1
|
Mukherjee K, Xiao C. GLP-2 regulation of intestinal lipid handling. Front Physiol 2024; 15:1358625. [PMID: 38426205 PMCID: PMC10902918 DOI: 10.3389/fphys.2024.1358625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Lipid handling in the intestine is important for maintaining energy homeostasis and overall health. Mishandling of lipids in the intestine contributes to dyslipidemia and atherosclerotic cardiovascular diseases. Despite advances in this field over the past few decades, significant gaps remain. The gut hormone glucagon-like peptide-2 (GLP-2) has been shown to play pleotropic roles in the regulation of lipid handling in the intestine. Of note, GLP-2 exhibits unique actions on post-prandial lipid absorption and post-absorptive release of intestinally stored lipids. This review aims to summarize current knowledge in how GLP-2 regulates lipid processing in the intestine. Elucidating the mechanisms of GLP-2 regulation of intestinal lipid handling not only improves our understanding of GLP-2 biology, but also provides insights into how lipids are processed in the intestine, which offers opportunities for developing novel strategies towards prevention and treatment of dyslipidemia and atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Velázquez E, Le Baut Ayuso Y, Blázquez E, Ruiz-Albusac JM. Glucose and Several Mitogenic Agents Modulate the Glucagon-Like Peptide-2 Receptor Expression in Cultured Rat Astrocytes. J Alzheimers Dis Rep 2022; 6:723-732. [PMID: 36606205 PMCID: PMC9741749 DOI: 10.3233/adr-220043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Glucagon-like peptide-2 (GLP-2) is an intestinal trophic factor that induces astrocyte proliferation through its own receptor (GLP-2R), but the control of its expression is not well known. Objective To study the effects of glucose and of different mitogenic agents on the control of GLP-2R expression in cultured rat astrocytes. Methods GLP-2R mRNA content was measured by quantitative RT-PCR. Results GLP-2R expression was higher in proliferating than in resting cells. The expression was dependent of glucose concentration both in the absence and in the presence of GLP-2. In the presence of a high glucose concentration, GLP-2, PDGF, and PDGF plus GLP-2 presented opposite effects depending on the incubation time. However, insulin, IGF-1, and EGF alone, and plus GLP-2 had no effect. IGF-2, but not IGF-2 plus GLP-2, increased the expression. On the contrary, NGF decreased the GLP-2R expression, but NGF plus GLP-2 increased it even until values similar to those obtained with GLP-2 alone. Interestingly, in the presence of a low glucose concentration, leptin and NPY produced a significant reduction of GLP-2R expression. Conclusion Astrocytes are distributed throughout the brain, where GLP-2 appears to have important functions. Since these cells express the GLP-2R, the results of this study could be considered of interest to advance the knowledge of the role of GLP-2 signaling in the CNS, which should lead a better understanding of the events that occur under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain,Health Research Institute of the San Carlos Clinical Hospital, Madrid, Spain
| | - Yannick Le Baut Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Enrique Blázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain,Health Research Institute of the San Carlos Clinical Hospital, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain,Health Research Institute of the San Carlos Clinical Hospital, Madrid, Spain,Correspondence to: Juan Miguel Ruiz-Albusac, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain. Tel.: +34 913941446; E-mail:
| |
Collapse
|
3
|
Xie X, Geng C, Li X, Liao J, Li Y, Guo Y, Wang C. Roles of gastrointestinal polypeptides in intestinal barrier regulation. Peptides 2022; 151:170753. [PMID: 35114316 DOI: 10.1016/j.peptides.2022.170753] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
The intestinal barrier is a dynamic entity that is organized as a multilayer system and includes various intracellular and extracellular elements. The gut barrier functions in a coordinated manner to impede the passage of antigens, toxins, and microbiome components and simultaneously preserves the balanced development of the epithelial barrier and the immune system and the acquisition of tolerance to dietary antigens and intestinal pathogens.Numerous scientific studies have shown a significant association between gut barrier damage and gastrointestinal and extraintestinal diseases such as inflammatory bowel disease, celiac disease and hepatic fibrosis. Various internal and external factors regulate the intestinal barrier. Gastrointestinal peptides originate from enteroendocrine cells in the luminal digestive tract and are critical gut barrier regulators. Recent studies have demonstrated that gastrointestinal peptides have a therapeutic effect on digestive tract diseases, enhancing epithelial barrier activity and restoring the gut barrier. This review demonstrates the roles and mechanisms of gastrointestinal polypeptides, especially somatostatin (SST) and vasoactive intestinal peptide (VIP), in intestinal barrier regulation.
Collapse
Affiliation(s)
- Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Liao
- Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Xie YC, Yao ZH, Yao XL, Pan JZ, Zhang SF, Zhang Y, Hu JC. Glucagon-Like Peptide-2 Receptor is Involved in Spatial Cognitive Dysfunction in Rats After Chronic Cerebral Hypoperfusion. J Alzheimers Dis 2019; 66:1559-1576. [PMID: 30452417 DOI: 10.3233/jad-180782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) affects the aging population and especially patients with neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. CCH is closely related to the cognitive dysfunction in these diseases. Glucagon-like peptide-2 receptor (GLP2R) mRNA and protein are highly expressed in the gut and in hippocampal neurons. This receptor is involved in the regulation of food intake and the control of energy balance and glucose homeostasis. The present study employed behavioral techniques, electrophysiology, western blotting, immunohistochemistry, quantitative real time polymerase chain reaction (qRT-PCR), and Golgi staining to investigate whether the expression of GLP2R changes after CCH and whether GLP2R is involved in cognitive impairment caused by CCH. Our findings show that CCH significantly decreased hippocampal GLP2R mRNA and protein levels. GLP2R upregulation could prevent CCH-induced cognitive impairment. It also improved the CCH-induced impairment of long-term potentiation and long-term depression. Additionally, GLP2R modulated after CCH the AKT-mTOR-p70S6K pathway in the hippocampus. Moreover, an upregulation of the GLP2R increased the neurogenesis in the dentate gyrus, neuronal activity, and density of dendritic spines and mushroom spines in hippocampal neurons. Our findings reveal the involvement of GLP2R via a modulation of the AKT-mTOR-p70S6K pathway in the mechanisms underlying CCH-induced impairments of spatial learning and memory. We suggest that the GLP2R and the AKT-mTOR-p70S6K pathway in the hippocampus are promising targets to treat cognition deficits in CCH.
Collapse
Affiliation(s)
- Yan-Chun Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Li Yao
- Department of Neurology, Central Hospital of Zhengzhou, Zhengzhou, China
| | - Jian-Zhen Pan
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Feng Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji-Chang Hu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Sasaki-Hamada S, Ikeda M, Oka JI. Glucagon-like peptide-2 rescues memory impairments and neuropathological changes in a mouse model of dementia induced by the intracerebroventricular administration of streptozotocin. Sci Rep 2019; 9:13723. [PMID: 31548563 PMCID: PMC6757030 DOI: 10.1038/s41598-019-50167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Glucagon-like peptide 2 (GLP-2) is derived from the proglucagon gene expressed in the intestines, pancreas and brain. Our previous study showed that GLP-2 improved lipopolysaccharide-induced memory impairments. The current study was designed to further investigated the potential of GLP-2 in memory impairment induced by intracerebroventricular administration of streptozotocin (ICV-STZ) in mice, which have been used as an animal model of sporadic Alzheimer’s disease (AD). STZ was administered on alternate days (Day-1 and Day-3) in order to induce dementia in male ddY mice. ICV-STZ-treated mice were administered GLP-2 (0.6 μg/mouse, ICV) for 5 days from 14 days after the first ICV administration of STZ. In these mice, we examined spatial working memory, the biochemical parameters of oxidative stress, or neurogenesis. The GLP-2 treatment restored spatial working memory in ICV-STZ-treated mice. ICV-STZ-treated mice showed markedly increased thiobarbituric acid reactive species (TBARS) and decreased glutathione (GSH) levels, and GLP-2 significantly restored these ICV-STZ-induced changes. GLP-2 also significantly restored neurogenesis in the subgranular zone of the dentate gyrus in ICV-STZ-treated mice. We herein demonstrated that GLP-2 significantly restored ICV-STZ-induced memory impairments as well as biochemical and histopathological alterations, and accordingly, propose that the memory restorative ability of GLP-2 is due to its potential to reduce oxidative stress.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, 252-0373, Japan
| | - Masaatsu Ikeda
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
6
|
Sasaki-Hamada S, Narusawa K, Nakamura R, Ishibashi H, Oka JI. Effects of centrally administered glucagon-like peptide-2 on blood pressure and barosensitive neurons in spontaneously hypertensive rats. Neuropeptides 2018; 69:66-75. [PMID: 29703428 DOI: 10.1016/j.npep.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 02/25/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
The central administration of glucagon-like peptide-2 (GLP-2) decreases blood pressure in rats. In the present study, we investigated the hypotensive effects of GLP-2 using spontaneously hypertensive rats (SHRs), an animal model of hypertension. The central administration of GLP-2 (0.6 μg) decreased mean arterial pressure (MAP) in SHRs (-24.1 ± 4.5%; P < 0.05), but not in normotensive Wistar-Kyoto (WKY) rats (-10.6 ± 7.4%; P > 0.05), whereas GLP-2 (6 μg) decreased MAP in WKY rats (-23.5 ± 4.2%; P < 0.05) and SHRs (-46.7 ± 11.6%; P < 0.01) under anesthesia with urethane and α-chloralose. Histological analyses revealed that the central administration of GLP-2 (6 μg) induced Fos immunoreactivity (Fos-IR) in the hypothalamic and medullary areas in WKY rats and SHRs. However, the distribution of Fos-IR in GABAergic neurons in the rostral ventrolateral medulla (RVLM) differed between WKY rats and SHRs. GLP-2 directly modulated the excitability of RVLM neurons in brainstem slices from SHRs, but not WKY rats. These results suggest that neuronal activity through the activation of GLP-2 receptors in the RVLM contributes to lowering blood pressure in SHRs.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan
| | - Koji Narusawa
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryuji Nakamura
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
7
|
Al-Badri G, Leggio GM, Musumeci G, Marzagalli R, Drago F, Castorina A. Tackling dipeptidyl peptidase IV in neurological disorders. Neural Regen Res 2018; 13:26-34. [PMID: 29451201 PMCID: PMC5840985 DOI: 10.4103/1673-5374.224365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/25/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a serine protease best known for its role in inactivating glucagon-like peptide-1 (GLP-1), pituitary adenylate cyclase-activating polypeptide (PACAP) and glucose-dependent insulinotropic peptide (GIP), three stimulators of pancreatic insulin secretion with beneficial effects on glucose disposal. Owing to the relationship between DPP-IV and these peptides, inhibition of DPP-IV enzyme activity is considered as an attractive treatment option for diabetic patients. Nonetheless, increasing studies support the idea that DPP-IV might also be involved in the development of neurological disorders with a neuroinflammatory component, potentially through its non-incretin activities on immune cells. In this review article, we aim at highlighting recent literature describing the therapeutic value of DPP-IV inhibitors for the treatment of such neurological conditions. Finally, we will illustrate some of the promising results obtained using berberine, a plant extract with potent inhibitory activity on DPP-IV.
Collapse
Affiliation(s)
- Ghaith Al-Badri
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rubina Marzagalli
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Wang F, Zhang L. p15(INK4b) regulates cell cycle signaling in hippocampal astrocytes of aged rats. Aging Clin Exp Res 2016; 28:813-21. [PMID: 26526028 DOI: 10.1007/s40520-015-0484-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Cyclin-dependent kinase inhibitor p15(INK4b) is thought to be an important player in regulating astrocytic cell cycle. However, little is known with regard to the expression of p15(INK4b) and its function in hippocampal astrocytes. This study evaluated the expression of p15(INK4b) and its function during different development stages in hippocampal astrocytes. METHODS In this study, we cultured hippocampal astrocytes from neonatal adult and aged rats. The expression of p15(INK4b) in neonatal, adult and aged astrocytes was examined. Short interfering RNA (siRNA) was then used to study the functional effects of p15(INK4b) down-regulation during cell cycle regulation. RESULTS We found the expression of p15(INK4b) in hippocampal astrocytes was detectable on postnatal day 7, was expressed at moderate levels in adult mice (9 months old) astrocytes and peaked in aged rat (24 months old) astrocytes. Incubation with siRNA significantly suppressed p15(INK4b) expression at the mRNA and protein levels in astrocytes. Down-regulation of p15(INK4b) increased [(3)H]-thymidine incorporation into DNA and allowed cells to pass the G0/G1-S checkpoint in aged but not in neonatal or adult astrocytes. CONCLUSIONS These observations suggest p15(INK4b) is expressed at a steady level in neonatal and adult rat hippocampal astrocytes with no effect on cell cycle regulation. Importantly, aged astrocyte cell cycle regulation was significantly affected by high expression levels of p15(INK4b) suggesting a role for p15(INK4b) in cell cycle regulation when it is expressed at high but not moderate or low levels in hippocampal astrocytes.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurology, The Central Hospital of Wuhan, 26 Shengli Street, Wuhan, 430014, China.
| | - Linhong Zhang
- Department of Neurology, The Central Hospital of Wuhan, 26 Shengli Street, Wuhan, 430014, China
| |
Collapse
|
9
|
Iwai T, Jin K, Ohnuki T, Sasaki-Hamada S, Nakamura M, Saitoh A, Sugiyama A, Ikeda M, Tanabe M, Oka JI. Glucagon-like peptide-2-induced memory improvement and anxiolytic effects in mice. Neuropeptides 2015; 49:7-14. [PMID: 25481797 DOI: 10.1016/j.npep.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/18/2014] [Accepted: 11/19/2014] [Indexed: 12/11/2022]
Abstract
We investigated the effectiveness of glucagon-like peptide-2 (GLP-2) on memory impairment in lipopolysaccharide (LPS)-treated mice, and anxiety-like behavior in adrenocorticotropic hormone (ACTH)-treated mice. In the Y-maze test, LPS (10 µg/mouse, i.c.v.) significantly decreased spontaneous alternation, which was prevented by pretreatment with GLP-2 (0.01-0.3 µg/mouse, i.c.v.). The GLP-2 treatment just before the Y-maze test also improved LPS-induced memory impairment. Continuous treatment with GLP-2 (3 µg/mouse, i.c.v.) had no effect on the open-field test in saline-treated or ACTH-treated mice. Chronic ACTH treatment did not cause anxiogenic effects in the elevated plus-maze test. GLP-2 showed weak anxiolytic-like effects in the elevated plus-maze test in ACTH-treated, but not saline-treated mice. Moreover, GLP-2 increased 5-HT, but not 5-HIAA and tryptophan hydroxylase 2 levels in the amygdala of ACTH-treated mice. Pharmacological depletion of 5-HT prevented the anxiolytic effects of GLP-2. These results suggest that GLP-2 protected and improved memory function in LPS-treated mice, and also had anxiolytic effects due to changes in the 5-HT system.
Collapse
Affiliation(s)
- Takashi Iwai
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan; Department of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazushi Jin
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomoko Ohnuki
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Minami Nakamura
- Department of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Azusa Sugiyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Masaatsu Ikeda
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mitsuo Tanabe
- Department of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
10
|
Ruggiero D, Nappo S, Nutile T, Sorice R, Talotta F, Giorgio E, Bellenguez C, Leutenegger AL, Liguori GL, Ciullo M. Genetic variants modulating CRIPTO serum levels identified by genome-wide association study in Cilento isolates. PLoS Genet 2015; 11:e1004976. [PMID: 25629528 PMCID: PMC4309561 DOI: 10.1371/journal.pgen.1004976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Cripto, the founding member of the EGF-CFC genes, plays an essential role in embryo development and is involved in cancer progression. Cripto is a GPI-anchored protein that can interact with various components of multiple signaling pathways, such as TGF-β, Wnt and MAPK, driving different processes, among them epithelial-mesenchymal transition, cell proliferation, and stem cell renewal. Cripto protein can also be cleaved and released outside the cell in a soluble and still active form. Cripto is not significantly expressed in adult somatic tissues and its re-expression has been observed associated to pathological conditions, mainly cancer. Accordingly, CRIPTO has been detected at very low levels in the plasma of healthy volunteers, whereas its levels are significantly higher in patients with breast, colon or glioblastoma tumors. These data suggest that CRIPTO levels in human plasma or serum may have clinical significance. However, very little is known about the variability of serum levels of CRIPTO at a population level and the genetic contribution underlying this variability remains unknown. Here, we report the first genome-wide association study of CRIPTO serum levels in isolated populations (n = 1,054) from Cilento area in South Italy. The most associated SNPs (p-value<5*10-8) were all located on chromosome 3p22.1-3p21.3, in the CRIPTO gene region. Overall six CRIPTO associated loci were replicated in an independent sample (n = 535). Pathway analysis identified a main network including two other genes, besides CRIPTO, in the associated regions, involved in cell movement and proliferation. The replicated loci explain more than 87% of the CRIPTO variance, with 85% explained by the most associated SNP. Moreover, the functional analysis of the main associated locus identified a causal variant in the 5’UTR of CRIPTO gene which is able to strongly modulate CRIPTO expression through an AP-1-mediate transcriptional regulation. Cripto gene has a fundamental role in embryo development and is also involved in cancer. The protein is bound to the cell membrane through an anchor, that can be cleaved, causing the secretion of the protein, in a still active form. In the adult, CRIPTO is detected at very low levels in normal tissues and in the blood, while its increase in both tissues and blood is associated to pathological conditions, mainly cancer. As other GPI linked proteins such as the carcinoembryonic antigen (CEA), one of the most used tumor markers, CRIPTO is able to reach the bloodstream. Therefore, CRIPTO represents a new promising biomarker and potential therapeutic target, and blood CRIPTO levels might be associated to clinical features. Here we examined the variability of blood CRIPTO levels at a population level (population isolates from the Cilento region in South Italy) and we investigated the genetic architecture underlying this variability. We reported the association of common genetic variants with the levels of CRIPTO protein in the blood and we identified a main locus on chromosome 3 and additional five associated loci. Moreover, through functional analyses, we were able to uncover the mechanism responsible for the variation in CRIPTO levels, which is a regulation mediated by the transcriptional factor AP-1.
Collapse
Affiliation(s)
- Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Stefania Nappo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Rossella Sorice
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Emilia Giorgio
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Celine Bellenguez
- Institut Pasteur de Lille, Lille, France
- Inserm, U744, Lille, France
- Université Lille-Nord de France, Lille, France
| | - Anne-Louise Leutenegger
- Inserm, U946, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, UMR-S 946, Paris, France
| | - Giovanna L. Liguori
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- * E-mail:
| |
Collapse
|
11
|
El-Jamal N, Erdual E, Neunlist M, Koriche D, Dubuquoy C, Maggiotto F, Chevalier J, Berrebi D, Dubuquoy L, Boulanger E, Cortot A, Desreumaux P. Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration. Am J Physiol Gastrointest Liver Physiol 2014; 307:G274-85. [PMID: 24875097 DOI: 10.1152/ajpgi.00389.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The glucagon-like peptide 2 (GLP-2) is an intestinotrophic hormone with growth promoting and anti-inflammatory actions. However, the full biological functions of GLP-2 and the localization of its receptor (GLP-2R) remain controversial. Among cell lines tested, the expression of GLP-2R transcript was detected in human colonic myofibroblasts (CCD-18Co) and in primary culture of rat enteric nervous system but not in intestinal epithelial cell lines, lymphocytes, monocytes, or endothelial cells. Surprisingly, GLP-2R was expressed in murine (GLUTag), but not human (NCI-H716) enteroendocrine cells. The screening of GLP-2R mRNA in mice organs revealed an increasing gradient of GLP-2R toward the distal gut. An unexpected expression was detected in the mesenteric fat, mesenteric lymph nodes, bladder, spleen, and liver, particularly in hepatocytes. In two mice models of trinitrobenzene sulfonic acid (TNBS)- and dextran sulfate sodium (DSS)-induced colitis, the colonic expression of GLP-2R mRNA was decreased by 60% compared with control mice. Also, GLP-2R mRNA was significantly downregulated in intestinal tissues of inflammatory bowel disease patients. Therapeutically, GLP-2 showed a weak restorative effect on intestinal inflammation during TNBS-induced colitis as assessed by macroscopic score and inflammatory markers. Finally, GLP-2 treatment accelerated mouse liver regeneration following partial hepatectomy as assessed by histological and molecular analyses. In conclusion, the limited therapeutic effect of GLP-2 on colonic inflammation dampens its utility in the management of severe inflammatory intestinal disorders. However, the role of GLP-2 in liver regeneration is a novelty that might introduce GLP-2 into the management of liver diseases and emphasizes on the importance of elucidating other extraintestinal functions of GLP-2.
Collapse
Affiliation(s)
- Noura El-Jamal
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France; Intestinal Biotech Development, Lille, France
| | - Edmone Erdual
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France
| | | | - Dine Koriche
- CHU Lille, Service des maladies de l'appareil digestif et de la nutrition, Hôpital Claude Huriez, Lille, France
| | - Caroline Dubuquoy
- INSERM U995, Lille, France; Intestinal Biotech Development, Lille, France
| | - Francois Maggiotto
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France
| | | | - Dominique Berrebi
- Université Paris-Sud, Laboratoire "Cytokines, Chimiokines et Immunopathologie," Unité Mixte de Recherche S996, Clamart, France; INSERM, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Clamart, France; Service d'Anatomie et de Cytologie Pathologique, Unité Propre de Recherche de l'Enseignement Supérieur Associé 1320, Hôpital Robert Debré, France; Université Denis Diderot, Université Paris 7, Paris, France; and
| | - Laurent Dubuquoy
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France
| | - Eric Boulanger
- Université Lille Nord de France, Lille, France; EA 2693, Lille, France
| | - Antoine Cortot
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France; CHU Lille, Service des maladies de l'appareil digestif et de la nutrition, Hôpital Claude Huriez, Lille, France
| | - Pierre Desreumaux
- INSERM U995, Lille, France; Université Lille Nord de France, Lille, France; CHU Lille, Service des maladies de l'appareil digestif et de la nutrition, Hôpital Claude Huriez, Lille, France;
| |
Collapse
|
12
|
Drucker DJ, Yusta B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol 2013; 76:561-83. [PMID: 24161075 DOI: 10.1146/annurev-physiol-021113-170317] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is a 33-amino-acid proglucagon-derived peptide secreted from enteroendocrine L cells. GLP-2 circulates at low basal levels in the fasting period, and plasma levels rise rapidly after food ingestion. Renal clearance and enzymatic inactivation control the elimination of bioactive GLP-2. GLP-2 increases mesenteric blood flow and activates proabsorptive pathways in the gut, facilitating nutrient absorption. GLP-2 also enhances gut barrier function and induces proliferative and cytoprotective pathways in the small bowel. The actions of GLP-2 are transduced via a single G protein-coupled receptor (GLP-2R), expressed predominantly within the gastrointestinal tract. Disruption of GLP-2R signaling increases susceptibility to gut injury and impairs the adaptive mucosal response to refeeding. Sustained augmentation of GLP-2R signaling reduces the requirement for parenteral nutrition in human subjects with short-bowel syndrome. Hence GLP-2 integrates nutrient-derived signals to optimize mucosal integrity and energy absorption.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Mount Sinai Hospital, Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1X5; ,
| | | |
Collapse
|
13
|
Iwai T, Ohnuki T, Sasaki-Hamada S, Saitoh A, Sugiyama A, Oka JI. Glucagon-like peptide-2 but not imipramine exhibits antidepressant-like effects in ACTH-treated mice. Behav Brain Res 2013; 243:153-7. [DOI: 10.1016/j.bbr.2013.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 01/19/2023]
|
14
|
Janssen P, Rotondo A, Mulé F, Tack J. Review article: a comparison of glucagon-like peptides 1 and 2. Aliment Pharmacol Ther 2013; 37:18-36. [PMID: 23121085 DOI: 10.1111/apt.12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/09/2012] [Accepted: 09/29/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent advancements in understanding the roles and functions of glucagon-like peptide 1 (GLP-1) and 2 (GLP-2) have provided a basis for targeting these peptides in therapeutic strategies. AIM To summarise the preclinical and clinical research supporting the discovery of new therapeutic molecules targeting GLP-1 and GLP-2. METHODS This review is based on a comprehensive PubMed search, representing literature published during the past 30 years related to GLP-1 and GLP-2. RESULTS Although produced and secreted together primarily from L cells of the intestine in response to ingestion of nutrients, GLP-1 and GLP-2 exhibit distinctive biological functions that are governed by the expression of their respective receptors, GLP-1R and GLP-2R. Through widespread expression in the pancreas, intestine, nervous tissue, et cetera, GLP-1Rs facilitates an incretin effect along with effects on appetite and satiety. GLP-1 analogues resistant to degradation by dipeptidyl peptidase-IV and inhibitors of dipeptidyl peptidase-IV have been developed to aid treatment of diabetes and obesity. The GLP-2R is expressed almost exclusively in the stomach and bowel. The most apparent role for GLP-2 is its promotion of growth and function of intestinal mucosa, which has been targeted for therapies that promote repair and adaptive growth. These are used as treatments for intestinal failure and related conditions. CONCLUSIONS Our growing understanding of the biology and function of GLP-1, GLP-2 and corresponding receptors has fostered further discovery of fundamental biological function as well as new categories of potent therapeutic medicines.
Collapse
Affiliation(s)
- P Janssen
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | | | | | | |
Collapse
|
15
|
de Heuvel E, Wallace L, Sharkey KA, Sigalet DL. Glucagon-like peptide 2 induces vasoactive intestinal polypeptide expression in enteric neurons via phophatidylinositol 3-kinase-γ signaling. Am J Physiol Endocrinol Metab 2012; 303:E994-1005. [PMID: 22895780 PMCID: PMC3469609 DOI: 10.1152/ajpendo.00291.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glucagon-like peptide 2 (GLP-2) is an enteroendocrine hormone trophic for intestinal mucosa; it has been shown to increase enteric neuronal expression of vasoactive intestinal polypeptide (VIP) in vivo. We hypothesized that GLP-2 would regulate VIP expression in enteric neurons via a phosphatidylinositol-3 kinase-γ (PI3Kγ) pathway. The mechanism of action of GLP-2 was investigated using primary cultures derived from the submucosal plexus (SMP) of the rat and mouse colon. GLP-2 (10(-8) M) stimulation for 24 h increased the proportion of enteric neurons expressing VIP (GLP-2: 40 ± 6% vs. control: 22 ± 5%). GLP-2 receptor expression was identified by immunohistochemistry on neurons (HuC/D+) and glial cells (GFAP+) but not on smooth muscle or fibroblasts in culture. Over 1-4 h, GLP-2 stimulation of SMP increased phosphorylated Akt/Akt ratios 6.1-fold, phosphorylated ERK/ERK 2.5-fold, and p70S6K 2.2-fold but did not affect intracellular cAMP. PI3Kγ gene deletion or pharmacological blockade of PI3Kγ, mammalian target of rapamycin (mTOR), and MEK/ERK pathways blocked the increase in VIP expression by GLP-2. GLP-2 increased the expression of growth factors and their receptors in SMP cells in culture [IGF-1r (3.2-fold increase), EGFr (5-fold), and ErbB-2-4r (6- to 7-fold)] and ligands [IGF-I (1.5-fold), amphiregulin (2.5-fold), epiregulin (3.2-fold), EGF (7.5-fold), heparin-bound EGF (2.0-fold), β-cellulin (50-fold increase), and neuregulins 2-4 (300-fold increase) (by qRT-PCR)]. We conclude that GLP-2 acts on enteric neurons and glial cells in culture via a PI3Kγ/Akt pathway, stimulating neuronal differentiation via mTOR and ERK pathways, and expression of receptors and ligands for the IGF-I and ErbB pathways.
Collapse
Affiliation(s)
- Elaine de Heuvel
- Gastrointestinal Research Group, Snyder Institute for Chronic Diseases
| | | | | | | |
Collapse
|
16
|
Velázquez E, Blázquez E, Ruiz-Albusac JM. Glucagon-like peptide-2 (GLP-2) modulates the cGMP signalling pathway by regulating the expression of the soluble guanylyl cyclase receptor subunits in cultured rat astrocytes. Mol Neurobiol 2012; 46:242-50. [PMID: 22806360 DOI: 10.1007/s12035-012-8298-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/26/2012] [Indexed: 01/23/2023]
Abstract
The aim of this work was to study the effect of glucagon-like peptide-2 (GLP-2) on the cyclic guanosine monophosphate (cGMP) signalling pathway and whether insulin or epidermal growth factor (EGF) might modulate the effects of GLP-2. GLP-2 produced a dose-dependent decrease in intracellular sodium nitroprusside-induced cGMP production. However, insulin induced an increase in the levels of cGMP that was dose-dependently decreased by the addition of GLP-2. By contrast, EGF induced a decrease in cGMP production, which was further reduced by the addition of GLP-2. To assess whether variations in cGMP production might be related with changes in some component of soluble guanylyl cyclase (sGC), the expression of the α1, α2, and β1 subunits were determined by Western blot analysis. At 1 h, GLP-2 produced a decrease in the expression of both α1 and β1 in the cytosolic fraction, but at 24 h only β1was reduced. As expected, insulin induced an increase in the expression of both subunits after 1 h of incubation; this was decreased by the addition of GLP-2. Likewise, incubation with EGF for 24 h produced a decrease in the expression of both subunits that was maximal when GLP-2 was added. In addition, incubation with insulin for 1 h produced an increase in the expression of the α2 subunit, which was reduced by the addition of GLP-2. These results suggest that GLP-2 inhibits cGMP production by decreasing the cellular content of at least one subunit of the heterodimeric active form of the sGC, independently of the presence of insulin or EFG. This may open new insights into the actions of this neuropeptide.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology, Complutense University Plaza S. Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
17
|
Sasaki-Hamada S, Okada S, Ito K, Iwai T, Oka JI. Immunohistochemical determination of the site of hypotensive effects of glucagon-like peptide-2 in the rat brain. Neuroscience 2012; 212:140-8. [DOI: 10.1016/j.neuroscience.2012.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/18/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022]
|
18
|
Dalvi PS, Belsham DD. Glucagon-like peptide-2 directly regulates hypothalamic neurons expressing neuropeptides linked to appetite control in vivo and in vitro. Endocrinology 2012; 153:2385-97. [PMID: 22416082 DOI: 10.1210/en.2011-2089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucagon-like peptide-2 (GLP-2), a proglucagon-derived peptide, has been postulated to affect appetite at the level of the hypothalamus. To gain better insight into this process, a degradation-resistant GLP-2 analog, human (Gly(2))GLP-2(1-33) [h(Gly(2))GLP-2] was intracerebroventricularly injected into mice to examine its action on food and water intake and also activation of hypothalamic anorexigenic α-melanocyte-stimulating hormone/proopiomelanocortin, neurotensin, and orexigenic neuropeptide Y, and ghrelin neurons. Central h(Gly(2))GLP-2 administration significantly suppressed food and water intake with acute weight loss at 2 h. Further, central h(Gly(2))GLP-2 robustly induced c-Fos activation in the hypothalamic arcuate, dorsomedial, ventromedial, paraventricular, and the lateral hypothalamic nuclei. We found differential colocalization of neuropeptides with c-Fos in specific regions of the hypothalamus. To assess whether hypothalamic neuropeptides are directly regulated by GLP-2 in vitro, we used an adult-derived clonal, immortalized hypothalamic cell line, mHypoA-2/30, that endogenously expresses functional GLP-2 receptors (GLP-2R) and two of the feeding-related neuropeptides linked to GLP-2R activation in vivo: neurotensin and ghrelin. Treatment with h(Gly(2))GLP-2 stimulated c-Fos expression and phosphorylation of cAMP response element-binding protein/activating transcription factor-1. In addition, treatment with h(Gly(2))GLP-2 significantly increased neurotensin and ghrelin mRNA transcript levels by 50 and 95%, respectively, at 24 h after treatment in protein kinase A-dependent manner. Taken together, these findings implicate the protein kinase A pathway as the means by which GLP-2 can up-regulate hypothalamic neuropeptide mRNA levels and provide evidence for a link between central GLP-2R activation and specific hypothalamic neuropeptides involved in appetite regulation.
Collapse
Affiliation(s)
- Prasad S Dalvi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
19
|
Belsham DD, Fick LJ, Dalvi PS, Centeno ML, Chalmers JA, Lee PKP, Wang Y, Drucker DJ, Koletar MM. Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons. FASEB J 2009; 23:4256-65. [PMID: 19703933 DOI: 10.1096/fj.09-133454] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The distinct lack of cell lines derived from the adult brain is evident. Ciliary neurotrophic factor (CNTF) triggers neurogenesis in primary culture from adult mouse hypothalamus, as detected by bromodeoxyuridine and Ki67 immunostaining. Using SV-40 T-antigen, we immortalized dividing neurons and generated clonal cell lines expressing neuropeptides and receptors involved in neuroendocrine function. We hypothesized that proglucagon-derived peptides may be the mechanistic downstream effectors of CNTF due to documented neuroprotective and proliferative effects. Indeed, proglucagon gene expression was induced by CNTF, and exposure of primary cells to glucagon-like peptide-1 receptor (GLP-1) agonist, exendin-4, induced cell proliferation. Intracerebroventricular injection of CNTF into adult mice caused increased expression of proglucagon peptide in the hypothalamus. Using a specific GLP-1-receptor antagonist, we found that neurogenesis was significantly attenuated and primary culture from GLP-1-receptor-knockout mice lacked CNTF-mediated neuronal proliferation, thus linking the induction of neurogenesis in the hypothalamus to GLP-1-receptor signaling.
Collapse
Affiliation(s)
- Denise D Belsham
- Department of Physiology, University of Toronto, Medical Sciences Bldg. 3247A, 1 King's College Cir., Toronto, ON M5S1A8, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Velázquez E, Blázquez E, Ruiz-Albusac JM. Synergistic effect of glucagon-like peptide 2 (GLP-2) and of key growth factors on the proliferation of cultured rat astrocytes. Evidence for reciprocal upregulation of the mRNAs for GLP-2 and IGF-I receptors. Mol Neurobiol 2009; 40:183-93. [PMID: 19672727 DOI: 10.1007/s12035-009-8080-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/27/2009] [Indexed: 12/29/2022]
Abstract
The aim of this work was to determine whether the stimulating effect of glucagon-like peptide (GLP)-2 on astrocyte proliferation could be reinforced by proliferating substances, including growth factors such as EGF, platelet-derived growth factor, insulin-like growth factor type I (IGF-I) or a hormone such as insulin. Both DNA synthesis and astrocyte density, as well as the expression of c-Fos, Ki-67, proliferating cell nuclear antigen and glial fibrillary acidic proteins, were found to be higher in the presence of GLP-2 than in its absence. In an attempt to get a better understanding of this process, intracellular cyclic adenosine monophosphate (cAMP) production, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and the expression of GLP-2R and IGF-I receptor (IGF-IR) mRNAs were studied in response to growth factors. Our results indicate that, in the presence of different growth factors, GLP-2 does not increase cAMP production but raises ERK 1/2 phosphorylation. In addition, GLP-2R mRNA expression was increased by IGF-I, whilst mRNA expression of IGF-IR was higher in cells incubated with GLP-2 than in control cells. These results suggest for the first time that GLP-2 and several growth factors show synergistic effects on the proliferation of rat astrocytes, a process in which an enhanced expression of GLP-2R and IGF-IR may be involved, providing additional insights into the physiological role of this novel neuropeptide, specially during astroglial regeneration.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
21
|
Iwai T, Hayashi Y, Narita S, Kasuya Y, Jin K, Tsugane M, Oka JI. Antidepressant-like effects of glucagon-like peptide-2 in mice occur via monoamine pathways. Behav Brain Res 2009; 204:235-40. [PMID: 19539656 DOI: 10.1016/j.bbr.2009.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
In this study, we investigated whether glucagon-like peptide-2 (GLP-2) had antidepressant-like effects in mice, and whether these activities were associated with monoamine systems in mice. Antidepressant-like effects were evaluated based on the immobility time in the forced-swim test. GLP-2 (1.5-6 microg/mouse, i.c.v.) significantly reduced the immobility time in a dose-dependent manner without affecting locomotor activity in the wheel running test and memory function in the step-down passive avoidance test. These effects were inhibited by pretreatment with metergoline (an antagonist of non-specific 5-HT receptors), parachlorophenylalanine (an inhibitor of 5-HT synthase), NAN-190 (an antagonist of 5-HT1A receptors), yohimbine hydrochloride (an antagonist of alpha2 adrenoceptors), atenolol (an antagonist of beta1 receptors), and raclopride (an antagonist of D2 receptors), but not prazosin (an antagonist of alpha1 adrenoceptors), ICI118551 (an antagonist of beta2 adrenoceptors), and SCH23394 (an antagonist of D1 receptors). These results suggest that GLP-2 exerts antidepressant-like effects in the forced-swim test in mice, which are associated with 5-HT1A, alpha2, beta1 and D2 receptors.
Collapse
Affiliation(s)
- Takashi Iwai
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
YANG CY, LI DH, LIU YD. THE EFFECT OF MICROCYSTIN ON THE GROWTH AND SOME PHYSIO-BIOCHEMICAL CHARACTERISTICS OF REPRESENTATIVE MICROBIAL SPECIES. ACTA ACUST UNITED AC 2009. [DOI: 10.3724/sp.j.1035.2008.00818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Jiang L, Zhu YQ, Du R, Gu YX, Xia L, Qin F, Ritchie HH. The expression and role of stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp. J Endod 2008; 34:939-44. [PMID: 18634924 DOI: 10.1016/j.joen.2008.05.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/23/2008] [Accepted: 05/26/2008] [Indexed: 01/09/2023]
Abstract
Recent reports have suggested that the stromal cell-derived factor (SDF)-1alpha-CXCR4 axis has a direct effect on stem and progenitor cell recruitment in muscle and neural tissue repair after injury. No information is available about SDF-1alpha or CXC chemokine receptor 4 (CXCR4) in dental tissues. The aim of this study was to assess the expression of SDF-1alpha and its receptor, CXCR4, in healthy or inflamed human dental pulp and to evaluate the effects of SDF-1alpha on dental pulp cells (DPCs) in both proliferation and migration in vitro. Immunohistochemical staining and reverse-transcription polymerase chain reaction detected weak expression of SDF-1alpha and CXCR4 in healthy dental pulp and strong expression of SDF-1alpha and CXCR4 in inflamed dental pulp. A methylthiazol tetrazolium assay showed that SDF-1alpha could not promote DPCs proliferation. A transmigration assay, however, indicated that SDF-1alpha enhanced DPCs migration, which could be abolished by anti-CXCR4 antibodies. Taken together, these results imply that the SDF-1alpha-CXCR4 axis may play a role in the recruitment of CXCR4-positive DPCs toward the damaged sites.
Collapse
Affiliation(s)
- Long Jiang
- Department of General Dentistry, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Burrin DG, Stoll B, Guan X, Cui L, Chang X, Hadsell D. GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets. Am J Physiol Endocrinol Metab 2007; 292:E281-91. [PMID: 16954336 DOI: 10.1152/ajpendo.00129.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We previously demonstrated the dose-dependent glucagon-like peptide (GLP)-2 activation of intracellular signals associated with increased epithelial cell survival and proliferation in the neonatal intestine. Our current aim was to quantify the acute, temporal GLP-2 activation of these key intracellular signals and relate this to changes in epithelial cell survival and proliferation in the neonatal intestine. We studied 29 total parenteral nutrition-fed neonatal piglets infused intravenously with either saline (control) or human GLP-2 (420 micromol.kg(-1).h(-1)) for 1, 4, or 48 h. GLP-2 infusion increased small intestinal weight, DNA and protein content, and villus height at 48 h, but not at 1 or 4 h. Intestinal crypt and villus apoptosis decreased and crypt cell proliferation and protein synthesis increased linearly with duration of GLP-2 infusion, but were statistically different from controls only after 48 h. Before the morphological and cellular kinetic changes, GLP-2 rapidly activated putative GLP-2 receptor downstream signals within 1-4 h, including phosphorylation of protein kinase A, protein kinase B, extracellular signal-regulated kinase 1/2, and the transcription factors cAMP response element-binding protein and c-Fos. GLP-2 rapidly suppressed caspase-3 activation and upregulated Bcl-2 abundance within 1 h, whereas there was an increase in apoptosis inhibitors X-linked inhibitor of apoptosis at 1 h and cellular inhibitor of apoptosis-2 at 4 and 48 h. We also show that the increased c-Fos and reduced active caspase-3 immunostaining after GLP-2 infusion was localized in epithelial cells. We conclude that GLP-2-induced activation of intracellular signals involved in both cell survival and proliferation occurs rapidly and precedes the trophic cellular kinetic effects that occur later in intestinal epithelial cells.
Collapse
Affiliation(s)
- Douglas G Burrin
- Children's Nutrition Research Center, 1100 Bates St., Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Masur K, Schwartz F, Entschladen F, Niggemann B, Zaenker KS. DPPIV inhibitors extend GLP-2 mediated tumour promoting effects on intestinal cancer cells. ACTA ACUST UNITED AC 2006; 137:147-55. [PMID: 16908079 DOI: 10.1016/j.regpep.2006.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 07/04/2006] [Accepted: 07/06/2006] [Indexed: 01/25/2023]
Abstract
BACKGROUND The glucagon-like peptides-1 and -2 (GLP-1 and -2) are co-secreted after food intake from intestinal L cells. Since both peptides are rapidly degraded by dipeptidyl peptidase-IV (DPPIV), research is focused on the development of DPPIV inhibitors or DPPIV resistant. AIMS In this study we investigated, whether the inhibition of DPPIV activity and the resulting increased half-life of DPPIV substrates may influence cancer development and progression. METHODS We examined proliferation and migratory activity of two human colon cancer cell lines (SW480, HT29) after stimulation with GLP-2 in combination with or without DPPIV inhibitors. RESULTS Migratory activity was increased by 25% from 20% matrix induced activity to a maximum of 45% (100 nM GLP-2). In cells expressing CD26, migration was prolonged by addition of DPPIV inhibitors in a concentration dependent manner. After treatment with GLP-2 doubling time decreased from 2.4 to 1.5 days - and addition of DPPIV inhibitors enhanced the effect of GLP-2. CONCLUSIONS The use of DPPIV inhibitors together with GLP-2 led to increased proliferation as well as elevated migratory activity. Therefore, the use of DPPIV inhibitors could increase the risk of promoting an already existing intestinal tumour and may support the potential of colon cancer cells to metastasize.
Collapse
Affiliation(s)
- K Masur
- Institute of Immunology, Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Multiple peptide hormones produced within the gastrointestinal system aid in the regulation of energy homeostasis and metabolism. Among these is the intestinotrophic peptide glucagon-like peptide-2 (GLP-2), which is released following food intake and plays a significant role in the adaptive regulation of bowel mass and mucosal integrity. The discovery of GLP-2's potent growth-promoting and cytoprotective effects in the gastrointestinal (GI) tract stimulated interest in its use as a therapeutic agent for the treatment of GI diseases involving malabsorption, inflammation, and/or mucosal damage. Current research has focused on determining the physiological mechanisms contributing to the effects of GLP-2 and factors regulating its biological mechanisms of action. This chapter provides an overview of the biology of GLP-2 with a focus on the most recent findings on the role of this peptide hormone in the normal and diseased GI tract.
Collapse
Affiliation(s)
- Jennifer L Estall
- Department of Laboratory Medicine and Pathobiology, The Banting and Best Diabetes Center, Toronto General Hospital, University of Toronto, Ontario, Canada, M5G 2C4
| | | |
Collapse
|
27
|
Velázquez E, Santos A, Montes A, Blázquez E, Ruiz-Albusac JM. 25-Hydroxycholesterol has a dual effect on the proliferation of cultured rat astrocytes. Neuropharmacology 2006; 51:229-37. [PMID: 16678217 DOI: 10.1016/j.neuropharm.2006.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 03/07/2006] [Accepted: 03/10/2006] [Indexed: 11/20/2022]
Abstract
We examined the effects of 25-OH-cholesterol on the growth of cultured rat astrocytes in the presence of lipoprotein-deficient serum (LPDS). 25-OH-cholesterol at 0.5-8 microM induced an increase in DNA synthesis as measured by [3H]thymidine incorporation into DNA, staining the cells with crystal violet, or counting the number of cells in different phases of the cell cycle by flow cytometry; however, at higher doses, an inhibition of cell proliferation was produced. Similar dose-dependent effects were found in media containing albumin (alone or with added EGF, PDGF, IGF-I or insulin), fetal bovine serum (FBS), or cholesterol-enriched LPDS. Mevalonate, and partially 25-OH-cholesterol, reversed the decrease in cell viability caused by mevinolin (lovastatin). However, mevalonate did not have any effect on 25-OH-cholesterol-stimulated proliferation. Finally, in media with albumin alone or in the presence of fetal bovine serum, growth factors, insulin or forskolin, 25-OH-cholesterol did not affect the expression of either c-fos mRNA or c-fos protein, as measured by real-time quantitative PCR or by Western blot, respectively. These results suggest that 25-OH-cholesterol has a dual effect on the proliferation of cultured rat astrocytes through an AP-1-independent mechanism. This could be of interest for gaining a better knowledge of the pathophysiological processes occurring in these cells.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Martin GR, Beck PL, Sigalet DL. Gut hormones, and short bowel syndrome: The enigmatic role of glucagon-like peptide-2 in the regulation of intestinal adaptation. World J Gastroenterol 2006; 12:4117-29. [PMID: 16830359 PMCID: PMC4087358 DOI: 10.3748/wjg.v12.i26.4117] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Short bowel syndrome (SBS) refers to the malabsorption of nutrients, water, and essential vitamins as a result of disease or surgical removal of parts of the small intestine. The most common reasons for removing part of the small intestine are due to surgical intervention for the treatment of either Crohn's disease or necrotizing enterocolitis. Intestinal adaptation following resection may take weeks to months to be achieved, thus nutritional support requires a variety of therapeutic measures, which include parenteral nutrition. Improper nutrition management can leave the SBS patient malnourished and/or dehydrated, which can be life threatening. The development of therapeutic strategies that reduce both the complications and medical costs associated with SBS/long-term parenteral nutrition while enhancing the intestinal adaptive response would be valuable.
Currently, therapeutic options available for the treatment of SBS are limited. There are many potential stimulators of intestinal adaptation including peptide hormones, growth factors, and neuronally-derived components. Glucagon-like peptide-2 (GLP-2) is one potential treatment for gastrointestinal disorders associated with insufficient mucosal function. A significant body of evidence demonstrates that GLP-2 is a trophic hormone that plays an important role in controlling intestinal adaptation. Recent data from clinical trials demonstrate that GLP-2 is safe, well-tolerated, and promotes intestinal growth in SBS patients. However, the mechanism of action and the localization of the glucagon-like peptide-2 receptor (GLP-2R) remains an enigma. This review summarizes the role of a number of mucosal-derived factors that might be involved with intestinal adaptation processes; however, this discussion primarily examines the physiology, mechanism of action, and utility of GLP-2 in the regulation of intestinal mucosal growth.
Collapse
Affiliation(s)
- G-R Martin
- Department of Gastrointestinal Sciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW., Calgary, Alberta T2N 4N1, Canada.
| | | | | |
Collapse
|
29
|
Fischer AJ, Omar G, Walton NA, Verrill TA, Unson CG. Glucagon-expressing neurons within the retina regulate the proliferation of neural progenitors in the circumferential marginal zone of the avian eye. J Neurosci 2006; 25:10157-66. [PMID: 16267223 PMCID: PMC6725792 DOI: 10.1523/jneurosci.3247-05.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glucagon-expressing retinal amacrine cells have been implicated in regulating postnatal ocular growth. Furthermore, experimentally accelerated rates of ocular growth increase the number of neurons added to the peripheral edge of the retina. Accordingly, we assayed whether glucagon-expressing neurons within the retina regulate the proliferation of progenitors in the circumferential marginal zone (CMZ) of the postnatal chicken eye. We found that glucagon-containing neurites are heavily clustered within the CMZ at the peripheral edge of the retina. Many of these neurites originate from a cell type that is distinct from other types of retinal neurons, which we termed large glucagon-expressing neurons (LGENs). The LGENs are immunoreactive for glucagon and glucagon-like peptide 1 (GLP1), have a unipolar morphology, produce an axon that projects into the CMZ, and are found only in ventral regions of the retina. In dorsal regions of the retina, a smaller version of the LGENs densely ramifies neurites in the CMZ. Intraocular injections of glucagon or GLP1 suppressed the proliferation of progenitors in the CMZ, whereas a glucagon-receptor antagonist promoted proliferation. In addition, we found that glucagon, GLP1, and glucagon antagonist influenced the number of progenitors in the CMZ. We conclude that the LGENs may convey visual information to the CMZ to control the addition of new cells to the edge of the retina. We propose that glucagon/GLP1 released from LGENs acts in opposition to insulin (or insulin-like growth factor) to regulate precisely the proliferation of retinal progenitors in the CMZ.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210-1239, USA.
| | | | | | | | | |
Collapse
|
30
|
Koehler JA, Yusta B, Drucker DJ. The HeLa Cell Glucagon-Like Peptide-2 Receptor Is Coupled to Regulation of Apoptosis and ERK1/2 Activation through Divergent Signaling Pathways. Mol Endocrinol 2005; 19:459-73. [PMID: 15471943 DOI: 10.1210/me.2004-0196] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractGlucagon-like peptide-2 (GLP-2) regulates proliferative and cytoprotective pathways in the intestine; however GLP-2 receptor (GLP-2R) signal transduction remains poorly understood, and cell lines that express the endogenous GLP-2R have not yet been isolated. We have now identified several expressed sequence tags from human cervical carcinoma cDNA libraries that correspond to GLP-2R nucleotide sequences. GLP-2R mRNA transcripts were detected by RT-PCR in two human cervical carcinoma cell lines, including HeLa cells. GLP-2 increased cAMP accumulation and activated ERK1/2 in HeLa cells transiently expressing the cloned human HeLa cell GLP-2R cDNA. However, the GLP-2R-induced activation of ERK1/2 was not mediated through Gαs, adenylyl cyclase, or transactivation of the epidermal growth factor receptor, but was pertussis toxin sensitive, inhibited by dominant negative Ras, and dependent on βγ-subunits. GLP-2 also induced a significant increase in bromodeoxyuridine incorporation that was blocked by dominant negative Ras. Furthermore, GLP-2 inhibited HeLa cell apoptosis induced by LY294002 in a protein kinase A-dependent, but ERK-independent, manner. These findings demonstrate that the HeLa cell GLP-2R differentially signals through both Gαs/cAMP- and Gi/Go-dependent pathways, illustrating for the first time that the GLP-2R is capable of coupling to multiple heterotrimeric G proteins defining distinct GLP-2R-dependent biological actions.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Apoptosis
- Blotting, Southern
- Blotting, Western
- Bromodeoxyuridine/pharmacology
- Cell Line, Tumor
- Cell Survival
- Cervix Uteri/metabolism
- Chromones/pharmacology
- Cloning, Molecular
- Cyclic AMP/metabolism
- DNA/metabolism
- DNA, Complementary/metabolism
- Dimerization
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- ErbB Receptors/metabolism
- Female
- Gene Library
- Genes, Dominant
- Glucagon-Like Peptide-1 Receptor
- HeLa Cells
- Humans
- Immunohistochemistry
- Luciferases/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Models, Biological
- Morpholines/pharmacology
- Pertussis Toxin/pharmacology
- Plasmids/metabolism
- Receptors, Glucagon/chemistry
- Receptors, Glucagon/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- J A Koehler
- Department of Medicine, General Hospital, Banting and Best Diabetes Centre, 200 Elizabeth Street, MBRW4R-402, Toronto, Canada M5G 2C4
| | | | | |
Collapse
|
31
|
|
32
|
Estall JL, Drucker DJ. Tales beyond the crypt: glucagon-like peptide-2 and cytoprotection in the intestinal mucosa. Endocrinology 2005; 146:19-21. [PMID: 15601903 DOI: 10.1210/en.2004-1389] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Baggio LL, Drucker DJ. Clinical endocrinology and metabolism. Glucagon-like peptide-1 and glucagon-like peptide-2. Best Pract Res Clin Endocrinol Metab 2004; 18:531-54. [PMID: 15533774 DOI: 10.1016/j.beem.2004.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glucagon-like peptides (glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2)) are released from enteroendocrine cells in response to nutrient ingestion. GLP-1 enhances glucose-stimulated insulin secretion and inhibits glucagon secretion, gastric emptying and feeding. GLP-1 also has proliferative, neogenic and antiapoptotic effects on pancreatic beta-cells. More recent studies illustrate a potential protective role for GLP-1 in the cardiovascular and central nervous systems. GLP-2 is an intestinal trophic peptide that stimulates cell proliferation and inhibits apoptosis in the intestinal crypt compartment. GLP-2 also regulates intestinal glucose transport, food intake and gastric acid secretion and emptying, and improves intestinal barrier function. Thus, GLP-1 and GLP-2 exhibit a diverse array of metabolic, proliferative and cytoprotective actions with important clinical implications for the treatment of diabetes and gastrointestinal disease, respectively. This review will highlight our current understanding of the biology of GLP-1 and GLP-2, with an emphasis on both well-characterized and more novel therapeutic applications of these peptides.
Collapse
Affiliation(s)
- Laurie L Baggio
- Department of Medicine, The Banting and Best Diabetes Centre, University of Toronto, Toronto General Hospital, 200 Elizabeth Street, MBRW 4R-402, Toronto, Ontario, Canada M5G 2C4
| | | |
Collapse
|
34
|
Lovshin JA, Huang Q, Seaberg R, Brubaker PL, Drucker DJ. Extrahypothalamic expression of the glucagon-like peptide-2 receptor is coupled to reduction of glutamate-induced cell death in cultured hippocampal cells. Endocrinology 2004; 145:3495-506. [PMID: 15059959 DOI: 10.1210/en.2004-0100] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proglucagon-derived glucagon-like peptide-2 (GLP-2) is liberated in enteroendocrine cells and neurons. GLP-2 regulates energy absorption and epithelial integrity in the gastrointestinal tract, whereas GLP-2 action in the central nervous system remains poorly defined. We identified proglucagon and GLP-2 receptor (GLP-2R) mRNA transcripts by RT-PCR in multiple regions of the developing and adult rat central nervous system. GLP-2R mRNA transcripts were localized by in situ hybridization to the hippocampus, hypothalamus, nucleus of the solitary tract, parabrachial nucleus, supramammillary nucleus, and substantia nigra. The bioactive form of GLP-2, GLP-2-(1-33) was detected by RIA and HPLC analysis in the fetal and adult brainstem and hypothalamus. GLP-2 stimulated increases in cAMP accumulation in postnatal d 8, but not embryonic d 14, dispersed neonatal rat brainstem tissues. The actions of GLP-2 were independent of the GLP-1R antagonist exendin-(9-39), and GLP-2 stimulated cAMP accumulation in hippocampal cell cultures from both wild-type and GLP-1R(-/-) mice. GLP-2 significantly reduced glutamate-induced excitotoxic injury in hippocampal cells via a protein kinase A-dependent pathway, but had no effect on the rate of cell proliferation. These findings establish the presence of a functional GLP-2-GLP-2R axis in the developing rodent brain and demonstrate that GLP-2 exerts cytoprotective actions in cells derived from the central nervous system.
Collapse
Affiliation(s)
- J A Lovshin
- Department of Medicine, University of Toronto, Toronto General Hospital, Banting and Best Diabetes Center, Canada
| | | | | | | | | |
Collapse
|
35
|
Martin GR, Wallace LE, Sigalet DL. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2004; 286:G964-72. [PMID: 14962847 DOI: 10.1152/ajpgi.00509.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) is an intestinal trophic enteroendocrine peptide that is associated with intestinal adaptation following resection. Herein, we investigate the effects of GLP-2 in a total parenteral nutrition (TPN)-supported model of experimental short bowel syndrome. Juvenile Sprague-Dawley rats underwent a 90% small intestinal resection and jugular catheter insertion. Rats were randomized to three groups: enteral diet and intravenous saline infusion, TPN only, or TPN + 10 microg.kg(-1).h(-1) GLP-2. Nutritional maintenance was isocaloric and isonitrogenous. After 7 days, intestinal permeability was assessed by quantifying the urinary recovery of gavaged carbohydrate probes. The following day, animals were euthanized, and intestinal tissue was processed for morphological and crypt cell proliferation (CCP) analysis, apoptosis (caspase-3), and expression of SGLT-1 and GLUT-5 transport proteins. TPN plus GLP-2 treatment resulted in increased bowel and body weight, villus height, intestinal mucosal surface area, CCP, and reduced intestinal permeability compared with the TPN alone animals (P < 0.05). GLP-2 treatment induced increases in serum GLP-2 levels and intestinal SGLT-1 expression (P < 0.01) compared with either TPN or enteral groups. No differences were seen in the villus apoptotic index between resection groups. Enterally fed resected animals had a significant decrease in crypt apoptotic indexes compared with nontreated animals. This study demonstrates that GLP-2 alone, without enteral feeding, stimulates indexes of intestinal adaptation. Secondly, villus hypertrophy associated with adaptation was predominantly due to an increase in CCP and not to changes in apoptotic rates. Further studies are warranted to establish the mechanisms of action and therapeutic potential of GLP-2.
Collapse
Affiliation(s)
- Gary R Martin
- University of Calgary, Gastrointestinal Research Group, Calgary, Alberta, Canada, T2T 5C7
| | | | | |
Collapse
|
36
|
Estall JL, Drucker DJ. Dual Regulation of Cell Proliferation and Survival via Activation of Glucagon-Like Peptide-2 Receptor Signaling. J Nutr 2003; 133:3708-11. [PMID: 14608100 DOI: 10.1093/jn/133.11.3708] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peptide hormones regulate cell viability and tissue integrity, directly or indirectly, through activation of G-protein-coupled receptors via diverse mechanisms including stimulation of cell proliferation and inhibition of cell death. Glucagon-like peptide-2 (GLP-2) is a 33 amino acid peptide hormone released from intestinal endocrine cells following nutrient ingestion. GLP-2 stimulates intestinal crypt cell proliferation leading to expansion of the gastrointestinal mucosal epithelium. Exogenous GLP-2 administration attenuates intestinal injury in experimental models of gastrointestinal disease and improves intestinal absorption and nutritional status in human patients with intestinal failure secondary to short bowel syndrome. GLP-2 also promotes mucosal integrity via reduction of injury-associated apoptosis in the intestinal mucosa and directly reduces apoptosis in cells expressing the GLP-2 receptor in vitro. Hence, the regenerative and cytoprotective properties of GLP-2 contribute to its therapeutic potential for the treatment of patients with intestinal disease.
Collapse
Affiliation(s)
- Jennifer L Estall
- Department of Laboratory Medicine and Pathobiology, Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| | | |
Collapse
|