1
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Villota-Salazar NA, Ramos-García VH, González-Prieto JM, Hernández-Delgado S. Effects of chemical inhibition of histone deacetylase proteins in the growth and virulence of Macrophomina phaseolina (Tassi) Goid. Rev Argent Microbiol 2023; 55:296-306. [PMID: 37296064 DOI: 10.1016/j.ram.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023] Open
Abstract
Chromatin remodeling enzymes are important "writers", "readers" and "erasers" of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspecific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolinain vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p<0.05), and the colony morphology was remarkably affected. Under greenhouse experiments, treatment with TSA reduced (p<0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.
Collapse
Affiliation(s)
- Nubia Andrea Villota-Salazar
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Víctor Hugo Ramos-García
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Sanjuana Hernández-Delgado
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico.
| |
Collapse
|
3
|
Sanpedro-Luna JA, Vega-Alvarado L, Vázquez-Cruz C, Sánchez-Alonso P. Global Gene Expression of Post-Senescent Telomerase-Negative ter1Δ Strain of Ustilago maydis. J Fungi (Basel) 2023; 9:896. [PMID: 37755003 PMCID: PMC10532341 DOI: 10.3390/jof9090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
We analyzed the global expression patterns of telomerase-negative mutants from haploid cells of Ustilago maydis to identify the gene network required for cell survival in the absence of telomerase. Mutations in either of the telomerase core subunits (trt1 and ter1) of the dimorphic fungus U. maydis cause deficiencies in teliospore formation. We report the global transcriptome analysis of two ter1Δ survivor strains of U. maydis, revealing the deregulation of telomerase-deleted responses (TDR) genes, such as DNA-damage response, stress response, cell cycle, subtelomeric, and proximal telomere genes. Other differentially expressed genes (DEGs) found in the ter1Δ survivor strains were related to pathogenic lifestyle factors, plant-pathogen crosstalk, iron uptake, meiosis, and melanin synthesis. The two ter1Δ survivors were phenotypically comparable, yet DEGs were identified when comparing these strains. Our findings suggest that teliospore formation in U. maydis is controlled by key pathogenic lifestyle and meiosis genes.
Collapse
Affiliation(s)
- Juan Antonio Sanpedro-Luna
- Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| |
Collapse
|
4
|
Navarrete B, Ibeas JI, Barrales RR. Systematic characterization of Ustilago maydis sirtuins shows Sir2 as a modulator of pathogenic gene expression. Front Microbiol 2023; 14:1157990. [PMID: 37113216 PMCID: PMC10126416 DOI: 10.3389/fmicb.2023.1157990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Phytopathogenic fungi must adapt to the different environmental conditions found during infection and avoid the immune response of the plant. For these adaptations, fungi must tightly control gene expression, allowing sequential changes in transcriptional programs. In addition to transcription factors, chromatin modification is used by eukaryotic cells as a different layer of transcriptional control. Specifically, the acetylation of histones is one of the chromatin modifications with a strong impact on gene expression. Hyperacetylated regions usually correlate with high transcription and hypoacetylated areas with low transcription. Thus, histone deacetylases (HDACs) commonly act as repressors of transcription. One member of the family of HDACs is represented by sirtuins, which are deacetylases dependent on NAD+, and, thus, their activity is considered to be related to the physiological stage of the cells. This property makes sirtuins good regulators during environmental changes. However, only a few examples exist, and with differences in the extent of the implication of the role of sirtuins during fungal phytopathogenesis. In this work, we have performed a systematic study of sirtuins in the maize pathogen Ustilago maydis, finding Sir2 to be involved in the dimorphic switch from yeast cell to filament and pathogenic development. Specifically, the deletion of sir2 promotes filamentation, whereas its overexpression highly reduces tumor formation in the plant. Moreover, transcriptomic analysis revealed that Sir2 represses genes that are expressed during biotrophism development. Interestingly, our results suggest that this repressive effect is not through histone deacetylation, indicating a different target of Sir2 in this fungus.
Collapse
|
5
|
Lai Y, Wang L, Zheng W, Wang S. Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens. J Fungi (Basel) 2022; 8:565. [PMID: 35736048 PMCID: PMC9224773 DOI: 10.3390/jof8060565] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation of fungal gene expression programs in response to the changing host environment and defenses. Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic regulation, has been shown to play an important role in the regulation of gene expressions, and is involved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses, biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and insights into regulatory mechanisms of histone methylation and acetylation in fungal development and pathogenicity, as well as their roles in modulating pathogenic fungi-host interactions.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Zheng
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ramos-García VH, Villota-Salazar NA, González-Prieto JM, Cortés-Espinosa DV. Different histone deacetylase inhibitors reduce growth, virulence as well as changes in the morphology of the fungus Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 2022; 38:63. [DOI: 10.1007/s11274-022-03249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
|
7
|
A Histone Deacetylase, Magnaporthe oryzae RPD3, Regulates Reproduction and Pathogenic Development in the Rice Blast Fungus. mBio 2021; 12:e0260021. [PMID: 34781734 PMCID: PMC8593672 DOI: 10.1128/mbio.02600-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acetylation and deacetylation of histones are key epigenetic mechanisms for gene regulation in response to environmental stimuli. RPD3 is a well-conserved class I histone deacetylase (HDAC) that is involved in diverse biological processes. Here, we investigated the roles of the Magnaporthe oryzaeRPD3 (MoRPD3) gene, an ortholog of Saccharomyces cerevisiaeRpd3, during development and pathogenesis in the model plant-pathogenic fungus Magnaporthe oryzae. We demonstrated that the MoRPD3 gene is able to functionally complement the yeast Rpd3 deletion mutant despite the C-terminal extension of the MoRPD3 protein. MoRPD3 localizes primarily to the nuclei of vegetative hyphae, asexual spores, and invasive hyphae. Deletion of MoRPD3 appears to be lethal. Depletion of MoRPD3 transcripts via gene silencing (MoRPD3kd, where “kd” stands for “knockdown”) has opposing effects on asexual and sexual reproduction. Although conidial germination and appressorium formation rates of the mutants were almost comparable to those of the wild type, in-depth analysis revealed that the appressoria of mutants are smaller than those of the wild type. Furthermore, the MoRPD3kd strain shows a significant reduction in pathogenicity, which can be attributed to the delay in appressorium-mediated penetration and impaired invasive growth. Interestingly, MoRPD3 does not regulate potassium transporters, as shown for Rpd3 of S. cerevisiae. However, it functioned in association with the target of rapamycin (TOR) kinase pathway, resulting in the dependency of appressorium formation on hydrophilic surfaces and on TOR’s inhibition by MoRPD3. Taken together, our results uncovered distinct and evolutionarily conserved roles of MoRPD3 in regulating fungal reproduction, infection-specific development, and virulence.
Collapse
|
8
|
Bauer I, Graessle S. Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes (Basel) 2021; 12:1470. [PMID: 34680865 PMCID: PMC8535771 DOI: 10.3390/genes12101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.
Collapse
Affiliation(s)
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
9
|
Winter C, Fehr M, Craig IR, Grammenos W, Wiebe C, Terteryan-Seiser V, Rudolf G, Mentzel T, Quintero Palomar MA. Trifluoromethyloxadiazoles: inhibitors of histone deacetylases for control of Asian soybean rust. PEST MANAGEMENT SCIENCE 2020; 76:3357-3368. [PMID: 32369266 DOI: 10.1002/ps.5874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Trifluoromethyloxadiazoles (TFMOs) are selective inhibitors of class II histone deacetylases (HDACs). To date, class II HDACs have not been addressed as target enzymes by commercial fungicides. RESULTS Antifungal testing of a broad variety of TFMOs against several important plant pathogens showed activity against only rusts, and especially Phakopsora pachyrhizi, the cause of Asian soybean rust. A structure-activity relationship was established, leading to highly active fungicides that inhibit fungal class II and HOS3-type HDACs of Aspergillus nidulans. Studies of the enzyme-inhibitor binding mode using protein structural information based on the crystal structure of human HDAC4 argue that TFMOs inhibit these enzymes only after undergoing hydration. CONCLUSION Fungal class II HDACs are potential target enzymes for the control of at least some biotrophic crop diseases, in particular Asian soybean rust. As with any novel mode-of-action, class II HDAC fungicides would offer the potential to control fungal isolates that show reduced sensitivity toward existing commercial fungicides.
Collapse
Affiliation(s)
| | - Marcus Fehr
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | - Ian R Craig
- BASF SE, Digitalization in R&D, Ludwigshafen, Germany
| | | | | | | | - Georg Rudolf
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
10
|
Zhang N, Yang Z, Zhang Z, Liang W. BcRPD3-Mediated Histone Deacetylation Is Involved in Growth and Pathogenicity of Botrytis cinerea. Front Microbiol 2020; 11:1832. [PMID: 32849432 PMCID: PMC7403187 DOI: 10.3389/fmicb.2020.01832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase activity plays an important role in transcriptional repression. Botrytis cinerea is an important necrotrophic fungal pathogen distributed worldwide and parasites a wide range of hosts. However, the molecular mechanisms of how B. cinerea regulates growth and host infection remain largely unknown. Here, the function of BcRPD3, a histone deacetylase of B. cinerea, was investigated. Overexpression of the BcRPD3 gene resulted in significantly decreased acetylation levels of histone H3 and H4. The BcRPD3 overexpression strains showed slightly delayed vegetative growth, dramatically impaired infection structure formation, oxidative stress response, and virulence. RNA-Seq analysis revealed that enzymatic activity related genes, including 9 genes reported to function as virulence factors, were downregulated in BcRPD3 overexpression strain. Chromatin immunoprecipitation followed by qPCR confirmed the enrichment of BcRPD3 and H3Kac at the promoter regions of these nine genes. These observations indicated that BcRPD3 regulated the transcription of enzymatic activity related genes by controlling the acetylation level of histones, thereby affecting the vegetative growth, infection structure formation, oxidative stress response, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Ning Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhenzhou Yang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhonghua Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Gene expression in the smut fungus Ustilago esculenta governs swollen gall metamorphosis in Zizania latifolia. Microb Pathog 2020; 143:104107. [PMID: 32120003 DOI: 10.1016/j.micpath.2020.104107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 01/02/2023]
Abstract
Ustilago esculenta, a smut fungus, can induce the formation of culm galls in Zizania latifolia, a vegetable consumed in many Asian countries. Specifically, the mycelia-teliospore (M-T) strain of U. esculenta induces the Jiaobai (JB) type of gall, while the teliospore (T) strain induces the Huijiao (HJ) type. The underlying molecular mechanism responsible for the formation of the two distinct types of gall remains unclear. Our results showed that most differentially expressed genes relevant to effector proteins were up-regulated in the T strain compared to those in the M-T strain during gall formation, and the expression of teliospore formation-related genes was higher in the T strain than the M-T strain. Melanin biosynthesis was also clearly induced in the T strain. The T strain exhibited stronger pathogenicity and greater teliospore production than the M-T strain. We evaluated the implications of the gene regulatory networks in the development of these two type of culm gall in Z. latifolia infected with U. esculenta and suggested potential targets for genetic manipulation to modify the gall type for this crop.
Collapse
|
12
|
Schmitz L, Kronstad JW, Heimel K. Conditional gene expression reveals stage-specific functions of the unfolded protein response in the Ustilago maydis-maize pathosystem. MOLECULAR PLANT PATHOLOGY 2020; 21:258-271. [PMID: 31802604 PMCID: PMC6988420 DOI: 10.1111/mpp.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ustilago maydis is a model organism for the study of biotrophic plant-pathogen interactions. The sexual and pathogenic development of the fungus are tightly connected since fusion of compatible haploid sporidia is prerequisite for infection of the host plant, maize (Zea mays). After plant penetration, the unfolded protein response (UPR) is activated and required for biotrophic growth. The UPR is continuously active throughout all stages of pathogenic development in planta. However, since development of UPR deletion mutants stops directly after plant penetration, the role of an active UPR at later stages of development remained to be determined. Here, we established a gene expression system for U. maydis that uses endogenous, conditionally active promoters to either induce or repress expression of a gene of interest during different stages of plant infection. Integration of the expression constructs into the native genomic locus and removal of resistance cassettes were required to obtain a wild-type-like expression pattern. This indicates that genomic localization and chromatin structure are important for correct promoter activity and gene expression. By conditional expression of the central UPR regulator, Cib1, in U. maydis, we show that a functional UPR is required for continuous plant defence suppression after host infection and that U. maydis relies on a robust control system to prevent deleterious UPR hyperactivation.
Collapse
Affiliation(s)
- Lara Schmitz
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| | - James W. Kronstad
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
- Michael Smith LaboratoriesDepartment of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Kai Heimel
- Institute for Microbiology and GeneticsDepartment of Molecular Microbiology and GeneticsGöttingen Center for Molecular Biosciences (GZMB)University of GöttingenGrisebachstr. 8D‐37077GöttingenGermany
- International Research Training Group 2172 PRoTECTGöttingen, VancouverGermany
| |
Collapse
|
13
|
Li X, Pan L, Wang B, Pan L. The Histone Deacetylases HosA and HdaA Affect the Phenotype and Transcriptomic and Metabolic Profiles of Aspergillus niger. Toxins (Basel) 2019; 11:toxins11090520. [PMID: 31500299 PMCID: PMC6784283 DOI: 10.3390/toxins11090520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Histone acetylation is an important modification for the regulation of chromatin accessibility and is controlled by two kinds of histone-modifying enzymes: histone acetyltransferases (HATs) and histone deacetylases (HDACs). In filamentous fungi, there is increasing evidence that HATs and HDACs are critical factors related to mycelial growth, stress response, pathogenicity and production of secondary metabolites (SMs). In this study, seven A. niger histone deacetylase-deficient strains were constructed to investigate their effects on the strain growth phenotype as well as the transcriptomic and metabolic profiles of secondary metabolic pathways. Phenotypic analysis showed that deletion of hosA in A. niger FGSC A1279 leads to a significant reduction in growth, pigment production, sporulation and stress resistance, and deletion of hdaA leads to an increase in pigment production in liquid CD medium. According to the metabolomic analysis, the production of the well-known secondary metabolite fumonisin was reduced in both the hosA and hdaA mutants, and the production of kojic acid was reduced in the hdaA mutant and slightly increased in the hosA mutant. Results suggested that the histone deacetylases HosA and HdaA play a role in development and SM biosynthesis in A. niger FGSC A1279. Histone deacetylases offer new strategies for regulation of SM synthesis.
Collapse
Affiliation(s)
- Xuejie Li
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Lijie Pan
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
14
|
Lan H, Wu L, Sun R, Keller NP, Yang K, Ye L, He S, Zhang F, Wang S. The HosA Histone Deacetylase Regulates Aflatoxin Biosynthesis Through Direct Regulation of Aflatoxin Cluster Genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1210-1228. [PMID: 30986121 DOI: 10.1094/mpmi-01-19-0033-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Histone deacetylases (HDACs) always function as corepressors and sometimes as coactivators in the regulation of fungal development and secondary metabolite production. However, the mechanism through which HDACs play positive roles in secondary metabolite production is still unknown. Here, classical HDAC enzymes were identified and analyzed in Aspergillus flavus, a fungus that produces one of the most carcinogenic secondary metabolites, aflatoxin B1 (AFB1). Characterization of the HDACs revealed that a class I family HDAC, HosA, played crucial roles in growth, reproduction, the oxidative stress response, AFB1 biosynthesis, and pathogenicity. To a lesser extent, a class II family HDAC, HdaA, was also involved in sclerotia formation and AFB1 biosynthesis. An in vitro analysis of HosA revealed that its HDAC activity was considerably diminished at nanomolar concentrations of trichostatin A. Notably, chromatin immunoprecipitation experiments indicated that HosA bound directly to AFB1 biosynthesis cluster genes to regulate their expression. Finally, we found that a transcriptional regulator, SinA, interacts with HosA to regulate fungal development and AFB1 biosynthesis. Overall, our results reveal a novel mechanism by which classical HDACs mediate the induction of secondary metabolite genes in fungi.
Collapse
Affiliation(s)
- Huahui Lan
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianghuan Wu
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruilin Sun
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nancy P Keller
- Departments of Bacteriology, Medical Microbiology, and Immunology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Kunlong Yang
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liuqing Ye
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuibin He
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zhang
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
16
|
Vijayakrishnapillai LMK, Desmarais JS, Groeschen MN, Perlin MH. Deletion of ptn1, a PTEN/ TEP1 Orthologue, in Ustilago maydis Reduces Pathogenicity and Teliospore Development. J Fungi (Basel) 2018; 5:E1. [PMID: 30577430 PMCID: PMC6462984 DOI: 10.3390/jof5010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 01/23/2023] Open
Abstract
The PTEN/PI3K/mTOR signal transduction pathway is involved in the regulation of biological processes such as metabolism, cell growth, cell proliferation, and apoptosis. This pathway has been extensively studied in mammals, leading to the conclusion that PTEN is a major tumor suppressor gene. PTEN orthologues have been characterized in a variety of organisms, both vertebrates and non-vertebrates, and studies of the associated PTEN/PI3K/mTOR pathway indicate that it is widely conserved. Studies in fungal systems indicated a role of PTEN in fungal defense mechanisms in Candida albicans, and in the developmental process of sporulation in Saccharomyces cerevisiae. The present study was aimed at investigating the role of the PTEN ortholog, ptn1, in Ustilago maydis, the pathogen of maize. U. maydis ptn1 mutant strains where ptn1 gene is deleted or overexpressed were examined for phenotypes associate with mating, virulence and spore formation. While the overexpression of ptn1 had no substantial effects on virulence, ptn1 deletion strains showed slight reductions in mating efficiency and significant reductions in virulence; tumor formation on stem and/or leaves were severely reduced. Moreover, tumors, when present, had significantly lower levels of mature teliospores, and the percent germination of such spores was similarly reduced. Thus, ptn1 is required for these important aspects of virulence in this fungus.
Collapse
Affiliation(s)
| | - John S Desmarais
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA.
| | - Michael N Groeschen
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA.
| | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
17
|
Cai Q, Wang ZK, Shao W, Ying SH, Feng MG. Essential role of Rpd3-dependent lysine modification in the growth, development and virulence of Beauveria bassiana. Environ Microbiol 2018; 20:1590-1606. [PMID: 29575704 DOI: 10.1111/1462-2920.14100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 02/01/2023]
Abstract
Rpd3 is a class I histone deacetylase that reverses lysine acetylation thus influencing cellular processes and functions. However, its role in fungal insect pathogens has not been explored yet. Here we show that Rpd3-dependent lysine modification and gene expression orchestrate growth, conidiation and virulence in Beauveria bassiana. Deletion of Rpd3 resulted in severe growth defects on various carbon/nitrogen sources, 97% reduction in conidiation capacity and drastic attenuation in virulence. These phenotypes concurred with differential expression of 1479 proteins and hyperacetylation or hypoacetylation of 2227 lysine residues on 1134 proteins. Many of these proteins fell into carbon/nitrogen metabolism and cell rescue/defence/virulence, indicating vital roles of Rpd3-dependent protein expression and lysine modification in the fungal growth and virulence. Intriguingly, lysine residues of four core histones (H2A, H2B, H3 and H4) and many histone acetyltransferases were also hyper- or hypoacetylated in Δrpd3, suggesting direct and indirect roles for Rpd3 in genome-wide lysine modification. However, crucial development activators were transcriptionally repressed and not found in either proteome or acetylome. Single/double-site-directed H3K9/K14 mutations for hyper/hypoacetylation exerted significant impacts on conidiation and dimorphic transition crucial for fungal virulence. Altogether, Rpd3 mediates growth, asexual development and virulence through transcriptional/translational regulation and posttranslational lysine modification in B. bassiana.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi-Kang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Wei Shao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
18
|
Kretschmer M, Lambie S, Croll D, Kronstad JW. Acetate provokes mitochondrial stress and cell death in Ustilago maydis. Mol Microbiol 2018; 107:488-507. [PMID: 29235175 DOI: 10.1111/mmi.13894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The fungal pathogen Ustilago maydis causes disease on maize by mating to establish an infectious filamentous cell type that invades the host and induces tumours. We previously found that β-oxidation mutants were defective in virulence and did not grow on acetate. Here, we demonstrate that acetate inhibits filamentation during mating and in response to oleic acid. We therefore examined the influence of different carbon sources by comparing the transcriptomes of cells grown on acetate, oleic acid or glucose, with expression changes for the fungus during tumour formation in planta. Guided by the transcriptional profiling, we found that acetate negatively influenced resistance to stress, promoted the formation of reactive oxygen species, triggered cell death in stationary phase and impaired virulence on maize. We also found that acetate induced mitochondrial stress by interfering with mitochondrial functions. Notably, the disruption of oxygen perception or inhibition of the electron transport chain also influenced filamentation and mating. Finally, we made use of the connections between acetate and β-oxidation to test metabolic inhibitors for an influence on growth and virulence. These experiments identified diclofenac as a potential inhibitor of virulence. Overall, these findings support the possibility of targeting mitochondrial metabolic functions to control fungal pathogens.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Scott Lambie
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Croll
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
19
|
Snetselaar K, McCann M. Ustilago maydis, the corn smut fungus, has an unusual diploid mitotic stage. Mycologia 2017; 109:140-152. [DOI: 10.1080/00275514.2016.1274597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Karen Snetselaar
- Department of Biology, Saint Joseph’s University, 5600 City Avenue, Philadelphia, Pennsylvania 19131
| | - Michael McCann
- Department of Biology, Saint Joseph’s University, 5600 City Avenue, Philadelphia, Pennsylvania 19131
| |
Collapse
|
20
|
Chew E, Aweiss Y, Lu CY, Banuett F. Fuz1, a MYND domain protein, is required for cell morphogenesis inUstilago maydis. Mycologia 2017. [DOI: 10.1080/15572536.2008.11832497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Emily Chew
- Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Boulevard, Long Beach, California 90840
| | | | | | - Flora Banuett
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, California 90840 In memoriam Ira Herskowitz
| |
Collapse
|
21
|
Tollot M, Assmann D, Becker C, Altmüller J, Dutheil JY, Wegner CE, Kahmann R. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. PLoS Pathog 2016; 12:e1005697. [PMID: 27332891 PMCID: PMC4917244 DOI: 10.1371/journal.ppat.1005697] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/20/2016] [Indexed: 12/31/2022] Open
Abstract
The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 “late effectors” was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection. The fungus Ustilago maydis is a pathogen of maize which induces tumor formation in the infected tissue. In these tumors huge amounts of fungal spores develop. As a biotrophic pathogen, U. maydis establishes itself in the plant with the help of a large number of secreted effector proteins. Many effector proteins are important for virulence because they counteract plant defense reactions. In this manuscript we have identified and characterized Ros1, a master regulator for the late stages of U. maydis development. This transcription factor is expressed late during infection and controls nuclear fusion, hyphal aggregation and late proliferation. ros1 mutants are still able to induce tumor formation but these are a dead end because they do not contain any spores. We show that Ros1 interferes with the early regulatory cascade controlled by a complex of two homeodomain proteins. In addition, Ros1 triggers a major switch in the effector repertoire, suggesting that different sets of effectors are needed for different stages of fungal development inside the plant.
Collapse
Affiliation(s)
- Marie Tollot
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Daniela Assmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Christian Becker
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Julien Y. Dutheil
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Carl-Eric Wegner
- Max Planck Institute for Terrestrial Microbiology, Deparment of Biogeochemistry, Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Elías-Villalobos A, Fernández-Álvarez A, Moreno-Sánchez I, Helmlinger D, Ibeas JI. The Hos2 Histone Deacetylase Controls Ustilago maydis Virulence through Direct Regulation of Mating-Type Genes. PLoS Pathog 2015; 11:e1005134. [PMID: 26317403 PMCID: PMC4552784 DOI: 10.1371/journal.ppat.1005134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Morphological changes are critical for host colonisation in plant pathogenic fungi. These changes occur at specific stages of their pathogenic cycle in response to environmental signals and are mediated by transcription factors, which act as master regulators. Histone deacetylases (HDACs) play crucial roles in regulating gene expression, for example by locally modulating the accessibility of chromatin to transcriptional regulators. It has been reported that HDACs play important roles in the virulence of plant fungi. However, the specific environment-sensing pathways that control fungal virulence via HDACs remain poorly characterised. Here we address this question using the maize pathogen Ustilago maydis. We find that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type genes, which increases in proportion to their expression level following cAMP addition. These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA pathway to control the expression of mating-type genes. Interestingly, we found that Clr3, another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in this control system. Overall, our results provide new insights into the role of HDACs in fungal phytopathogenesis. Many pathogenic fungi need to undergo morphological changes in order to infect their hosts. Typically, pathogenic fungi switch from a non-pathogenic yeast-like form to a polarised pathogenic filament. This morphological switch is regulated genetically and is triggered by specific environmental conditions. Histone deacetylases (HDACs) are important regulators of chromatin structure and gene expression. In this study, we investigate the role of HDACs as targets of the signalling pathways that activate fungal virulence programs in response to specific external signals. We identify two specific HDACs, Hos2 and Clr3, that are required for the virulence of the corn smut fungus, Ustilago maydis. Our results reveal that Hos2 and Clr3 function in the cAMP-PKA cascade, a nutrient-sensing pathway conserved between all eukaryotes.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique UMR5237-Université de Montpellier, Montpellier, France
- * E-mail: (AEV); (JII)
| | - Alfonso Fernández-Álvarez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| | - Ismael Moreno-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| | - Dominique Helmlinger
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique UMR5237-Université de Montpellier, Montpellier, France
| | - José I. Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
- * E-mail: (AEV); (JII)
| |
Collapse
|
23
|
Islamovic E, García-Pedrajas MD, Chacko N, Andrews DL, Covert SF, Gold SE. Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:42-54. [PMID: 25226432 DOI: 10.1094/mpmi-05-14-0133-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, producing melanized sexual teliospores. Previously we identified Ust1, an APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor, whose deletion led to filamentous haploid growth and the production of highly pigmented teliospore-like structures in culture. In this study, we analyzed the transcriptome of a ust1 deletion mutant and functionally characterized two highly upregulated genes with potential roles in melanin biosynthesis: um05361, encoding a putative laccase (lac1), and um06414, encoding a polyketide synthase (pks1). The Δlac1 mutant strains showed dramatically reduced virulence on maize seedlings and fewer, less-pigmented teliospores in adult plants. The Δpks1 mutant was unaffected in seedling virulence but adult plant tumors generated hyaline, nonmelanized teliospores. Thus, whereas pks1 appeared to be restricted to the synthesis of melanin, lac1 showed a broader role in virulence. In conclusion, the ust1 deletion mutant provided an in vitro model for sporulation in U. maydis, and functional analysis supports the efficacy of this in vitro mutant analysis for identification of genes involved in in planta teliosporogenesis.
Collapse
|
24
|
González-Prieto JM, Rosas-Quijano R, Domínguez A, Ruiz-Herrera J. The UmGcn5 gene encoding histone acetyltransferase from Ustilago maydis is involved in dimorphism and virulence. Fungal Genet Biol 2014; 71:86-95. [PMID: 25242418 DOI: 10.1016/j.fgb.2014.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
We isolated a gene encoding a histone acetyltransferase from Ustilago maydis (DC.) Cda., which is orthologous to the Saccharomyces cerevisiae GCN5 gene. The gene was isolated from genomic clones identified by their specific hybridization to a gene fragment obtained by the polymerase chain reaction (PCR). This gene (Umgcn5; um05168) contains an open reading frame (ORF) of 1421bp that encodes a putative protein of 473 amino acids with a Mr. of 52.6kDa. The protein exhibits a high degree of homology with histone acetyltransferases from different organisms. Null a2b2 ΔUmgcn5 mutants were constructed by substitution of the region encoding the catalytic site with a hygromycin B resistance cassette. Null a1b1 ΔUmgcn5 mutants were isolated from genetic crosses of a2b2 ΔUmgcn5 and a1b1 wild-type strains in maize. Mutants displayed a slight reduction in growth rate under different conditions, and were more sensitive than the wild type to stress conditions, but more important, they grew as long mycelial cells, and formed fuzz-like colonies under all conditions where wild-type strains grew in the yeast-like morphology and formed smooth colonies. This phenotype was not reverted by cAMP addition. Mutants were not virulent to maize plants, and were unable to form teliospores. These phenotypic alterations of the mutants were reverted by their transformation with the wild-type gene.
Collapse
Affiliation(s)
- Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tam. 88710, Mexico; Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Irapuato, Gto. 36500, Mexico
| | - Raymundo Rosas-Quijano
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tam. 88710, Mexico; Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Irapuato, Gto. 36500, Mexico
| | - Angel Domínguez
- Departamento de Microbiología y Genética, CIETUS, IBSAL, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Irapuato, Gto. 36500, Mexico.
| |
Collapse
|
25
|
Mendoza-Mendoza A, Eskova A, Weise C, Czajkowski R, Kahmann R. Hap2 regulates the pheromone response transcription factorprf1inUstilago maydis. Mol Microbiol 2009; 72:683-98. [DOI: 10.1111/j.1365-2958.2009.06676.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Brosch G, Loidl P, Graessle S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 2008; 32:409-39. [PMID: 18221488 PMCID: PMC2442719 DOI: 10.1111/j.1574-6976.2007.00100.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 11/13/2007] [Indexed: 12/19/2022] Open
Abstract
The readout of the genetic information of eukaryotic organisms is significantly regulated by modifications of DNA and chromatin proteins. Chromatin alterations induce genome-wide and local changes in gene expression and affect a variety of processes in response to internal and external signals during growth, differentiation, development, in metabolic processes, diseases, and abiotic and biotic stresses. This review aims at summarizing the roles of histone H1 and the acetylation and methylation of histones in filamentous fungi and links this knowledge to the huge body of data from other systems. Filamentous fungi show a wide range of morphologies and have developed a complex network of genes that enables them to use a great variety of substrates. This fact, together with the possibility of simple and quick genetic manipulation, highlights these organisms as model systems for the investigation of gene regulation. However, little is still known about regulation at the chromatin level in filamentous fungi. Understanding the role of chromatin in transcriptional regulation would be of utmost importance with respect to the impact of filamentous fungi in human diseases and agriculture. The synthesis of compounds (antibiotics, immunosuppressants, toxins, and compounds with adverse effects) is also likely to be regulated at the chromatin level.
Collapse
Affiliation(s)
- Gerald Brosch
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, Innsbruck, Austria
| | | | | |
Collapse
|
27
|
Klosterman SJ, Perlin MH, Garcia-Pedrajas M, Covert SF, Gold SE. Genetics of morphogenesis and pathogenic development of Ustilago maydis. ADVANCES IN GENETICS 2007; 57:1-47. [PMID: 17352901 DOI: 10.1016/s0065-2660(06)57001-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ustilago maydis has emerged as an important model system for the study of fungi. Like many fungi, U. maydis undergoes remarkable morphological transitions throughout its life cycle. Fusion of compatible, budding, haploid cells leads to the production of a filamentous dikaryon that penetrates and colonizes the plant, culminating in the production of diploid teliospores within fungal-induced plant galls or tumors. These dramatic morphological transitions are controlled by components of various signaling pathways, including the pheromone-responsive MAP kinase and cAMP/PKA (cyclic AMP/protein kinase A) pathways, which coregulate the dimorphic switch and sexual development of U. maydis. These signaling pathways must somehow cooperate with the regulation of the cytoskeletal and cell cycle machinery. In this chapter, we provide an overview of these processes from pheromone perception and mating to gall production and sporulation in planta. Emphasis is placed on the genetic determinants of morphogenesis and pathogenic development of U. maydis and on the fungus-host interaction. Additionally, we review advances in the development of tools to study U. maydis, including the recently available genome sequence. We conclude with a brief assessment of current challenges and future directions for the genetic study of U. maydis.
Collapse
Affiliation(s)
- Steven J Klosterman
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
28
|
García-Pedrajas MD, Gold SE. Kernel knowledge: smut of corn. ADVANCES IN APPLIED MICROBIOLOGY 2005; 56:263-90. [PMID: 15566982 DOI: 10.1016/s0065-2164(04)56008-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Farfsing JW, Auffarth K, Basse CW. Identification of cis-active elements in Ustilago maydis mig2 promoters conferring high-level activity during pathogenic growth in maize. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:75-87. [PMID: 15672821 DOI: 10.1094/mpmi-18-0075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Ustilago maydis mig2 cluster comprises five highly homologous genes that display a pronounced plant-specific expression profile. A 350-bp mig2-5 promoter fragment contained all elements sufficient to confer differential promoter activity. Mutational analysis of this region, fused to the green fluorescent protein reporter gene, allowed dissecting core promoter elements required for high-level promoter activity from elements conferring inducible expression in planta. In particular, the presence of several 5'-CCA-3' motifs within a short stretch of the mig2-5 promoter was decisive for inducible promoter activity. On this basis, we reconstituted an artificial promoter whose inducible activity specifically relied on multiple CCA motifs. In addition, we identified a novel mig2 homologous gene, mig2-6, that is not part of the mig2 cluster, but displayed the strongest differential expression profile among mig2 genes. The deletion of all six mig2 genes did not compromise the ability to induce tumor formation in infected maize plants. Comparative sequence analysis including the mig2-6 promoter revealed an over-representation of the consensus motif 5'-MNMNWNCCAMM-3'. We discuss putative transcriptional activators involved in mig2 regulation.
Collapse
Affiliation(s)
- Jan W Farfsing
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch Strasse, D-35043 Marburg, Germany
| | | | | |
Collapse
|
30
|
Genetics of Morphogenesis in Basidiomycetes. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Kahmann R, Kämper J. Ustilago maydis: how its biology relates to pathogenic development. THE NEW PHYTOLOGIST 2004; 164:31-42. [PMID: 33873482 DOI: 10.1111/j.1469-8137.2004.01156.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The smut fungus Ustilago maydis is a ubiquitous pathogen of corn. Although of minor economical importance, U. maydis has become the most attractive model among the plant pathogenic basidiomycetes under study. This fungus undergoes a number of morphological transitions throughout its life-cycle, the most prominent being the dimorphic switch from budding to filamentous growth that is prerequisite for entry into the biotrophic phase. The morphological transition is controlled by the tetrapolar mating system. Understanding the mating system has allowed connections to signalling cascades operating during pathogenic development. Here, we will review the status and recent insights into understanding pathogenic development of U. maydis and emphasize areas and directions of future research. Contents Summary 31 I. Introduction 31 II. Important tools for exprimentation with Ustilago myadis 32 III. Cell fusion requres a complex signalling network 33 IV. Development of the dikaryon: the bE/bW complex at work 34 V. A connection between cell cycle, morphogenesis and virulence 36 VI. The early infection stages 38 VII. Proliferation and differentiaton in the plant host 38 VIII. The Ustilago maydis genome 39 IX. Conclusions 40 Acknowledgements 40 References 40.
Collapse
Affiliation(s)
- Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kämper
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
32
|
González-Prieto JM, Domínguez A, Rosas-Quijano R, Cervantes-Chávez JA, Ruiz-Herrera J. Isolation and molecular analysis of Umhda2 a gene encoding a histone deacetylase from Ustilago maydis. ACTA ACUST UNITED AC 2004; 15:44-50. [PMID: 15354354 DOI: 10.1080/10425170310001652192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
By use of the polymerase chain reaction and synthetic oligonucleotides designed from conserved regions, we amplified a fragment of a gene from Ustilago maydis encoding a putative histone deacetylase. With this probe we isolated the full gene from a minigenomic library. The gene (designated as Umhda2) contains an open reading frame (ORF) of 1701bp encoding a protein of 566 amino acids. Multiple comparison analysis with other histone deacetylases suggests that the Umhda2 gene product belongs to the Rpd3-related family of proteins. The highest degree of homology with histone deacetylases from other organisms corresponded to Hdalp of Schizosaccharomyces pombe and Rpd3p of Saccharomyces cerevisiae with 64.2 and 62.2% of sequence similarity, respectively. It displayed a substantially lower similarity with another histone deacetylase from U. maydis (Hdalp, 52.4%). Semi-quantitative RTPCR results indicate that the gene is transcriptionally up-regulated during the in vitro yeast-to-mycelium dimorphic transition.
Collapse
Affiliation(s)
- Juan Manuel González-Prieto
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Apartado Postal 629, Irapuato Gto., Mexico
| | | | | | | | | |
Collapse
|
33
|
García-Pedrajas MD, Gold SE. Fungal dimorphism regulated gene expression in Ustilago maydis: II. Filament down-regulated genes. MOLECULAR PLANT PATHOLOGY 2004; 5:295-307. [PMID: 20565597 DOI: 10.1111/j.1364-3703.2004.00233.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Ustilago maydis displays dimorphic growth alternating between a budding haploid form and a filamentous dikaryon resulting from mating of two haploid cells. This morphological switch plays a critical role in pathogenicity because only the filamentous dikaryon can infect corn plants. Previously, we identified a role for the cAMP signal transduction pathway in dimorphism and pathogenicity. The repression of a subset of genes in filamentous cells may be critical for programming virulence. To identify these filament down-regulated genes and to understand better the role of wild-type budding cells in the life and disease cycle of U. maydis in nature, we used suppression subtractive hybridization. We arrayed a library of approximately 5500 cDNA clones and showed by reverse Northern blot analysis that most, as expected, are down-regulated during filamentous growth. By an iterative sequencing and hybridization process to eliminate previously determined sequences, we showed that > 88% of the clones detected as differential in the reverse Northern blot screening harbour sequences corresponding to 48 different genes. Differential expression was confirmed for 37 of these genes by Northern blot analysis. For eight of these confirmed differential genes, expression could only be detected in budding cells. For genes expressed in both growth forms, levels of differential expression varied from as much as 65-fold to only two-fold higher levels in budding cells. Twenty-seven of the 37 genes confirmed to be differential had similarity to database sequences, and fell into several putative functional categories. In future studies we will produce deletion mutants in several highly differentially expressed genes to study their roles in morphogenesis and pathogenesis.
Collapse
|
34
|
Basse CW, Steinberg G. Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. MOLECULAR PLANT PATHOLOGY 2004; 5:83-92. [PMID: 20565585 DOI: 10.1111/j.1364-3703.2004.00210.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
UNLABELLED SUMMARY Ustilago maydis, a facultative biotrophic basidiomycete fungus, causes smut disease in maize. A hallmark of this disease is the induction of large plant tumours that are filled with masses of black-pigmented teliospores. During the last 15 years U. maydis has become an important model system to unravel molecular mechanisms of fungal phytopathogenicity. This review highlights recent insights into molecular mechanisms of complex signalling pathways that are involved in the transition from budding to filamentous growth and operate during the pathogenic growth phase. In addition, we describe recent progress in understanding the structural basis of morphogenesis and polar growth in different stages of U. maydis development. Finally, we present an overview of recently identified genes related to pathogenic development and summarize novel molecular and genomic approaches that are powerful tools to explore the genetic base of pathogenicity. TAXONOMY Ustilago maydis (DC) Corda (synonymous with Ustilago zeae Ung.)-Kingdom Eukaryota, Phylum Fungi, Order Basidiomycota, Family Ustilaginomycetes, Genus Ustilago. HOST RANGE Infects aerial parts of corn plants (Zea mays) and its progenitor teosinte (Zea mays ssp. parviglumis). Maize smut is distributed throughout the world. Disease symptoms: U. maydis causes chlorotic lesions in infected areas, the formation of anthocyanin pigments, necrosis, hyperplasia and hypertrophy of infected organs. Infection by U. maydis can inhibit development and lead to stunting of infected plants. A few days after infection plant tumours develop in which massive fungal proliferation and the formation of the black-pigmented, diploid teliospores occurs. Under natural conditions tumours predominantly develop on sexual organs (tassels and ears), stems and nodal shoots. Tumours may vary in size from minute pustules to several centimetres in diameter and contain up to 200 billion spores. Useful web site: http://www-genome.wi.mit.edu/annotation/fungi/ustilago_maydis/
Collapse
Affiliation(s)
- Christoph W Basse
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch Strasse, 35043 Marburg, Germany
| | | |
Collapse
|
35
|
Bakkeren G, Gold S. The path in fungal plant pathogenicity: many opportunities to outwit the intruders? GENETIC ENGINEERING 2004; 26:175-223. [PMID: 15387298 DOI: 10.1007/978-0-306-48573-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The number of genes implicated in the infection and disease processes of phytopathogenic fungi is increasing rapidly. Forward genetic approaches have identified mutated genes that affect pathogenicity, host range, virulence and general fitness. Likewise, candidate gene approaches have been used to identify genes of interest based on homology and recently through 'comparative genomic approaches' through analysis of large EST databases and whole genome sequences. It is becoming clear that many genes of the fungal genome will be involved in the pathogen-host interaction in its broadest sense, affecting pathogenicity and the disease process in planta. By utilizing the information obtained through these studies, plants may be bred or engineered for effective disease resistance. That is, by trying to disable pathogens by hitting them where it counts.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture & Agri-Food Canada,Pacific Agri-Food Research Centre, Summerland, BC, Canada V0H 1Z0
| | | |
Collapse
|
36
|
Aichinger C, Hansson K, Eichhorn H, Lessing F, Mannhaupt G, Mewes W, Kahmann R. Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis. Mol Genet Genomics 2003; 270:303-14. [PMID: 14523645 DOI: 10.1007/s00438-003-0926-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 09/01/2003] [Indexed: 10/26/2022]
Abstract
To identify plant-induced genes in the maize pathogenic fungus Ustilago maydis we have developed a genetic screen that combines REMI (restriction enzyme mediated integration) mutagenesis with enhancer trapping using the gene for Green Fluorescent Protein (GFP) as vital reporter. Of 2,350 insertion mutants isolated, three were shown to express GFP only after the fungus had come into contact with the host maize plant. One of the genes tagged was mfa1, which encodes the pheromone precursor, while the second gene, pig2, codes for a product that showed similarity to protein disulfide isomerase. The third integration event had occurred in a locus which we designated the p -locus. This locus contains 11 genes in a 24-kb stretch. Of these, pig3, 4, 5, 6 and 7 show a plant-regulated expression pattern, while the other genes found at the locus (designated npi) do not. Of the plant-regulated genes only two were found to be similar to database entries: the pig4 product is related to membrane transporters of the major facilitator family, while the pig6 protein shows similarity to multidrug transporters. Detailed expression studies revealed that the five plant-regulated genes at the p -locus differ in their expression profiles. Mutants deleted for each of them showed no apparent phenotype, while the npi1 gene appeared to be essential. A viable deletion encompassing the entire p -locus could be generated when npi1 function was provided ectopically. This deletion mutant also showed no obvious alteration in virulence.
Collapse
Affiliation(s)
- C Aichinger
- Institute for Genetics and Microbiology, Ludwig-Maximilians University Munich, Maria-Ward-Str.1a, 80638 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Trojer P, Brandtner EM, Brosch G, Loidl P, Galehr J, Linzmaier R, Haas H, Mair K, Tribus M, Graessle S. Histone deacetylases in fungi: novel members, new facts. Nucleic Acids Res 2003; 31:3971-81. [PMID: 12853613 PMCID: PMC167634 DOI: 10.1093/nar/gkg473] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 05/15/2003] [Accepted: 05/15/2003] [Indexed: 11/12/2022] Open
Abstract
Acetylation is the most prominent modification on core histones that strongly affects nuclear processes such as DNA replication, DNA repair and transcription. Enzymes responsible for the dynamic equilibrium of histone acetylation are histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this paper we describe the identification of novel HDACs from the filamentous fungi Aspergillus nidulans and the maize pathogen Cochliobolus carbonum. Two of the enzymes are homologs of Saccharomyces cerevisiae HOS3, an enzyme that has not been identified outside of the established yeast systems until now. One of these homologs, HosB, showed intrinsic HDAC activity and remarkable resistance against HDAC inhibitors like trichostatin A (TSA) when recombinant expressed in an Escherichia coli host system. Phylo genetic analysis revealed that HosB, together with other fungal HOS3 orthologs, is a member of a separate group within the classical HDACs. Immunological investigations with partially purified HDAC activities of Aspergillus showed that all classical enzymes are part of high molecular weight complexes and that a TSA sensitive class 2 HDAC constitutes the major part of total HDAC activity of the fungus. However, further biochemical analysis also revealed an NAD(+)-dependent activity that could be separated from the other activities by different types of chromatography and obviously represents an enzyme of the sirtuin class.
Collapse
Affiliation(s)
- Patrick Trojer
- Department of Molecular Biology, University of Innsbruck, Peter-Mayr-Strasse 4b, Innsbruck, A-6020, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|