the type II secretion system.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, Room 316, University of Louisville College of Medicine, 319 Abraham Flexner Way 55A, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
22
|
Chen J, de Felipe KS, Clarke M, Lu H, Anderson OR, Segal G, Shuman HA. Legionella effectors that promote nonlytic release from protozoa. Science 2004; 303:1358-61. [PMID: 14988561 DOI: 10.1126/science.1094226] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Legionella pneumophila, the bacterial agent of legionnaires' disease, replicates intracellularly within a specialized vacuole of mammalian and protozoan host cells. Little is known about the specialized vacuole except that the Icm/Dot type IV secretion system is essential for its formation and maintenance. The Legionella genome database contains two open reading frames encoding polypeptides (LepA and LepB) with predicted coiled-coil regions and weak homology to SNAREs; these are delivered to host cells by an Icm/Dot-dependent mechanism. Analysis of mutant strains suggests that the Lep proteins may enable the Legionella to commandeer a protozoan exocytic pathway for dissemination of the pathogen.
Collapse
Affiliation(s)
- John Chen
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Duménil G, Montminy TP, Tang M, Isberg RR. IcmR-regulated Membrane Insertion and Efflux by the Legionella pneumophila IcmQ Protein. J Biol Chem 2004; 279:4686-95. [PMID: 14625271 DOI: 10.1074/jbc.m309908200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila proliferates within alveolar macrophages as a central property of Legionnaires' disease. Intracellular growth involves formation of a replicative phagosome, which requires the bacterial Dot/Icm system, a multiprotein secretion apparatus that translocates proteins from the bacterium across the macrophage plasma membrane. Two components of this system, IcmR and IcmQ, are proposed to exhibit a chaperone/substrate relationship similar to that observed in other protein translocation systems. We report here that IcmQ inserts into lipid membranes and forms pores that allow the efflux of the dye calcein but not Dextran 3000. Both membrane insertion and pore formation were inhibited by IcmR. Trypsin digestion mapping demonstrated that IcmQ is subdivided into two functional domains. The N-terminal region of IcmQ was necessary and sufficient for insertion into lipid membranes and calcein efflux. The C-terminal domain was necessary for efficient association of the protein with lipid bilayers. IcmR was found to bind to the N-terminal portion of the protein thus providing a mechanism for its ability to inhibit IcmQ pore-forming activity. Localization of IcmQ on the surface of the L. pneumophila shortly after infection as well as its pore-forming capacities suggest a role for IcmQ in forming a channel that leads translocated effectors out of the bacterium.
Collapse
|
24
|
Bitar DM, Molmeret M, Abu Kwaik Y. Molecular and cell biology of Legionella pneumophila. Int J Med Microbiol 2004; 293:519-27. [PMID: 15149027 DOI: 10.1078/1438-4221-00286] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular pathogen that can replicate within phagocytic host cells such as protozoa and macrophages. Evasion of phagocytic killing is mediated by the type IV Dot/Icm secretion system, which exports bacterial effectors that modulate biogenesis of the phagosome to evade endocytic fusion and also to intercept vesicles derived from the endoplasmic reticulum. Bacterial replication is associated with activation of caspase-3 in infected macrophages and is culminated in apoptosis and pore formation-mediated cytolysis of the host.
Collapse
Affiliation(s)
- Dina M Bitar
- Department of Microbiology and Immunology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | |
Collapse
|
25
|
Molmeret M, Zink SD, Han L, Abu-Zant A, Asari R, Bitar DM, Abu Kwaik Y. Activation of caspase-3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella-containing phagosome. Cell Microbiol 2004; 6:33-48. [PMID: 14678329 DOI: 10.1046/j.1462-5822.2003.00335.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Dot/Icm type IV secretion system of Legionella pneumophila is essential for evasion of endocytic fusion and for activation of caspase-3 during early stages of infection of macrophages, but the mechanisms of manipulating these host cell processes are not known. Here, we show that caspase-3 activation by L. pneumophila is independent of all the known apoptotic pathways that converge on the activation of caspase-3. The cytoplasmic proteins IcmS, IcmR and IcmQ, which are involved in secretion of Dot/Icm effectors, are required for caspase-3 activation. Pretreatment of U937 macrophages and human peripheral blood monocytes (hPBM) with the capase-3 inhibitor (DEVD-fmk) or the paninhibitor of caspases (Z-VAD-fmk) before infection blocks intracellular replication of L. pneumophila in a dose-dependent manner. Inhibition of caspase-3 results in co-localization of the L. pneumophila-containing phagosome (LCP) with the late endosomal/lysosomal marker Lamp-2, and the LCP contains lysosomal enzymes, similar to the dotA mutant, which is defective in caspase-3 activation. However, activation of caspase-3 before infection does not rescue the replication defect of the dotA mutant. Interestingly, inhibition of caspase-3 after a 15 or 30 min infection period by the parental strain has no detectable effect on the formation of a replicative niche. The Dot/Icm-mediated activation of caspase-3 by L. pneumophila specifically cleaves, in a dose- and time-dependent manner, the Rab5 effector Rabaptin-5, which maintains Rab5-GTP on the endosomal membrane. In addition, PI3 kinase, which is a crucial effector of Rab5 downstream of Rababptin-5, is not required for intracellular replication. Using single-cell analysis, we show that apoptosis is not evident in the infected cell until bacterial replication results in > 20 bacteria per cell. We conclude that activation of caspase-3 by the Dot/Icm virulence system of L. pneumophila is essential for halting biogenesis of the LCP through the endosomal/lysosomal pathway, and that this is associated with the cleavage of Rabpatin-5.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Molmeret M, Bitar DM, Han L, Kwaik YA. Cell biology of the intracellular infection by Legionella pneumophila. Microbes Infect 2004; 6:129-39. [PMID: 14738901 DOI: 10.1016/j.micinf.2003.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Legionella pneumophila has become a paradigm for facultative intracellular pathogens that modulate biogenesis of their phagosomes into replicative niches. The ability to alter host cell biology and tailor it into a hospitable host for intracellular proliferation is at the crux of the mechanism of pathogenesis of Legionnaires' disease.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
27
|
Zusman T, Yerushalmi G, Segal G. Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect Immun 2003; 71:3714-23. [PMID: 12819052 PMCID: PMC161977 DOI: 10.1128/iai.71.7.3714-3723.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever, is an obligate intracellular pathogen, whereas Legionella pneumophila, the causative agent of Legionnaires' disease, is a facultative intracellular pathogen. During infection of humans both of these pathogens multiply in alveolar macrophages inside a closed phagosome. L. pneumophila intracellular multiplication was shown to be dependent on the icm/dot system, which probably encodes a type IV-related translocation apparatus. Recently, genes homologous to all of the L. pneumophila icm/dot genes (besides icmR) were found in C. burnetii. To explore the similarities and differences between the icm/dot pathogenesis systems of these two pathogens, interspecies complementation analysis was performed. Nine C. burnetii icm homologous genes (icmT, icmS, icmQ, icmP, icmO, icmJ, icmB, icmW, and icmX) were cloned under regulation of the corresponding L. pneumophila icm genes and examined for the ability to complement L. pneumophila mutants with mutations in these genes. The C. burnetii icmS and icmW homologous genes were found to complement the corresponding L. pneumophila icm mutants to wild-type levels of intracellular growth in both HL-60-derived human macrophages and Acanthamoeba castellanii. In addition, the C. burnetii icmT homologous gene was found to completely complement an L. pneumophila insertion mutant for intracellular growth in HL-60-derived human macrophages, but it only partially complemented the same mutant for intracellular growth in A. castellanii. Moreover, as previously shown for L. pneumophila, the proteins encoded by the C. burnetii icmS and icmW homologous genes were found to interact with one another, and interspecies protein interaction was observed as well. Our results strongly indicate that the Icm/Dot pathogenesis systems of C. burnetii and L. pneumophila have common features.
Collapse
Affiliation(s)
- Tal Zusman
- Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
28
|
Gal-Mor O, Segal G. The Legionella pneumophila GacA homolog (LetA) is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Microb Pathog 2003; 34:187-94. [PMID: 12668142 DOI: 10.1016/s0882-4010(03)00027-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Legionella pneumophila, the causative agent of legionnaires' disease, is a broad-host-range facultative intracellular pathogen. Thus far, 24 genes (icm/dot genes) required for L. pneumophila intracellular growth, have been discovered. In this study, a deletion substitution was constructed in the L. pneumophila homolog of the gacA response regulator (letA) and its involvement in L. pneumophila pathogenicity and icm/dot gene expression was characterized. The letA mutant constructed had no intracellular growth defect when analyzed in HL-60 derived human macrophages, but it was found to be severely attenuated for intracellular growth in the protozoan host Acanthamoeba castellanii. The growth defect in amoebae was fully complemented by introducing the L. pneumophila letA gene on a plasmid. In addition, the LetA regulator was found to be involved in the expression of three icm genes (icmT, icmP and icmR). The level of expression of the icmT::lacZ and icmR::lacZ fusions was found to be higher, while the level of expression of the icmP::lacZ fusion was found to be lower when analyzed in the letA mutant strain, in comparison to the wild-type strain. We concluded that LetA has a moderate effect on icm/dot gene expression, but it probably plays a major role in the expression of L. pneumophila genes required for intracellular growth in protozoan hosts. A similar host specific phenotype was previously described for the RpoS sigma factor and the type II general secretion system of L. pneumophila.
Collapse
Affiliation(s)
- Ohad Gal-Mor
- Department of Molecular Microbiology & Biotechnology, George S Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | |
Collapse
|
29
|
Alli OAT, Zink S, von Lackum NK, Abu-Kwaik Y. Comparative assessment of virulence traits in Legionella spp. MICROBIOLOGY (READING, ENGLAND) 2003; 149:631-641. [PMID: 12634332 DOI: 10.1099/mic.0.25980-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Legionella pneumophila is a facultative intracellular pathogen that accounts for the majority of cases of Legionnaires' disease in the USA and Europe, but other Legionella spp. have been shown to cause disease. In contrast, Legionella longbeachae is the leading cause of Legionnaires' disease in Australia. The hallmark of Legionnaires' disease caused by L. pneumophila is the intracellular replication within phagocytes in the alveolar spaces, and the Dot/Icm type IV secretion system is essential for intracellular replication. Although it has been presumed that intracellular replication within phagocytes is the hallmark of other virulent legionellae, the virulence traits of Legionella spp. apart from L. pneumophila are not well defined. In this study, 27 strains of Legionella spp. belonging to 16 species that have been isolated from humans or from the environment were examined for five virulence traits exhibited by L. pneumophila: cytopathogenicity, intracellular replication within macrophages, induction of apoptosis/DNA fragmentation, pore-formation-mediated cytolysis of the host cell, and the presence of the dot/icm loci. The strains were divided into two broad groups (low and high cytopathogenic groups) based on cytopathogenicity assays using U937 human-derived macrophages. The other four virulence traits were evaluated in the low and high cytopathogenic groups of Legionella species. Most L. pneumophila serogroup 1 strains were highly cytopathogenic after 72 h, manifested high levels of intracellular growth, induced apoptosis/DNA fragmentation, and exhibited pore-forming activity. The majority of the other species were the low cytopathogenic group that did not induce apoptosis, neither did they exhibit pore-forming activity. All the species of legionellae tested have all the dot/icm loci, when examined by DNA hybridization. No correlation was found between cytopathogenicity and the other four pathogenic traits.
Collapse
Affiliation(s)
- O A Terry Alli
- Department of Microbiology and Immunology, College of Medicine, University of Kentucky, Chandler Medical Center, Lexington, KY 40503, USA
| | - Steven Zink
- Department of Microbiology and Immunology, College of Medicine, University of Kentucky, Chandler Medical Center, Lexington, KY 40503, USA
| | - N Katherine von Lackum
- Department of Microbiology and Immunology, College of Medicine, University of Kentucky, Chandler Medical Center, Lexington, KY 40503, USA
| | - Yousef Abu-Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Kentucky, Chandler Medical Center, Lexington, KY 40503, USA
| |
Collapse
|
30
|
Abstract
In recent years, tremendous progress has been made in unraveling the elegant mechanisms by which intracellular pathogens invade host cells and establish intracellular infections. By contrast, our knowledge of the mechanisms of host cell cytolysis and the egress of intracellular pathogens is still in its infancy. Temporal pore-formation-mediated lysis of the host and exit by Legionella pneumophila and Leishmania could provide a new model of egress for other intracellular pathogens, many of which exhibit pore-forming or cytolysin activity
Collapse
Affiliation(s)
- Maëlle Molmeret
- Dept of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0084, USA
| | | |
Collapse
|
31
|
Zink SD, Pedersen L, Cianciotto NP, Abu-Kwaik Y. The Dot/Icm type IV secretion system of Legionella pneumophila is essential for the induction of apoptosis in human macrophages. Infect Immun 2002; 70:1657-63. [PMID: 11854262 PMCID: PMC127815 DOI: 10.1128/iai.70.3.1657-1663.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that Legionella pneumophila induces caspase 3-dependent apoptosis in mammalian cells during early stages of infection. In this report, we show that nine L. pneumophila strains with mutations in the dotA, dotDCB, icmT, icmGCD, and icmJB loci are completely defective in the induction of apoptosis, in addition to their severe defects in intracellular replication and pore formation-mediated cytotoxicity. Importantly, all nine dot/icm mutants were complemented for all their defective phenotypes with the respective wild-type loci. We show that the role of the Dot/Icm type IV secretion system in the induction of apoptosis is independent of the RtxA toxin, the dot/icm-regulated pore-forming toxin, and the type II secretion system. However, the pore-forming toxin, which is triggered upon entry into the postexponential growth phase, enhances the ability of L. pneumophila to induce apoptosis. Our data provide the first example of the role of a type IV secretion system of a bacterial pathogen in the induction of apoptosis in the host cell.
Collapse
Affiliation(s)
- Steven D Zink
- Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|