1
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
2
|
Sindberg GM, Callen SE, Banerjee S, Meng J, Hale VL, Hegde R, Cheney PD, Villinger F, Roy S, Buch S. Morphine Potentiates Dysbiotic Microbial and Metabolic Shifts in Acute SIV Infection. J Neuroimmune Pharmacol 2019; 14:200-214. [PMID: 30242614 PMCID: PMC6917429 DOI: 10.1007/s11481-018-9805-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022]
Abstract
Human Immunodeficiency Virus (HIV) pathogenesis has been closely linked with microbial translocation, which is believed to drive inflammation and HIV replication. Opioid drugs have been shown to worsen this symptom, leading to a faster progression of HIV infection to Acquired Immunodeficiency Syndrome (AIDS). The interaction of HIV and opioid drugs has not been studied at early stages of HIV, particularly in the gut microbiome where changes may precede translocation events. This study modeled early HIV infection by examining Simian Immunodeficiency Virus (SIV)-infected primates at 21 days or less both independently and in the context of opioid use. Fecal samples were analyzed both for 16S analysis of microbial populations as well as metabolite profiles via mass spectrometry. Our results indicate that changes are minor in SIV treated animals in the time points examined, however animals treated with morphine and SIV had significant changes in their microbial communities and metabolic profiles. This occurred in a time-independent fashion with morphine regardless of how long the animal had morphine in its system. Globally, the observed changes support that microbial dysbiosis is occurring in these animals at an early time, which likely contributes to the translocation events observed later in SIV/HIV pathogenesis. Additionally, metabolic changes were predictive of specific treatment groups, which could be further developed as a diagnostic tool or future intervention target to overcome and slow the progression of HIV infection to AIDS.
Collapse
Affiliation(s)
- Gregory M Sindberg
- Department of Veterinary Biosciences, University of Minnesota, Saint Paul, MN, USA
| | - Shannon E Callen
- Department of Pharmacology, University of Nebraska, Omaha, NE, USA
| | - Santanu Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Surgery, University of Miami, Miami, Florida, USA
| | - Jingjing Meng
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Surgery, University of Miami, Miami, Florida, USA
| | - Vanessa L Hale
- Department of Veterinary Preventative Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH, USA
| | - Ramakrishna Hegde
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Paul D Cheney
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Sabita Roy
- Department of Veterinary Biosciences, University of Minnesota, Saint Paul, MN, USA.
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
- Department of Surgery, University of Miami, Miami, Florida, USA.
| | - Shilpa Buch
- Department of Pharmacology, University of Nebraska, Omaha, NE, USA.
| |
Collapse
|
3
|
Chronic SIV and morphine treatment increases heat shock protein 5 expression at the synapse. J Neurovirol 2015; 21:592-8. [PMID: 26037114 DOI: 10.1007/s13365-015-0356-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/13/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
The abuse of opiates such as morphine in synergy with HIV infection accelerates neurocognitive impairments and neuropathology in the CNS of HIV-infected subjects, collectively referred to as HAND. To identify potential pathogenic markers associated with HIV and morphine in perturbing the synaptic architecture, we performed quantitative mass spectrometry proteomics on purified synaptosomes isolated from the caudate of two groups of rhesus macaques chronically infected with SIV differing by one regimen-morphine treatment. The upregulation of heat shock 70-kDa protein 5 in the SIV + morphine group points to increased cellular stress during SIV/morphine interaction thus leading to CNS dysfunction.
Collapse
|
4
|
Hollenbach R, Sagar D, Khan ZK, Callen S, Yao H, Shirazi J, Buch S, Jain P. Effect of morphine and SIV on dendritic cell trafficking into the central nervous system of rhesus macaques. J Neurovirol 2013; 20:175-83. [PMID: 23943466 DOI: 10.1007/s13365-013-0182-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/06/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022]
Abstract
Recruitment of immune cells such as monocytes/macrophages and dendritic cells (DCs) across the blood-brain barrier (BBB) has been documented in diseases involving neuroinflammation. Neuroinvasion by HIV leads to neurocognitive diseases and alters the permeability of the BBB. Likewise, many HIV patients use drugs of abuse such as morphine, which can further compromise the BBB. While the role of monocytes and macrophages in neuroAIDS is well established, research demonstrating the presence and role of DCs in the CNS during HIV infection has not been developed yet. In this respect, this study explored the presence of DCs in the brain parenchyma of rhesus macaques infected with a neurovirulent form of SIV (SIV mac239 R71/17E) and administered with morphine. Cells positive for DC markers including CD11c (integrin), macDC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin), CD83 (a maturation factor), and HLA-DR (MHC class II) were consistently found in the brain parenchyma of SIV-infected macaques as well as infected macaques on morphine. Control animals did not exhibit any DC presence in their brains. These results provide first evidence of DCs' relevance in NeuroAIDS vis-à-vis drugs of abuse and open new avenues of understanding and investigative HIV-CNS inflictions.
Collapse
Affiliation(s)
- Rebecca Hollenbach
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Morphine potentiates neuropathogenesis of SIV infection in rhesus macaques. J Neuroimmune Pharmacol 2011; 6:626-39. [PMID: 21431470 DOI: 10.1007/s11481-011-9272-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Opiates are well known to modulate immune responses by preventing the development of cell-mediated immune responses. Their effect on the pathogenesis of HIV-1 infection however remains controversial. Using the simian immunodeficiency virus/macaque model of HIV pathogenesis, we sought to explore the impact of morphine on disease progression and pathogenesis. Sixteen rhesus macaques were divided into two groups; four were administered saline and 12 others morphine routinely. Both groups of animals were then inoculated with SIVmacR71/17E and followed longitudinally for disease pathogenesis. The morphine group (M+V) exhibited a trend towards higher mortality rates and retardation in weight gain compared to the virus-alone group. Interestingly, a subset of M+V animals succumbed to disease within weeks post-infection. These rapid progressors also exhibited a higher incidence of other end-organ pathologies. Despite the higher numbers of circulating CD4+ and CD8+ T cells in the M+V group, CD4/CD8 ratios between the groups remained unchanged. Plasma and CSF viral load in the M+V group was at least a log higher than the control group. Similarly, there was a trend toward increased virus build-up in the brains of M+V animals compared with controls. A novel finding of this study was the increased influx of infected monocyte/macrophages in the brains of M+V animals.
Collapse
|
6
|
Riazi M, Marcario JK, Samson FK, Kenjale H, Adany I, Staggs V, Ledford E, Marquis J, Narayan O, Cheney PD. Rhesus macaque model of chronic opiate dependence and neuro-AIDS: longitudinal assessment of auditory brainstem responses and visual evoked potentials. J Neuroimmune Pharmacol 2009; 4:260-75. [PMID: 19283490 PMCID: PMC3713620 DOI: 10.1007/s11481-009-9149-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 02/24/2009] [Indexed: 11/30/2022]
Abstract
Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV)-related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 coreceptor virus, SIV(mac)239 (R71/E17), which crosses the blood-brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus infection. The cohort was divided into three groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in subclinically infected macaques were evident as early as 8 weeks postinoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest cerebrospinal fluid viral loads and clinical disease showed more abnormalities than those with subclinical disease, confirming our previous work (Raymond et al., J Neurovirol 4:512-520, 1998; J Neurovirol 5:217-231, 1999; AIDS Res Hum Retroviruses 16:1163-1173, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine-treated compared to morphine-untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine-treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and central nervous system tissues (Marcario et al., J Neuroimmune Pharmacol 3:12-25, 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged.
Collapse
Affiliation(s)
- Mariam Riazi
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Joanne K Marcario
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Frank K. Samson
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Himanshu Kenjale
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Istvan Adany
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Vincent Staggs
- Research Design & Analysis Unit of the Schiefelbusch Institute for Lifespan Studies, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Emily Ledford
- Research Design & Analysis Unit of the Schiefelbusch Institute for Lifespan Studies, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Janet Marquis
- Research Design & Analysis Unit of the Schiefelbusch Institute for Lifespan Studies, University of Kansas, 1000 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Opendra Narayan
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| | - Paul D. Cheney
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160 USA
| |
Collapse
|
7
|
Williams R, Bokhari S, Silverstein P, Pinson D, Kumar A, Buch S. Nonhuman primate models of NeuroAIDS. J Neurovirol 2009; 14:292-300. [PMID: 18780230 DOI: 10.1080/13550280802074539] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Human Immunodeficiency virus (HIV), the virus that causes acquired immunodeficiency syndrome (AIDS), also manifests neurological complications. HIV-associated dementia (HAD) is the most severe form of HIV-induced neurocognitive disorders. HIV encephalitis (HIVE), the pathological correlate of HAD, is characterized by the formation of multinucleated giant cells and microglial nodules, astrocytosis, and neuronal damage and loss. Pathological evaluation of HAD disease progression in humans is not possible, with the only data collected being from individuals who have succumbed to the disorder, a snap shot of end-stage disease at best. Therefore, pertinent animal models have been developed to alleviate this gap of knowledge in the field of neurovirology and neuroinflammation. In general, the most widely used animal models are the simian immunodeficiency virus (SIV) and the chimeric simian/human immunodeficiency virus (SHIV) macaque model systems. Although both SIV and SHIV model systems are able to potentiate neuroinvasion and the concomitant neuropathology similar to that seen in the human syndromes, the innate differences between the two in disease pathogenesis and progression make for two separate, yet effective, systems for the study of HIV-associated neuropathology.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66103, USA
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
The ubiquitin-proteasome system in spongiform degenerative disorders. Biochim Biophys Acta Mol Basis Dis 2008; 1782:700-12. [PMID: 18790052 PMCID: PMC2612938 DOI: 10.1016/j.bbadis.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 12/20/2022]
Abstract
Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer’s disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan’s spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin–proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin–protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders.
Collapse
|
10
|
Increased in vivo activation of microglia and astrocytes in the brains of mice transgenic for an infectious R5 human immunodeficiency virus type 1 provirus and for CD4-specific expression of human cyclin T1 in response to stimulation by lipopolysaccharides. J Virol 2008; 82:5562-72. [PMID: 18353948 DOI: 10.1128/jvi.02618-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inflammatory mediators and viral products produced by human immunodeficiency virus (HIV)-infected microglia and astrocytes perturb the function and viability of adjacent uninfected neuronal and glial cells and contribute to the pathogenesis of HIV-associated neurocognitive disorders (HAND). In vivo exposure to lipopolysaccharide (LPS) activates parenchymal microglia and astrocytes and induces cytokine and chemokine production in the brain. HIV-infected individuals display increased circulating LPS levels due to microbial translocation across a compromised mucosa barrier. We hypothesized that HIV-infected microglia and astrocytes display increased sensitivity to the proinflammatory effects of LPS, and this combines with the increased levels of systemic LPS in HIV-infected individuals to contribute to the development of HAND. To examine this possibility, we determined the in vivo responsiveness of HIV-infected microglia and astrocytes to LPS using our mouse model, JR-CSF/human cyclin T1 (JR-CSF/hu-cycT1) mice, which are transgenic for both an integrated full-length infectious HIV type 1 (HIV-1) provirus derived from the primary R5-tropic clinical isolate HIV-1(JR-CSF) regulated by the endogenous HIV-1 long terminal repeat and the hu-cycT1 gene under the control of a CD4 promoter. In the current report, we demonstrated that in vivo-administered LPS more potently activated JR-CSF/hu-cycT1 mouse microglia and astrocytes and induced a significantly higher degree of monocyte chemoattractant protein production by JR-CSF/hu-cycT1 astrocytes compared to that of the in vivo LPS response of control littermate mouse microglia and astrocytes. These results indicate that HIV infection increases the sensitivity of microglia and astrocytes to inflammatory stimulation and support the use of these mice as a model to investigate various aspects of the in vivo mechanism of HIV-induced neuronal dysfunction.
Collapse
|
11
|
Effect of morphine on the neuropathogenesis of SIVmac infection in Indian Rhesus Macaques. J Neuroimmune Pharmacol 2007; 3:12-25. [PMID: 18247128 DOI: 10.1007/s11481-007-9085-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Morphine is known to prevent the development of cell-mediated immune (CMI) responses and enhance expression of the CCR5 receptor in monocyte macrophages. We undertook a study to determine the effect of morphine on the neuropathogenesis and immunopathogenesis of simian immunodeficiency virus (SIV) infection in Indian Rhesus Macaques. Hypothetically, the effect of morphine would be to prevent the development of CMI responses to SIV and to enhance the infection in macrophages. Sixteen Rhesus Macaques were divided into three experimental groups: M (morphine only, n = 5), VM (morphine + SIV, n = 6), and V (SIV only, n = 5). Animals in groups M and VM were given 2.5 mg/kg of morphine sulfate, four times daily, for up to 59 weeks. Groups VM and V were inoculated with SIVmacR71/17E 26 weeks after the beginning of morphine administration. Morphine prevented the development of enzyme-linked immunosorbent spot-forming cell CMI responses in contrast to virus control animals, all of which developed CMI. Whereas morphine treatment had no effect on viremia, cerebrospinal fluid viral titers or survival over the time course of the study, the drug was associated with a tendency for greater build-up of virus in the brains of infected animals. Histopathological changes in the brains of animals that developed disease were of a demyelinating type in the VM animals compared to an encephalitic type in the V animals. This difference may have been associated with the immunosuppressive effect of the drug in inhibiting CMI responses.
Collapse
|
12
|
Huerta L, López-Balderas N, Larralde C, Lamoyi E. Discriminating in vitro cell fusion from cell aggregation by flow cytometry combined with fluorescence resonance energy transfer. J Virol Methods 2006; 138:17-23. [PMID: 16934339 DOI: 10.1016/j.jviromet.2006.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 07/08/2006] [Accepted: 07/13/2006] [Indexed: 11/23/2022]
Abstract
Expression of fusion proteins in the plasma membrane enables cells to bind and fuse with surrounding cells to form syncytia. Cell fusion can have important functional outcomes for the interacting cells, as syncytia formation does in AIDS pathogenesis. Studies on cell fusion would be facilitated by a quantitative method able to discriminate between cellular aggregates and bona fide fused cells in a cell population. Flow cytometry with fluorescence resonance energy transfer is applied here for analyzing fusion of HIV-1 envelope-expressing cells with CD4+ Jurkat cells. Fusion partners were labeled with the vital lipophilic fluorescent probes DiO (green) and DiI (red) and FRET is manifested by an enhancement of the DiI red fluorescence intensity in double fluorescent cells, thus allowing discrimination between fused and aggregated cells. The inhibitory effect of anti-CD4 monoclonal antibodies and the inhibitory peptide T-20 upon cell fusion were readily quantified by this technique. This method allows the distinction of fused and aggregated cells even when they are at low frequencies.
Collapse
Affiliation(s)
- Leonor Huerta
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Distrito Federal, C.P. 04510, Mexico.
| | | | | | | |
Collapse
|
13
|
Hill MS, Mulcahy ER, Gomez ML, Pacyniak E, Berman NEJ, Stephens EB. APOBEC3G expression is restricted to neurons in the brains of pigtailed macaques. AIDS Res Hum Retroviruses 2006; 22:541-50. [PMID: 16796529 DOI: 10.1089/aid.2006.22.541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Vif protein of human immunodeficiency virus-1 (HIV-1) has been shown to interact with members of the APOBEC family of cytidine deaminases, particularly APOBEC3G/F. In this study, we isolated RNA from 12 regions of the brain from two pigtailed macaques that were exsanguinated and perfused with saline. Our results indicate that APOBEC3G was detected in all regions of the brain analyzed. Immunoblot analysis using lysates prepared from these same regions of the brain and a monoclonal antibody to APOBEC3G confirmed the RT-PCR findings. To determine which cell types express APOBEC3G, immunohistochemical studies were performed using this monoclonal antibody on whole brain sections. Our results clearly show that the pyramidal neurons within the gray matter of cerebral and cerebellar cortices express APOBEC3G. However, APOBEC3G expression in the pyramidal neurons appeared to be nuclear or associated with nuclei. In contrast to our findings in the cerebral cortex, immunohistochemical analysis of the spleen and kidney tissues revealed that APOBEC3G expression in the cells of these tissues was predominantly cytoplasmic. We further investigated the expression of APOBEC3G in astrocytes. Immunohistochemical staining of serial sections was performed using antibodies to glial fibrillary acidic protein (GFAP) and APOBEC3G. As expected, the cortical and cerebellar white matter showed extensive immunostaining of astrocytes with the antibody against GFAP but a lack of reactivity to the antibody to APOBEC3G. Additionally, Immunoblot analysis of lysates prepared from primary human fetal astrocytes revealed a lack of APOBEC3G expression. Taken together, these results indicate that APOBEC3G expression is restricted to neurons in the brain and that astrocytes and microglia probably do not express this protein or express it at levels undetectable by immunohistochemistry. These finding have implications for the brain as a potential reservoir for Vif-defective viruses.
Collapse
Affiliation(s)
- M Sarah Hill
- Department of Anatomy and Cell Biology, 5007 Wahl Hall West, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
14
|
Gelman BB, Soukup VM, Holzer CE, Fabian RH, Schuenke KW, Keherly MJ, Richey FJ, Lahart CJ. Potential role for white matter lysosome expansion in HIV-associated dementia. J Acquir Immune Defic Syndr 2005; 39:422-5. [PMID: 16010164 DOI: 10.1097/01.qai.0000164250.41475.f2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expansion of the lysosomal apparatus occurs in subcortical white matter in brains from persons with AIDS. This study examined whether HIV-associated subcortical dementia (HAD) is significantly related to this lysosomal anomaly. Brain cortex and adjacent white matter from the middle frontal gyrus were obtained from the National NeuroAIDS Tissue Consortium. Lysosomal hydrolase activity was assayed in 57 subjects who underwent neuropsychological testing within 6 months prior to autopsy. Decedents were evaluated from 4 geographical sites in the United States: Galveston/Houston, Texas (n = 36), Los Angeles, California (n = 5), New York, New York (n = 5), and San Diego, California (n = 11). Increased beta-glucuronidase activity, a representative lysosomal glycosidase, was correlated with the amount of neurocognitive impairment. Significant correlation was present in 5 of 7 functional testing domains, including some that draw upon frontal lobe output (r = 0.419; P < 0.002). The biochemical anomaly was negligible in cerebral cortex and cerebrospinal fluid and was not correlated with brain dysfunction in those compartments. Glycosidase activation was associated significantly with increased HIV RNA concentration in brain tissue (r = 0.469; P < 0.021) and possibly with HIV RNA in cerebrospinal fluid (r = 0.266; P < 0.067). HIV RNA in blood plasma was not correlated. These results support the suggestion that abnormal metabolism in white matter glial cells contributes to cognitive slowing in persons with HAD. Because membrane turnover is routed through the endosome-lysosome apparatus, these data are in agreement with brain spectroscopic data that have suggested that there is an increase in membrane turnover in white matter glia.
Collapse
Affiliation(s)
- Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, 77555, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Smith MS, Niu Y, Buch S, Li Z, Adany I, Pinson DM, Potula R, Novembre FJ, Narayan O. Active simian immunodeficiency virus (strain smmPGm) infection in macaque central nervous system correlates with neurologic disease. J Acquir Immune Defic Syndr 2005; 38:518-30. [PMID: 15793361 DOI: 10.1097/01.qai.0000156395.65562.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Simian immunodeficiency virus strain smmPGm can induce neuropathology in macaques and is a model for the development of human HIV-related brain injury. For quantitative studies of proviral presence and expression in the central nervous system (CNS), we inoculated 8 macaques intravenously with the virus. Three animals were necropsied 2 to 4 weeks after development of infection, and we obtained lymphoid tissue biopsies from 5 animals before 5 weeks after infection. Peak plasma viral loads averaged 10 viral RNA Eq/mL at week 2, whereas cerebrospinal fluid viral loads peaked at 10 viral RNA Eq/mL. The proviral DNA loads and viral gag mRNA expression in tissues were quantified by real-time polymerase chain reaction. Two animals developed neurologic disease characterized by meningoencephalitis and meningitis. Proviral DNA levels in CNS tissues of these animals at necropsy revealed 10 and 10 copies/microg of DNA, respectively, whereas viral RNA expression in the CNS reached 100 to 1000 times higher levels than those seen in early necropsies. In sharp contrast, in 2 animals necropsied at later times without CNS disease, virus mRNA expression was not detected in any CNS tissue. Our results are consistent with the hypothesis that active virus expression in the CNS is strongly correlated with neurologic disease and that the event occurs at variable periods after infection.
Collapse
Affiliation(s)
- Marilyn S Smith
- Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Marcario JK, Manaye KF, SantaCruz KS, Mouton PR, Berman NEJ, Cheney PD. Severe subcortical degeneration in macaques infected with neurovirulent simian immunodeficiency virus. J Neurovirol 2005; 10:387-99. [PMID: 15765810 DOI: 10.1080/13550280490521131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Infection with human immunodeficiency virus-1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS) in humans, causes a spectrum of neuropathology that includes alterations in behavior, changes in evoked potentials, and neuronal degeneration. In the simian immunodeficiency virus (SIV) model of HIV infection, affected monkeys show clinical symptoms and neurological complications that mimic those observed in human neuro-AIDS. To investigate the relationship between morphological correlates and neurophysiological deficits, unbiased stereology was used to assess total neuron number, volume, and neuronal density for all neurons in the globus pallidus (GP) and for dopamine (DA)-containing neurons in the substantia nigra (SN) in eight macaques inoculated with macrophage-tropic, neurovirulent SIV (SIVmac R71/17E), and five control animals. There was a significant difference between rapid progressors and controls for both neuron number (P < .01) and neuronal density (P < .05) in the GP, and for neuron number (P < .05) in the SN. Neuron loss ranged from 6% to 70% in the GP and from 10% to 50% in the SN. Neuropathological analyses confirmed neuroAIDS-like changes in brain, including microglial nodules, extensive perivascular cuffing and/or the presence of multinucleated giant cells, and alterations in neuronal morphology in the majority of the rapid progressors. By comparison, slow progressors showed little, if any, neuropathology. These neuropathological changes in SIV-infected monkeys indicate that neuron death and morphological alterations in the basal ganglia may contribute to the motor impairments reported in the SIV model and, by analogy, in the subset of patients afflicted with motor impairment in human neuro-AIDS.
Collapse
Affiliation(s)
- J K Marcario
- Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160-7185, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Cosenza MA, Zhao M, Si Q, Lee SC. Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 2002; 12:442-55. [PMID: 12408230 PMCID: PMC8095974 DOI: 10.1111/j.1750-3639.2002.tb00461.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Microglia are endogenous brain macrophages that show distinct phenotypes such as expression of myeloid antigens, ramified morphology, and presence within the neural parenchyma. They play significant roles in a number of human CNS diseases including AIDS dementia. Together with monocyte-derived (perivascular) macrophages, microglia represent a major target of HIV-1 infection. However, a recent report challenged this notion based on findings in SIV encephalitis. This study concluded that perivascular macrophages can be distinguished from parenchymal microglial cells by their expression of CD14 and CD45, and that macrophages, but not microglia, are productively infected in SIV and HIV encephalitis. To address whether parenchymal microglia are productively infected in HIV encephalitis, we analyzed expression of CD14, CD45 and HIV-1 p24 in human brain. Microglia were identified based on their characteristic ramified morphology and location in the neural parenchyma. We found that parenchymal microglia are CD14+ (activated), CD45+ (resting and activated), and constitute approximately two thirds of the p24+ cells in HIV encephalitis cases. These results demonstrate that microglia are major targets of infection by HIV-1, and delineate possible differences between HIVE and SIVE. Because productively infected tissue macrophages serve as the major viral reservoir, these findings have important implications for AIDS.
Collapse
Affiliation(s)
| | - Meng‐Liang Zhao
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Qiusheng Si
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Sunhee C. Lee
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
18
|
Langford TD, Letendre SL, Marcotte TD, Ellis RJ, McCutchan JA, Grant I, Mallory ME, Hansen LA, Archibald S, Jernigan T, Masliah E. Severe, demyelinating leukoencephalopathy in AIDS patients on antiretroviral therapy. AIDS 2002; 16:1019-29. [PMID: 11953468 PMCID: PMC3548569 DOI: 10.1097/00002030-200205030-00008] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To describe a severe form of demyelinating HIV-associated leukoencephalopathy in AIDS patients failing highly active antiretroviral therapy (HAART), its relationship to clinical and neuroimaging findings, and suggest hypotheses regarding pathogenesis. DESIGN AND METHODS AIDS patients who failed HAART and displayed severe leukoencephalopathy were included. All cases had detailed neuromedical, neuropsychological, neuroimaging and postmortem neuropathological examination. Immunocytochemical and PCR analyses were performed to determine brain HIV levels and to exclude other viruses. RESULTS Seven recent autopsy cases of leukoencephalopathy in antiretroviral-experienced patients with AIDS were identified. Clinically, all were severely immunosuppressed, six (86%) had poorly controlled HIV replication despite combination antiretroviral therapy, and five (71%) had HIV-associated dementia. Neuropathologically, all seven had intense perivascular infiltration by HIV-gp41 immunoreactive monocytes/macrophages and lymphocytes, widespread myelin loss, axonal injury, microgliosis and astrogliosis. The extent of damage exceeds that described prior to the use of HAART. Brain tissue demonstrated high levels of HIV RNA but evidence of other pathogens, such as JC virus, Epstein-Barr virus, cytomegalovirus, human herpes virus type-8, and herpes simplex virus types 1 and 2, was absent. Comparison of the stages of pathology suggests a temporal sequence of events. In this model, white matter damage begins with perivascular infiltration by HIV-infected monocytes, which may occur as a consequence of antiretroviral-associated immune restoration. Intense infiltration by immune cells injures brain endothelial cells and is followed by myelin loss, axonal damage, and finally, astrogliosis. CONCLUSIONS Taken together, our findings provide evidence for the emergence of a severe form of HIV-associated leukoencephalopathy. This condition warrants further study and increased vigilance among those who provide care for HIV-infected individuals.
Collapse
Affiliation(s)
- T Dianne Langford
- Department of Pathology, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Singh DK, McCormick C, Pacyniak E, Griffin D, Pinson DM, Sun F, Berman NEJ, Stephens EB. Pathogenic and nef-interrupted simian-human immunodeficiency viruses traffic to the macaque CNS and cause astrocytosis early after inoculation. Virology 2002; 296:39-51. [PMID: 12036316 DOI: 10.1006/viro.2002.1364] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several studies have shown that deletion of the nef gene of simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) results in attenuated viruses. However, studies have not critically examined trafficking of attenuated viruses to the central nervous system (CNS) at early stages after inoculation. In this study, we investigated the colocalization of pathogenic and vpu-negative, nef-interrupted SHIVs at early stages following inoculation. The first virus, designated SHIV(50OLNV), was isolated from the lymph node of a pig-tailed macaque which developed severe CD4+ T cell loss and neurological disease. The second virus was a molecularly cloned virus in which the vpu gene was deleted and the gene for the enhanced green fluorescent protein from the jellyfish Aequoria victora had been inserted in-frame within the nef gene of the pathogenic SHIV(KU-1bMC33) (designated SHIV(KU-1bEGFP)). Three pig-tailed macaques were inoculated intravenously with equivalent amounts of two viruses, two macaques were inoculated with SHIV(KU-1bEGFP), and two macaques were inoculated with SHIV(50OLNV). The peripheral blood mononuclear cells (PBMCs) were isolated from bleeds obtained 3, 7, 10, and 14 days postinoculation and monitored for syncytia-inducing virus and for fluorescent cells. Virus was detected in the PBMCs as early as 3 days postinoculation and was present throughout the course of this short-term study. At 14 days postinoculation, the macaques were sacrificed and examined for virus in lymphoid tissues and different regions of the CNS following necropsy. Our results revealed the presence of both viruses in lymphoid and CNS tissues, although SHIV(50OLNV) was present to a much greater extent. Histological examination revealed that one macaque displayed signs of meningitis and all three macaques developed massive cortical astrocyte activation as demonstrated by immunostaining for glial fibrillary acidic protein, but only limited microglial activation. In the two macaques inoculated with SHIV(50OLNV), astrocyte activation similar to that in the macaques inoculated with both viruses was observed while no astrocyte activation was observed in macaques inoculated with SHIV(KU-1bEGFP). Thus, this study demonstrates that SHIVs with an intact nef(SHIV(50OLNV)) as well as those lacking a vpu gene and with a nonfunctional nef gene (SHIV(KU-1bEGFP)) are capable of invading the CNS and that pathogenic SHIVs are capable of causing reactive astrocytosis early after inoculation.
Collapse
Affiliation(s)
- Dinesh K Singh
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Burudi EM, Fox HS. Simian immunodeficiency virus model of HIV-induced central nervous system dysfunction. Adv Virus Res 2002; 56:435-68. [PMID: 11450309 DOI: 10.1016/s0065-3527(01)56035-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E M Burudi
- Department of Neuropharmacology, Scripps Research Institute, CVN-8, La Jolla, California 92037, USA
| | | |
Collapse
|
21
|
Abstract
This chapter discusses chemokines and their receptors in the evolution of viral infectious diseases of the central nervous system (CNS). Infection of the human CNS with many different viruses or infection of the rodent CNS induces vigorous host-inflammatory responses with recruitment of large numbers of leukocytes, particularly T lymphocytes and macrophages. Chemokines coordinate trafficking of peripheral blood leukocytes by stimulating their chemotaxis, adhesion, extravasation, and other effector functions. In view of these properties, research efforts have turned increasingly to the possible involvement of chemokines in regulating both peripheral tissue and CNS leukocyte migration during viral infection. The biological effects of chemokines are mediated via their interaction with receptors belonging to the family of seven transmembrane (7TM)-spanning, G-protein coupled receptors (GPCRs). In the normal mammalian CNS, the number of leukocytes present in the brain is scant. However, these cells are attracted to, and accumulate in, a variety of pathologic states, many involving viral infection. Although leukocyte migration into local tissue compartments, such as the CNS, is a multifactorial process, it has become clear that chemokines are pivotal components of this process, providing a necessary chemotactic signal for leukocyte recruitment.
Collapse
Affiliation(s)
- V C Asensio
- Department of Neuropharmacology, SP-315, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
22
|
Raymond LA, Wallace D, Raghavan R, Marcario JK, Johnson JK, Foresman LL, Joag SV, Narayan O, Berman NE, Cheney PD. Sensory evoked potentials in SIV-infected monkeys with rapidly and slowly progressing disease. AIDS Res Hum Retroviruses 2000; 16:1163-73. [PMID: 10954892 DOI: 10.1089/088922200415018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) infects the central nervous system (CNS) early in the course of disease progression and leads to some form of neurological disease in 40-60% of cases. Both symptomatic and asymptomatic HIV-infected subjects also show abnormalities in evoked potentials. As part of an effort to further validate an animal model of the neurological disease associated with lentiviral infection, we recorded multimodal sensory evoked potentials (EPs) from nine rhesus macaques infected with passaged strains of SIVmac (R71/E17), prior to and at 1 month intervals following inoculation. The latencies of forelimb and hindlimb somatosensory evoked potentials (SEP) and flash visual evoked potentials (VEP) were measured. Within 14 weeks of inoculation, all but two animals had progressed to end-stage disease (rapid progressors). The two animals with slowly progressing disease (AQ15 and AQ94) had postinoculation life spans of 109 and 87 weeks, respectively. No significant changes were observed in evoked potentials recorded during the control period or at any time in the animals with slowly progressing disease. However, all of the monkeys with rapidly progressing disease exhibited increases in latency for at least one evoked potential type. The overall mean increases in somatosensory and visual evoked potential peak latencies for the rapid progressors were 22.4 and 25.3%, respectively. For comparison, the changes in slow progressors were not significant (1.8 and -1.9%, respectively). These results, coupled with our previous finding of slowed motor evoked potentials in the same cohort of macaques (Raymond et al.: J Neurovirol 1999;5:217-231), demonstrate a broad and somewhat variable pattern of viral injury to both sensory and motor system structures, resembling the findings in HIV-infected humans. These results coupled with our earlier work demonstrating cognitive and motor behavioral impairments in the same monkeys support the use of the SIVmac-infected rhesus macaque as a model of AIDS-related neurological disease.
Collapse
Affiliation(s)
- L A Raymond
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McCormick-Davis C, Dalton SB, Hout DR, Singh DK, Berman NE, Yong C, Pinson DM, Foresman L, Stephens EB. A molecular clone of simian-human immunodeficiency virus (DeltavpuSHIV(KU-1bMC33)) with a truncated, non-membrane-bound vpu results in rapid CD4(+) T cell loss and neuro-AIDS in pig-tailed macaques. Virology 2000; 272:112-26. [PMID: 10873754 DOI: 10.1006/viro.2000.0333] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report on the role of vpu in the pathogenesis of a molecularly cloned simian-human immunodeficiency virus (SHIV(KU-1bMC33)), in which the tat, rev, vpu, env, and nef genes derived from the uncloned SHIV(KU-1b) virus were inserted into the genetic background of parental nonpathogenic SHIV-4. A mutant was constructed (DeltavpuSHIV(KU-1bMC33)) in which 42 of 82 amino acids of Vpu were deleted. Phase partitioning studies revealed that the truncated Vpu was not an integral membrane protein, and pulse-chase culture studies revealed that cells inoculated with DeltavpuSHIV(KU-1bMC33) released viral p27 into the culture medium with slightly reduced kinetics compared with cultures inoculated with SHIV(KU-1bMC33). Inoculation of DeltavpuSHIV(KU-1bMC33) into two pig-tailed macaques resulted in a severe decline of CD4(+) T cells and neurological disease in one macaque and a more moderate decline of CD4(+) T cells in the other macaque. These results indicate that a membrane-bound Vpu is not required for the CD4(+) T cell loss and neurological disease in SHIV-inoculated pig-tailed macaques. Furthermore, because the amino acid substitutions in the Tat and Rev were identical to those previously reported for the nonpathogenic SHIV(PPc), our results indicate that amino acid substitutions in the Env and/or Nef were responsible for the observed CD4(+) T cell loss and neurological disease after inoculation with this molecular clone.
Collapse
Affiliation(s)
- C McCormick-Davis
- Departments of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Berman NE, Marcario JK, Yong C, Raghavan R, Raymond LA, Joag SV, Narayan O, Cheney PD. Microglial activation and neurological symptoms in the SIV model of NeuroAIDS: association of MHC-II and MMP-9 expression with behavioral deficits and evoked potential changes. Neurobiol Dis 1999; 6:486-98. [PMID: 10600404 DOI: 10.1006/nbdi.1999.0261] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HIV-1 causes cognitive and motor deficits and HIV encephalitis (HIVE) in a significant proportion of AIDS patients. Neurological impairment and HIVE are thought to result from release of cytokines and other harmful substances from infected, activated microglia. In this study, the quantitative relationship between microglial activation and neurological impairment was examined in the simian immunodeficiency model of HIVE. Macaque monkeys were infected with a passaged, neurovirulent strain of simian immunodeficiency virus, SIV(mac)239(R71/17E). In concurrent studies, functional impairment was assessed by motor and auditory brainstem evoked potentials and by measurements of cognitive and motor behavioral deficits. Brain tissue was examined by immunohistochemistry using two markers of microglia activation, MHC-II and matrix metalloproteinase-9 (MMP-9). The inoculated animals formed two groups: rapid progressors, which survived 6-14 weeks postinoculation, and slow progressors, which survived 87-109 weeks. In the rapid progressors, two patterns of MHC-II expression were present: (1) a widely disseminated pattern of MHC-II expressing microglia and microglial nodules in cortical gray matter and subcortical white matter, and (2) a more focal pattern in which MHC-II expressing microglia were concentrated into white matter. Animals exhibiting both patterns of microglial activation showed mild to severe changes in cognitive and motor behavior and evoked potentials. All rapid progressors showed expression of MMP-9 in microglia located in subcortical white matter. In the slow progressors MHC-II and MMP-9 staining was similar to uninoculated control macaques, and there was little or no evidence of HIVE. These animals showed behavioral deficits at the end of the disease course, but little changes in evoked potentials. Thus, increases in MHC-II and MMP-9 expression are associated with development of cognitive and motor deficits, alterations in evoked potentials, and rapid disease progression.
Collapse
Affiliation(s)
- N E Berman
- Department of Anatomy and Cell Biology, Marion Merrell Dow Laboratories, Kansas City, KS 66160-7400, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Marcario JK, Raymond LA, McKiernan BJ, Foresman LL, Joag SV, Raghavan R, Narayan O, Cheney PD. Motor skill impairment in SIV-infected rhesus macaques with rapidly and slowly progressing disease. J Med Primatol 1999; 28:105-17. [PMID: 10475111 DOI: 10.1111/j.1600-0684.1999.tb00258.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A number of studies have shown that simian immunodeficiency virus (SIV) infection in rhesus macaques parallels many aspects of HIV disease in humans. The purpose of this study was to further characterize the rhesus macaque infected with neurovirulent SIV as a model of neuroAIDS. Using a motor skill task, our objective was to detect SIV-related movement impairments in behaviorally trained macaques. The motor skill task required retrieval of a food pellet from a cup in a rotating turntable across a range of speeds. Nine monkeys were infected with neurovirulent strains of SIVmac (R71/17E): four monkeys served initially as controls pre-inoculation. Seven monkeys developed simian AIDS within 4 months of inoculation (rapid progressors), and two survived more than 18 months post-inoculation (slow progressors). Of the rapid progressors, five exhibited significant deficits in this task, most showing a gradual decline in performance terminating in a sharp drop to severely impaired levels of performance. One slow progressor (AQ15) showed no performance declines. The other slow progressor (AQ94) showed a significant decrease in maximum speed that was concurrent with the onset of clinical signs. For AQ94, the role of sickness behavior related to late stage simian AIDS could not be ruled out. These results demonstrate that motor system impairment can be detected early in the course of SIV infection in rhesus macaques, further establishing the SIVmac-infected macaque monkey as a viable model of neuroAIDS.
Collapse
Affiliation(s)
- J K Marcario
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|