1
|
Hoang VT, Hong H, Eom TH, Park H, Yeo SJ. A novel peptide pair-based rapid fluorescent diagnostic system for malaria Plasmodium falciparum detection. Talanta 2025; 281:126828. [PMID: 39265425 DOI: 10.1016/j.talanta.2024.126828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Advanced diagnostic materials, such as aptamers, are required due to the scarcity of efficient diagnostic antibodies and the low sensitivity of rapid diagnostic kits at detecting the malaria parasite, Plasmodium falciparum. METHODS Two peptides M2.9 [(KPTAEQTESPELQSAPEN) and M2.17 (KILFNVYSPLGCTCECWV)] were designed using simple epitope prediction tools and modified against the merozoite surface antigen 2 of P. falciparum (Pf.MSP2) by 3-dimensional modeling based on binding affinity. Based on five prediction tools for hydropathy, M2.17 was selected as an appropriate capture peptide. A peptide-based fluorescence-linked immunosorbent assay (FLISA) and a peptide pair-based fluorescent immunochromatographic test strip (FICT) were developed to detect P. falciparum 3D7 (drug-sensitive) and P. falciparum K1 (multi drugs-resistant) strains. RESULTS Bioinformatic analysis of two peptides demonstrated the potential binding affinity with the merozoite surface protein 2 of P. falciparum (Pf.MSP2) with a positive hydropathy value. The limit of detection (LOD) of FLISA was 10 parasites/μL and of a peptide pair-linked rapid FICT system was 5 and 200 parasites/μL for P. falciparum 3D7 and K1, respectively. Compared to commercial rapid detection systems (RDTs), a peptide pair-linked FICT system exhibited a 20-fold greater efficiency in detecting P. falciparum 3D7 and specifically discriminated another protozoan spp. CONCLUSION A peptide pair-linked rapid diagnostic strip could be an alternative to conventional RDTs for monitoring wild-type and drug-resistant malaria parasites.
Collapse
Affiliation(s)
- Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hyelee Hong
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Tae-Hui Eom
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Medical Research Center, Institute of Endemic Diseases, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
2
|
Alruwaili M, Elderdery AY, Ejaz H, Farhana A, Atif M, Almutary H, Mills J. Genotyping and Characterizing Plasmodium falciparum to Reveal Genetic Diversity and Multiplicity of Infection by Merozoite Surface Proteins 1 and 2 ( msp-1 and msp-2) and Glutamate-Rich Protein ( glurp) Genes. Trop Med Infect Dis 2024; 9:284. [PMID: 39591290 PMCID: PMC11597988 DOI: 10.3390/tropicalmed9110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Resistance to current antimalarial drugs is steadily increasing, and new drugs are required. Drug efficacy trials remain the gold standard to assess the effectiveness of a given drug. The World Health Organization (WHO)'s recommendation for the optimal duration of follow-up for assessing antimalarial efficacy is a minimum of 28 days. However, assessing antimalarial drug efficacy in highly endemic regions can be challenging due to the potential risks of acquiring a new infection in the follow-up period, and thus, it may underestimate the efficacy of the given drugs. A new treatment should be introduced if treatment failure rates exceed 10%. Overestimation occurs as a result of retaining a drug with a clinical efficacy of less than 90% with increases in morbidity and mortality, while underestimation may occur due to a misclassification of new infections as treatment failures with tremendous clinical and economic implications. Therefore, molecular genotyping is necessary to distinguish true new infections from treatment failures to ensure accuracy in determining antimalarial efficacy. There are three genetic markers that are commonly used in antimalarial efficiency trials to discriminate between treatment failures and new infections. These include merozoite surface protein 1 (msp-1), merozoite surface protein 2 (msp-2), and glutamate-rich protein (glurp). The genotyping of P. falciparum by nested polymerase chain reaction (n-PCR) targeting these markers is discussed with the inherent limitations and uncertainties associated with the PCR technique and limitations enforced by the parasite's biology itself.
Collapse
Affiliation(s)
- Muharib Alruwaili
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Hasan Ejaz
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Aisha Farhana
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Muhammad Atif
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (H.E.); (A.F.); (M.A.)
| | - Hayfa Almutary
- Medical Surgical Nursing Department, Faculty of Nursing, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Jeremy Mills
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK;
| |
Collapse
|
3
|
Natama HM, Moncunill G, Vidal M, Rouamba T, Aguilar R, Santano R, Rovira-Vallbona E, Jiménez A, Somé MA, Sorgho H, Valéa I, Coulibaly-Traoré M, Coppel RL, Cavanagh D, Chitnis CE, Beeson JG, Angov E, Dutta S, Gamain B, Izquierdo L, Mens PF, Schallig HDFH, Tinto H, Rosanas-Urgell A, Dobaño C. Associations between prenatal malaria exposure, maternal antibodies at birth, and malaria susceptibility during the first year of life in Burkina Faso. Infect Immun 2023; 91:e0026823. [PMID: 37754682 PMCID: PMC10580994 DOI: 10.1128/iai.00268-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/28/2023] Open
Abstract
In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study (N = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. Plasmodium falciparum infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG1-4 to 15 P. falciparum antigens were measured in cord blood by quantitative suspension array technology. Results showed a significant variation in the magnitude of maternal antibody levels in cord blood, depending on the PME category, with past placental malaria (PM) more frequently associated with significant increases of IgG and/or subclass levels across three groups of antigens defined as pre-erythrocytic, erythrocytic, and markers of PM, as compared to those from the cord of non-exposed control infants. High levels of antibodies to certain erythrocytic antigens (i.e., IgG to EBA140 and EBA175, IgG1 to EBA175 and MSP142, and IgG3 to EBA140 and MSP5) were independent predictors of protection from clinical malaria during the first year of life. By contrast, high levels of IgG, IgG1, and IgG2 to the VAR2CSA DBL1-2 and IgG4 to DBL3-4 were significantly associated with an increased risk of clinical malaria. These findings indicate that PME categories have different effects on the levels of maternal-derived antibodies to malaria antigens in children at birth, and this might drive heterogeneity to clinical malaria susceptibility in early childhood.
Collapse
Affiliation(s)
- Hamtandi Magloire Natama
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Gemma Moncunill
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Marta Vidal
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Toussaint Rouamba
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Santano
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Eduard Rovira-Vallbona
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - M. Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Innocent Valéa
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Maminata Coulibaly-Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Ross L. Coppel
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - David Cavanagh
- Centre for Immunity, Infection & Evolution, Institute of Immunology & Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chetan E. Chitnis
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, Paris, France
| | | | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | | | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Petra F. Mens
- Academic Medical Centre at the University of Amsterdam, Amsterdam, the Netherlands
| | | | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
4
|
Olewe PK, Awandu SS, Munde EO, Anyona SB, Raballah E, Amolo AS, Ogola S, Ndenga E, Onyango CO, Rochford R, Perkins DJ, Ouma C. Hemoglobinopathies, merozoite surface protein-2 gene polymorphisms, and acquisition of Epstein Barr virus among infants in Western Kenya. BMC Cancer 2023; 23:566. [PMID: 37340364 PMCID: PMC10280846 DOI: 10.1186/s12885-023-11063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Epstein Barr virus (EBV)-associated endemic Burkitt's Lymphoma pediatric cancer is associated with morbidity and mortality among children resident in holoendemic Plasmodium falciparum regions in western Kenya. P. falciparum exerts strong selection pressure on sickle cell trait (SCT), alpha thalassemia (-α3.7/αα), glucose-6-phosphate dehydrogenase (G6PD), and merozoite surface protein 2 (MSP-2) variants (FC27, 3D7) that confer reduced malarial disease severity. The current study tested the hypothesis that SCT, (-α3.7/αα), G6PD mutation and (MSP-2) variants (FC27, 3D7) are associated with an early age of EBV acquisition. METHODS Data on infant EBV infection status (< 6 and ≥ 6-12 months of age) was abstracted from a previous longitudinal study. Archived infant DNA (n = 81) and mothers DNA (n = 70) samples were used for genotyping hemoglobinopathies and MSP-2. The presence of MSP-2 genotypes in maternal DNA samples was used to indicate infant in-utero malarial exposure. Genetic variants were determined by TaqMan assays or standard PCR. Group differences were determined by Chi-square or Fisher's analysis. Bivariate regression modeling was used to determine the relationship between the carriage of genetic variants and EBV acquisition. RESULTS EBV acquisition for infants < 6 months was not associated with -α3.7/αα (OR = 1.824, P = 0.354), SCT (OR = 0.897, P = 0.881), or G6PD [Viangchan (871G > A)/Chinese (1024 C > T) (OR = 2.614, P = 0.212)] and [Union (1360 C > T)/Kaiping (1388G > A) (OR = 0.321, P = 0.295)]. There was no relationship between EBV acquisition and in-utero exposure to either FC27 (OR = 0.922, P = 0.914) or 3D7 (OR = 0.933, P = 0.921). In addition, EBV acquisition in infants ≥ 6-12 months also showed no association with -α3.7/αα (OR = 0.681, P = 0.442), SCT (OR = 0.513, P = 0.305), G6PD [(Viangchan (871G > A)/Chinese (1024 C > T) (OR = 0.640, P = 0.677)], [Mahidol (487G > A)/Coimbra (592 C > T) (OR = 0.948, P = 0.940)], [(Union (1360 C > T)/Kaiping (1388G > A) (OR = 1.221, P = 0.768)], African A (OR = 0.278, P = 0.257)], or in utero exposure to either FC27 (OR = 0.780, P = 0.662) or 3D7 (OR = 0.549, P = 0.241). CONCLUSION Although hemoglobinopathies (-α3.7/αα, SCT, and G6PD mutations) and in-utero exposure to MSP-2 were not associated with EBV acquisition in infants 0-12 months, novel G6PD variants were discovered in the population from western Kenya. To establish that the known and novel hemoglobinopathies, and in utero MSP-2 exposure do not confer susceptibility to EBV, future studies with larger sample sizes from multiple sites adopting genome-wide analysis are required.
Collapse
Affiliation(s)
- Perez K. Olewe
- Department of Biomedical Sciences, School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
| | - Shehu Shagari Awandu
- Department of Biomedical Sciences, School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Elly O. Munde
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Department of Clinical Medicine, Kirinyaga University, Kerugoya, Kenya
| | - Samuel B. Anyona
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya
| | - Evans Raballah
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Department of Medical Laboratory Sciences, School of Public Health Biomedical Science and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Asito S. Amolo
- Department of Biological Sciences School of Biological, Physical, Mathematics, and Actuarial Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Sidney Ogola
- Kenya Medical Research Institute - CGHR, Kisumu, Kenya
| | - Erick Ndenga
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Clinton O. Onyango
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
| | | | - Douglas J. Perkins
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Center for Global Health, Internal Medicine, University of New Mexico, New Mexico, NM USA
| | - Collins Ouma
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
- Research and Innovations, Maseno University, Kisumu-Busia Road Private Bag, Maseno, Kenya
| |
Collapse
|
5
|
Brown SL, Bauer JJ, Lee J, Ntirandekura E, Stumhofer JS. IgM + and IgM - memory B cells represent heterogeneous populations capable of producing class-switched antibodies and germinal center B cells upon rechallenge with P. yoelii. J Leukoc Biol 2022; 112:1115-1135. [PMID: 35657097 PMCID: PMC9613510 DOI: 10.1002/jlb.4a0921-523r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Memory B cells (MBCs) are essential for maintaining long-term humoral immunity to infectious organisms, including Plasmodium. MBCs are a heterogeneous population whose function can be dictated by isotype or expression of particular surface proteins. Here, aided by antigen-specific B-cell tetramers, MBC populations were evaluated to discern their phenotype and function in response to infection with a nonlethal strain of P. yoelii. Infection of mice with P. yoelii 17X resulted in 2 predominant MBC populations: somatically hypermutated isotype-switched (IgM- ) and IgM+ MBCs that coexpressed CD73 and CD80 that produced antigen-specific antibodies in response to secondary infection. Rechallenge experiments indicated that IgG-producing cells dominated the recall response over the induction of IgM-secreting cells, with both populations expanding with similar timing during the secondary response. Furthermore, using ZsGreen1 expression as a surrogate for activation-induced cytidine deaminase expression alongside CD73 and CD80 coexpression, ZsGreen1+ CD73+ CD80+ IgM+ , and IgM- MBCs gave rise to plasmablasts that secreted Ag-specific Abs after adoptive transfer and infection with P. yoelii. Moreover, ZsGreen1+ CD73+ CD80+ IgM+ and IgM- MBCs could differentiate into B cells with a germinal center phenotype after adoptive transfer. A third population of B cells (ZsGreen1- CD73- CD80- IgM- ) that is apparent after infection responded poorly to reactivation in vitro and in vivo, indicating that these cells do not represent a canonical population of MBCs. Together these data indicated that MBC function is not defined by immunoglobulin isotype, nor does coexpression of key surface markers limit the potential fate of MBCs after recall.
Collapse
Affiliation(s)
- Susie L Brown
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jonathan J Bauer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Juhyung Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Enatha Ntirandekura
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
6
|
Baptista BO, de Souza ABL, Riccio EKP, Bianco-Junior C, Totino PRR, Martins da Silva JH, Theisen M, Singh SK, Amoah LE, Ribeiro-Alves M, Souza RM, Lima-Junior JC, Daniel-Ribeiro CT, Pratt-Riccio LR. Naturally acquired antibody response to a Plasmodium falciparum chimeric vaccine candidate GMZ2.6c and its components (MSP-3, GLURP, and Pfs48/45) in individuals living in Brazilian malaria-endemic areas. Malar J 2022; 21:6. [PMID: 34983540 PMCID: PMC8729018 DOI: 10.1186/s12936-021-04020-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. Methods This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. Results The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. Conclusions The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04020-6.
Collapse
Affiliation(s)
- Barbara Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Ana Beatriz Lopes de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Cesare Bianco-Junior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | | | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Medeiros Souza
- Laboratório de Doenças Infecciosas na Amazônia Ocidental, Universidade Federal do Acre, Acre, Brazil
| | | | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil.
| |
Collapse
|
7
|
Shah Z, Naung MT, Moser KA, Adams M, Buchwald AG, Dwivedi A, Ouattara A, Seydel KB, Mathanga DP, Barry AE, Serre D, Laufer MK, Silva JC, Takala-Harrison S. Whole-genome analysis of Malawian Plasmodium falciparum isolates identifies possible targets of allele-specific immunity to clinical malaria. PLoS Genet 2021; 17:e1009576. [PMID: 34033654 PMCID: PMC8184011 DOI: 10.1371/journal.pgen.1009576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/07/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Individuals acquire immunity to clinical malaria after repeated Plasmodium falciparum infections. Immunity to disease is thought to reflect the acquisition of a repertoire of responses to multiple alleles in diverse parasite antigens. In previous studies, we identified polymorphic sites within individual antigens that are associated with parasite immune evasion by examining antigen allele dynamics in individuals followed longitudinally. Here we expand this approach by analyzing genome-wide polymorphisms using whole genome sequence data from 140 parasite isolates representing malaria cases from a longitudinal study in Malawi and identify 25 genes that encode possible targets of naturally acquired immunity that should be validated immunologically and further characterized for their potential as vaccine candidates.
Collapse
Affiliation(s)
- Zalak Shah
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myo T. Naung
- Population Health and Immunity Division, Walter Eliza Hall of Medical Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Carlton, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Kara A. Moser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Don P. Mathanga
- University of Malawi College of Medicine, Malaria Alert Centre, Blantyre, Malawi
| | - Alyssa E. Barry
- Population Health and Immunity Division, Walter Eliza Hall of Medical Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Carlton, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Disease Elimination and Maternal and Child Health, Burnet Institute, Melbourne, Victoria, Australia
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Alonso S, Vidal M, Ruiz-Olalla G, González R, Manaca MN, Jairoce C, Vázquez-Santiago M, Balcells R, Vala A, Rupérez M, Cisteró P, Fuente-Soro L, Cova M, Angov E, Nhacolo A, Sevene E, Aponte JJ, Macete E, Aguilar R, Mayor A, Menéndez C, Dobaño C, Moncunill G. Reduced Placental Transfer of Antibodies Against a Wide Range of Microbial and Vaccine Antigens in HIV-Infected Women in Mozambique. Front Immunol 2021; 12:614246. [PMID: 33746958 PMCID: PMC7965965 DOI: 10.3389/fimmu.2021.614246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
Transplacental transfer of antibodies is essential for conferring protection in newborns against infectious diseases. We assessed the impact of different factors, including gestational age and maternal infections such as HIV and malaria, on the efficiency of cord blood levels and placental transfer of IgG subclasses. We measured total IgG and IgG subclasses by quantitative suspension array technology against 14 pathogens and vaccine antigens, including targets of maternal immunization, in 341 delivering HIV-uninfected and HIV-infected mother-infant pairs from southern Mozambique. We analyzed the association of maternal HIV infection, Plasmodium falciparum exposure, maternal variables and pregnancy outcomes on cord antibody levels and transplacental transfer. Our results show that maternal antibody levels were the main determinant of cord antibody levels. Univariable and multivariable analysis showed that HIV reduced the placental transfer and cord levels of IgG and IgG1 principally, but also IgG2 to half of the antigens tested. P. falciparum exposure and prematurity were negatively associated with cord antibody levels and placental transfer, but this was antigen-subclass dependent. Our findings suggest that lower maternally transferred antibodies may underlie increased susceptibility to infections of HIV-exposed infants. This could affect efficacy of maternal vaccination, especially in sub-Saharan Africa, where there is a high prevalence of HIV, malaria and unfavorable environmental factors.
Collapse
Affiliation(s)
- Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - M. Nelia Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Laura Fuente-Soro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marta Cova
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Department of Physiologic Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - John J. Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
9
|
Punnath K, Dayanand KK, Midya V, Chandrashekar VN, Achur RN, Kakkilaya SB, Ghosh SK, Kumari SN, Gowda DC. Acquired antibody responses against merozoite surface protein-1 19 antigen during Plasmodium falciparum and P.vivax infections in South Indian city of Mangaluru. J Parasit Dis 2021; 45:176-190. [PMID: 33100734 PMCID: PMC7576553 DOI: 10.1007/s12639-020-01288-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/05/2020] [Indexed: 01/13/2023] Open
Abstract
Merozoite surface protein-1 (MSP-1) of malaria parasites has been extensively studied as a malaria vaccine candidate and the antibody response to this protein is an important indicator of protective immunity to malaria. Mangaluru city and its surrounding areas in southwestern India are endemic to malaria with Plasmodium vivax being the most widespread and prevalent species although P. falciparum also frequently infects. However, no information is available on the level of protective immunity in this population. In this regard, a prospective hospital-based study was performed in malarial patients to assess antibody responses against the 19-kDa C-terminal portion of P. vivax and P. falciparum MSP-1 (MSP-119). Serum samples from 51 healthy endemic controls and 267 infected individuals were collected and anti-MSP-119 antibody levels were analyzed by ELISA. The possible association between the antibody responses and morbidity parameters such as malarial anemia and thrombocytopenia was investigated. Among the 267 infected cases, 144 had P. vivax and 123 had P. falciparum infections. Significant levels of anti-MSP-119 antibody were observed both in P. vivax (123/144; 85.4%) and P. falciparum (108/123; 87.9%) infected individuals. In both type of infections, the major antibody isotypes were IgG1 and IgG3. The IgG levels were found to be increased in patients with severe anemia and thrombocytopenia. The antibody levels were also higher in infected individuals who had several previous infections, although antibodies produced during previous infections were short lived. The predominance of cytophilic anti-MSP-119 IgG1 and IgG3 antibodies suggests the possibility of a dual role of Pv MSP-119 and Pf MSP-119 during malarial immunity and pathogenesis.
Collapse
Affiliation(s)
- Kishore Punnath
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shivamogga District, Karnataka India
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - Kiran K. Dayanand
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shivamogga District, Karnataka India
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - Vishal Midya
- Department of Biostatistics and Bioinformatics, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA USA
| | - Valleesha N. Chandrashekar
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shivamogga District, Karnataka India
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - Rajeshwara N. Achur
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shivamogga District, Karnataka India
| | | | - Susanta K. Ghosh
- Department of Molecular Parasitology, ICMR-National Institute of Malaria Research, Poojanahalli, Bangalore, India
| | - Suchetha N. Kumari
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - D. Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA USA
| |
Collapse
|
10
|
Alonso S, Vidal M, Ruiz-Olalla G, González R, Jairoce C, Manaca MN, Vázquez-Santiago M, Balcells R, Vala A, Rupérez M, Cisteró P, Fuente-Soro L, Angov E, Coppel RL, Gamain B, Cavanagh D, Beeson JG, Nhacolo A, Sevene E, Aponte JJ, Macete E, Aguilar R, Mayor A, Menéndez C, Dobaño C, Moncunill G. HIV infection and placental malaria reduce maternal transfer of multiple antimalarial antibodies in Mozambican women. J Infect 2021; 82:45-57. [PMID: 33636218 DOI: 10.1016/j.jinf.2021.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Maternal Plasmodium falciparum-specific antibodies may contribute to protect infants against severe malaria. Our main objective was to evaluate the impact of maternal HIV infection and placental malaria on the cord blood levels and efficiency of placental transfer of IgG and IgG subclasses. METHODS In a cohort of 341 delivering HIV-negative and HIV-positive mothers from southern Mozambique, we measured total IgG and IgG subclasses in maternal and cord blood pairs by quantitative suspension array technology against eight P. falciparum antigens: Duffy-binding like domains 3-4 of VAR2CSA from the erythrocyte membrane protein 1, erythrocyte-binding antigen 140, exported protein 1 (EXP1), merozoite surface proteins 1, 2 and 5, and reticulocyte-binding-homologue-4.2 (Rh4.2). We performed univariable and multivariable regression models to assess the association of maternal HIV infection, placental malaria, maternal variables and pregnancy outcomes on cord antibody levels and antibody transplacental transfer. RESULTS Maternal antibody levels were the main determinants of cord antibody levels. HIV infection and placental malaria reduced the transfer and cord levels of IgG and IgG1, and this was antigen-dependent. Low birth weight was associated with an increase of IgG2 in cord against EXP1 and Rh4.2. CONCLUSIONS We found lower maternally transferred antibodies in HIV-exposed infants and those born from mothers with placental malaria, which may underlie increased susceptibility to malaria in these children.
Collapse
Affiliation(s)
- Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - M Nelia Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Miquel Vázquez-Santiago
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique; Present address: London School of Hygiene and Tropical Medicine (LSHTM). Keppel Street, WC1E 7HT, London, UK
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Laura Fuente-Soro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Benoit Gamain
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Laboratoire d'Excellence GR-Ex, Paris, France
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| | | | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique; Department of Physiologic Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Eusébio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Carrer Rosselló 153, E-08036, Barcelona, Catalonia, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929, Maputo, Mozambique.
| |
Collapse
|
11
|
Ssewanyana I, Rek J, Rodriguez I, Wu L, Arinaitwe E, Nankabirwa JI, Beeson JG, Mayanja-Kizza H, Rosenthal PJ, Dorsey G, Kamya MR, Drakeley C, Greenhouse B, Tetteh KKA. Impact of a Rapid Decline in Malaria Transmission on Antimalarial IgG Subclasses and Avidity. Front Immunol 2021; 11:576663. [PMID: 33584643 PMCID: PMC7873448 DOI: 10.3389/fimmu.2020.576663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding how immunity to malaria is affected by declining transmission is important to aid vaccine design and understand disease resurgence. Both IgG subclasses and avidity of antigen-specific responses are important components of an effective immune response. Using a multiplex bead array assay, we measured the total IgG, IgG subclasses, and avidity profiles of responses to 18 P. falciparum blood stage antigens in samples from 160 Ugandans collected at two time points during high malaria transmission and two time points following a dramatic reduction in transmission. Results demonstrated that, for the antigens tested, (i) the rate of decay of total IgG following infection declined with age and was driven consistently by the decrease in IgG3 and occasionally the decrease in IgG1; (ii) the proportion of IgG3 relative to IgG1 in the absence of infection increased with age; (iii) the increase in avidity index (the strength of association between the antibody and antigen) following infection was largely due to a rapid loss of non-avid compared to avid total IgG; and (iv) both avid and non-avid total IgG in the absence of infection increased with age. Further studies are required to understand the functional differences between IgG1 and IgG3 in order to determine their contribution to the longevity of protective immunity to malaria. Measuring changes in antibody avidity may be a better approach of detecting affinity maturation compared to avidity index due to the differential expansion and contraction of high and low avidity total IgG.
Collapse
Affiliation(s)
- Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | | | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
12
|
Chu TH, Patz EF, Ackerman ME. Coming together at the hinges: Therapeutic prospects of IgG3. MAbs 2021; 13:1882028. [PMID: 33602056 PMCID: PMC7899677 DOI: 10.1080/19420862.2021.1882028] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
The human IgG3 subclass is conspicuously absent among the formats for approved monoclonal antibody therapies and Fc fusion protein biologics. Concern about the potential for rapid degradation, reduced plasma half-life, and increased immunogenicity due to marked variation in allotypes has apparently outweighed the potential advantages of IgG3, which include high affinity for activating Fcγ receptors, effective complement fixation, and a long hinge that appears better suited for low abundance targets. This review aims to highlight distinguishing features of IgG3 and to explore its functional role in the immune response. We present studies of natural immunity and recombinant antibody therapies that elucidate key contributions of IgG3 and discuss historical roadblocks that no longer remain clearly relevant. Collectively, this body of evidence motivates thoughtful reconsideration of the clinical advancement of this distinctive antibody subclass for treatment of human diseases. Abbreviations: ADCC - Antibody-Dependent Cell-mediated CytotoxicityADE - Antibody-dependent enhancementAID - Activation-Induced Cytidine DeaminaseCH - Constant HeavyCHF - Complement factor HCSR - Class Switch RecombinationEM - Electron MicroscopyFab - Fragment, antigen bindingFc - Fragment, crystallizableFcRn - Neonatal Fc ReceptorFcγR - Fc gamma ReceptorHIV - Human Immunodeficiency VirusIg - ImmunoglobulinIgH - Immunoglobulin Heavy chain geneNHP - Non-Human Primate.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Edward F. Patz
- Department of Radiology and Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
13
|
Eisenhut M. The Identification of Native Epitopes Eliciting a Protective High-Affinity Immunoglobulin Subclass Response to Blood Stages of Plasmodium falciparum: Protocol for Observational Studies. JMIR Res Protoc 2020; 9:e15690. [PMID: 32706743 PMCID: PMC7395252 DOI: 10.2196/15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/20/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Background Antibodies to blood stages protective against complications of Plasmodium falciparum infection were found to be of immunoglobulin G 1 (IgG1) and IgG3 subclasses and of high affinity to the target epitopes. These target epitopes cannot be characterized using recombinant antigens because of a lack of appropriate glycosylation, phosphorylation, methylation, and bisulfide bond formation, which determine the structure of conformational and nonlinear epitopes within the tertiary and quaternary structures of native P. falciparum antigens. Objective This study aims to develop a method for the comprehensive detection of all P. falciparum schizont antigens, eliciting a protective immune response. Methods Purified parasitophorous vacuole membrane–enclosed merozoite structures (PEMSs) containing native schizont antigens are initially generated, separated by two-dimensional (2D) gel electrophoresis and blotted onto nitrocellulose. Antigens eliciting a protective antibody response are visualized by incubation with sera from patients with clinical immunity. This is followed by the elution of low-affinity antibodies with urea and detection of protective antibody responses by incubation with anti-IgG1 and anti-IgG3 antibodies, which were conjugated to horseradish peroxidase. This is followed by visualization with a color reaction. Blot signals are normalized by relating to the intensity of blot staining with a reference antibody and housekeeping antigens. Results are corrected for intensity of exposure by the relation of antibody responses to global P. falciparum antibody titers. Antigens eliciting the protective responses are identified as immunorelevant from the comparison of spot positions, indicating high-affinity IgG1 or IgG3 responses on the western blot, which is unique to or consistently more intensive in clinically immune individuals compared with nonimmune individuals. The results obtained are validated by using affinity chromatography. Results Another group previously applied 2D western blotting to analyze antibody responses to P. falciparum. The sera of patients allowed the detection of 42 antigenic spots on the 2D immunoblot. The spots detected were excised and subjected to mass spectrometry for identification. A total of 19 protein spots were successfully identified and corresponded to 13 distinct proteins. Another group used immunoaffinity chromatography to identify antigens bound by IgGs produced by mice with enhanced immunity to Plasmodium yoelii. Immunorelevant antigens were isolated and identified by immobilizing immunoglobulin from immune mice to a Sephadex column and then passing a blood-stage antigen mixture through the column followed by the elution of specific bound antigens with sodium deoxycholate and the identification of those antigens by western blotting with specific antibodies. Conclusions 2D western blotting using native antigens has the potential to identify antibody responses selective for specific defined isomeric forms of the same protein, including isoforms (protein species) generated by posttranscriptional modifications such as phosphorylation, glycosylation, and methylation. The process involved in 2D western blotting enables highly sensitive detection, high resolution, and preservation of antibody responses during blotting. Validation by immunoaffinity chromatography can compensate for the antigen loss associated with the blotting process. It has the potential for indirect quantification of protective antibody responses by enabling quantification of the amount of eluted antibody bound antigens through mass spectrometry. International Registered Report Identifier (IRRID) PRR1-10.2196/15690
Collapse
Affiliation(s)
- Michael Eisenhut
- Luton&Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| |
Collapse
|
14
|
Chu TH, Crowley AR, Backes I, Chang C, Tay M, Broge T, Tuyishime M, Ferrari G, Seaman MS, Richardson SI, Tomaras GD, Alter G, Leib D, Ackerman ME. Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies. PLoS Pathog 2020; 16:e1008083. [PMID: 32092122 PMCID: PMC7058349 DOI: 10.1371/journal.ppat.1008083] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 03/05/2020] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Andrew R. Crowley
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Iara Backes
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Cheryl Chang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Matthew Tay
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas Broge
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Marina Tuyishime
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Simone I. Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - David Leib
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
15
|
Matos ADS, Rodrigues-da-Silva RN, Soares IF, Baptista BDO, de Souza RM, Bitencourt-Chaves L, Totino PRR, Sánchez-Arcila JC, Daniel-Ribeiro CT, López-Camacho C, Reyes-Sandoval A, Pratt-Riccio LR, Lima-Junior JDC. Antibody Responses Against Plasmodium vivax TRAP Recombinant and Synthetic Antigens in Naturally Exposed Individuals From the Brazilian Amazon. Front Immunol 2019; 10:2230. [PMID: 31620136 PMCID: PMC6763564 DOI: 10.3389/fimmu.2019.02230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-related adhesive protein (TRAP) is essential for sporozoite motility and the invasion of mosquitoes' salivary gland and vertebrate's hepatocyte and is, thus, considered a promising pre-erythrocytic vaccine candidate. Despite the existence of a few reports on naturally acquired immune response against Plasmodium vivax TRAP (PvTRAP), it has never been explored so far in the Amazon region, so results are conflicting. Here, we characterized the (IgG and IgG subclass) antibody reactivity against recombinant PvTRAP in a cross-sectional study of 299 individuals exposed to malaria infection in three municipalities (Cruzeiro do Sul, Mâncio Lima and Guajará) from the Acre state of the Brazilian Amazon. In addition, the full PvTRAP sequence was screened for B-cell epitopes using in silico and in vitro approaches. Firstly, we confirmed that PvTRAP is naturally immunogenic in the cohort population since 49% of the individuals were IgG-responders to it. The observed immune responses were mainly driven by cytophilic IgG1 over all other sublcasses and the IgG levels that was corelated with age and time of residence in the studied area (p < 0.05). Interestingly, only the levels of specific anti-TRAP IgG3 seemed to be associated with protection, as IgG3 responders presented a significantly higher time elapse since the last malaria episode than those recorded for IgG3 non-responders. Regarding the B-cell epitope mapping, among the 148 responders to PvTRAP, four predicted epitopes were confirmed by recognition of antibodies (PvTRAPR197-H227; PvTRAPE237-T258; PvTRAPP344-G374; and PvTRAPE439-K454). Nevertheless, the frequency of responders against these peptides were low and did not show a clear correlation with the antibody response against the corresponding antigen. Moreover, none of the linear confirmed epitopes were located in the binding regions of PvTRAP in respect to the host cell ligand. Collectively, our data confirm the PvTRAP immunogenicity among Amazon inhabitants, while suggesting that the main important B-cell epitopes are not linear.
Collapse
Affiliation(s)
- Ada da Silva Matos
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | - Lana Bitencourt-Chaves
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Juan Camilo Sánchez-Arcila
- Viral Immunology Laboratory, Oswaldo Cruz Institute, IOC, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | | | - César López-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
16
|
Tiendrebeogo RW, Spallek R, Oehlmann W, Singh M, Theisen M, Nebie I, Moret R, Roussilhon C, Corradin G. Immunogenicity of a recombinant fusion construct composed of intrinsically unstructured, low polymorphic segments derived from merozoite surface protein 2 and trophozoite exported protein 1. Vaccine 2019; 37:5332-5340. [PMID: 31358409 DOI: 10.1016/j.vaccine.2019.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
To overcome the extensive polymorphism found in human Plasmodium antigens and to avoid the lengthy characterization of their 3 dimensional structure and subsequent production of the native proteins we have been concentrated in large unstructured, non-or low-polymorphic fragments present in the blood stage of P. falciparum. Three fragments derived from the 2 family-specific and constant regions of merozoite surface protein (MSP2) and PFF0165c protein were previously selected for evaluation as potential single vaccine candidates. In order to increase and optimize their potential efficacy against P. falciparum infection the 3 antigens were combined in a single DNA recombinant product (FusN) and compared its antigenicity with that of single antigens in sera of volunteers living in endemic countries. Immunogenicity of the FusN was then compared with that of the mixture of 3 antigens in 3 strains of mice. Antigen specific, affinity purified human antibodies were then tested in antibody dependent cellular inhibition and merozoite opsonization assays. In addition, the antigen specific antibody response and its association with protection from malaria infection were determined. The data collected indicate that the recombinant product is an equal or better antigen /immunogen than fragments used either alone or as a mixture for vaccination in combination with adjuvant. In addition, antibody response to FusN shows a stronger association with protection than single fragments. The use of a single construct as vaccine would drastically reduce the cost of manufacturing and development of the GMP product.
Collapse
Affiliation(s)
- Regis Wendpayangde Tiendrebeogo
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ralf Spallek
- LIONEX Diagnostics & Therapeutics GmbH, 38126 Braunschweig, Germany
| | - Wulf Oehlmann
- LIONEX Diagnostics & Therapeutics GmbH, 38126 Braunschweig, Germany
| | - Mahavir Singh
- LIONEX Diagnostics & Therapeutics GmbH, 38126 Braunschweig, Germany
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Issa Nebie
- Centre National de Recherche et de Formation sur le Paludisme, BP 2208, Ouagadougou 01, Burkina Faso
| | - Remy Moret
- ASAREN 01BP3916, Ouagadougou 01, Burkina Faso
| | | | - Giampietro Corradin
- Biochemistry Department, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
17
|
Lê HG, Kang JM, Jun H, Lee J, Thái TL, Myint MK, Aye KS, Sohn WM, Shin HJ, Kim TS, Na BK. Changing pattern of the genetic diversities of Plasmodium falciparum merozoite surface protein-1 and merozoite surface protein-2 in Myanmar isolates. Malar J 2019; 18:241. [PMID: 31311565 PMCID: PMC6636015 DOI: 10.1186/s12936-019-2879-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) and -2 (PfMSP-2) are major blood-stage vaccine candidate antigens. Understanding the genetic diversity of the genes, pfmsp-1 and pfmsp-2, is important for recognizing the genetic structure of P. falciparum, and the development of an effective vaccine based on the antigens. In this study, the genetic diversities of pfmsp-1 and pfmsp-2 in the Myanmar P. falciparum were analysed. METHODS The pfmsp-1 block 2 and pfmsp-2 block 3 regions were amplified by polymerase chain reaction from blood samples collected from Myanmar patients who were infected with P. falciparum in 2013-2015. The amplified gene fragments were cloned into a T&A vector, and sequenced. Sequence analysis of Myanmar pfmsp-1 block 2 and pfmsp-2 block 3 was performed to identify the genetic diversity of the regions. The temporal genetic changes of both pfmsp-1 and pfmsp-2 in the Myanmar P. falciparum population, as well as the polymorphic diversity in the publicly available global pfmsp-1 and pfmsp-2, were also comparatively analysed. RESULTS High levels of genetic diversity of pfmsp-1 and pfmsp-2 were observed in the Myanmar P. falciparum isolates. Twenty-eight different alleles of pfmsp-1 (8 for K1 type, 14 for MAD20 type, and 6 for RO33 type) and 59 distinct alleles of pfmsp-2 (18 for FC27, and 41 for 3D7 type) were identified in the Myanmar P. falciparum population in amino acid level. Comparative analyses of the genetic diversity of the Myanmar pfmsp-1 and pfmsp-2 alleles in the recent (2013-2015) and past (2004-2006) Myanmar P. falciparum populations indicated the dynamic genetic expansion of the pfmsp-1 and pfmsp-2 in recent years, suggesting that a high level of genetic differentiation and recombination of the two genes may be maintained. Population genetic structure analysis of the global pfmsp-1 and pfmsp-2 also suggested that a high level of genetic diversity of the two genes was found in the global P. falciparum population. CONCLUSION Despite the recent remarkable decline of malaria cases, the Myanmar P. falciparum population still remains of sufficient size to allow the generation and maintenance of genetic diversity. The high level of genetic diversity of pfmsp-1 and pfmsp-2 in the global P. falciparum population emphasizes the necessity for continuous monitoring of the genetic diversity of the genes for better understanding of the genetic make-up and evolutionary aspect of the genes in the global P. falciparum population.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hojong Jun
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Jinyoung Lee
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Khin Saw Aye
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
18
|
Jaenisch T, Heiss K, Fischer N, Geiger C, Bischoff FR, Moldenhauer G, Rychlewski L, Sié A, Coulibaly B, Seeberger PH, Wyrwicz LS, Breitling F, Loeffler FF. High-density Peptide Arrays Help to Identify Linear Immunogenic B-cell Epitopes in Individuals Naturally Exposed to Malaria Infection. Mol Cell Proteomics 2019; 18:642-656. [PMID: 30630936 PMCID: PMC6442360 DOI: 10.1074/mcp.ra118.000992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/28/2018] [Indexed: 01/31/2023] Open
Abstract
High-density peptide arrays are an excellent means to profile anti-plasmodial antibody responses. Different protein intrinsic epitopes can be distinguished, and additional insights are gained, when compared with assays involving the full-length protein. Distinct reactivities to specific epitopes within one protein may explain differences in published results, regarding immunity or susceptibility to malaria. We pursued three approaches to find specific epitopes within important plasmodial proteins, (1) twelve leading vaccine candidates were mapped as overlapping 15-mer peptides, (2) a bioinformatical approach served to predict immunogenic malaria epitopes which were subsequently validated in the assay, and (3) randomly selected peptides from the malaria proteome were screened as a control. Several peptide array replicas were prepared, employing particle-based laser printing, and were used to screen 27 serum samples from a malaria-endemic area in Burkina Faso, West Africa. The immunological status of the individuals was classified as "protected" or "unprotected" based on clinical symptoms, parasite density, and age. The vaccine candidate screening approach resulted in significant hits in all twelve proteins and allowed us (1) to verify many known immunogenic structures, (2) to map B-cell epitopes across the entire sequence of each antigen and (3) to uncover novel immunogenic epitopes. Predicting immunogenic regions in the proteome of the human malaria parasite Plasmodium falciparum, via the bioinformatics approach and subsequent array screening, confirmed known immunogenic sequences, such as in the leading malaria vaccine candidate CSP and discovered immunogenic epitopes derived from hypothetical or unknown proteins.
Collapse
Affiliation(s)
- Thomas Jaenisch
- From the ‡Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, D 69120 Heidelberg, Germany;; §German Center for Infectious Disease Research, Heidelberg (DZIF);; ¶HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Germany;.
| | - Kirsten Heiss
- From the ‡Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, D 69120 Heidelberg, Germany;; §German Center for Infectious Disease Research, Heidelberg (DZIF)
| | - Nico Fischer
- From the ‡Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, D 69120 Heidelberg, Germany;; §German Center for Infectious Disease Research, Heidelberg (DZIF);; ¶HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Germany
| | - Carolin Geiger
- From the ‡Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, D 69120 Heidelberg, Germany;; §German Center for Infectious Disease Research, Heidelberg (DZIF)
| | - F Ralf Bischoff
- ‖German Cancer Research Center, Im Neuenheimer Feld 280, D 69120 Heidelberg, Germany
| | - Gerhard Moldenhauer
- ‖German Cancer Research Center, Im Neuenheimer Feld 280, D 69120 Heidelberg, Germany
| | - Leszek Rychlewski
- BioInfoBank Institute, Św. Marcin 80/82 lok. 355, 61-809 Poznań, Poland
| | - Ali Sié
- Centre de Recherche en Santé de Nouna, BP 02 Nouna, Rue Namory Keita, Burkina Faso
| | - Boubacar Coulibaly
- Centre de Recherche en Santé de Nouna, BP 02 Nouna, Rue Namory Keita, Burkina Faso
| | - Peter H Seeberger
- §§Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D 14476 Potsdam, Germany
| | - Lucjan S Wyrwicz
- Department of Oncology and Radiotherapy, M Sklodowska Curie Memorial Cancer Center, Wawelska 15, 02-034 Warsaw, Poland
| | - Frank Breitling
- ‖‖Institute of Microstructure Technology, Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-Platz 1, D 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix F Loeffler
- ¶HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Germany;; §§Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D 14476 Potsdam, Germany;.
| |
Collapse
|
19
|
Kamuyu G, Tuju J, Kimathi R, Mwai K, Mburu J, Kibinge N, Chong Kwan M, Hawkings S, Yaa R, Chepsat E, Njunge JM, Chege T, Guleid F, Rosenkranz M, Kariuki CK, Frank R, Kinyanjui SM, Murungi LM, Bejon P, Färnert A, Tetteh KKA, Beeson JG, Conway DJ, Marsh K, Rayner JC, Osier FHA. KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization. Front Immunol 2018; 9:2866. [PMID: 30619257 PMCID: PMC6298441 DOI: 10.3389/fimmu.2018.02866] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - James Tuju
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya
| | - Rinter Kimathi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James Mburu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Nelson Kibinge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Marisa Chong Kwan
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Sam Hawkings
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Reuben Yaa
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Emily Chepsat
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James M Njunge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Timothy Chege
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Fatuma Guleid
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Micha Rosenkranz
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher K Kariuki
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya.,Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium
| | - Roland Frank
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samson M Kinyanjui
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Linda M Murungi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin K A Tetteh
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,African Academy of Sciences, Nairobi, Kenya
| | - Julian C Rayner
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Faith H A Osier
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Saavedra-Langer R, Marapara J, Valle-Campos A, Durand S, Vásquez-Chasnamote ME, Silva H, Pinedo-Cancino V. IgG subclass responses to excreted-secreted antigens of Plasmodium falciparum in a low-transmission malaria area of the Peruvian Amazon. Malar J 2018; 17:328. [PMID: 30200987 PMCID: PMC6131892 DOI: 10.1186/s12936-018-2471-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background Malaria in Peru is concentrated in the Amazon region, especially in Loreto, and transmission is focused in rural and peri-urban communities. The government has approved a malaria elimination plan with a community approach and seeks to reduce the risk of transmission through preventive interventions, but asymptomatic and low-parasite-density infections are challenges for disease control and elimination. IgG antibodies play a critical role in combating infection through their ability to reduce parasitaemia and clinical symptoms. In particular, IgG subclasses have important roles in controlling malaria disease and may provide new insight into the development of malaria control strategies and understanding of malaria transmission. Through the use of excreted-secreted antigens from Plasmodium falciparum, were evaluated the responses of the four IgG subclasses in symptomatic and asymptomatic malarial infections. Results Higher levels of whole IgG were observed in asymptomatic carriers (P < 0.05). IgG3 and IgG1 were the most prevalent subclasses and did not show differences in their antibody levels in either type of carrier. All symptomatic carriers were positive for IgG4, and the presence of IgG3 and IgG2 were correlated with protection against parasitaemia. IgG2 showed lower prevalence and antibody titers in comparison to other subclasses. Conclusions This is the first study that characterizes the IgG subclass response in the Peruvian Amazon, and these results show that even in populations from regions with low malaria transmission, a certain degree of naturally acquired immunity can develop when the right antibody subclasses are produced. This provides important insight into the potential mechanisms regulating protective immunity. Electronic supplementary material The online version of this article (10.1186/s12936-018-2471-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Saavedra-Langer
- Fundación para el Desarrollo Sostenible de la Amazonía Baja del Perú, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú.,Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonía Peruana, Centro de Investigación de Recursos Naturales de la Amazonía, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú
| | - Jorge Marapara
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonía Peruana, Centro de Investigación de Recursos Naturales de la Amazonía, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú
| | - Andree Valle-Campos
- Fundación para el Desarrollo Sostenible de la Amazonía Baja del Perú, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú
| | - Salomón Durand
- Centro de Investigación en Enfermedades Tropicales "Maxime Kuczynski", Instituto Nacional de Salud, Lima, Perú
| | - Maria E Vásquez-Chasnamote
- Fundación para el Desarrollo Sostenible de la Amazonía Baja del Perú, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú.,Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonía Peruana, Centro de Investigación de Recursos Naturales de la Amazonía, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú
| | - Hermann Silva
- Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú
| | - Viviana Pinedo-Cancino
- Fundación para el Desarrollo Sostenible de la Amazonía Baja del Perú, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú. .,Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonía Peruana, Centro de Investigación de Recursos Naturales de la Amazonía, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú.
| |
Collapse
|
21
|
Interferon- γ and Interleukin-10 Responses during Clinical Malaria Episodes in Infants Aged 0-2 Years Prenatally Exposed to Plasmodium falciparum: Tanzanian Birth Cohort. J Trop Med 2018; 2018:6847498. [PMID: 30154871 PMCID: PMC6091450 DOI: 10.1155/2018/6847498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Background Infants born to mothers with placental malaria are prenatally exposed to Plasmodium falciparum antigens. However, the effect of that exposure to subsequent immune responses has not been fully elucidated. This study aimed at determining the effect of prenatal exposure to P. falciparum on Interleukin-10 and Interferon-γ responses during clinical malaria episodes in the first 24 months of life. Methods This prospective cohort study involved 215 infants aged 0-2 years born to mothers with or without placental malaria. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of IL-10 and IFN-γ in infants and detect IgM in cord blood. Data were analyzed using SPSS version 20. Findings Geometric mean for IFN-γ in exposed infants was 557.9 pg/ml (95% CI: 511.6-604.1) and in unexposed infants it was 634.4 pg/ml (95% CI: 618.2-668.5) (P=0.02). Mean IL-10 was 22.4 pg/ml (95% CI: 19.4-28.4) and 15.1 pg/ml (95%CI: 12.4-17.6), respectively (P=0.01). Conclusions Prenatal exposure to P. falciparum antigens significantly affects IL-10 and IFN-γ responses during clinical malaria episodes in the first two years of life.
Collapse
|
22
|
Aguilar R, Ubillos I, Vidal M, Balanza N, Crespo N, Jiménez A, Nhabomba A, Jairoce C, Dosoo D, Gyan B, Ayestaran A, Sanz H, Campo JJ, Gómez-Pérez GP, Izquierdo L, Dobaño C. Antibody responses to α-Gal in African children vary with age and site and are associated with malaria protection. Sci Rep 2018; 8:9999. [PMID: 29968771 PMCID: PMC6030195 DOI: 10.1038/s41598-018-28325-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/20/2018] [Indexed: 01/12/2023] Open
Abstract
Naturally-acquired antibody responses to malaria parasites are not only directed to protein antigens but also to carbohydrates on the surface of Plasmodium protozoa. Immunoglobulin M responses to α-galactose (α-Gal) (Galα1-3Galβ1-4GlcNAc-R)-containing glycoconjugates have been associated with protection from P. falciparum infection and, as a result, these molecules are under consideration as vaccine targets; however there are limited field studies in endemic populations. We assessed a wide breadth of isotype and subclass antibody response to α-Gal in children from Mozambique (South East Africa) and Ghana (West Africa) by quantitative suspension array technology. We showed that anti-α-Gal IgM, IgG and IgG1–4 levels vary mainly depending on the age of the child, and also differ in magnitude in the two sites. At an individual level, the intensity of malaria exposure to P. falciparum and maternally-transferred antibodies affected the magnitude of α-Gal responses. There was evidence for a possible protective role of anti-α-Gal IgG3 and IgG4 antibodies. However, the most consistent findings were that the magnitude of IgM responses to α-Gal was associated with protection against clinical malaria over a one-year follow up period, especially in the first months of life, while IgG levels correlated with malaria risk.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Núria Balanza
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Núria Crespo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - David Dosoo
- Kintampo Health Research Center, Kintampo, Ghana
| | - Ben Gyan
- Kintampo Health Research Center, Kintampo, Ghana
| | - Aintzane Ayestaran
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Hèctor Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Luis Izquierdo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
23
|
Ubillos I, Jiménez A, Vidal M, Bowyer PW, Gaur D, Dutta S, Gamain B, Coppel R, Chauhan V, Lanar D, Chitnis C, Angov E, Beeson J, Cavanagh D, Campo JJ, Aguilar R, Dobaño C. Optimization of incubation conditions of Plasmodium falciparum antibody multiplex assays to measure IgG, IgG 1-4, IgM and IgE using standard and customized reference pools for sero-epidemiological and vaccine studies. Malar J 2018; 17:219. [PMID: 29859096 PMCID: PMC5984756 DOI: 10.1186/s12936-018-2369-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Background The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG1–4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. Results Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG1–4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. Conclusions With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested. Although the WHO reference reagent performed well to measure IgG to the majority of the common P. falciparum blood stage antigens tested, customized pools may need to be used as positive controls depending on the antigens (e.g. pre-erythrocytic proteins of low natural immunogenicity) and isotypes/subclasses (e.g. IgM) under study. Electronic supplementary material The online version of this article (10.1186/s12936-018-2369-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Itziar Ubillos
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Paul W Bowyer
- Bacteriology Division, MHRA-NIBSC, South Mimms, Potter Bars, EN6 3QG, UK
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Benoit Gamain
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ross Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - David Lanar
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - James Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
MacRaild CA, Seow J, Das SC, Norton RS. Disordered epitopes as peptide vaccines. Pept Sci (Hoboken) 2018; 110:e24067. [PMID: 32328540 PMCID: PMC7167742 DOI: 10.1002/pep2.24067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
The development of clinically useful peptide-based vaccines remains a long-standing goal. This review highlights that intrinsically disordered protein antigens, which lack an ordered three-dimensional structure, represent excellent starting points for the development of such vaccines. Disordered proteins represent an important class of antigen in a wide range of human pathogens, and, contrary to widespread belief, they are frequently targets of protective antibody responses. Importantly, disordered epitopes appear invariably to be linear epitopes, rendering them ideally suited to incorporation into a peptide vaccine. Nonetheless, the conformational properties of disordered antigens, and hence their recognition by antibodies, frequently depend on the interactions they make and the context in which they are presented to the immune system. These effects must be considered in the design of an effective vaccine. Here we discuss these issues and propose design principles that may facilitate the development of peptide vaccines targeting disordered antigens.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Jeffrey Seow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Sreedam C. Das
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| |
Collapse
|
25
|
Sylvester B, Gasarasi DB, Aboud S, Tarimo D, Massawe S, Mpembeni R, Swedberg G. Hyperparasitaemia during clinical malaria episodes in infants aged 0-24 months and its association with in utero exposure to Plasmodium falciparum. BMC Res Notes 2018; 11:232. [PMID: 29618382 PMCID: PMC5885461 DOI: 10.1186/s13104-018-3339-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/30/2018] [Indexed: 11/18/2022] Open
Abstract
Objective Existing information has shown that infants who are prenatally exposed to P. falciparum are susceptible to subsequent malaria infections. However, the effect of prenatal exposure to P. falciparum on parasite density during clinical malaria episodes has not been fully elucidated. This study is a component of a prospective cohort study for which initial results have been published. This component was designed to determine the effect of prenatal exposure to P. falciparum on parasite density during clinical malaria episodes in the first 24 months of life. A total of 215 infants were involved and monitored for clinical malaria episodes defined by fever (≥ 37 °C) and parasitaemia. The geometric mean parasite counts between exposed and unexposed infants were compared using independent samples t test. The effect of in utero exposure to P. falciparum on parasite density was assessed using binary logistic regression. Results The geometric mean parasite count per µl of blood during clinical malaria episodes in exposed infants was 24,889 (95% CI 18,286–31,490) while in unexposed infants it was 14,035 (95% CI 12,111–15,960), P < 0.05. Prenatal exposure to P. falciparum was associated with hyperparasitaemia during clinical malaria episodes (OR 7.04, 95% CI 2.31–21.74), while other factors were not significantly associated (P > 0.05).
Collapse
Affiliation(s)
- Boniphace Sylvester
- Department of Parasitology and Medical Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania.
| | - Dinah B Gasarasi
- Department of Parasitology and Medical Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Said Aboud
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Donath Tarimo
- Department of Parasitology and Medical Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Siriel Massawe
- Department of Obstetrics and Gynaecology, School of Medicine, Muhimbili University of Health and Allied Sciences, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Rose Mpembeni
- Department of Epidemiology and Biostatistics, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Gote Swedberg
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, P.O.BOX 582, Uppsala, Sweden
| |
Collapse
|
26
|
Sequence variation in Plasmodium falciparum merozoite surface protein-2 is associated with virulence causing severe and cerebral malaria. PLoS One 2018; 13:e0190418. [PMID: 29342212 PMCID: PMC5771562 DOI: 10.1371/journal.pone.0190418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
Parasite virulence, an important factor contributing to the severity of Plasmodium falciparum infection, varies among P. falciparum strains. Relatively little is known regarding markers of virulence capable of identifying strains responsible for severe malaria. We investigated the effects of genetic variations in the P.f. merozoite surface protein 2 gene (msp2) on virulence, as it was previously postulated as a factor. We analyzed 300 msp2 sequences of single P. falciparum clone infection from patients with uncomplicated disease as well as those admitted for severe malaria with and without cerebral disease. The association of msp2 variations with disease severity was examined. We found that the N allele at codon 8 of Block 2 in the FC27-like msp2 gene was significantly associated with severe disease without cerebral complications (odds ratio = 2.73, P = 0.039), while the K allele at codon 17 of Block 4 in the 3D7-like msp2 gene was associated with cerebral malaria (odds ratio = 3.52, P = 0.024). The data suggests possible roles for the associated alleles on parasite invasion processes and immune-mediated pathogenicity. Multiplicity of infection was found to associate with severe disease without cerebral complications, but not cerebral malaria. Variations in the msp2-FC27-block 2-8N and 3D7-block 4-17K allele appear to be parasite virulence markers, and may be useful in determining the likelihood for severe and cerebral malaria. Their interactions with potential host factors for severe diseases should also be explored.
Collapse
|
27
|
Pratt-Riccio LR, De Souza Perce-Da-Silva D, Da Costa Lima-Junior J, Pratt Riccio EK, Ribeiro-Alves M, Santos F, Arruda M, Camus D, Druilhe P, Oliveira-Ferreira J, Daniel-Ribeiro CT, Banic DM. Synthetic Antigens Derived from Plasmodium falciparum Sporozoite, Liver, and Blood Stages: Naturally Acquired Immune Response and Human Leukocyte Antigen Associations in Individuals Living in a Brazilian Endemic Area. Am J Trop Med Hyg 2017; 97:1581-1592. [PMID: 29016339 DOI: 10.4269/ajtmh.17-0359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Peptide vaccine strategies using Plasmodium-derived antigens have emerged as an attractive approach against malaria. However, relatively few studies have been conducted with malaria-exposed populations from non-African countries. Herein, the seroepidemiological profile against Plasmodium falciparum of naturally exposed individuals from a Brazilian malaria-endemic area against synthetic peptides derived from vaccine candidates circumsporozoite protein (CSP), liver stage antigen-1 (LSA-1), erythrocyte binding antigen-175 (EBA-175), and merozoite surface protein-3 (MSP-3) was investigated. Moreover, human leukocyte antigen (HLA)-DRB1* and HLA-DQB1* were evaluated to characterize genetic modulation of humoral responsiveness to these antigens. The study was performed using blood samples from 187 individuals living in rural malaria-endemic villages situated near Porto Velho, Rondônia State. Specific IgG and IgM antibodies and IgG subclasses were detected by enzyme-linked immunosorbent assay, and HLA-DRB1* and HLA-DQB1* low-resolution typing was performed by PCR-SSP. All four synthetic peptides were broadly recognized by naturally acquired antibodies. Regarding the IgG subclass profile, only CSP induced IgG1 and IgG3 antibodies, which is an important fact given that the acquisition of protective immunity appears to be associated with the cytophilicity of IgG1 and IgG3 antibodies. HLA-DRB1*11 and HLA-DQB1*7 had the lowest odds of responding to EBA-175. Our results showed that CSP, LSA-1, EBA, and MSP-3 are immunogenic in natural conditions of exposure and that anti-EBA antibody responses appear to be modulated by HLA class II antigens.
Collapse
Affiliation(s)
| | | | | | | | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST/AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Fátima Santos
- Laboratório Central de Saúde Pública (LACEN), Rondônia, Brazil
| | - Mercia Arruda
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz, Recife, Brazil
| | - Daniel Camus
- Service de Parasitologie-Mycologie, Faculte de Médecine, Lille, France
| | | | | | | | - Dalma Maria Banic
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Nazeri S, Zakeri S, Mehrizi AA, Djadid ND. Naturally acquired immune responses to thrombospondin-related adhesion protein (TRAP) of Plasmodium vivax in patients from areas of unstable malaria transmission. Acta Trop 2017; 173:45-54. [PMID: 28549910 DOI: 10.1016/j.actatropica.2017.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/20/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
Abstract
A key tool for the control, elimination, and eradication of Plasmodium vivax is the development of an effective vaccine. The thrombospondin-related adhesion protein (TRAP) is one of the major sporozoite antigens that plays an important role in the invasion of mosquito salivary glands and hepatocytes by sporozoites. The main goal of this study was to evaluate the naturally acquired antibodies to the P. vivax TRAP (PvTRAP) in patients from malaria-endemic areas of Iran (n=116), Afghanistan (n=50), and Pakistan (n=50). The PvTRAP gene was expressed in Escherichia coli Rosetta (DE3)-pET23a and used as antigen in enzyme-linked immunosorbent assay (ELISA). The profile of immunoglobulin G (IgG) isotype and the avidity of IgG, IgG1, and IgG3 to PvTRAP, as well as the association between anti-PvTRAP isotype responses and host age were evaluated. Only 42.24% of Iranian, 38% of Afghani, and 44% of Pakistani patients infected with P. vivax had positive anti-PvTRAP IgG, and the prevalence of responders in the three countries did not differ significantly (P>0.05). Moreover, the prevalence of IgG1 and IgG3 antibody responses to PvTRAP showed no significant correlation with age (P>0.05). Individuals exposed to vivax malaria in the unstable malaria transmission areas are able to produce antibodies to the TRAP antigen at all ages in response to P. vivax infections. Finally, the presence of mature IgG1 and IgG3 antibodies with high to intermediate avidity against PvTRAP antigen (>60%) provide more information to understand the interactions between the host and P. vivax parasite. In summary, the present study provides data that support the rational development of an effective pre-erythrocytic stage vaccine based on PvTRAP antigen.
Collapse
|
29
|
Rodrigues-da-Silva RN, Soares IF, Lopez-Camacho C, Martins da Silva JH, Perce-da-Silva DDS, Têva A, Ramos Franco AM, Pinheiro FG, Chaves LB, Pratt-Riccio LR, Reyes-Sandoval A, Banic DM, Lima-Junior JDC. Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants. Front Immunol 2017; 8:77. [PMID: 28223984 PMCID: PMC5293784 DOI: 10.3389/fimmu.2017.00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/17/2017] [Indexed: 11/15/2022] Open
Abstract
The cell-traversal protein for ookinetes and sporozoites (CelTOS), a highly conserved antigen involved in sporozoite motility, plays an important role in the traversal of host cells during the preerythrocytic stage of Plasmodium species. Recently, it has been considered an alternative target when designing novel antimalarial vaccines against Plasmodium falciparum. However, the potential of Plasmodium vivax CelTOS as a vaccine target is yet to be explored. This study evaluated the naturally acquired immune response against a recombinant P. vivax CelTOS (PvCelTOS) (IgG and IgG subclass) in 528 individuals from Brazilian Amazon, as well as the screening of B-cell epitopes in silico and peptide assays to associate the breadth of antibody responses of those individuals with exposition and/or protection correlates. We show that PvCelTOS is naturally immunogenic in Amazon inhabitants with 94 individuals (17.8%) showing specific IgG antibodies against the recombinant protein. Among responders, the IgG reactivity indexes (RIs) presented a direct correlation with the number of previous malaria episodes (p = 0.003; r = 0.315) and inverse correlation with the time elapsed from the last malaria episode (p = 0.031; r = −0.258). Interestingly, high responders to PvCelTOS (RI > 2) presented higher number of previous malaria episodes, frequency of recent malaria episodes, and ratio of cytophilic/non-cytophilic antibodies than low responders (RI < 2) and non-responders (RI < 1). Moreover, a high prevalence of the cytophilic antibody IgG1 over all other IgG subclasses (p < 0.0001) was observed. B-cell epitope mapping revealed five immunogenic regions in PvCelTOS, but no associations between the specific IgG response to peptides and exposure/protection parameters were found. However, the epitope (PvCelTOSI136-E143) was validated as a main linear B-cell epitope, as 92% of IgG responders to PvCelTOS were also responders to this peptide sequence. This study describes for the first time the natural immunogenicity of PvCelTOS in Amazon individuals and identifies immunogenic regions in a full-length protein. The IgG magnitude was mainly composed of cytophilic antibodies (IgG1) and associated with recent malaria episodes. The data presented in this paper add further evidence to consider PvCelTOS as a vaccine candidate.
Collapse
Affiliation(s)
| | | | - Cesar Lopez-Camacho
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | | | | | - Antônio Têva
- Laboratory of Immunodiagnostics, Department of Biological Sciences, National School of Public Health, Fiocruz , Rio de Janeiro , Brazil
| | - Antônia Maria Ramos Franco
- Laboratory of Leishmaniasis and Chagas Disease, National Institute of Amazonian Research , Manaus , Brazil
| | - Francimeire Gomes Pinheiro
- Laboratory of Leishmaniasis and Chagas Disease, National Institute of Amazonian Research , Manaus , Brazil
| | - Lana Bitencourt Chaves
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | | | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | - Dalma Maria Banic
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | | |
Collapse
|
30
|
Acquisition of natural humoral immunity to P. falciparum in early life in Benin: impact of clinical, environmental and host factors. Sci Rep 2016; 6:33961. [PMID: 27670685 PMCID: PMC5037375 DOI: 10.1038/srep33961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/04/2016] [Indexed: 01/01/2023] Open
Abstract
To our knowledge, effects of age, placental malaria infection, infections during follow-up, nutritional habits, sickle-cell trait and individual exposure to Anopheles bites were never explored together in a study focusing on the acquisition of malaria antibody responses among infants living in endemic areas.Five hundred and sixty-seven Beninese infants were weekly followed-up from birth to 18 months of age. Immunoglobulin G (IgG), IgG1 and IgG3 specific for 5 malaria antigens were measured every 3 months. A linear mixed model was used to analyze the effect of each variable on the acquisition of antimalarial antibodies in 6-to18-month old infants in univariate and multivariate analyses. Placental malaria, nutrition intakes and sickle-cell trait did not influence the infant antibody levels to P. falciparum antigens. In contrary, age, malaria antibody levels at birth, previous and present malaria infections as well as exposure to Anopheles bites were significantly associated with the natural acquisition of malaria antibodies in 6-to18-month old Beninese infants. This study highlighted inescapable factors to consider simultaneously in an immuno-epidemiological study or a vaccine trial in early life.
Collapse
|
31
|
Wang Q, Zhao Z, Zhang X, Li X, Zhu M, Li P, Yang Z, Wang Y, Yan G, Shang H, Cao Y, Fan Q, Cui L. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. PLoS One 2016; 11:e0151900. [PMID: 26999435 PMCID: PMC4801383 DOI: 10.1371/journal.pone.0151900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022] Open
Abstract
Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a marker of recent exposure to P. vivax in epidemiological studies.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Amino Acid Sequence
- Antibodies, Protozoan/immunology
- Antibody Formation/immunology
- Asia, Southeastern/epidemiology
- Child
- Child, Preschool
- Demography
- Follow-Up Studies
- Humans
- Immunoglobulin G/immunology
- Infant
- Logistic Models
- Malaria, Falciparum/blood
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/blood
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Merozoite Surface Protein 1/chemistry
- Merozoite Surface Protein 1/immunology
- Molecular Weight
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Protein Structure, Tertiary
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Xuexing Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Min Zhu
- School of Humanities and Social Science, China Medical University, Shenyang, Liaoning, China
| | - Peipei Li
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Ying Wang
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, United States of America
| | - Hong Shang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, United States of America
- * E-mail: (YC); (QF); (LC)
| |
Collapse
|
32
|
Balam S, Jafarshad A, Servis C, Frank G, Reed S, Pink R, Druilhe P, Spertini F, Corradin G. Immunogenicity of dimorphic and C-terminal fragments of Plasmodium falciparum MSP2 formulated with different adjuvants in mice. Vaccine 2016; 34:1566-1574. [DOI: 10.1016/j.vaccine.2016.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
|
33
|
Strain-transcending immune response generated by chimeras of the malaria vaccine candidate merozoite surface protein 2. Sci Rep 2016; 6:20613. [PMID: 26865062 PMCID: PMC4749986 DOI: 10.1038/srep20613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022] Open
Abstract
MSP2 is an intrinsically disordered protein that is abundant on the merozoite surface and essential to the parasite Plasmodium falciparum. Naturally-acquired antibody responses to MSP2 are biased towards dimorphic sequences within the central variable region of MSP2 and have been linked to naturally-acquired protection from malaria. In a phase IIb study, an MSP2-containing vaccine induced an immune response that reduced parasitemias in a strain-specific manner. A subsequent phase I study of a vaccine that contained both dimorphic forms of MSP2 induced antibodies that exhibited functional activity in vitro. We have assessed the contribution of the conserved and variable regions of MSP2 to the generation of a strain-transcending antibody response by generating MSP2 chimeras that included conserved and variable regions of the 3D7 and FC27 alleles. Robust anti-MSP2 antibody responses targeting both conserved and variable regions were generated in mice, although the fine specificity and the balance of responses to these regions differed amongst the constructs tested. We observed significant differences in antibody subclass distribution in the responses to these chimeras. Our results suggest that chimeric MSP2 antigens can elicit a broad immune response suitable for protection against different strains of P. falciparum.
Collapse
|
34
|
Lugaajju A, Reddy SB, Rönnberg C, Wahlgren M, Kironde F, Persson KEM. Novel flow cytometry technique for detection of Plasmodium falciparum specific B-cells in humans: increased levels of specific B-cells in ongoing infection. Malar J 2015; 14:370. [PMID: 26410225 PMCID: PMC4583755 DOI: 10.1186/s12936-015-0911-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum is still a major health threat in endemic areas especially for children below 5 years of age. While it is recognized that antibody immunity plays an important role in controlling the disease, knowledge of the mechanisms of sustenance and natural boosting of immunity is very limited. Before, it has not been possible to investigate malaria specific B-cells directly in flow cytometry, making it difficult to know how much of a B cell response is due to malaria, or how much is due to other immunological stimulators. METHODS This study developed a technique using quantum dots and schizont extract made from ghosts of infected erythrocytes, to be able to investigate P. falciparum specific B-cells, something that has never been done before. RESULTS Major differences in P. falciparum specific B-cells were found between samples from immune (22.3 %) and non-immune (1.7 %) individuals. Samples from parasite positive individuals had the highest proportions of specific B-cells (27.9 %). CONCLUSION The study showed increased levels of P. falciparum-specific B-cells in immune individuals, with the highest levels in active malaria infections, using a new technique that opens up new possibilities to study how these cells are sustained in vivo after natural infections. It will also be useful in vaccine studies.
Collapse
Affiliation(s)
- Allan Lugaajju
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda. .,Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden.
| | | | - Caroline Rönnberg
- Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden.
| | - Mats Wahlgren
- Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden.
| | - Fred Kironde
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda. .,Habib Medical School, Islamic University in Uganda, Kampala, Uganda.
| | - Kristina E M Persson
- Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden. .,Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
35
|
Kaddumukasa M, Lwanira C, Lugaajju A, Katabira E, Persson KEM, Wahlgren M, Kironde F. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria. PLoS One 2015; 10:e0124297. [PMID: 25906165 PMCID: PMC4408068 DOI: 10.1371/journal.pone.0124297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.
Collapse
Affiliation(s)
- Mark Kaddumukasa
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Elly Katabira
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kristina E M Persson
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Lund University, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Kironde
- College of Health Sciences, Makerere University, Kampala, Uganda; Habib Medical School, IUIU, Kampala, Uganda
| |
Collapse
|
36
|
Cherif MK, Sanou GS, Bougouma EC, Diarra A, Ouédraogo A, Dolo A, Troye-Blomberg M, Cavanagh DR, Theisen M, Modiano D, Sirima SB, Nebié I. Is Fc gamma receptor IIA (FcγRIIA) polymorphism associated with clinical malaria and Plasmodium falciparum specific antibody levels in children from Burkina Faso? Acta Trop 2015; 142:41-6. [PMID: 25447268 DOI: 10.1016/j.actatropica.2014.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
In the present study, the influences of FcγRIIA polymorphism on susceptibility to malaria and antibody responses to Plasmodium falciparum antigens were analyzed in children. We recruited 96 healthy children between 3 and 10 years at the beginning of the high transmission season and we followed up for 5 months through the high transmission season to assess the parasitological, immunological and genetic endpoints in relation to clinical malaria status. There was a similar distribution of homozygous and heterozygous individuals carrying the FcγRIIA-131R/R and FcγRIIA-131R/H allele, whereas the number of FcγRIIA-131H/H homozygous individuals was lower. P. falciparum infection frequency was not associated with the FcγRIIa-131R/H polymorphism. Only IgG antibody responses to GLURP R0 showed a significant association between antibody levels and FcγRIIA polymorphism (p=0.02). IgG levels to MSP2a were significantly higher in children who did not experience any clinical malaria episode compared to those who experienced at least one malaria episode (p=0.019). Cytophilic and non-cytophylic IgG subclass levels were higher in children without malaria than those who experienced at least one malaria episode. This difference was statistically significant for IgG1 to MSP3 (p=0.003) and to MSP2a (p=0.006); IgG3 to MSP2a (p=0.007) and to GLURP R0 (p=0.044); IgG2 to MSP2b (p=0.007) and IgG4 to MSP3 (p=0.051) and to MSP2a (p=0.049). In this study, homozygous carriers of the FcγRIIA-131R/R allele had higher malaria-specific antibody levels compare to the heterozygous carriers FcγRIIA-131R/H alleles and to homozygous carriers of FcγRIIA-131H/H alleles. The pre-existing antibodies responses were related to a reduced subsequent risk of clinical malaria.
Collapse
Affiliation(s)
- Mariama K Cherif
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso; Université de Ouagadougou, Burkina Faso
| | - Guillaume S Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso; Polytechnic University of Bobo Dioulasso, Burkina Faso
| | - Edith C Bougouma
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amagana Dolo
- Malaria Research and Training Centre, University of Mali, Bamako, Mali
| | | | - David R Cavanagh
- Institute of Immunology and Infection Research, University of Edinburgh, EH9 3JT, Scotland, United Kingdom
| | - Michael Theisen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - David Modiano
- Department of Public Health Sciences, University La Sapienza, Rome, Italy
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nebié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.
| |
Collapse
|
37
|
Noland GS, Jansen P, Vulule JM, Park GS, Ondigo BN, Kazura JW, Moormann AM, John CC. Effect of transmission intensity and age on subclass antibody responses to Plasmodium falciparum pre-erythrocytic and blood-stage antigens. Acta Trop 2015; 142:47-56. [PMID: 25446174 DOI: 10.1016/j.actatropica.2014.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/27/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Cytophilic immunoglobulin (IgG) subclass responses (IgG1 and IgG3) to Plasmodium falciparum antigens have been associated with protection from malaria, yet the relative importance of transmission intensity and age in generation of subclass responses to pre-erythrocytic and blood-stage antigens have not been clearly defined. We analyzed IgG subclass responses to the pre-erythrocytic antigens CSP, LSA-1, and TRAP and the blood-stage antigens AMA-1, EBA-175, and MSP-1 in asymptomatic residents age 2 years or older in stable (n=116) and unstable (n=96) transmission areas in Western Kenya. In the area of stable malaria transmission, a high prevalence of cytophilic (IgG1 and IgG3) antibodies to each antigen was seen in all age groups. Prevalence and levels of cytophilic antibodies to pre-erythrocytic and blood-stage P. falciparum antigens increased with age in the unstable transmission area, yet IgG1 and IgG3 responses to most antigens for all ages in the unstable transmission area were less prevalent and lower in magnitude than even the youngest age group from the stable transmission area. The dominance of cytophilic responses over non-cytophilic (IgG2 and IgG4) was more pronounced in the stable transmission area, and the ratio of IgG3 over IgG1 generally increased with age. In the unstable transmission area, the ratio of cytophilic to non-cytophilic antibodies did not increase with age, and tended to be IgG3-biased for pre-erythrocytic antigens yet IgG1-biased for blood-stage antigens. The differences between areas could not be attributed to active parasitemia status, as there were minimal differences in antibody responses between those positive and negative for Plasmodium infection by microscopy in the stable transmission area. Individuals in areas of unstable transmission have low cytophilic to non-cytophilic IgG subclass ratios and low IgG3:IgG1 ratios to P. falciparum antigens. These imbalances could contribute to the persistent risk of clinical malaria in these areas and serve as population-level, age-specific biomarkers of transmission.
Collapse
|
38
|
Balam S, Olugbile S, Servis C, Diakité M, D'Alessandro A, Frank G, Moret R, Nebie I, Tanner M, Felger I, Smith T, Kajava AV, Spertini F, Corradin G. Plasmodium falciparum merozoite surface protein 2: epitope mapping and fine specificity of human antibody response against non-polymorphic domains. Malar J 2014; 13:510. [PMID: 25526742 PMCID: PMC4320585 DOI: 10.1186/1475-2875-13-510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/06/2014] [Indexed: 11/16/2022] Open
Abstract
Background Two long synthetic peptides representing the dimorphic and constant C-terminal domains of the two allelic families of Plasmodium falciparum merozoite surface proteins 2 are considered promising malaria vaccine candidates. The aim of the current study is to characterize the immune response (epitope mapping) in naturally exposed individuals and relate immune responses to the risk of clinical malaria. Methods To optimize their construction, the fine specificity of human serum antibodies from donors of different age, sex and living in four distinct endemic regions was determined in ELISA by using overlapping 20 mer peptides covering the two domains. Immune purified antibodies were used in Western blot and immunofluorescence assay to recognize native parasite derivate proteins. Results Immunodominant epitopes were characterized, and their distribution was similar irrespective of geographic origin, age group and gender. Acquisition of a 3D7 family and constant region-specific immune response and antibody avidity maturation occur early in life while a longer period is needed for the corresponding FC27 family response. In addition, the antibody response to individual epitopes within the 3D7 family-specific region contributes to protection from malaria infection with different statistical weight. It is also illustrated that affinity-purified antibodies against the dimorphic or constant regions recognized homologous and heterologous parasites in immunofluorescence and homologous and heterologous MSP2 and other polypeptides in Western blot. Conclusion Data from this current study may contribute to a development of MSP2 vaccine candidates based on conserved and dimorphic regions thus bypassing the complexity of vaccine development related to the polymorphism of full-length MSP2. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-510) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saidou Balam
- Department of Biochemistry, University of Lausanne, Ch des Boveresses 155, 1066 Epalinges, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Acquisition of antibodies against Plasmodium falciparum merozoites and malaria immunity in young children and the influence of age, force of infection, and magnitude of response. Infect Immun 2014; 83:646-60. [PMID: 25422270 DOI: 10.1128/iai.02398-14] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Individuals in areas of Plasmodium falciparum endemicity develop immunity to malaria after repeated exposure. Knowledge of the acquisition and nature of protective immune responses to P. falciparum is presently limited, particularly for young children. We examined antibodies (IgM, IgG, and IgG subclasses) to merozoite antigens and their relationship to the prospective risk of malaria in children 1 to 4 years of age in a region of malaria endemicity in Papua New Guinea. IgG, IgG1, and IgG3 responses generally increased with age, were higher in children with active infection, and reflected geographic heterogeneity in malaria transmission. Antigenic properties, rather than host factors, appeared to be the main determinant of the type of IgG subclass produced. High antibody levels were not associated with protection from malaria; in contrast, they were typically associated with an increased risk of malaria. Adjustment for malaria exposure, using a novel molecular measure of the force of infection by P. falciparum, accounted for much of the increased risk, suggesting that the antibodies were markers of higher exposure to P. falciparum. Comparisons between antibodies in this cohort of young children and in a longitudinal cohort of older children suggested that the lack of protective association was explained by lower antibody levels among young children and that there is a threshold level of antibodies required for protection from malaria. Our results suggest that in populations with low immunity, such as young children, antibodies to merozoite antigens may act as biomarkers of malaria exposure and that, with increasing exposure and responses of higher magnitude, antibodies may act as biomarkers of protective immunity.
Collapse
|
40
|
Detecting Foci of Malaria Transmission with School Surveys: A Pilot Study in the Gambia. PLoS One 2013; 8:e67108. [PMID: 23826205 PMCID: PMC3694932 DOI: 10.1371/journal.pone.0067108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In areas of declining malaria transmission such as in The Gambia, the identification of malaria infected individuals becomes increasingly harder. School surveys may be used to identify foci of malaria transmission in the community. METHODS The survey was carried out in May-June 2011, before the beginning of the malaria transmission season. Thirty two schools in the Upper River Region of The Gambia were selected with probability proportional to size; in each school approximately 100 children were randomly chosen for inclusion in the study. Each child had a finger prick blood sample collected for the determination of antimalarial antibodies by ELISA, malaria infection by microscopy and PCR, and for haemoglobin measurement. In addition, a simple questionnaire on socio-demographic variables and the use of insecticide-treated bed nets was completed. The cut-off for positivity for antimalarial antibodies was obtained using finite mixture models. The clustered nature of the data was taken into account in the analyses. RESULTS A total of 3,277 children were included in the survey. The mean age was 10 years (SD = 2.7) [range 4-21], with males and females evenly distributed. The prevalence of malaria infection as determined by PCR was 13.6% (426/3124) [95% CI = 12.2-16.3] with marked variation between schools (range 3-25%, p<0.001), while the seroprevalence was 7.8% (234/2994) [95%CI = 6.4-9.8] for MSP119, 11.6% (364/2997) [95%CI = 9.4-14.5] for MSP2, and 20.0% (593/2973) [95% CI = 16.5-23.2) for AMA1. The prevalence of all the three antimalarial antibodies positive was 2.7% (79/2920). CONCLUSIONS This survey shows that malaria prevalence and seroprevalence before the transmission season were highly heterogeneous.
Collapse
|
41
|
Murungi LM, Kamuyu G, Lowe B, Bejon P, Theisen M, Kinyanjui SM, Marsh K, Osier FHA. A threshold concentration of anti-merozoite antibodies is required for protection from clinical episodes of malaria. Vaccine 2013; 31:3936-42. [PMID: 23800539 PMCID: PMC3763364 DOI: 10.1016/j.vaccine.2013.06.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/14/2013] [Accepted: 06/12/2013] [Indexed: 11/03/2022]
Abstract
Antibodies to selected Plasmodium falciparum merozoite antigens are often reported to be associated with protection from malaria in one epidemiological cohort, but not in another. Here, we sought to understand this paradox by exploring the hypothesis that a threshold concentration of antibodies is necessary for protection. We analyzed data from two independent cohorts along the Kenyan coast, one in which antibodies to AMA1, MSP-2 and MSP-3 were associated with protection from malaria (Chonyi) and another in which this association was not observed (Junju). We used a malaria reference reagent to standardize antibody measurements across both cohorts, and applied statistical methods to derive the threshold concentration of antibodies against each antigen that best correlated with a reduced risk of malaria (the protective threshold), in the Chonyi cohort. We then tested whether antibodies in Junju reached the protective threshold concentrations observed in the Chonyi cohort. Except for children under 3 years, the age-matched proportions of children achieving protective threshold concentrations of antibodies against AMA1 and MSP-2 were significantly lower in Junju compared to Chonyi (Fishers exact test, P<0.01). For MSP-3, this difference was significant only among 4-5 year olds. We conclude that although antibodies are commonly detected in malaria endemic populations, they may be present in concentrations that are insufficient for protection. Our results have implications for the analysis and interpretation of similar data from immuno-epidemiological studies.
Collapse
Affiliation(s)
- Linda M Murungi
- KEMRI Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Acquired antibodies to merozoite antigens in children from Uganda with uncomplicated or severe Plasmodium falciparum malaria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1170-80. [PMID: 23740926 DOI: 10.1128/cvi.00156-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria can present itself as an uncomplicated or severe disease. We have here studied the quantity and quality of antibody responses against merozoite antigens, as well as multiplicity of infection (MOI), in children from Uganda. We found higher levels of IgG antibodies toward erythrocyte-binding antigen EBA181, MSP2 of Plasmodium falciparum 3D7 and FC27 (MSP2-3D7/FC27), and apical membrane antigen 1 (AMA1) in patients with uncomplicated malaria by enzyme-linked immunosorbent assay (ELISA) but no differences against EBA140, EBA175, MSP1, and reticulocyte-binding protein homologues Rh2 and Rh4 or for IgM against MSP2-3D7/FC27.Patients with uncomplicated malaria were also shown to have higher antibody affinities for AMA1 by surface plasmon resonance (SPR). Decreased invasion of two clinical P. falciparum isolates in the presence of patient plasma correlated with lower initial parasitemia in the patients, in contrast to comparisons of parasitemia to ELISA values or antibody affinities, which did not show any correlations. Analysis of the heterogeneity of the infections revealed a higher MOI in patients with uncomplicated disease, with the P. falciparum K1 MSP1 (MSP1-K1) and MSP2-3D7 being the most discriminative allelic markers. Higher MOIs also correlated positively with higher antibody levels in several of the ELISAs. In conclusion, certain antibody responses and MOIs were associated with differences between uncomplicated and severe malaria. When different assays were combined, some antibodies, like those against AMA1, seemed particularly discriminative. However, only decreased invasion correlated with initial parasitemia in the patient, signaling the importance of functional assays in understanding development of immunity against malaria and in evaluating vaccine candidates.
Collapse
|
43
|
How Should Antibodies against P. falciparum Merozoite Antigens Be Measured? J Trop Med 2013; 2013:493834. [PMID: 23690791 PMCID: PMC3652195 DOI: 10.1155/2013/493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Immunity against malaria develops slowly and only after repeated exposure to the parasite. Many of those that die of the disease are children under five years of age. Antibodies are an important part of immunity, but which antibodies that are protective and how these should be measured are still unclear. We discuss the pros and cons of ELISA, invasion inhibition assays/ADCI, and measurement of affinity of antibodies and what can be done to improve these assays, thereby increasing the knowledge about the immune status of an individual, and to perform better evaluation of vaccine trials.
Collapse
|
44
|
Lokossou AG, Dechavanne C, Bouraïma A, Courtin D, Le Port A, Ladékpo R, Noukpo J, Bonou D, Ahouangninou C, Sabbagh A, Fayomi B, Massougbodji A, Garcia A, Migot-Nabias F. Association of IL-4 and IL-10 maternal haplotypes with immune responses to P. falciparum in mothers and newborns. BMC Infect Dis 2013; 13:215. [PMID: 23668806 PMCID: PMC3679728 DOI: 10.1186/1471-2334-13-215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 05/03/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Particular cytokine gene polymorphisms are involved in the regulation of the antibody production. The consequences of already described IL-4, IL-10 and IL-13 gene polymorphisms on biological parameters and antibody levels were investigated among 576 mothers at delivery and their newborns in the context of P. falciparum placental malaria infection. METHODS The study took place in the semi-rural area of Tori-Bossito, in south-west Benin, where malaria is meso-endemic. Six biallelic polymorphisms were determined by quantitative PCR using TaqMan® Pre-Designed SNP Genotyping Assays, in IL-4 (rs2243250, rs2070874), IL-10 (rs1800896, rs1800871, rs1800872) and IL-13 (rs1800925) genes. Antibody responses directed to P. falciparum MSP-1, MSP-2, MSP-3, GLURP-R0, GLURP-R2 and AMA-1 recombinant proteins were determined by ELISA. RESULTS The maternal IL-4(-590)*T/IL-4(+33)*T haplotype (one or two copies) was associated with favorable maternal condition at delivery (high haemoglobin levels, absence of placental parasites) and one of its component, the IL-4(-590)TT genotype, was related to low IgG levels to MSP-1, MSP-2/3D7 and MSP-2/FC27. Inversely, the maternal IL-10(-1082)AA was positively associated with P. falciparum placenta infection at delivery. As a consequence, the IL-10(-819)*T allele (in CT and TT genotypes) as well as the IL-10(-1082)*A/IL-10(-819)*T/IL-10(-592)*A haplotype (one or two copies) in which it is included, were related to an increased risk for anaemia in newborns. The maternal IL-10(-1082)AA genotype was related to high IgG levels to MSP-2/3D7 and AMA-1 in mothers and newborns, respectively. The IL-13 gene polymorphism was only involved in the newborn's antibody response to AMA-1. CONCLUSION These data revealed that IL-4 and IL-10 maternal gene polymorphisms are likely to play a role in the regulation of biological parameters in pregnant women at delivery (anaemia, P. falciparum placenta infection) and in newborns (anaemia). Moreover, IL-4, IL-10 and IL-13 maternal gene polymorphisms were related to IgG responses to MSP-1, MSP-2/3D7 and MSP-2/FC27 in mothers as well as to AMA-1 in newborns.
Collapse
Affiliation(s)
- Adjimon Gatien Lokossou
- Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Humoral immune response to Plasmodium falciparum vaccine candidate GMZ2 and its components in populations naturally exposed to seasonal malaria in Ethiopia. Malar J 2013; 12:51. [PMID: 23383869 PMCID: PMC3616850 DOI: 10.1186/1475-2875-12-51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/31/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In Ethiopia, the general population is vulnerable to unpredictable epidemics of Plasmodium falciparum malaria. However, there is little information on the anti-malaria immune profile of the population in the endemic regions of the country. METHODS The study was designed to investigate the nature of humoral immune response to malaria in two ethnic groups in two endemic localities: Shewa Robit in north, and Boditi in south Ethiopia which are characterized by varying levels of malaria transmission and altitude. In a cross-sectional study, the study participants were diagnosed for malaria infection microscopically and by the rapid diagnostic test (RDT). Sera were tested by using enzyme-linked immunosorbent assay (ELISA) for total immunoglobulin (Ig) G against P. falciparum blood-stage vaccine candidate GMZ2 and its subunits (Glutamate-rich protein (GLURP-R0), merozoite surface protein 3 (MSP3); as well as IgG subclasses against GLURP-R0 and MSP3. RESULTS Whereas 23(8.6%) blood smear-positive cases for P. falciparum were detected in Boditi, all Shewa Robit study participants had no detectable P. falciparum infection. In both localities, total IgG prevalence and levels to GMZ2 were significantly higher than the response to the component domains indicating the strong recognition of GMZ2 by antibodies acquired through natural exposure. Total IgG and subclass prevalence and levels were higher in Shewa Robit than Boditi, suggesting difference in the intensity of malaria transmission in the two localities and/or genetic differences between the two populations in their response to the antigens. In both study sites, IgG subclass levels to GLURP-R0 were significantly higher than that to MSP3 for all corresponding subclasses in most individuals, indicating the higher relative antigenicity and probably protective potential of GLURP-R0 compared to MSP3. Against both GLURP-R0 and MSP3, the ratio of cytophilic to noncytophilic antibodies was >1 in the majority of the study participants, in both study sites, suggesting the induction of protective (cytophilic) antibodies against the two antigens. Analysis of age-related pattern in antibody levels against the antigens showed a positive association with increasing age. CONCLUSIONS P. falciparum GLURP-R0 and MSP3 separately as well as in a fused form in GMZ2 are readily recognized by the sera of the study populations. The significantly higher antibody prevalence and level detected against GMZ2 compared to either of its subunits separately, in naturally exposed populations, suggests the synergistic effect of GLURP-R0 and MSP3 and that GMZ2 could be a more relevant blood-stage malaria vaccine candidate than the individual components. Detection of high-level antibody responses in non-febrile, smear-negative individuals may possibly be an indication of a low-grade, asymptomatic sub-microscopic infection in the induction and maintenance of high-level malaria immunity.
Collapse
|
46
|
MacRaild CA, Pedersen MØ, Anders RF, Norton RS. Lipid interactions of the malaria antigen merozoite surface protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2572-8. [DOI: 10.1016/j.bbamem.2012.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
47
|
Zhou J, Ludlow LE, Hasang W, Rogerson SJ, Jaworowski A. Opsonization of malaria-infected erythrocytes activates the inflammasome and enhances inflammatory cytokine secretion by human macrophages. Malar J 2012; 11:343. [PMID: 23046548 PMCID: PMC3528456 DOI: 10.1186/1475-2875-11-343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022] Open
Abstract
Background Antibody opsonization of Plasmodium falciparum-infected erythrocytes (IE) plays a crucial role in anti-malarial immunity by promoting clearance of blood-stage infection by monocytes and macrophages. The effects of phagocytosis of opsonized IE on macrophage pro-inflammatory cytokine responses are poorly understood. Methods Phagocytic clearance, cytokine response and intracellular signalling were measured using IFN-γ-primed human monocyte-derived macrophages (MDM) incubated with opsonized and unopsonized trophozoite-stage CS2 IE, a chondroitin sulphate-binding malaria strain. Cytokine secretion was measured by bead array or ELISA, mRNA using quantitative PCR, and activation of NF-κB by Western blot and electrophoretic mobility shift assay. Data were analysed using the Mann–Whitney U test or the Wilcoxon signed rank test as appropriate. Results Unopsonized CS2 IE were not phagocytosed whereas IE opsonized with pooled patient immune serum (PPS) were (Phagocytic index (PI)=18.4, [SE 0.38] n=3). Unopsonized and opsonized IE induced expression of TNF, IL-1β and IL-6 mRNA by MDM and activated NF-κB to a similar extent. Unopsonized IE induced secretion of IL-6 (median= 622 pg/ml [IQR=1,250-240], n=9) but no IL-1β or TNF, whereas PPS-opsonized IE induced secretion of IL-1β (18.6 pg/mL [34.2-14.4]) and TNF (113 pg/ml [421–17.0]) and increased IL-6 secretion (2,195 pg/ml [4,658-1,095]). Opsonized, but not unopsonized, CS2 IE activated caspase-1 cleavage and enzymatic activity in MDM showing that Fc receptor-mediated phagocytosis activates the inflammasome. MDM attached to IgG-coated surfaces however secreted IL-1β in response to unopsonized IE, suggesting that internalization of IE is not absolutely required to activate the inflammasome and stimulate IL-1β secretion. Conclusions It is concluded that IL-6 secretion from MDM in response to CS2 IE does not require phagocytosis, whereas secretion of TNF and IL-1β is dependent on Fcγ receptor-mediated phagocytosis; for IL-1β, this occurs by activation of the inflammasome. The data presented in this paper show that generating antibody responses to blood-stage malaria parasites is potentially beneficial both in reducing parasitaemia via Fcγ receptor-dependent macrophage phagocytosis and in generating a robust pro-inflammatory response.
Collapse
Affiliation(s)
- Jingling Zhou
- Centre for Virology, Burnet Institute, PO Box 2284, Melbourne, Victoria, 3001, Australia
| | | | | | | | | |
Collapse
|
48
|
Baumann A, Magris MM, Urbaez ML, Vivas-Martinez S, Durán R, Nieves T, Esen M, Mordmüller BG, Theisen M, Avilan L, Metzger WG. Naturally acquired immune responses to malaria vaccine candidate antigens MSP3 and GLURP in Guahibo and Piaroa indigenous communities of the Venezuelan Amazon. Malar J 2012; 11:46. [PMID: 22335967 PMCID: PMC3296639 DOI: 10.1186/1475-2875-11-46] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Malaria transmission in most of Latin America can be considered as controlled. In such a scenario, parameters of baseline immunity to malaria antigens are of specific interest with respect to future malaria eradication efforts. Methods A cross-sectional study was carried out in two indigenous population groups in Amazonas/Venezuela. Data from the regional malaria documentation system were extracted and participants from the ethnic groups of the Guahibo (n = 180) and Piaroa (n = 295) were investigated for the presence of Plasmodium parasites and naturally acquired antibodies to Plasmodium falciparum antigens in serum. The GMZ2 vaccine candidate proteins MSP3 and GLURP were chosen as serological markers. Results The incidence of P. falciparum in both communities was found to be less than 2%, and none of the participants harboured P. falciparum at the time of the cross-sectional. Nearly a quarter of the participants (111/475; 23,4%) had positive antibody titres to at least one of the antigens. 53/475 participants (11.2%) were positive for MSP3, and 93/475 participants (19.6%) were positive for GLURP. High positive responses were detected in 36/475 participants (7.6%) and 61/475 participants (12.8%) for MSP3 and GLURP, respectively. Guahibo participants had significantly higher antibody titres than Piaroa participants. Conclusions Considering the low incidence of P. falciparum, submicroscopical infections may explain the comparatively high anti-P. falciparum antibody concentrations.
Collapse
Affiliation(s)
- Andreas Baumann
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Weedall GD, Clark CG, Koldkjaer P, Kay S, Bruchhaus I, Tannich E, Paterson S, Hall N. Genomic diversity of the human intestinal parasite Entamoeba histolytica. Genome Biol 2012; 13:R38. [PMID: 22630046 PMCID: PMC3446291 DOI: 10.1186/gb-2012-13-5-r38] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/29/2012] [Accepted: 05/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background Results Conclusions
Collapse
|
50
|
Wilson DW, Fowkes FJI, Gilson PR, Elliott SR, Tavul L, Michon P, Dabod E, Siba PM, Mueller I, Crabb BS, Beeson JG. Quantifying the importance of MSP1-19 as a target of growth-inhibitory and protective antibodies against Plasmodium falciparum in humans. PLoS One 2011; 6:e27705. [PMID: 22110733 PMCID: PMC3217002 DOI: 10.1371/journal.pone.0027705] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/23/2011] [Indexed: 12/13/2022] Open
Abstract
Background Antibodies targeting blood stage antigens are important in protection against malaria, but the key targets and mechanisms of immunity are not well understood. Merozoite surface protein 1 (MSP1) is an abundant and essential protein. The C-terminal 19 kDa region (MSP1-19) is regarded as a promising vaccine candidate and may also be an important target of immunity. Methodology/Findings Growth inhibitory antibodies against asexual-stage parasites and IgG to recombinant MSP1-19 were measured in plasma samples from a longitudinal cohort of 206 children in Papua New Guinea. Differential inhibition by samples of mutant P. falciparum lines that expressed either the P. falciparum or P. chabaudi form of MSP1-19 were used to quantify MSP1-19 specific growth-inhibitory antibodies. The great majority of children had detectable IgG to MSP1-19, and high levels of IgG were significantly associated with a reduced risk of symptomatic P. falciparum malaria during the 6-month follow-up period. However, there was little evidence of PfMSP1-19 specific growth inhibition by plasma samples from children. Similar results were found when testing non-dialysed or dialysed plasma, or purified antibodies, or when measuring growth inhibition in flow cytometry or microscopy-based assays. Rabbit antisera generated by immunization with recombinant MSP1-19 demonstrated strong MSP1-19 specific growth-inhibitory activity, which appeared to be due to much higher antibody levels than human samples; antibody avidity was similar between rabbit antisera and human plasma. Conclusions/Significance These data suggest that MSP1-19 is not a major target of growth inhibitory antibodies and that the protective effects of antibodies to MSP1-19 are not due to growth inhibitory activity, but may instead be mediated by other mechanisms. Alternatively, antibodies to MSP1-19 may act as a marker of protective immunity.
Collapse
Affiliation(s)
- Danny W. Wilson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Melbourne, Australia
| | - Freya J. I. Fowkes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Paul R. Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Monash University, Clayton, Australia
| | - Salenna R. Elliott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, Papua New Guinea
| | - Pascal Michon
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, Papua New Guinea
- Faculty of Health Sciences, Divine Word University, Madang, Papua New Guinea
| | - Elija Dabod
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, Papua New Guinea
| | - Peter M. Siba
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, Papua New Guinea
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Papua New Guinea Institute of Medical Research (PNGIMR), Goroka, Papua New Guinea
- Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain
| | - Brendan S. Crabb
- University of Melbourne, Melbourne, Australia
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - James G. Beeson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- * E-mail:
| |
Collapse
|