1
|
Wu J, Yu Y, Liu F, Cao Y, Ren J, Fan Y, Xiao X. γ-Aminobutyric Acid (GABA) Metabolic Bypass Plays a Crucial Role in Stress Tolerance and Biofilm Formation in C. sakazakii ATCC 29544. Foods 2025; 14:171. [PMID: 39856838 PMCID: PMC11764851 DOI: 10.3390/foods14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cronobacter sakazakii is a foodborne pathogen characterized by its robust stress tolerance and ability to form biofilms, which facilitates its survival in powdered infant formula (PIF) processing environments for prolonged periods. Gamma-aminobutyric acid (GABA) is a kind of non-protein amino acid that acts as an osmoprotectant. This study aimed to elucidate the effects of the gabT gene on the survival of C. sakazakii, GABA accumulation, and biofilm formation under desiccation, osmotic stress, and acid exposure. A gabT knockout strain of C. sakazakii was developed using gene recombination techniques. The GABA content and survival rates of both the wild-type and knockout strains were compared under various stress conditions. Scanning electron microscopy (SEM) was used to observe cellular damage and biofilm formation. Statistical analysis was performed using a one-way analysis of variance (ANOVA). The deletion of gabT resulted in enhanced GABA accumulation under different stress conditions, improving the bacterium's tolerance to desiccation, osmotic pressure, and acid treatment. SEM images revealed that under identical stress conditions, the gabT knockout strain exhibited less cellular damage compared to the wild-type strain. Both strains were capable of biofilm formation under low osmotic pressure stress, but the gabT knockout strain showed higher GABA content, denser biofilm formation, and increased biofilm quantity. Similar trends were observed under acid stress conditions. The gabT gene plays a key role in modulating GABA accumulation, which enhances the stress tolerance and biofilm formation of C. sakazakii. These findings provide new insights into the role of GABA in bacterial survival mechanisms and highlight the potential for targeting GABA pathways to control C. sakazakii in food processing environments.
Collapse
Affiliation(s)
- Jiangchao Wu
- The College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; (J.W.); (Y.Y.)
| | - Yigang Yu
- The College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; (J.W.); (Y.Y.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (J.R.); (Y.F.)
| | - Fengsong Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China;
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (J.R.); (Y.F.)
| | - Jiahao Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (J.R.); (Y.F.)
| | - Yiting Fan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (J.R.); (Y.F.)
| | - Xinglong Xiao
- The College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; (J.W.); (Y.Y.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (J.R.); (Y.F.)
| |
Collapse
|
2
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Kang Z, Zhang M, Gao K, Zhang W, Meng W, Liu Y, Xiao D, Guo S, Ma C, Gao C, Xu P. An L-2-hydroxyglutarate biosensor based on specific transcriptional regulator LhgR. Nat Commun 2021; 12:3619. [PMID: 34131130 PMCID: PMC8206213 DOI: 10.1038/s41467-021-23723-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
l-2-Hydroxyglutarate (l-2-HG) plays important roles in diverse physiological processes, such as carbon starvation response, tumorigenesis, and hypoxic adaptation. Despite its importance and intensively studied metabolism, regulation of l-2-HG metabolism remains poorly understood and none of regulator specifically responded to l-2-HG has been identified. Based on bacterial genomic neighborhood analysis of the gene encoding l-2-HG oxidase (LhgO), LhgR, which represses the transcription of lhgO in Pseudomonas putida W619, is identified in this study. LhgR is demonstrated to recognize l-2-HG as its specific effector molecule, and this allosteric transcription factor is then used as a biorecognition element to construct an l-2-HG-sensing FRET sensor. The l-2-HG sensor is able to conveniently monitor the concentrations of l-2-HG in various biological samples. In addition to bacterial l-2-HG generation during carbon starvation, biological function of the l-2-HG dehydrogenase and hypoxia induced l-2-HG accumulation are also revealed by using the l-2-HG sensor in human cells. L-2-hydroxyglutarate (L-2-HG) is an important metabolite but its regulation is poorly understood. Here the authors report an L-2-HG FRET biosensor based on the allosteric transcription factor, LhgR, to monitor L-2-HG in cells and biological samples.
Collapse
Affiliation(s)
- Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Kaiyu Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Wen Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Dan Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Shiting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Prell C, Burgardt A, Meyer F, Wendisch VF. Fermentative Production of l-2-Hydroxyglutarate by Engineered Corynebacterium glutamicum via Pathway Extension of l-Lysine Biosynthesis. Front Bioeng Biotechnol 2021; 8:630476. [PMID: 33585425 PMCID: PMC7873477 DOI: 10.3389/fbioe.2020.630476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
l-2-hydroxyglutarate (l-2HG) is a trifunctional building block and highly attractive for the chemical and pharmaceutical industries. The natural l-lysine biosynthesis pathway of the amino acid producer Corynebacterium glutamicum was extended for the fermentative production of l-2HG. Since l-2HG is not native to the metabolism of C. glutamicum metabolic engineering of a genome-streamlined l-lysine overproducing strain was required to enable the conversion of l-lysine to l-2HG in a six-step synthetic pathway. To this end, l-lysine decarboxylase was cascaded with two transamination reactions, two NAD(P)-dependent oxidation reactions and the terminal 2-oxoglutarate-dependent glutarate hydroxylase. Of three sources for glutarate hydroxylase the metalloenzyme CsiD from Pseudomonas putida supported l-2HG production to the highest titers. Genetic experiments suggested a role of succinate exporter SucE for export of l-2HG and improving expression of its gene by chromosomal exchange of its native promoter improved l-2HG production. The availability of Fe2+ as cofactor of CsiD was identified as a major bottleneck in the conversion of glutarate to l-2HG. As consequence of strain engineering and media adaptation product titers of 34 ± 0 mM were obtained in a microcultivation system. The glucose-based process was stable in 2 L bioreactor cultivations and a l-2HG titer of 3.5 g L−1 was obtained at the higher of two tested aeration levels. Production of l-2HG from a sidestream of the starch industry as renewable substrate was demonstrated. To the best of our knowledge, this study is the first description of fermentative production of l-2HG, a monomeric precursor used in electrochromic polyamides, to cross-link polyamides or to increase their biodegradability.
Collapse
Affiliation(s)
- Carina Prell
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Guleria R, Jain P, Verma M, Mukherjee KJ. Designing next generation recombinant protein expression platforms by modulating the cellular stress response in Escherichia coli. Microb Cell Fact 2020; 19:227. [PMID: 33308214 PMCID: PMC7730785 DOI: 10.1186/s12934-020-01488-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A cellular stress response (CSR) is triggered upon recombinant protein synthesis which acts as a global feedback regulator of protein expression. To remove this key regulatory bottleneck, we had previously proposed that genes that are up-regulated post induction could be part of the signaling pathways which activate the CSR. Knocking out some of these genes which were non-essential and belonged to the bottom of the E. coli regulatory network had provided higher expression of GFP and L-asparaginase. RESULTS We chose the best performing double knockout E. coli BW25113ΔelaAΔcysW and demonstrated its ability to enhance the expression of the toxic Rubella E1 glycoprotein by 2.5-fold by tagging it with sfGFP at the C-terminal end to better quantify expression levels. Transcriptomic analysis of this hyper-expressing mutant showed that a significantly lower proportion of genes got down-regulated post induction, which included genes for transcription, translation, protein folding and sorting, ribosome biogenesis, carbon metabolism, amino acid and ATP synthesis. This down-regulation which is a typical feature of the CSR was clearly blocked in the double knockout strain leading to its enhanced expression capability. Finally, we supplemented the expression of substrate uptake genes glpK and glpD whose down-regulation was not prevented in the double knockout, thus ameliorating almost all the negative effects of the CSR and obtained a further doubling in recombinant protein yields. CONCLUSION The study validated the hypothesis that these up-regulated genes act as signaling messengers which activate the CSR and thus, despite having no casual connection with recombinant protein synthesis, can improve cellular health and protein expression capabilities. Combining gene knockouts with supplementing the expression of key down-regulated genes can counter the harmful effects of CSR and help in the design of a truly superior host platform for recombinant protein expression.
Collapse
Affiliation(s)
- Richa Guleria
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Jain
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Madhulika Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Krishna J Mukherjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India. .,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
6
|
Dinh CV, Prather KLJ. Layered and multi-input autonomous dynamic control strategies for metabolic engineering. Curr Opin Biotechnol 2020; 65:156-162. [DOI: 10.1016/j.copbio.2020.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
|
7
|
Dai Z, Sevillano-Rivera MC, Calus ST, Bautista-de Los Santos QM, Eren AM, van der Wielen PWJJ, Ijaz UZ, Pinto AJ. Disinfection exhibits systematic impacts on the drinking water microbiome. MICROBIOME 2020; 8:42. [PMID: 32197656 PMCID: PMC7085177 DOI: 10.1186/s40168-020-00813-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/25/2020] [Indexed: 05/06/2023]
Abstract
Limiting microbial growth during drinking water distribution is achieved either by maintaining a disinfectant residual or through nutrient limitation without using a disinfectant. The impact of these contrasting approaches on the drinking water microbiome is not systematically understood. We use genome-resolved metagenomics to compare the structure, metabolic traits, and population genomes of drinking water microbiome samples from bulk drinking water across multiple full-scale disinfected and non-disinfected drinking water systems. Microbial communities cluster at the structural- and functional potential-level based on the presence/absence of a disinfectant residual. Disinfectant residual alone explained 17 and 6.5% of the variance in structure and functional potential of the drinking water microbiome, respectively, despite including multiple drinking water systems with variable source waters and source water communities and treatment strategies. The drinking water microbiome is structurally and functionally less diverse and variable across disinfected compared to non-disinfected systems. While bacteria were the most abundant domain, archaea and eukaryota were more abundant in non-disinfected and disinfected systems, respectively. Community-level differences in functional potential were driven by enrichment of genes associated with carbon and nitrogen fixation in non-disinfected systems and γ-aminobutyrate metabolism in disinfected systems likely associated with the recycling of amino acids. Genome-level analyses for a subset of phylogenetically-related microorganisms suggests that disinfection selects for microorganisms capable of using fatty acids, presumably from microbial decay products, via the glyoxylate cycle. Overall, we find that disinfection exhibits systematic selective pressures on the drinking water microbiome and may select for microorganisms able to utilize microbial decay products originating from disinfection-inactivated microorganisms. Video abstract.
Collapse
Affiliation(s)
- Zihan Dai
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | | | - Szymon T Calus
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | | | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Paul W J J van der Wielen
- KWR Watercycle Research Institute, Nieuwegein, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | - Ameet J Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
8
|
Herr CQ, Macomber L, Kalliri E, Hausinger RP. Glutarate L-2-hydroxylase (CsiD/GlaH) is an archetype Fe(II)/2-oxoglutarate-dependent dioxygenase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:63-90. [PMID: 31564307 DOI: 10.1016/bs.apcsb.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli gene initially named ygaT is located adjacent to lhgO, encoding L-2-hydroxyglutarate oxidase/dehydrogenase, and the gabDTP gene cluster, utilized for γ-aminobutyric acid (GABA) metabolism. Because this gene is transcribed specifically during periods of carbon starvation, it was renamed csiD for carbon starvation induced. The CsiD protein was structurally characterized and shown to possess a double-stranded ß-helix fold, characteristic of a large family of non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases. Consistent with a role in producing the substrate for LhgO, CsiD was shown to be a glutarate L-2-hydroxylase. We review the kinetic and structural properties of glutarate L-2-hydroxylase from E. coli and other species, and we propose a catalytic mechanism for this archetype 2OG-dependent hydroxylase. Glutarate can be derived from l-lysine within the cell, with the gabDT genes exhibiting expanded reactivities beyond those known for GABA metabolism. The complete CsiD-containing pathway provides a means for the cell to obtain energy from the metabolism of l-lysine during periods of carbon starvation. To reflect the role of this protein in the cell, a renaming of csiD to glaH has been proposed.
Collapse
Affiliation(s)
- Caitlyn Q Herr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Lee Macomber
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Efthalia Kalliri
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Xia PF, Ling H, Foo JL, Chang MW. Synthetic genetic circuits for programmable biological functionalities. Biotechnol Adv 2019; 37:107393. [PMID: 31051208 DOI: 10.1016/j.biotechadv.2019.04.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Living organisms evolve complex genetic networks to interact with the environment. Due to the rapid development of synthetic biology, various modularized genetic parts and units have been identified from these networks. They have been employed to construct synthetic genetic circuits, including toggle switches, oscillators, feedback loops and Boolean logic gates. Building on these circuits, complex genetic machines with capabilities in programmable decision-making could be created. Consequently, these accomplishments have led to novel applications, such as dynamic and autonomous modulation of metabolic networks, directed evolution of biological units, remote and targeted diagnostics and therapies, as well as biological containment methods to prevent release of engineered microorganisms and genetic materials. Herein, we outline the principles in genetic circuit design that have initiated a new chapter in transforming concepts to realistic applications. The features of modularized building blocks and circuit architecture that facilitate realization of circuits for a variety of novel applications are discussed. Furthermore, recent advances and challenges in employing genetic circuits to impart microorganisms with distinct and programmable functionalities are highlighted. We envision that this review gives new insights into the design of synthetic genetic circuits and offers a guideline for the implementation of different circuits in various aspects of biotechnology and bioengineering.
Collapse
Affiliation(s)
- Peng-Fei Xia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Hua Ling
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
10
|
Pseudomonas putida Responds to the Toxin GraT by Inducing Ribosome Biogenesis Factors and Repressing TCA Cycle Enzymes. Toxins (Basel) 2019; 11:toxins11020103. [PMID: 30744127 PMCID: PMC6410093 DOI: 10.3390/toxins11020103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 11/21/2022] Open
Abstract
The potentially self-poisonous toxin-antitoxin modules are widespread in bacterial chromosomes, but despite extensive studies, their biological importance remains poorly understood. Here, we used whole-cell proteomics to study the cellular effects of the Pseudomonas putida toxin GraT that is known to inhibit growth and ribosome maturation in a cold-dependent manner when the graA antitoxin gene is deleted from the genome. Proteomic analysis of P. putida wild-type and ΔgraA strains at 30 °C and 25 °C, where the growth is differently affected by GraT, revealed two major responses to GraT at both temperatures. First, ribosome biogenesis factors, including the RNA helicase DeaD and RNase III, are upregulated in ΔgraA. This likely serves to alleviate the ribosome biogenesis defect of the ΔgraA strain. Secondly, proteome data indicated that GraT induces downregulation of central carbon metabolism, as suggested by the decreased levels of TCA cycle enzymes isocitrate dehydrogenase Idh, α-ketoglutarate dehydrogenase subunit SucA, and succinate-CoA ligase subunit SucD. Metabolomic analysis revealed remarkable GraT-dependent accumulation of oxaloacetate at 25 °C and a reduced amount of malate, another TCA intermediate. The accumulation of oxaloacetate is likely due to decreased flux through the TCA cycle but also indicates inhibition of anabolic pathways in GraT-affected bacteria. Thus, proteomic and metabolomic analysis of the ΔgraA strain revealed that GraT-mediated stress triggers several responses that reprogram the cell physiology to alleviate the GraT-caused damage.
Collapse
|
11
|
Knorr S, Sinn M, Galetskiy D, Williams RM, Wang C, Müller N, Mayans O, Schleheck D, Hartig JS. Widespread bacterial lysine degradation proceeding via glutarate and L-2-hydroxyglutarate. Nat Commun 2018; 9:5071. [PMID: 30498244 PMCID: PMC6265302 DOI: 10.1038/s41467-018-07563-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
Lysine degradation has remained elusive in many organisms including Escherichia coli. Here we report catabolism of lysine to succinate in E. coli involving glutarate and L-2-hydroxyglutarate as intermediates. We show that CsiD acts as an α-ketoglutarate-dependent dioxygenase catalysing hydroxylation of glutarate to L-2-hydroxyglutarate. CsiD is found widespread in bacteria. We present crystal structures of CsiD in complex with glutarate, succinate, and the inhibitor N-oxalyl-glycine, demonstrating strong discrimination between the structurally related ligands. We show that L-2-hydroxyglutarate is converted to α-ketoglutarate by LhgO acting as a membrane-bound, ubiquinone-linked dehydrogenase. Lysine enters the pathway via 5-aminovalerate by the promiscuous enzymes GabT and GabD. We demonstrate that repression of the pathway by CsiR is relieved upon glutarate binding. In conclusion, lysine degradation provides an important link in central metabolism. Our results imply the gut microbiome as a potential source of glutarate and L-2-hydroxyglutarate associated with human diseases such as cancer and organic acidurias.
Collapse
Affiliation(s)
- Sebastian Knorr
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany
| | - Malte Sinn
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany
| | - Dmitry Galetskiy
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany
| | - Rhys M Williams
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Changhao Wang
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Olga Mayans
- Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany.,Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - David Schleheck
- Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany.,Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, 78457, Germany. .,Konstanz Research School Chemical Biology (KoRS-CB), Konstanz, 78457, Germany.
| |
Collapse
|
12
|
Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate. Nat Commun 2018; 9:2114. [PMID: 29844506 PMCID: PMC5974017 DOI: 10.1038/s41467-018-04513-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Glutarate is a five carbon platform chemical produced during the catabolism of L-lysine. It is known that it can be catabolized through the glutaryl-CoA dehydrogenation pathway. Here, we discover that Pseudomonas putida KT2440 has an additional glutarate catabolic pathway involving L-2-hydroxyglutarate (L-2-HG), an abnormal metabolite produced from 2-ketoglutarate (2-KG). In this pathway, CsiD, a Fe2+/2-KG-dependent glutarate hydroxylase, is capable of converting glutarate into L-2-HG, and LhgO, an L-2-HG oxidase, can catalyze L-2-HG into 2-KG. We construct a recombinant strain that lacks both glutarate catabolic pathways. It can produce glutarate from L-lysine with a yield of 0.85 mol glutarate/mol L-lysine. Thus, L-2-HG anabolism and catabolism is a metabolic alternative to the glutaryl-CoA dehydrogenation pathway in P. putida KT2440; L-lysine can be both ketogenic and glucogenic.
Collapse
|
13
|
Schwahn K, Nikoloski Z. Data Reduction Approaches for Dissecting Transcriptional Effects on Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:538. [PMID: 29731765 PMCID: PMC5920133 DOI: 10.3389/fpls.2018.00538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The availability of high-throughput data from transcriptomics and metabolomics technologies provides the opportunity to characterize the transcriptional effects on metabolism. Here we propose and evaluate two computational approaches rooted in data reduction techniques to identify and categorize transcriptional effects on metabolism by combining data on gene expression and metabolite levels. The approaches determine the partial correlation between two metabolite data profiles upon control of given principal components extracted from transcriptomics data profiles. Therefore, they allow us to investigate both data types with all features simultaneously without doing preselection of genes. The proposed approaches allow us to categorize the relation between pairs of metabolites as being under transcriptional or post-transcriptional regulation. The resulting classification is compared to existing literature and accumulated evidence about regulatory mechanism of reactions and pathways in the cases of Escherichia coli, Saccharomycies cerevisiae, and Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kevin Schwahn
- Systems Biology and Mathematical Modelling Group, Max Placnk Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modelling Group, Max Placnk Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
14
|
Stress-Adaptive Responses Associated with High-Level Carbapenem Resistance in KPC-Producing Klebsiella pneumoniae. J Pathog 2018; 2018:3028290. [PMID: 29657865 PMCID: PMC5883989 DOI: 10.1155/2018/3028290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/13/2018] [Indexed: 01/13/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) organisms have emerged to become a major global public health threat among antimicrobial resistant bacterial human pathogens. Little is known about how CREs emerge. One characteristic phenotype of CREs is heteroresistance, which is clinically associated with treatment failure in patients given a carbapenem. Through in vitro whole-transcriptome analysis we tracked gene expression over time in two different strains (BR7, BR21) of heteroresistant KPC-producing Klebsiella pneumoniae, first exposed to a bactericidal concentration of imipenem followed by growth in drug-free medium. In both strains, the immediate response was dominated by a shift in expression of genes involved in glycolysis toward those involved in catabolic pathways. This response was followed by global dampening of transcriptional changes involving protein translation, folding and transport, and decreased expression of genes encoding critical junctures of lipopolysaccharide biosynthesis. The emerged high-level carbapenem-resistant BR21 subpopulation had a prophage (IS1) disrupting ompK36 associated with irreversible OmpK36 porin loss. On the other hand, OmpK36 loss in BR7 was reversible. The acquisition of high-level carbapenem resistance by the two heteroresistant strains was associated with distinct and shared stepwise transcriptional programs. Carbapenem heteroresistance may emerge from the most adaptive subpopulation among a population of cells undergoing a complex set of stress-adaptive responses.
Collapse
|
15
|
Ye J, Hu D, Che X, Jiang X, Li T, Chen J, Zhang HM, Chen GQ. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng 2018; 47:143-152. [PMID: 29551476 DOI: 10.1016/j.ymben.2018.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/01/2023]
Abstract
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is one of the most promising biomaterials expected to be used in a wide range of scenarios. However, its large-scale production is still hindered by the high cost. Here we report the engineering of Halomonas bluephagenesis as a low-cost platform for non-sterile and continuous fermentative production of P(3HB-co-4HB) from glucose. Two interrelated 4-hydroxybutyrate (4HB) biosynthesis pathways were constructed to guarantee 4HB monomer supply for P(3HB-co-4HB) synthesis by working in concert with 3-hydroxybutyrate (3HB) pathway. Interestingly, only 0.17 mol% 4HB in the copolymer was obtained during shake flask studies. Pathway debugging using structurally related carbon source located the failure as insufficient 4HB accumulation. Further whole genome sequencing and comparative genomic analysis identified multiple orthologs of succinate semialdehyde dehydrogenase (gabD) that may compete with 4HB synthesis flux in H. bluephagenesis. Accordingly, combinatory gene-knockout strains were constructed and characterized, through which the molar fraction of 4HB was increased by 24-fold in shake flask studies. The best-performing strain was grown on glucose as the single carbon source for 60 h under non-sterile conditions in a 7-L bioreactor, reaching 26.3 g/L of dry cell mass containing 60.5% P(3HB-co-17.04 mol%4HB). Besides, 4HB molar fraction in the copolymer can be tuned from 13 mol% to 25 mol% by controlling the residual glucose concentration in the cultures. This is the first study to achieve the production of P(3HB-co-4HB) from only glucose using Halomonas.
Collapse
Affiliation(s)
- Jianwen Ye
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China
| | - Dingkai Hu
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Xuemei Che
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China
| | - Xiaoran Jiang
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Teng Li
- Bluepha Co., Ltd., Beijing 102206, China
| | - Jinchun Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | | | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Center for Nano and Micro-Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Niro S, Succi M, Tremonte P, Sorrentino E, Coppola R, Panfili G, Fratianni A. Evolution of free amino acids during ripening of Caciocavallo cheeses made with different milks. J Dairy Sci 2017; 100:9521-9531. [DOI: 10.3168/jds.2017-13308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/08/2017] [Indexed: 11/19/2022]
|
17
|
Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE. Coordinated regulation of acid resistance in Escherichia coli. BMC SYSTEMS BIOLOGY 2017; 11:1. [PMID: 28061857 PMCID: PMC5217608 DOI: 10.1186/s12918-016-0376-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. Results We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. Conclusions Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brent Honda
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Suma Jaini
- Department of Biomedical Engineering, Boston University, Boston, USA
| | | | - Krutika Hosur
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Joanna G Chiu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Iriny Ekladious
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dongjian Hu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Lin Jin
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Marianna K Sayeg
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Arion I Stettner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Julia Wang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brandon G Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Winnie S Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Cong Ba
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Seth I Bensussen
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David B Bernstein
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dana Braff
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Susie Cha
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel I Cheng
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jang Hwan Cho
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Kenny Chou
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - James Chuang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel E Gastler
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel J Grasso
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Chen Guo
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Anna K Hawes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Divya V Israni
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Saloni R Jain
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jessica Kim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Junyu Lei
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hao Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Qian Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Ning Mao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Salwa F Masud
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Cari L Meisel
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jing Mi
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Minhee Park
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hannah M Peterson
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Alfred K Ramirez
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel S Reynolds
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Nae Gyune Rim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jared C Saffie
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hang Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Wendell R Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yaqing Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meng Sun
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meghan M Thommes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Tao Tu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Tyler E Wagner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Rouhui Yang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Christine Yoon
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yanyu Zhao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Joseph Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Sahadaven Raman
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Natasha Broude
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, USA. .,Bioinformatics program, Boston University, Boston, USA. .,National Emerging Infectious Diseases Laboratory, Boston University, Boston, USA.
| |
Collapse
|
18
|
Sanchuki HBS, Gravina F, Rodrigues TE, Gerhardt ECM, Pedrosa FO, Souza EM, Raittz RT, Valdameri G, de Souza GA, Huergo LF. Dynamics of the Escherichia coli proteome in response to nitrogen starvation and entry into the stationary phase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:344-352. [PMID: 27939605 DOI: 10.1016/j.bbapap.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/31/2023]
Abstract
Nitrogen is needed for the biosynthesis of biomolecules including proteins and nucleic acids. In the absence of fixed nitrogen prokaryotes such as E. coli immediately ceases growth. Ammonium is the preferred nitrogen source for E. coli supporting the fastest growth rates. Under conditions of ammonium limitation, E. coli can use alternative nitrogen sources to supply ammonium ions and this reprogramming is led by the induction of the NtrC regulon. Here we used label free proteomics to determine the dynamics of E. coli proteins expression in response to ammonium starvation in both the short (30min) and the longer (60min) starvation. Protein abundances and post-translational modifications confirmed that activation of the NtrC regulon acts as the first line of defense against nitrogen starvation. The ribosome inactivating protein Rmf was induced shortly after ammonium exhaustion and this was preceded by induction of other ribosome inactivating proteins such as Hpf and RaiA supporting the hypothesis that ribosome shut-down is a key process during nitrogen limitation stress. The proteomic data revealed that growth arrest due to nitrogen starvation correlates with the accumulation of proteins involved in DNA condensation, RNA and protein catabolism and ribosome hibernation. Collectively, these proteome adaptations will result in metabolic inactive cells which are likely to exhibit multidrug tolerance.
Collapse
Affiliation(s)
| | - Fernanda Gravina
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Thiago E Rodrigues
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Roberto T Raittz
- Setor de Educação Profissional e Tecnológica, UFPR, Curitiba, PR, Brazil
| | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Departamento de Análises Clínicas, UFPR, Curitiba, PR, Brazil
| | - Gustavo A de Souza
- Department of Immunology, University of Oslo and Oslo University Hospital, The Proteomics Core Facility, Rikshospitalet, Oslo, Norway; Instituto do Cérebro, UFRN, Natal, RN, Brazil
| | - Luciano F Huergo
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil; Setor Litoral, UFPR, Matinhos, PR, Brazil.
| |
Collapse
|
19
|
McCraw SL, Park DH, Jones R, Bentley MA, Rico A, Ratcliffe RG, Kruger NJ, Collmer A, Preston GM. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:938-949. [PMID: 28001093 DOI: 10.1094/mpmi-08-16-0172-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nonprotein amino acid γ-aminobutyric acid (GABA) is the most abundant amino acid in the tomato (Solanum lycopersicum) leaf apoplast and is synthesized by Arabidopsis thaliana in response to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000). High levels of exogenous GABA have previously been shown to repress the expression of the type III secretion system (T3SS) in DC3000, resulting in reduced elicitation of the hypersensitive response (HR) in the nonhost plant tobacco (Nicotiana tabacum). This study demonstrates that the GABA permease GabP provides the primary mechanism for GABA uptake by DC3000 and that the gabP deletion mutant ΔgabP is insensitive to GABA-mediated repression of T3SS expression. ΔgabP displayed an enhanced ability to elicit the HR in young tobacco leaves and in tobacco plants engineered to produce increased levels of GABA, which supports the hypothesis that GABA uptake via GabP acts to regulate T3SS expression in planta. The observation that P. syringae can be rendered insensitive to GABA through loss of gabP but that gabP is retained by this bacterium suggests that GabP is important for DC3000 in a natural setting, either for nutrition or as a mechanism for regulating gene expression. [Formula: see text] Copyright © 2016 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- S L McCraw
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - D H Park
- 2 Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - R Jones
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - M A Bentley
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - A Rico
- 3 Departamento de Didáctica de la 9 Matemática y de las Ciencias Experimentales, Faculty of Education and Sport, University of the Basque Country UPV/EHU, Juan Ibañez de Sto. Domingo 1, 01006 Vitoria-Gasteiz, Spain; and
| | - R G Ratcliffe
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - N J Kruger
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| | - A Collmer
- 4 School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - G M Preston
- 1 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, U.K
| |
Collapse
|
20
|
Lo TM, Chng SH, Teo WS, Cho HS, Chang MW. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production. Cell Syst 2016; 3:133-143. [DOI: 10.1016/j.cels.2016.07.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/03/2016] [Accepted: 07/26/2016] [Indexed: 01/05/2023]
|
21
|
The Proteome and Lipidome of Thermococcus kodakarensis across the Stationary Phase. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:5938289. [PMID: 27274708 PMCID: PMC4870337 DOI: 10.1155/2016/5938289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/07/2016] [Indexed: 12/25/2022]
Abstract
The majority of cells in nature probably exist in a stationary-phase-like state, due to nutrient limitation in most environments. Studies on bacteria and yeast reveal morphological and physiological changes throughout the stationary phase, which lead to an increased ability to survive prolonged nutrient limitation. However, there is little information on archaeal stationary phase responses. We investigated protein- and lipid-level changes in Thermococcus kodakarensis with extended time in the stationary phase. Adaptations to time in stationary phase included increased proportion of membrane lipids with a tetraether backbone, synthesis of proteins that ensure translational fidelity, specific regulation of ABC transporters (upregulation of some, downregulation of others), and upregulation of proteins involved in coenzyme production. Given that the biological mechanism of tetraether synthesis is unknown, we also considered whether any of the protein-level changes in T. kodakarensis might shed light on the production of tetraether lipids across the same period. A putative carbon-nitrogen hydrolase, a TldE (a protease in Escherichia coli) homologue, and a membrane bound hydrogenase complex subunit were candidates for possible involvement in tetraether-related reactions, while upregulation of adenosylcobalamin synthesis proteins might lend support to a possible radical mechanism as a trigger for tetraether synthesis.
Collapse
|
22
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
23
|
Meyer M, Schweiger P, Deppenmeier U. Succinic semialdehyde reductase Gox1801 from Gluconobacter oxydans in comparison to other succinic semialdehyde-reducing enzymes. Appl Microbiol Biotechnol 2014; 99:3929-39. [PMID: 25425279 DOI: 10.1007/s00253-014-6191-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 01/07/2023]
Abstract
Gluconobacter oxydans is an industrially important bacterium that possesses many uncharacterized oxidoreductases, which might be exploited for novel biotechnological applications. In this study, gene gox1801 was homologously overexpressed in G. oxydans and it was found that the relative expression of gox1801 was 13-fold higher than that in the control strain. Gox1801 was predicted to belong to the 3-hydroxyisobutyrate dehydrogenase-type proteins. The purified enzyme had a native molecular mass of 134 kDa and forms a homotetramer. Analysis of the enzymatic activity revealed that Gox1801 is a succinic semialdehyde reductase that used NADH and NADPH as electron donors. Lower activities were observed with glyoxal, methylglyoxal, and phenylglyoxal. The enzyme was compared to the succinic semialdehyde reductase GsSSAR from Geobacter sulfurreducens and the γ-hydroxybutyrate dehydrogenase YihU from Escherichia coli K-12. The comparison revealed that Gox1801 is the first enzyme from an aerobic bacterium reducing succinic semialdehyde with high catalytic efficiency. As a novel succinic semialdehyde reductase, Gox1801 has the potential to be used in the biotechnological production of γ-hydroxybutyrate.
Collapse
Affiliation(s)
- Maria Meyer
- Institute of Microbiology and Biotechnology, Meckenheimer Allee 168, 53115, Bonn, Germany
| | | | | |
Collapse
|
24
|
Lal PB, Schneider BL, Vu K, Reitzer L. The redundant aminotransferases in lysine and arginine synthesis and the extent of aminotransferase redundancy in Escherichia coli. Mol Microbiol 2014; 94:843-56. [PMID: 25243376 DOI: 10.1111/mmi.12801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 11/30/2022]
Abstract
Aminotransferases can be redundant or promiscuous, but the extent and significance of these properties is not known in any organism, even in Escherichia coli. To determine the extent of redundancy, it was first necessary to identify the redundant aminotransferases in arginine and lysine synthesis, and then complement all aminotransferase-deficient mutants with genes for all aminotransferases. The enzymes with N-acetylornithine aminotransferase (ACOAT) activity in arginine synthesis were ArgD, AstC, GabT and PuuE; the major anaerobic ACOAT was ArgD. The major enzymes with N-succinyl-l,l-diaminopimelate aminotransferase (SDAP-AT) activity in lysine synthesis were ArgD, AstC, and SerC. Seven other aminotransferases, when overproduced, complemented the defect in a triple mutant. Lysine availability did not regulate synthesis of the major SDAP-ATs. Complementation analysis of mutants lacking aminotransferases showed that the SDAP-ATs and alanine aminotransferases were exceptionally redundant, and it is proposed that this redundancy may ensure peptidoglycan synthesis. An overview of all aminotransferase reactions indicates that redundancy and broad specificity are common properties of aminotransferases.
Collapse
Affiliation(s)
- Piyush Behari Lal
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | | | | |
Collapse
|
25
|
Li Z, Nimtz M, Rinas U. The metabolic potential of Escherichia coli BL21 in defined and rich medium. Microb Cell Fact 2014; 13:45. [PMID: 24656150 PMCID: PMC4021462 DOI: 10.1186/1475-2859-13-45] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The proteome reflects the available cellular machinery to deal with nutrients and environmental challenges. The most common E. coli strain BL21 growing in different, commonly employed media was evaluated using a detailed quantitative proteome analysis. RESULTS The presence of preformed biomass precursor molecules in rich media such as Luria Bertani supported rapid growth concomitant to acetate formation and apparently unbalanced abundances of central metabolic pathway enzymes, e.g. high levels of lower glycolytic pathway enzymes as well as pyruvate dehydrogenase, and low levels of TCA cycle and high levels of the acetate forming enzymes Pta and AckA. The proteome of cells growing exponentially in glucose-supplemented mineral salt medium was dominated by enzymes of amino acid synthesis pathways, contained more balanced abundances of central metabolic pathway enzymes, and a lower portion of ribosomal and other translational proteins. Entry into stationary phase led to a reconstruction of the bacterial proteome by increasing e.g. the portion of proteins required for scavenging rare nutrients and general cell protection. This proteomic reconstruction during entry into stationary phase was more noticeable in cells growing in rich medium as they have a greater reservoir of recyclable proteins from the translational machinery. CONCLUSIONS The proteomic comparison of cells growing exponentially in different media reflected the antagonistic and competitive regulation of central metabolic pathways through the global transcriptional regulators Cra, Crp, and ArcA. For example, the proteome of cells growing exponentially in rich medium was consistent with a dominating role of phosphorylated ArcA most likely a result from limitations in reoxidizing reduced quinones in the respiratory chain under these growth conditions. The proteomic alterations of exponentially growing cells into stationary phase cells were consistent with stringent-like and stationary phase responses and a dominating control through DksA-ppGpp and RpoS.
Collapse
Affiliation(s)
| | | | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany.
| |
Collapse
|
26
|
RNA sequencing reveals differences between the global transcriptomes of Salmonella enterica serovar enteritidis strains with high and low pathogenicities. Appl Environ Microbiol 2013; 80:896-906. [PMID: 24271167 DOI: 10.1128/aem.02740-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis.
Collapse
|
27
|
Lo TM, Tan MH, Hwang IY, Chang MW. Designing a synthetic genetic circuit that enables cell density-dependent auto-regulatory lysis for macromolecule release. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2013.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Schneider BL, Hernandez VJ, Reitzer L. Putrescine catabolism is a metabolic response to several stresses in Escherichia coli. Mol Microbiol 2013; 88:537-50. [PMID: 23531166 DOI: 10.1111/mmi.12207] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2013] [Indexed: 12/12/2022]
Abstract
Genes whose products degrade arginine and ornithine, precursors of putrescine synthesis, are activated by either regulators of the nitrogen-regulated (Ntr) response or σ(S) -RNA polymerase. To determine if dual control regulates a complete putrescine catabolic pathway, we examined expression of patA and patD, which specify the first two enzymes of one putrescine catabolic pathway. Assays of PatA (putrescine transaminase) activity and β-galactosidase from cells with patA-lacZ transcriptional and translational fusions indicate dual control of patA transcription and putrescine-stimulated patA translation. Similar assays for PatD indicate that patD transcription required σ(S) -RNA polymerase, and Nac, an Ntr regulator, enhanced the σ(S) -dependent transcription. Since Nac activation via σ(S) -RNA polymerase is without precedent, transcription with purified components was examined and the results confirmed this conclusion. This result indicates that the Ntr regulon can intrude into the σ(S) regulon. Strains lacking both polyamine catabolic pathways have defective responses to oxidative stress, high temperature and a sublethal concentration of an antibiotic. These defects and the σ(S) -dependent expression indicate that polyamine catabolism is a core metabolic response to stress.
Collapse
Affiliation(s)
- Barbara L Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | |
Collapse
|
29
|
Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol 2012; 114:11-24. [PMID: 22924898 DOI: 10.1111/j.1365-2672.2012.05434.x] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022]
Abstract
Glutamate plays a central role in a wide range of metabolic processes in bacterial cells. This review focuses on the involvement of glutamate in bacterial stress responses. In particular, it reviews the role of glutamate metabolism in response against acid stress and other stresses. The glutamate decarboxylase (GAD) system has been implicated in acid tolerance in several bacterial genera. This system facilitates intracellular pH homoeostasis by consuming protons in a decarboxylation reaction that produces γ-aminobutyrate (GABA) from glutamate. An antiporter system is usually present to couple the uptake of glutamate to the efflux of GABA. Recent insights into the functioning of this system will be discussed. Finally, the intracellular fate of GABA will also be discussed. Many bacteria are capable of metabolizing GABA to succinate via the GABA shunt pathway. The role and regulation of this pathway will be addressed in the review.
Collapse
Affiliation(s)
- C Feehily
- Bacterial Stress Response Group, Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
30
|
Specific gene responses of Rhodococcus jostii RHA1 during growth in soil. Appl Environ Microbiol 2012; 78:6954-62. [PMID: 22843521 DOI: 10.1128/aem.00164-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analysis of Rhodococcus jostii RHA1 during growth in sterilized soil was performed. A total of 165 soil-specific genes were identified by subtracting genes upregulated in late growth phases and on solid medium from 264 genes commonly upregulated during growth on biphenyl or pyruvate in sterilized soil. Classification of the 165 genes into functional categories indicated that this soil-specific group is rich in genes for the metabolism of fatty acids, amino acids, carbohydrates, and nitrogen and relatively poor in those for cellular processes and signaling. The ro06365-ro06369 gene cluster, in which ro06365 to ro06368 were highly upregulated in transcriptome analysis, was characterized further. ro06365 and ro06366 show similarity to a nitrite/nitrate transporter and a nitrite reductase, respectively, suggesting their involvement in nitrogen metabolism. A strain with an ro06366 deletion, D6366, showed growth retardation when we used nitrate as the sole nitrogen source and no growth when we used nitrite. A strain with a deletion of ro06365 to ro06368, DNop, utilized neither nitrite nor nitrate and recovered growth using nitrite and nitrate by introduction of the deleted genes. Both of the mutants showed growth retardation in sterilized soil, and the growth retardation of DNop was more significant than that of D6366. When these mutants were cultivated in medium containing the same proportions of ammonium, nitrate, and nitrite ions as those in the sterilized soil, they showed growth retardation similar to that in the soil. These results suggest that the ro06365-ro06369 gene cluster has a significant role in nitrogen utilization in sterilized soil.
Collapse
|
31
|
Abstract
Putrescine as the sole carbon source requires a novel catabolic pathway with glutamylated intermediates. Nitrogen limitation does not induce genes of this glutamylated putrescine (GP) pathway but instead induces genes for a putrescine catabolic pathway that starts with a transaminase-dependent deamination. We determined pathway utilization with putrescine as the sole nitrogen source by examining mutants with defects in both pathways. Blocks in both the GP and transaminase pathways were required to prevent growth with putrescine as the sole nitrogen source. Genetic and biochemical analyses showed redundant enzymes for γ-aminobutyraldehyde dehydrogenase (PatD/YdcW and PuuC), γ-aminobutyrate transaminase (GabT and PuuE), and succinic semialdehyde dehydrogenase (GabD and PuuC). PuuC is a nonspecific aldehyde dehydrogenase that oxidizes all the aldehydes in putrescine catabolism. A puuP mutant failed to use putrescine as the nitrogen source, which implies one major transporter for putrescine as the sole nitrogen source. Analysis of regulation of the GP pathway shows induction by putrescine and not by a product of putrescine catabolism and shows that putrescine accumulates in puuA, puuB, and puuC mutants but not in any other mutant. We conclude that two independent sets of enzymes can completely degrade putrescine to succinate and that their relative importance depends on the environment.
Collapse
|
32
|
Hancock T, Wicker N, Takigawa I, Mamitsuka H. Identifying neighborhoods of coordinated gene expression and metabolite profiles. PLoS One 2012; 7:e31345. [PMID: 22355360 PMCID: PMC3280297 DOI: 10.1371/journal.pone.0031345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022] Open
Abstract
In this paper we investigate how metabolic network structure affects any coordination between transcript and metabolite profiles. To achieve this goal we conduct two complementary analyses focused on the metabolic response to stress. First, we investigate the general size of any relationship between metabolic network gene expression and metabolite profiles. We find that strongly correlated transcript-metabolite profiles are sustained over surprisingly long network distances away from any target metabolite. Secondly, we employ a novel pathway mining method to investigate the structure of this transcript-metabolite relationship. The objective of this method is to identify a minimum set of metabolites which are the target of significantly correlated gene expression pathways. The results reveal that in general, a global regulation signature targeting a small number of metabolites is responsible for a large scale metabolic response. However, our method also reveals pathway specific effects that can degrade this global regulation signature and complicates the observed coordination between transcript-metabolite profiles.
Collapse
|
33
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
34
|
Schott T, Kondadi PK, Hänninen ML, Rossi M. Comparative genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans. BMC Genomics 2011; 12:534. [PMID: 22039924 PMCID: PMC3234257 DOI: 10.1186/1471-2164-12-534] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/31/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The canine Gram-negative Helicobacter bizzozeronii is one of seven species in Helicobacter heilmannii sensu lato that are detected in 0.17-2.3% of the gastric biopsies of human patients with gastric symptoms. At the present, H. bizzozeronii is the only non-pylori gastric Helicobacter sp. cultivated from human patients and is therefore a good alternative model of human gastric Helicobacter disease. We recently sequenced the genome of the H. bizzozeronii human strain CIII-1, isolated in 2008 from a 47-year old Finnish woman suffering from severe dyspeptic symptoms. In this study, we performed a detailed comparative genome analysis with H. pylori, providing new insights into non-pylori Helicobacter infections and the mechanisms of transmission between the primary animal host and humans. RESULTS H. bizzozeronii possesses all the genes necessary for its specialised life in the stomach. However, H. bizzozeronii differs from H. pylori by having a wider metabolic flexibility in terms of its energy sources and electron transport chain. Moreover, H. bizzozeronii harbours a higher number of methyl-accepting chemotaxis proteins, allowing it to respond to a wider spectrum of environmental signals. In this study, H. bizzozeronii has been shown to have high level of genome plasticity. We were able to identify a total of 43 contingency genes, 5 insertion sequences (ISs), 22 mini-IS elements, 1 genomic island and a putative prophage. Although H. bizzozeronii lacks homologues of some of the major H. pylori virulence genes, other candidate virulence factors are present. In particular, we identified a polysaccharide lyase (HBZC1_15820) as a potential new virulence factor of H. bizzozeronii. CONCLUSIONS The comparative genome analysis performed in this study increased the knowledge of the biology of gastric Helicobacter species. In particular, we propose the hypothesis that the high metabolic versatility and the ability to react to a range of environmental signals, factors which differentiate H. bizzozeronii as well as H. felis and H. suis from H. pylori, are the molecular basis of the of the zoonotic nature of H. heilmannii sensu lato infection in humans.
Collapse
Affiliation(s)
- Thomas Schott
- Department of Food Hygiene and Environmental Health (DFHEH), Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| | - Pradeep K Kondadi
- Department of Food Hygiene and Environmental Health (DFHEH), Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health (DFHEH), Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health (DFHEH), Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| |
Collapse
|
35
|
Maciag A, Peano C, Pietrelli A, Egli T, De Bellis G, Landini P. In vitro transcription profiling of the σS subunit of bacterial RNA polymerase: re-definition of the σS regulon and identification of σS-specific promoter sequence elements. Nucleic Acids Res 2011; 39:5338-55. [PMID: 21398637 PMCID: PMC3141248 DOI: 10.1093/nar/gkr129] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Specific promoter recognition by bacterial RNA polymerase is mediated by σ subunits, which assemble with RNA polymerase core enzyme (E) during transcription initiation. However, σ70 (the housekeeping σ subunit) and σS (an alternative σ subunit mostly active during slow growth) recognize almost identical promoter sequences, thus raising the question of how promoter selectivity is achieved in the bacterial cell. To identify novel sequence determinants for selective promoter recognition, we performed run-off/microarray (ROMA) experiments with RNA polymerase saturated either with σ70 (Eσ70) or with σS (EσS) using the whole Escherichia coli genome as DNA template. We found that Eσ70, in the absence of any additional transcription factor, preferentially transcribes genes associated with fast growth (e.g. ribosomal operons). In contrast, EσS efficiently transcribes genes involved in stress responses, secondary metabolism as well as RNAs from intergenic regions with yet-unknown function. Promoter sequence comparison suggests that, in addition to different conservation of the −35 sequence and of the UP element, selective promoter recognition by either form of RNA polymerase can be affected by the A/T content in the −10/+1 region. Indeed, site-directed mutagenesis experiments confirmed that an A/T bias in the −10/+1 region could improve promoter recognition by EσS.
Collapse
Affiliation(s)
- Anna Maciag
- Department of Biomolecular Sciences and Biotechnology, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Yin X, Zhu J, Feng Y, Chambers JR, Gong J, Gyles CL. Differential gene expression and adherence of Escherichia coli O157:H7 in vitro and in ligated pig intestines. PLoS One 2011; 6:e17424. [PMID: 21387009 PMCID: PMC3046156 DOI: 10.1371/journal.pone.0017424] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/01/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Escherichia coli O157:H7 strain 86-24 grown in MacConkey broth (MB) shows almost no adherence to cultured epithelial cells but adheres well in pig ligated intestines. This study investigated the mechanisms associated with the difference between in-vitro and in-vivo adherence of the MB culture. METHODOLOGY/PRINCIPAL FINDINGS It was found that decreased adherence in vitro by bacteria grown in MB was mainly due to lactose, possibly implicating the involvement of carbon catabolite repression (CCR). Expression of selected virulence-related genes associated with adherence and CCR was then examined by quantitative PCR. When bacteria were grown in MB and Brain Heart Infusion with NaHCO(3) (BHIN) plus lactose, pH was reduced to 5.5-5.9 and there was a significant decrease in expression of the locus of enterocyte effacement (LEE) genes eae, tir, espD, grlA/R and ler, and an increase in cya (cAMP), and two negative regulators of the LEE, gadE and hfq. Putative virulence genes stcE, hlyA, ent and nleA were also decreased in vitro. Reversal of these changes was noted for bacteria recovered from the intestine, where transcripts for qseF and fis and putative virulence factors AidA(15), TerC and Ent/EspL2 were significantly increased, and transcripts for AIDA(48), Iha, UreC, Efa1A, Efa1B, ToxB, EhxA, StcE, NleA and NleB were expressed at high levels. CONCLUSIONS/SIGNIFICANCE Presence of lactose resulted in decreased expression of LEE genes and the failure of EHEC O157:H7 to adhere to epithelial cells in vitro but this repression was overcome in vivo. CCR and/or acidic pH may have played a role in repression of the LEE genes. Bacterial pathogens need to integrate their nutritional metabolism with expression of virulence genes but little is known of how this is done in E. coli O157:H7. This study indicates one aspect of the subject that should be investigated further.
Collapse
Affiliation(s)
- Xianhua Yin
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jing Zhu
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - James R. Chambers
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Joshua Gong
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlton L. Gyles
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
37
|
Structure and regulation of the gab gene cluster, involved in the gamma-aminobutyric acid shunt, are controlled by a sigma54 factor in Bacillus thuringiensis. J Bacteriol 2010; 192:346-55. [PMID: 19854901 DOI: 10.1128/jb.01038-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure and regulation of the gab gene cluster, involved in gamma-aminobutyric acid (GABA) shunt, were studied by characterizing gabT and gabD genes cloned from Bacillus thuringiensis. Deletions of the gabT and gabD genes in B. thuringiensis strain HD-73 did not affect the growth of mutant strains in rich culture media, but the growth of a gabT deletion mutant strain was reduced in basic media (containing 0.2% GABA). Genome analysis indicates that the structure of the gab gene cluster in B. thuringiensis HD-73 is different from that in Escherichia coli and Bacillus subtilis but is common in strains of the Bacillus cereus group. This suggests that the gene cluster involved in GABA shunt is specific to the B. cereus group. Based on reverse transcription-PCR and transcriptional fusion analysis, we confirmed that the gabT and gabD genes belong to different transcriptional units, while the gabD and gabR genes form an operon. We also demonstrated that the gabR gene plays a positive regulatory role in gabD and gabT expression. The GabR protein may be a sigma(54)-dependent transcriptional activator, according to a conserved domain search in the NCBI database, and it is highly conserved in the B. cereus group. The -24/-12 consensus sequence of a promoter upstream from gabT suggests that the promoter can be recognized by a sigma(54) factor. Further analysis of the genetic complementation studies also suggests that the expression of the gabT gene is controlled by a sigma(54) factor. Thus, the expression of the gab cluster is regulated by a sigma(54) factor by way of the transcription activator GabR.
Collapse
|
38
|
Abstract
YgaF, a protein of previously unknown function in Escherichia coli, was shown to possess noncovalently bound flavin adenine dinucleotide and to exhibit L-2-hydroxyglutarate oxidase activity. The inability of anaerobic, reduced enzyme to reverse the reaction by reducing the product alpha-ketoglutaric acid is explained by the very high reduction potential (+19 mV) of the bound cofactor. The likely role of this enzyme in the cell is to recover alpha-ketoglutarate mistakenly reduced by other enzymes or formed during growth on propionate. On the basis of the identified function, we propose that this gene be renamed lhgO.
Collapse
|
39
|
Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 2008; 190:1966-75. [PMID: 18192388 DOI: 10.1128/jb.01804-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are major organic polycations essential for a wide spectrum of cellular processes. The cells require mechanisms to maintain homeostasis of intracellular polyamines to prevent otherwise severe adverse effects. We performed a detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine with an emphasis in polyamine catabolism. Agmatine serves as the precursor compound for putrescine (and hence spermidine and spermine), which was proposed to convert into 4-aminobutyrate (GABA) and succinate before entering the tricarboxylic acid cycle in support of cell growth, as the sole source of carbon and nitrogen. Two acetylpolyamine amidohydrolases, AphA and AphB, were found to be involved in the conversion of agmatine into putrescine. Enzymatic products of AphA were confirmed by mass spectrometry analysis. Interestingly, the alanine-pyruvate cycle was shown to be indispensable for polyamine utilization. The newly identified dadRAX locus encoding the regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, were key components to maintaining alanine homeostasis. Corresponding mutant strains were severely hampered in polyamine utilization. On the other hand, an alternative gamma-glutamylation pathway for the conversion of putrescine into GABA is present in some organisms. Subsequently, GabD, GabT, and PA5313 were identified for GABA utilization. The growth defect of the PA5313 gabT double mutant in GABA suggested the importance of these two transaminases. The succinic-semialdehyde dehydrogenase activity of GabD and its induction by GABA were also demonstrated in vitro. Polyamine utilization in general was proven to be independent of the PhoPQ two-component system, even though a modest induction of this operon was induced by polyamines. Multiple potent catabolic pathways, as depicted in this study, could serve pivotal roles in the control of intracellular polyamine levels.
Collapse
|
40
|
Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 2008; 192:4317-26. [PMID: 18192388 DOI: 10.1128/jb.00335-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are major organic polycations essential for a wide spectrum of cellular processes. The cells require mechanisms to maintain homeostasis of intracellular polyamines to prevent otherwise severe adverse effects. We performed a detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine with an emphasis in polyamine catabolism. Agmatine serves as the precursor compound for putrescine (and hence spermidine and spermine), which was proposed to convert into 4-aminobutyrate (GABA) and succinate before entering the tricarboxylic acid cycle in support of cell growth, as the sole source of carbon and nitrogen. Two acetylpolyamine amidohydrolases, AphA and AphB, were found to be involved in the conversion of agmatine into putrescine. Enzymatic products of AphA were confirmed by mass spectrometry analysis. Interestingly, the alanine-pyruvate cycle was shown to be indispensable for polyamine utilization. The newly identified dadRAX locus encoding the regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, were key components to maintaining alanine homeostasis. Corresponding mutant strains were severely hampered in polyamine utilization. On the other hand, an alternative gamma-glutamylation pathway for the conversion of putrescine into GABA is present in some organisms. Subsequently, GabD, GabT, and PA5313 were identified for GABA utilization. The growth defect of the PA5313 gabT double mutant in GABA suggested the importance of these two transaminases. The succinic-semialdehyde dehydrogenase activity of GabD and its induction by GABA were also demonstrated in vitro. Polyamine utilization in general was proven to be independent of the PhoPQ two-component system, even though a modest induction of this operon was induced by polyamines. Multiple potent catabolic pathways, as depicted in this study, could serve pivotal roles in the control of intracellular polyamine levels.
Collapse
|
41
|
White-Ziegler CA, Um S, Pérez NM, Berns AL, Malhowski AJ, Young S. Low temperature (23 °C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology (Reading) 2008; 154:148-166. [DOI: 10.1099/mic.0.2007/012021-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christine A. White-Ziegler
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Suzin Um
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Natalie M. Pérez
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Abby L. Berns
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Amy J. Malhowski
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| | - Sarah Young
- Department of Biological Sciences and Program in Biochemistry, Smith College, Northampton, MA 01063, USA
| |
Collapse
|
42
|
Wang C, Zhang HB, Wang LH, Zhang LH. Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens. Mol Microbiol 2006; 62:45-56. [PMID: 16942602 DOI: 10.1111/j.1365-2958.2006.05351.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) signal decay in Agrobacterium tumefaciens occurs in response to starvation or host signals. We have demonstrated that the gamma-aminobutyric acid (GABA) shunt metabolite links stress response to QS signal decay. Mutation of the aldH gene encoding a succinic semialdehyde dehydrogenase (SSADH) that converts succinic semialdehyde (SSA) to succinic acid results in early expression of the signal degrading enzyme, AttM. Exogenous addition of SSA or its precursor GABA induces AttM expression and abolishes Ti plasmid conjugative transfer. SSA acts by binding to the repressor AttJ that regulates the attKLM operon. attK encodes another SSADH. The stress alarmone ppGpp and SSA modulates separately the expression of the two SSADH enzymes, which might control the intracellular SSA level and hence to switch on/off the QS signal decay system in response to environmental changes. These findings document for the first time a sophisticated signalling mechanism of the widely conserved GABA degradation pathway in prokaryotes.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | | | | | | |
Collapse
|
43
|
Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R. Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 2006; 62:1014-34. [PMID: 17010156 DOI: 10.1111/j.1365-2958.2006.05440.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bis-(3'-5')-cyclic-di-guanosine monophosphate (c-di-GMP) is a bacterial signalling molecule produced by diguanylate cyclases (DGC, carrying GGDEF domains) and degraded by specific phosphodiesterases (PDE, carrying EAL domains). Neither its full physiological impact nor its effector mechanisms are currently understood. Also, the existence of multiple GGDEF/EAL genes in the genomes of most species raises questions about output specificity and robustness of c-di-GMP signalling. Using microarray and gene fusion analyses, we demonstrate that at least five of the 29 GGDEF/EAL genes in Escherichia coli are not only stationary phase-induced under the control of the general stress response master regulator sigma(S) (RpoS), but also exhibit differential control by additional environmental and temporal signals. Two of the corresponding proteins, YdaM (GGDEF only) and YciR (GGDEF + EAL), which in vitro show DGC and PDE activity, respectively, play an antagonistic role in the expression of the biofilm-associated curli fimbriae. This control occurs at the level of transcription of the curli and cellulose regulator CsgD. Moreover, we show that H-NS positively affects curli expression by inversely controlling the expression of ydaM and yciR. Furthermore, we demonstrate a temporally fine-tuned GGDEF cascade in which YdaM controls the expression of another GGDEF protein, YaiC. By genome-wide microarray analysis, evidence is provided that YdaM and YciR strongly and nearly exclusively control CsgD-regulated genes. We conclude that specific GGDEF/EAL proteins have very distinct expression patterns, and when present in physiological amounts, can act in a highly precise, non-global and perhaps microcompartmented manner on a few or even a single specific target(s).
Collapse
Affiliation(s)
- Harald Weber
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
44
|
Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D. GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2006; 103:7460-4. [PMID: 16645034 PMCID: PMC1464361 DOI: 10.1073/pnas.0600313103] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Indexed: 11/18/2022] Open
Abstract
The concentration of GABA increases rapidly in wounded plant tissues, but the implication of this GABA pulse for plant-bacteria interactions is not known. Here we reveal that GABA stimulated the inactivation of the N-(3-oxooctanoyl)homoserine lactone (OC8-HSL) quorum-sensing signal (or "quormone") by the Agrobacterium lactonase AttM. GABA induced the expression of the attKLM operon, which was correlated to a decrease in OC8-HSL concentration in Agrobacterium tumefaciens cultures. The Agrobacterium GABA transporter Bra was required for this GABA-signaling pathway. Furthermore, transgenic tobacco plants with elevated GABA levels were less sensitive to A. tumefaciens C58 infection than were wild-type plants. These findings indicate that plant GABA may modulate quorum sensing in A. tumefaciens, thereby affecting its virulence on plants. Whereas GABA is an essential cell-to-cell signal in eukaryotes, here we provide evidence of GABA acting as a signal between eukaryotes and pathogenic bacteria. The GABA signal represents a potential target for the development of a strategy to control the virulence of bacterial pathogens.
Collapse
Affiliation(s)
- Romain Chevrot
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Avenue de la Terrasse, Gif-sur-Yvette 91 198, France
| | - Ran Rosen
- Department of Molecular Microbiology and Biotechnology and
- The Maiman Institute for Proteome Research, Tel Aviv University, Tel Aviv 69978, Israel; and
| | - Elise Haudecoeur
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Avenue de la Terrasse, Gif-sur-Yvette 91 198, France
| | - Amélie Cirou
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Avenue de la Terrasse, Gif-sur-Yvette 91 198, France
| | - Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Eliora Ron
- Department of Molecular Microbiology and Biotechnology and
| | - Denis Faure
- *Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Avenue de la Terrasse, Gif-sur-Yvette 91 198, France
| |
Collapse
|
45
|
Tkachenko AG, Shumkov MS, Akhova AV. Putrescine as a modulator of the level of RNA polymerase σS subunit in Escherichia coli cells under acid stress. BIOCHEMISTRY (MOSCOW) 2006; 71:185-93. [PMID: 16489924 DOI: 10.1134/s0006297906020118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metabolites accumulated in the culture medium of Escherichia coli cells induce expression of the rpoS gene encoding the alternative sigmaS subunit of RNA polymerase, which controls adaptation of E. coli to acid stress during growth in glucose-mineral medium. The effect of acetate and succinate as end products of E. coli metabolism has been investigated on the levels of transcription, translation, and sigmaS protein stability. These end products mainly influenced the stability of the RNA polymerase sigmaS subunit. Under conditions of acid stress caused by acetate addition, the content of polyamines in the cells and medium decreased, whereas artificial rpoS gene switch-off by antisense RNA was accompanied by increase in polyamine level. Addition of polyamine to E. coli cells treated with acetate and especially with succinate caused a significant concentration-dependent stimulatory effect on rpoS expression. Thus, induction of the rpoS regulon depends on the combined action of the investigated metabolites determining adequate control of gene expression under conditions of acid stress. A scheme for metabolic pathways describing the role of putrescine in the maintenance of intracellular pH and polyamine pool homeostasis during E. coli adaptation to acid stress is proposed.
Collapse
Affiliation(s)
- A G Tkachenko
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia.
| | | | | |
Collapse
|
46
|
Notebaart RA, Huynen MA, Teusink B, Siezen RJ, Snel B. Correlation between sequence conservation and the genomic context after gene duplication. Nucleic Acids Res 2005; 33:6164-71. [PMID: 16257980 PMCID: PMC1275583 DOI: 10.1093/nar/gki913] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A key complication in comparative genomics for reliable gene function prediction is the existence of duplicated genes. To study the effect of gene duplication on function prediction, we analyze orthologs between pairs of genomes where in one genome the orthologous gene has duplicated after the speciation of the two genomes (i.e. inparalogs). For these duplicated genes we investigate whether the gene that is most similar on the sequence level is also the gene that has retained the ancestral gene-neighborhood. Although the majority of investigated cases show a consistent pattern between sequence similarity and gene-neighborhood conservation, a substantial fraction, 29-38%, is inconsistent. The observation of inconsistency is not the result of a chance outcome owing to a lack of divergence time between inparalogs, but rather it seems to be the result of a chance outcome caused by very similar rates of sequence evolution of both inparalogs relative to their ortholog. If one-to-one orthologous relationships are required, it is advisable to combine contextual information (i.e. gene-neighborhood in prokaryotes and co-expression in eukaryotes) with protein sequence information to predict the most probable functional equivalent ortholog in the presence of inparalogs.
Collapse
Affiliation(s)
- Richard A. Notebaart
- Center for Molecular and Biomolecular Informatics, Radboud University NijmegenThe Netherlands
| | - Martijn A. Huynen
- Center for Molecular and Biomolecular Informatics, Radboud University NijmegenThe Netherlands
- Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical CenterThe Netherlands
| | - Bas Teusink
- Center for Molecular and Biomolecular Informatics, Radboud University NijmegenThe Netherlands
- NIZO food researchEde, The Netherlands
- Wageningen Center for Food SciencesWageningen, The Netherlands
| | - Roland J. Siezen
- Center for Molecular and Biomolecular Informatics, Radboud University NijmegenThe Netherlands
- NIZO food researchEde, The Netherlands
- Wageningen Center for Food SciencesWageningen, The Netherlands
| | - Berend Snel
- Center for Molecular and Biomolecular Informatics, Radboud University NijmegenThe Netherlands
- Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical CenterThe Netherlands
- To whom correspondence should be addressed. Tel: +31 24 36 53375; Fax: +31 24 36 52977;
| |
Collapse
|
47
|
Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 2005; 187:1591-603. [PMID: 15716429 PMCID: PMC1063999 DOI: 10.1128/jb.187.5.1591-1603.2005] [Citation(s) in RCA: 612] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The sigmaS (or RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli. While nearly absent in rapidly growing cells, sigmaS is strongly induced during entry into stationary phase and/or many other stress conditions and is essential for the expression of multiple stress resistances. Genome-wide expression profiling data presented here indicate that up to 10% of the E. coli genes are under direct or indirect control of sigmaS and that sigmaS should be considered a second vegetative sigma factor with a major impact not only on stress tolerance but on the entire cell physiology under nonoptimal growth conditions. This large data set allowed us to unequivocally identify a sigmaS consensus promoter in silico. Moreover, our results suggest that sigmaS-dependent genes represent a regulatory network with complex internal control (as exemplified by the acid resistance genes). This network also exhibits extensive regulatory overlaps with other global regulons (e.g., the cyclic AMP receptor protein regulon). In addition, the global regulatory protein Lrp was found to affect sigmaS and/or sigma70 selectivity of many promoters. These observations indicate that certain modules of the sigmaS-dependent general stress response can be temporarily recruited by stress-specific regulons, which are controlled by other stress-responsive regulators that act together with sigma70 RNA polymerase. Thus, not only the expression of genes within a regulatory network but also the architecture of the network itself can be subject to regulation.
Collapse
Affiliation(s)
- Harald Weber
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, Königin-Luise-Str. 12-16a, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Cases I, de Lorenzo V. Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 2005; 3:105-18. [PMID: 15685222 DOI: 10.1038/nrmicro1084] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcriptional activation of many bacterial promoters in their natural environment is not a simple on/off decision. The expression of cognate genes is integrated in layers of iterative regulatory networks that ensure the performance not only of the whole cell, but also of the bacterial population, and even the microbial community, in a changing environment. Unlike in vitro systems, where transcription initiation can be recreated with a handful of essential components, in vivo, promoters must process various physicochemical and metabolic signals to determine their output. This helps to achieve optimal bacterial fitness in extremely competitive niches. Promoters therefore merge specific responses to distinct signals with inclusive reactions to more general environmental changes.
Collapse
Affiliation(s)
- Ildefonso Cases
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
49
|
Joloba ML, Clemmer KM, Sledjeski DD, Rather PN. Activation of the gab operon in an RpoS-dependent manner by mutations that truncate the inner core of lipopolysaccharide in Escherichia coli. J Bacteriol 2005; 186:8542-6. [PMID: 15576807 PMCID: PMC532415 DOI: 10.1128/jb.186.24.8542-8546.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gab operon (gabDTPC) in Escherichia coli functions in the conversion of gamma-aminobutyrate to succinate. One component of gab operon regulation involves the RpoS sigma factor, which mediates activation at high cell density. Transposon mutagenesis was used to identify new genes that regulate gab operon expression in rich media. A Tn5tmp insertion in the hldD (formerly rfaD) gene increased gabT::lacZ expression 12-fold. The hldD gene product, an ADP-L-glycerol-D-mannoheptose-6-epimerase, catalyzes the conversion of ADP-D-glycerol-D-mannoheptose to ADP-L-glycerol-D-mannoheptose, a precursor for the synthesis of inner-core lipopolysaccharide (LPS). Defined mutations in hldE, required for heptose synthesis, and waaF, required for the addition of the second heptose to the inner core, also resulted in high-level gabT::lacZ expression. The hldD, hldE, and waaF mutants exhibited a mucoid colony phenotype due to production of a colanic acid capsule. However, in the hldD::cat background, the high-level expression of gabT::lacZ was independent of the regulatory components for colanic acid synthesis (rcsA, rcsB, and rcsC) and also independent of manC (cpsB), a structural gene for colanic acid synthesis. Activation of gabT::lacZ in the hldD::cat background was dependent on the RpoS sigma factor. The hldD::cat mutation resulted in a sixfold increase in the levels of a translational RpoS-LacZ fusion and had a marginal effect on a transcriptional fusion. This study reveals a stress-induced pathway, mediated by loss of the LPS inner core, that increases RpoS translation and gab operon expression in E. coli.
Collapse
Affiliation(s)
- Moses L Joloba
- Department of Microbiology and Immunology, Emory University School of Medicine, 3001 Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
50
|
Vijayakumar SRV, Kirchhof MG, Patten CL, Schellhorn HE. RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J Bacteriol 2005; 186:8499-507. [PMID: 15576800 PMCID: PMC532425 DOI: 10.1128/jb.186.24.8499-8507.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RpoS is a conserved alternative sigma factor that regulates the expression of many stress response genes in Escherichia coli. The RpoS regulon is large but has not yet been completely characterized. In this study, we report the identification of over 100 RpoS-dependent fusions in a genetic screen based on the differential expression of an operon-lacZ fusion bank in rpoS mutant and wild-type backgrounds. Forty-eight independent gene fusions were identified, including several in well-characterized RpoS-regulated genes, such as osmY, katE, and otsA. Many of the other fusions mapped to genes of unknown function or to genes that were not previously known to be under RpoS control. Based on the homology to other known bacterial genes, some of the RpoS-regulated genes of unknown functions are likely important in nutrient scavenging.
Collapse
|