1
|
Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci 2024; 25:10835. [PMID: 39409166 PMCID: PMC11477148 DOI: 10.3390/ijms251910835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Eukaryotic protein translation has slowly gained the scientific community's attention for its advanced and powerful therapeutic potential. However, recent technical developments in studying ribosomes and global translation have revolutionized our understanding of this complex multistep process. These developments have improved and deepened the current knowledge of mRNA translation, sparking excitement and new possibilities in this field. Translation factors are crucial for maintaining protein synthesis homeostasis. Since actively proliferating cancer cells depend on protein synthesis, dysregulated protein translation is central to tumorigenesis. Translation factors and their abnormal expressions directly affect multiple oncogenes and tumor suppressors. Recently, small molecules have been used to target translation factors, resulting in translation inhibition in a gene-specific manner, opening the door for developing translation inhibitors that can lead to novel chemotherapeutic drugs for treating multiple cancer types caused by dysregulated translation machinery. This review comprehensively summarizes the involvement of translation factors in tumor progression and oncogenesis. Also, it sheds light on the evolution of translation factors as novel drug targets for developing future therapeutic drugs for treating cancer.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
Bosutti A, Dapas B, Grassi G, Bussani R, Zanconati F, Giudici F, Bottin C, Pavan N, Trombetta C, Scaggiante B. High eEF1A1 Protein Levels Mark Aggressive Prostate Cancers and the In Vitro Targeting of eEF1A1 Reveals the eEF1A1-actin Complex as a New Potential Target for Therapy. Int J Mol Sci 2022; 23:4143. [PMID: 35456960 PMCID: PMC9027132 DOI: 10.3390/ijms23084143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Although the eukaryotic elongation factor eEF1A1 plays a role in various tumours, there is little information on its prognosis/therapeutic value in prostate carcinoma. In high-grade and castration-resistant prostate carcinoma (CRPC), the identification of novel therapeutic markers/targets remains a priority. The expression of eEF1A1 protein was determined in formalin-fixed, paraffin-embedded prostate cancer and hyperplasia tissue by IHC. The role of eEF1A1 was investigated in a cellular model using a DNA aptamer (GT75) we previously developed. We used the aggressive CRPC cancer PC-3 and non-tumourigenic PZHPV-7 lines. Cytotoxicity was measured by the MTS assay and eEF1A1 protein levels by in-cell Western assays. The mRNA levels of eEF1A1 were measured by qPCR and ddPCR. Higher expression of eEF1A1 was found in Gleason 7-8 compared with 4-6 tissues (Gleason ≥ 7, 87% versus Gleason ≤ 6, 54%; p = 0.033). Patients with a high expression of eEF1A1 had a worse clinical outcome. In PC-3, but not in PZHPV-7, GT75 decreased cell viability and increased autophagy and cell detachment. In PC-3 cells, but not in PZHPV-7, GT75 mainly co-localised with the fraction of eEF1A1 bound to actin. Overexpression of the eEF1A1 protein can identify aggressive forms of prostate cancer. The targeting of eEF1A1 by GT75 impaired cell viability in PC-3 cancer cells but not in PZHPV-7 non-tumourigenic cells, indicating a specific role for the protein in cancer survival. The eEF1A1-actin complexes appear to be critical for the viability of PC-3 cancer cells, suggesting that eEF1A1 may be an attractive target for therapeutic strategies in advanced forms of prostate cancer.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Rossana Bussani
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Fabiola Giudici
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Nicola Pavan
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Carlo Trombetta
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
| |
Collapse
|
4
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
5
|
Giudice V, Mensitieri F, Izzo V, Filippelli A, Selleri C. Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases. Int J Mol Sci 2020; 21:ijms21093252. [PMID: 32375354 PMCID: PMC7246934 DOI: 10.3390/ijms21093252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022] Open
Abstract
Aptamers or chemical antibodies are single-stranded DNA or RNA oligonucleotides that bind proteins and small molecules with high affinity and specificity by recognizing tertiary or quaternary structures as antibodies. Aptamers can be easily produced in vitro through a process known as systemic evolution of ligands by exponential enrichment (SELEX) or a cell-based SELEX procedure. Aptamers and modified aptamers, such as slow, off-rate, modified aptamers (SOMAmers), can bind to target molecules with less polar and more hydrophobic interactions showing slower dissociation rates, higher stability, and resistance to nuclease degradation. Aptamers and SOMAmers are largely employed for multiplex high-throughput proteomics analysis with high reproducibility and reliability, for tumor cell detection by flow cytometry or microscopy for research and clinical purposes. In addition, aptamers are increasingly used for novel drug delivery systems specifically targeting tumor cells, and as new anticancer molecules. In this review, we summarize current preclinical and clinical applications of aptamers in malignant and non-malignant hematological diseases.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-(0)-89965116
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| |
Collapse
|
6
|
Dapas B, Pozzato G, Zorzet S, Capolla S, Macor P, Scaggiante B, Coan M, Guerra C, Gnan C, Gattei V, Zanconati F, Grassi G. Effects of eEF1A1 targeting by aptamer/siRNA in chronic lymphocytic leukaemia cells. Int J Pharm 2020; 574:118895. [PMID: 31862491 DOI: 10.1016/j.ijpharm.2019.118895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The effectiveness of therapies for chronic lymphocytic leukemia (CLL), the most common leukemia in Western countries adults, can be improved via a deeper understanding of its molecular abnormalities. Whereas the isoforms of the eukaryotic elongation factor 1A (eEF1A1 and eEF1A2) are implicated in different tumors, no information are available in CLL. METHODS eEF1A1/eEF1A2 amounts were quantitated in the lymphocytes of 46 CLL patients vs normal control (real time PCR, western blotting). eEF1A1 role in CLL was investigated in a cellular (MEC-1) and animal model of CLL via its targeting by an aptamer (GT75) or a siRNA (siA1) delivered by electroporation (in vitro) or lipofection (in vivo). RESULTS eEF1A1/eEF1A2 were elevated in CLL lymphocytes vs control. eEF1A1 but not eEF1A2 levels were higher in patients which died during the study compared to those surviving. eEF1A1 targeting (GT75/siA1) resulted in MEC-1 viability reduction/autophagy stimulation and in vivo tumor growth down-regulation. CONCLUSIONS The increase of eEF1A1 in dead vs surviving patients may confer to eEF1A1 the role of a prognostic marker for CLL and possibly of a therapeutic target, given its involvement in MEC-1 survival. Specific aptamer/siRNA released by optimized delivery systems may allow the development of novel therapeutic options.
Collapse
Affiliation(s)
- Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Sonia Zorzet
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Sara Capolla
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Michela Coan
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Guerra
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Gnan
- Institute for Maternal and Child Health - "IRCCS Burlo Garofolo", Via dell'Istria, 65, 34137 Trieste, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Via Franco Gallini, 2, 33081 Aviano, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy.
| |
Collapse
|
7
|
Bosutti A, Kalaja O, Zanconati F, Dapas B, Grassi G, Passamonti S, Scaggiante B. A rapid and specific method to simultaneously quantify eukaryotic elongation factor 1A1 and A2 protein levels in cancer cells. J Pharm Biomed Anal 2019; 176:112814. [PMID: 31450069 DOI: 10.1016/j.jpba.2019.112814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The two isoforms of the eukaryotic Elongation Factor 1A (eEF1A1 and eEF1A2), sustain the progression/aggressiveness of cancer cells. Thus, they are considered promising therapeutic targets and prognostic markers. It follows that their precise quantification is of utmost relevance in research and development. The simultaneous quantification of A1 and A2 proteins in the cells helps the comprehension of cancer biology mechanisms and response to drug treatments. However, the high homology at the amino-acidic level (92%) can cause antibodies cross-reaction. Moreover, the commonly employed western blotting just gives semi-quantitative data and does not allow the detection of both protein targets within the same cell. Thus, we developed an in cell western (ICW) technique to bypass the above limitations. METHODS Firstly, relevant antibodies cross-reaction was excluded by immunohistochemistry on normal pancreatic tissue; then eEF1A1-A2 protein levels were quantitated by ICW in prostate and colorectal cancer cell lines in 96 well plates under different conditions, which include: 1) drug treatment, 2) siRNA silencing, 3) cell seeding density. RESULTS We show that: 1) eEF1A1-A2 levels vary depending on the cell type following drug treatment, 2) ICW can accurately detect eEF1A1-A2 protein levels following siRNA silencing, 3) cell seeding density influences eEF1A1-A2 levels, depending on cell type. CONCLUSIONS ICW is a valuable tool to specifically determine the intracellular level of eEF1A1-A2 proteins thus contributing to better define their role as potential therapeutic targets and prognostic markers in human tumors as well as for drug effects screening.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Odeta Kalaja
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy.
| |
Collapse
|
8
|
Farra R, Scaggiante B, Guerra C, Pozzato G, Grassi M, Zanconati F, Perrone F, Ferrari C, Trotta F, Grassi G, Dapas B. Dissecting the role of the elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs. Int J Pharm 2017; 525:367-376. [PMID: 28229942 DOI: 10.1016/j.ijpharm.2017.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
Abstract
Eukaryotic elongation factor 1A (eEF1A), a protein involved in protein synthesis, has two major isoforms, eEF1A1 and eEF1A2. Despite the evidences of their involvement in hepatocellular carcinoma (HCC), the quantitative contribution of each of the two isoforms to the disease is unknown. We depleted the two isoforms by means of siRNAs and studied the effects in three different HCC cell lines. Particular care was dedicated to select siRNAs able to target each of the two isoform without affecting the other one. This is not a trivial aspect due to the high sequence homology between eEF1A1 and eEF1A2. The selected siRNAs can specifically deplete either eEF1A1 or eEF1A2. This, in turn, results in an impairment of cell vitality, growth and arrest in the G1/G0 phase of the cell cycle. Notably, these effects are quantitatively superior following eEF1A1 than eEF1A2 depletion. Moreover, functional tests revealed that the G1/G0 block induced by eEF1A1 depletion depends on the down-regulation of the transcription factor E2F1, a known player in HCC. In conclusion, our data indicate that the independent targeting of the two eEF1A isoforms is effective in reducing HCC cell growth and that eEF1A1 depletion may result in a more evident effect.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | | | - Chiara Guerra
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | | - Cinzia Ferrari
- Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy
| | - Francesco Trotta
- Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy; U.O. di Chirurgia Generale e Toracica, Ospedale Maggiore, Lodi, Italy
| | | | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| |
Collapse
|
9
|
Mokarram P, Shakiba-Jam F, Kavousipour S, Sarabi MM, Seghatoleslam A. Promoter Methylation Status of Two Novel Human Genes, UBE2Q1 and UBE2Q2, in Colorectal Cancer: a New Finding in Iranian Patients. Asian Pac J Cancer Prev 2016; 16:8247-52. [PMID: 26745068 DOI: 10.7314/apjcp.2015.16.18.8247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) degrades a variety of proteins which attach to specific signals. The ubiquitination pathway facilitates degradation of damaged proteins and regulates growth and stress responses. This pathway is altered in various cancers, including acute lymphoblastic leukemia, head and neck squamous cell carcinoma and breast cancer. Recently it has been reported that expression of newly characterized human genes, UBE2Q1 and UBE2Q2, putative members of ubiquitin-conjugating enzyme family (E2), has been also changed in colorectal cancer. Epigenetics is one of the fastest-growing areas of science and nowadays has become a central issue in biological studies of diseases. According to the lack of information about the role of epigenetic changes on gene expression profiling of UBE2Q1 and UBE2Q2, and the presence of CpG islands in the promoter of these two human genes, we decided to evaluate the promoter methylation status of these genes as a first step. MATERIALS AND METHODS The promoter methylation status of UBE2Q1 and UBE2Q2 was studied by methylation-specific PCR (MSP) in tumor samples of 60 colorectal cancer patients compared to adjacent normal tissues and 20 non-malignant controls. The frequency of the methylation for each gene was analyzed by chi-square method. RESULTS MSP results revealed that UBE2Q2 gene promoter were more unmethylated, while a higher level of methylated allele was observed for UBE2Q1 in tumor tissues compared to the adjacent normal tissues and the non malignant controls. CONCLUSIONS UBE2Q1 and UBE2Q2 genes show different methylation profiles in CRC cases.
Collapse
Affiliation(s)
- Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran E-mail :
| | | | | | | | | |
Collapse
|
10
|
Wetmore BA, Merrick BA. Invited Review: Toxicoproteomics: Proteomics Applied to Toxicology and Pathology. Toxicol Pathol 2016; 32:619-42. [PMID: 15580702 DOI: 10.1080/01926230490518244] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Global measurement of proteins and their many attributes in tissues and biofluids defines the field of proteomics. Toxicoproteomics, as part of the larger field of toxicogenomics, seeks to identify critical proteins and pathways in biological systems that are affected by and respond to adverse chemical and environmental exposures using global protein expression technologies. Toxicoproteomics integrates 3 disciplinary areas: traditional toxicology and pathology, differential protein and gene expression analysis, and systems biology. Key topics to be reviewed are the evolution of proteomics, proteomic technology platforms and their capabilities with exemplary studies from biology and medicine, a review of over 50 recent studies applying proteomic analysis to toxicological research, and the recent development of databases designed to integrate -Omics technologies with toxicology and pathology. Proteomics is examined for its potential in discovery of new biomarkers and toxicity signatures, in mapping serum, plasma, and other biofluid proteomes, and in parallel proteomic and transcriptomic studies. The new field of toxicoproteomics is uniquely positioned toward an expanded understanding of protein expression during toxicity and environmental disease for the advancement of public health.
Collapse
Affiliation(s)
- Barbara A Wetmore
- National Center for Toxicogenomics, National Institute of Environmental Health Sciences, Research Triangle Park, North Caroline 27709, USA
| | | |
Collapse
|
11
|
Scaggiante B, Farra R, Dapas B, Baj G, Pozzato G, Grassi M, Zanconati F, Grassi G. Aptamer targeting of the elongation factor 1A impairs hepatocarcinoma cells viability and potentiates bortezomib and idarubicin effects. Int J Pharm 2016; 506:268-279. [PMID: 27094354 DOI: 10.1016/j.ijpharm.2016.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 02/05/2023]
Abstract
The high morbidity and mortality of hepatocellular carcinoma (HCC) is mostly due to the limited efficacy of the available therapeutic approaches. Here we explore the anti-HCC potential of an aptamer targeting the elongation factor 1A (eEF1A), a protein implicated in the promotion of HCC. As delivery methods, we have compared the effectiveness of cationic liposome and cholesterol-mediated approaches. A75 nucleotide long aptamer containing GT repetition (GT75) was tested in three HCC cell lines, HepG2, HuH7 and JHH6. When delivered by liposomes, GT75 was able to effectively reducing HCC cells viability in a dose and time dependent fashion. Particular sensitive were JHH6 where increased apoptosis with no effects on cell cycle were observed. GT75 effect was likely due to the interference with eEF1A activity as neither the mRNA nor the protein levels were significantly affected. Notably, cholesterol-mediated delivery of GT75 abrogated its efficacy due to cellular mis-localization as proven by fluorescence and confocal microscopic analysis. Finally, liposome-mediated delivery of GT75 improved the therapeutic index of the anticancer drugs bortezomib and idarubicin. In conclusion, liposome but not cholesterol-mediated delivery of GT75 resulted in an effective delivery of GT75, causing the impairment of the vitality of a panel of HCC derived cells.
Collapse
Affiliation(s)
| | - Rosella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | |
Collapse
|
12
|
Dahl LD, Corydon TJ, Ränkel L, Nielsen KM, Füchtbauer EM, Knudsen CR. An eEF1A1 truncation encoded by PTI-1 exerts its oncogenic effect inside the nucleus. Cancer Cell Int 2014; 14:17. [PMID: 24571548 PMCID: PMC3941776 DOI: 10.1186/1475-2867-14-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Background The oncogene PTI-1 was originally isolated from a prostate cancer cell line by its capability to transform rat fibroblasts. The PTI-1 mRNA has a very eccentric structure as the 5′UTR is similar to prokaryotic 23S rRNA, while the major open reading frame and the 3′UTR corresponds to a part of the mRNA encoding human translation elongation factor eEF1A1. Thus, the largest open reading frame encodes a truncated version of eEF1A1 lacking the first 67 amino acids, while having three unique N-terminal amino acids. Previously, the UTRs were shown to be a prerequisite for the transforming capacity of the PTI-1 transcript. In this study, we have investigated the possible role of the UTRs in regulating protein expression and localization. Methods The protein expression profiles of a number of PTI-1 mRNA variants were studied in vitro and in vivo. Furthermore, the oncogenic potentials of the same PTI-1 mRNAs were determined by monitoring the capacities of stably transfected cells expressing these mRNAs to induce tumors in nude mice and form foci in cell culture. Finally, the cellular localizations of PTI-1 proteins expressed from these mRNAs were determined by fluorescence microscopy. Results The PTI-1 mRNA was found to give rise to multiple protein products that potentially originate from translation initiation at downstream, inframe AUGs within the major open reading frame. At least one of the truncated protein variants was also found to be oncogenic. However, the UTRs did not appear to influence the amount and identities of these truncated protein products. In contrast, our localization studies showed that the UTRs of the transcript promote a nuclear localization of the encoded protein(s). Conclusions Translation of the PTI-1 mRNA results in multiple protein products of which (a) truncated variant(s) may play a predominant role during cellular transformation. The PTI-1 UTRs did not seem to play a role in translation regulation, but appeared to contribute to a nuclear localization of the PTI-1 protein(s). This indicates that the PTI-1 protein(s) exert(s) its/their oncogenic function inside the nucleus.
Collapse
Affiliation(s)
| | | | | | | | | | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| |
Collapse
|
13
|
Scaggiante B, Kazemi M, Pozzato G, Dapas B, Farra R, Grassi M, Zanconati F, Grassi G. Novel hepatocellular carcinoma molecules with prognostic and therapeutic potentials. World J Gastroenterol 2014; 20:1268-1288. [PMID: 24574801 PMCID: PMC3921509 DOI: 10.3748/wjg.v20.i5.1268] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/10/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is the sixth most common cancer worldwide and the third leading cause of cancer-related death. The difficulty to diagnose early cancer stages, the aggressive behaviors of HCC, and the poor effectiveness of therapeutic treatments, represent the reasons for the quite similar deaths per year and incidence number. Considering the fact that the diagnosis of HCC typically occurs in the advanced stages of the disease when the therapeutic options have only modest efficacy, the possibility to identify early diagnostic markers could be of significant benefit. So far, a large number of biomarkers have been associated to HCC progression and aggressiveness, but many of them turned out not to be of practical utility. This is the reason why active investigations are ongoing in this field. Given the huge amount of published works aimed at the identification of HCC biomarkers, in this review we mainly focused on the data published in the last year, with particular attention to the role of (1) molecular and biochemical cellular markers; (2) micro-interfering RNAs; (3) epigenetic variations; and (4) tumor stroma. It is worth mentioning that a significant number of the HCC markers described in the present review may be utilized also as targets for novel therapeutic approaches, indicating the tight relation between diagnosis and therapy. In conclusion, we believe that integrated researches among the different lines of investigation indicated above should represent the winning strategies to identify effective HCC markers and therapeutic targets.
Collapse
|
14
|
Mingot JM, Vega S, Cano A, Portillo F, Nieto MA. eEF1A mediates the nuclear export of SNAG-containing proteins via the Exportin5-aminoacyl-tRNA complex. Cell Rep 2013; 5:727-37. [PMID: 24209753 DOI: 10.1016/j.celrep.2013.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/28/2013] [Accepted: 09/23/2013] [Indexed: 11/16/2022] Open
Abstract
Exportin5 mediates the nuclear export of double-stranded RNAs, including pre-microRNAs, adenoviral RNAs, and tRNAs. When tRNAs are aminoacylated, the Exportin5-aminoacyl (aa)-tRNA complex recruits and coexports the translation elongation factor eEF1A. Here, we show that eEF1A binds to Snail transcription factors when bound to their main target, the E-cadherin promoter, facilitating their export to the cytoplasm in association with the aa-tRNA-Exportin5 complex. Snail binds to eEF1A through the SNAG domain, a protein nuclear export signal present in several transcription factor families, and this binding is regulated by phosphorylation. Thus, we describe a nuclear role for eEF1A and provide a mechanism for protein nuclear export that attenuates the activity of SNAG-containing transcription factors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Sequence
- Cadherins/genetics
- Cadherins/metabolism
- Cell Nucleus/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- HeLa Cells
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- MCF-7 Cells
- Peptide Elongation Factor 1/genetics
- Peptide Elongation Factor 1/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Snail Family Transcription Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Exportin 1 Protein
Collapse
Affiliation(s)
- José Manuel Mingot
- Instituto de Neurociencias, CSIC-UMH, Avda. Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain.
| | | | | | | | | |
Collapse
|
15
|
Scaggiante B, Dapas B, Pozzato G, Grassi G. The more basic isoform of eEF1A relates to tumour cell phenotype and is modulated by hyper-proliferative/differentiating stimuli in normal lymphocytes and CCRF-CEM T-lymphoblasts. Hematol Oncol 2013; 31:110-116. [PMID: 22930480 DOI: 10.1002/hon.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/26/2012] [Accepted: 07/07/2012] [Indexed: 02/05/2023]
Abstract
The elongation factor 1A proteins (eEF1A1/A2) are known to play a role in tumours. We previously found that a more basic isoform of eEF1A (MBI-eEF1A) is present in the cytoskeletal/nuclear-enriched extracts of CCRF-CEM T-lymphoblasts but not in those of normal lymphocytes. To obtain deeper knowledge about MBI-eEF1A biology, we investigate from which of the eEF1A proteins, eEF1A1 or eEF1A2, MBI-eEF1A originates and the possibility that its appearance can be modulated by the differentiated or proliferative cell status. CCRF-CEM T-lymphoblasts and normal lymphocytes were cultured with or without differentiation/pro-proliferative stimuli (Phorbol 12-Myristate 13-Acetate (PMA) alone or the combination of phytohaemagglutinin (PHA) with PMA, respectively), and the presence of MBI-eEF1A evaluated together with that of the eEF1A1/A2 mRNAs. Our data indicate that the MBI-eEF1A may derive from eEF1A1 as eEF1A2 is not expressed in CCRF-CEM and normal lymphocytes. Moreover, MBI-eEF1A is inducible in normal lymphocytes upon hyper-proliferative stimuli application; in CCRF-CEM, its presence can be abrogated by PMA-induced differentiation. Finally, MBI-eEF1A may have a functional role in hyper-proliferating/tumour cells as its disappearance reduces the growth of CCRF-CEM and that of PHA/PMA-stimulated lymphocytes. The presented data suggest that MBI-eEF1A may be related to oncogenic cell phenotype, rising the possibility to use MBI-eEF1A as target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | | | | | | |
Collapse
|
16
|
Lai YT, DeStefano JJ. DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Nucleic Acid Ther 2012; 22:162-76. [PMID: 22554064 PMCID: PMC3423876 DOI: 10.1089/nat.2011.0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/24/2012] [Indexed: 12/17/2022] Open
Abstract
A 30-nucleotide DNA aptamer (5'-AGGAAGGCTTTAGGTCTGAGATCTCGGAAT-3', denoted PF1) selected for high affinity to human immunodeficiency virus reverse transcriptase (HIV RT) using a primer-free SELEX (systematic evolution of ligands by exponential enrichment) method was characterized to determine features promoting tight binding. PF1's equilibrium dissociation constant for RT was ∼80 nM, over 10-fold lower than a random 30-mer. Changing the 2 terminal diguanosine repeats (underlined above) to diadenosine or dithymidine modestly decreased binding. Any changes to the 2 central diguanosines dramatically decreased binding. Binding was highly sensitive to length, with any truncations that deleted part of the 4 diguanosine motifs resulting in a 6-fold or more decrease in affinity. Even a construct with all the diguanosine motifs but lacking the 5' terminal A and 3 nucleotides at the 3' end showed ∼3-fold binding decrease. Changes to the nucleotides between the diguanosines, even those that did not alter PF1's low secondary structure (free energy of folding ΔG=-0.61 kcal/mol), dramatically decreased binding, suggesting sequence specificity. Despite the diguanosine motifs, circular dichroism (CD) spectra indicated that PF1 did not form a G-quartet. PF1 inhibited HIV RT synthesis with a half-maximal inhibitory value (IC(50)) of ∼60 nM. Larger, more structured RT DNA aptamers based on the HIV polypurine tract and those that formed G-quartets (denoted S4 and R1T) were more potent inhibitors, with IC(50) values of ∼4 and ∼1 nM, respectively. An RNA pseudoknot aptamer (denoted 1.1) showed an IC(50) near 4 nM. Competition binding assays with PF1 and several previously characterized RT aptamers indicated that they all bound at or near the primer-template pocket. These other more structured and typically larger aptamers bound more tightly than PF1 to RT based on filter binding assays. Results indicate that PF1 represents a new class of RT aptamers that are relatively small and have very low secondary structure, attributes that could be advantageous for further development as HIV inhibitors.
Collapse
Affiliation(s)
- Yi-Tak Lai
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | |
Collapse
|
17
|
Lapek JD, McGrath JL, Ricke WA, Friedman AE. LC/LC-MS/MS of an innovative prostate human epithelial cancer (PHEC) in vitro model system. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 893-894:34-42. [PMID: 22425387 DOI: 10.1016/j.jchromb.2012.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 02/11/2012] [Accepted: 02/17/2012] [Indexed: 11/29/2022]
Abstract
This work describes the proteomic characterization of a novel in vitro prostate cancer model system, the clonal prostatic human epithelial cancer (PHEC) cell lines. The model is composed of three cell lines representing the three progressive cancer states found in vivo: non-tumorigenic, tumorigenic, and metastatic. The cell lines were evaluated for differential protein expression between states using two dimensional liquid:liquid chromatographic separation followed by mass spectral identification. The proteins from cellular extracts were first separated using liquid:liquid primary separation based on their isoelectric points and hydrophobicity. The resulting peptide fractions were applied to liquid chromatography-mass spectrometry (LC-MS) separation for mass determination and protein identification based on Mascot database inquiry. Over 200 proteins that change expression over the course of progression of this in vitro prostate cancer model were discovered during the comparative analysis of the three cell lines. The importance of these proteins on prostate cancer progression remains to be elucidated with further characterizations. The combination of the two dimensional liquid:liquid separation and mass spectral identifications was used to successfully analyze differential protein expression between multiple cell lines.
Collapse
Affiliation(s)
- John D Lapek
- University of Rochester Medical Center, Department of Environmental Medicine, Rochester, NY 14642, United States
| | | | | | | |
Collapse
|
18
|
Scaggiante B, Dapas B, Bonin S, Grassi M, Zennaro C, Farra R, Cristiano L, Siracusano S, Zanconati F, Giansante C, Grassi G. Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression. Br J Cancer 2012; 106:166-173. [PMID: 22095224 PMCID: PMC3251850 DOI: 10.1038/bjc.2011.500] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In prostate adenocarcinoma, the dissection of the expression behaviour of the eukaryotic elongation factors (eEF1A1/2) has not yet fully elucidated. METHODS The EEF1A1/A2 expressions were investigated by real-time PCR, western blotting (cytoplasmic and cytoskeletal/nuclear-enriched fractions) and immunofluorescence in the androgen-responsive LNCaP and the non-responsive DU-145 and PC-3 cells, displaying a low, moderate and high aggressive phenotype, respectively. Targeted experiments were also conducted in the androgen-responsive 22Rv1, a cell line marking the progression towards androgen-refractory tumour. The non-tumourigenic prostate PZHPV-7 cell line was the control. RESULTS Compared with PZHPV-7, cancer cells showed no major variations in EEF1A1 mRNA; eEF1A1 protein increased only in cytoskeletal/nuclear fraction. On the contrary, a significant rise of EEF1A2 mRNA and protein were found, with the highest levels detected in LNCaP. Eukaryotic elongation factor 1A2 immunostaining confirmed the western blotting results. Pilot evaluation in archive prostate tissues showed the presence of EEF1A2 mRNA in near all neoplastic and perineoplastic but not in normal samples or in benign adenoma; in contrast, EEF1A1 mRNA was everywhere detectable. CONCLUSION Eukaryotic elongation factor 1A2 switch-on, observed in cultured tumour prostate cells and in human prostate tumour samples, may represent a feature of prostate cancer; in contrast, a minor involvement is assigned to EEF1A1. These observations suggest to consider EEF1A2 as a marker for prostate cell transformation and/or possibly as a hallmark of cancer progression.
Collapse
Affiliation(s)
- B Scaggiante
- Molecular Biology Section, Department of Life Sciences, University of Trieste, Via Giorgieri, 1, Trieste 34127, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A promoter SNP rs4073T>A in the common allele of the interleukin 8 gene is associated with the development of idiopathic pulmonary fibrosis via the IL-8 protein enhancing mode. Respir Res 2011; 12:73. [PMID: 21649933 PMCID: PMC3141418 DOI: 10.1186/1465-9921-12-73] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/08/2011] [Indexed: 01/16/2023] Open
Abstract
Background Interleukin-8 (IL-8) is a potent chemo-attractant cytokine responsible for neutrophil infiltration in lungs with idiopathic pulmonary fibrosis (IPF). The IL-8 protein and mRNA expression are increased in the lung with IPF. We evaluated the effect of single nucleotide polymorphisms (SNPs) of the IL-8 gene on the risk of IPF. Methods One promoter (rs4073T>A) and two intronic SNPs (rs2227307T>G and rs2227306C>T) of the IL-8 genes were genotyped in 237 subjects with IPF and 456 normal controls. Logistic regression analysis was applied to evaluate the association of these SNPs with IPF. IL-8 in BAL fluids was measured using a quantitative sandwich enzyme immunoassay, and promoter activity was assessed using the luciferase reporter assay. Results The minor allele frequencies of rs4073T>A and rs2227307T>G were significantly lower in the 162 subjects with surgical biopsy-proven IPF and 75 subjects with clinical IPF compared with normal controls in the recessive model (OR = 0.46 and 0.48, p = 0.006 and 0.007, respectively). The IL-8 protein concentration in BAL fluids significantly increased in 24 subjects with IPF compared with 14 controls (p = 0.009). Nine IPF subjects homozygous for the rs4073 T>A common allele exhibited higher levels of the IL-8 protein compared with six subjects homozygous for the minor allele (p = 0.024). The luciferase activity of the rs4073T>A common allele was significantly higher than that of the rs4073T>A minor allele (p = 0.002). Conclusion The common allele of a promoter SNP, rs4073T>A, may increase susceptibility to the development of IPF via up-regulation of IL-8.
Collapse
|
20
|
George J, Singh R, Mahmood Z, Shukla Y. Toxicoproteomics: New paradigms in toxicology research. Toxicol Mech Methods 2010; 20:415-23. [DOI: 10.3109/15376511003667842] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 2009; 86:151-64. [PMID: 19454272 PMCID: PMC2716701 DOI: 10.1016/j.yexmp.2009.01.004] [Citation(s) in RCA: 619] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Indexed: 02/07/2023]
Abstract
Certain guanine-rich (G-rich) DNA and RNA molecules can associate intermolecularly or intramolecularly to form four stranded or "quadruplex" structures, which have unusual biophysical and biological properties. Several synthetic G-rich quadruplex-forming oligodeoxynucleotides have recently been investigated as therapeutic agents for various human diseases. We refer to these biologically active G-rich oligonucleotides as aptamers because their activities arise from binding to protein targets via shape-specific recognition (analogous to antibody-antigen binding). As therapeutic agents, the G-rich aptamers may have some advantages over monoclonal antibodies and other oligonucleotide-based approaches. For example, quadruplex oligonucleotides are non-immunogenic, heat stable and they have increased resistance to serum nucleases and enhanced cellular uptake compared to unstructured sequences. In this review, we describe the characteristics and activities of G-rich oligonucleotides. We also give a personal perspective on the discovery and development of AS1411, an antiproliferative G-rich phosphodiester oligonucleotide that is currently being tested as an anticancer agent in Phase II clinical trials. This molecule functions as an aptamer to nucleolin, a multifunctional protein that is highly expressed by cancer cells, both intracellularly and on the cell surface. Thus, the serendipitous discovery of the G-rich oligonucleotides also led to the identification of nucleolin as a new molecular target for cancer therapy.
Collapse
Affiliation(s)
- Paula J Bates
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | | | | | |
Collapse
|
22
|
Scaggiante B, Bonin S, Cristiano L, Siracusano S, Stanta G, Dapas B, Giansante C, Fiotti N, Grassi G. Prostate-tumor-inducing gene-1 analysis in human prostate cancer cells and tissue in relation to Mycoplasma infection. Cancer Invest 2008; 26:800-808. [PMID: 18853312 DOI: 10.1080/07357900701874633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The potential role of PTI-1, in the natural story of prostate adenocarcinoma remains to be fully determined. PTI-1 expression was evaluated in human prostate cancer cell lines and in paraffin-embedded archive tissues. PTI-1 expression was found in Mycoplasma infected but not in non-infected cells. The lack of PTI-1 expression was also confirmed in fixed and paraffin-embedded human cancer prostate biopsies. The overall data indicate that, in prostate tumor cell lines, PTI-1 presence parallels Mycoplasma infection suggesting that PTI-1 might not necessarily play a major role in the onset of prostate tumorigenesis.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/microbiology
- Adenocarcinoma/pathology
- Blotting, Western
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/microbiology
- Cell Transformation, Neoplastic/genetics
- False Positive Reactions
- Fibroblasts/metabolism
- Fibroblasts/microbiology
- Gene Expression Regulation, Neoplastic
- Hepatocytes/metabolism
- Hepatocytes/microbiology
- Humans
- Male
- Mycoplasma hyorhinis/genetics
- Neoplasm Proteins/analysis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Peptide Elongation Factor 1/analysis
- Peptide Elongation Factor 1/biosynthesis
- Peptide Elongation Factor 1/genetics
- Peptide Elongation Factor 1/physiology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/microbiology
- Prostatic Neoplasms/pathology
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Neoplasm/analysis
- RNA, Neoplasm/genetics
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- Bruna Scaggiante
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Trieste, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leclercq TM, Moretti PAB, Vadas MA, Pitson SM. Eukaryotic elongation factor 1A interacts with sphingosine kinase and directly enhances its catalytic activity. J Biol Chem 2008; 283:9606-14. [PMID: 18263879 PMCID: PMC2442288 DOI: 10.1074/jbc.m708782200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/23/2008] [Indexed: 01/07/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) has many important roles in mammalian cells, including contributing to the control of cell survival and proliferation. S1P is generated by sphingosine kinases (SKs), of which two mammalian isoforms have been identified (SK1 and SK2). To gain a better understanding of SK regulation, we have used a yeast two-hybrid screen to identify SK1-interacting proteins and established elongation factor 1A (eEF1A) as one such protein that associates with both SK1 and SK2. We show the direct interaction of eEF1A with the SKs in vitro, whereas the physiological relevance of this association was demonstrated by co-immunoprecipitation of the endogenous proteins from cell lysates. Although the canonical role of eEF1A resides in protein synthesis, it has also been implicated in other roles, including regulating the activity of some signaling enzymes. Thus, we examined the potential role of eEF1A in regulation of the SKs and show that eEF1A is able to directly increase the activity of SK1 and SK2 approximately 3-fold in vitro. Substrate kinetics demonstrated that eEF1A increased the catalytic rate of both SKs, while having no observable effect on substrate affinities of these enzymes for either ATP or sphingosine. Overexpression of eEF1A in quiescent Chinese hamster ovary cells increased cellular SK activity, whereas a small interfering RNA-mediated decrease in eEF1A levels in MCF7 cells substantially reduced cellular SK activity and S1P levels, supporting the in vivo physiological relevance of this interaction. Thus, this study has established a novel mechanism of regulation of both SK1 and SK2 that is mediated by their interaction with eEF1A.
Collapse
Affiliation(s)
- Tamara M Leclercq
- Hanson Institute, Division of Human Immunology, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia
| | | | | | | |
Collapse
|
24
|
Goodchild A, King A, Gozar MM, Passioura T, Tucker C, Rivory L. Cytotoxic G-rich oligodeoxynucleotides: putative protein targets and required sequence motif. Nucleic Acids Res 2007; 35:4562-72. [PMID: 17586818 PMCID: PMC1935016 DOI: 10.1093/nar/gkm465] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/27/2007] [Accepted: 05/28/2007] [Indexed: 11/19/2022] Open
Abstract
It has recently been shown that certain oligodeoxynucleotides (ODNs) designed as catalytic DNA molecules (DNAzymes) exhibit potent cytotoxicity independent of RNA-cleavage activity in a number of cell lines. These cytotoxic ODNs all featured a 5' G-rich sequence and induced cell death by a TLR9-independent mechanism. In this study, we examined the sequence and length dependence of ODNs for cytotoxicity. A G-rich sequence at the 5' terminus of the molecule was necessary for cytotoxicity and the potency of ODNs with active 5' sequences was length dependent. Cytotoxicity appeared to be generally independent of 3' sequence composition, although 3' sequences totally lacking G-nucleotides were mostly inactive. Nucleolin, elongation factor 1-alpha (eEF1A) and vimentin were identified as binding to a cytotoxic ODN (Dz13) using protein pull-down assays and LC-MS/MS. Although these proteins have previously been described to bind G-rich ODNs, the binding of eEF1A correlated with cytotoxicity, whereas binding of nucleolin and vimentin did not. Quiescent non-proliferating cells were resistant to cytotoxicity, indicating cytotoxicity may be cell cycle dependent. Although the exact mechanism of cytotoxicity remains unknown, marked potency of the longer (> or =25 nt) ODNs in particular, indicates the potential of these molecules for treatment of diseases associated with abnormal cell proliferation.
Collapse
Affiliation(s)
- Amber Goodchild
- Johnson & Johnson Research Pty Ltd, Eveleigh, NSW, 1430, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Scaggiante B, Dapas B, Grassi G, Manzini G. Interaction of G-rich GT oligonucleotides with nuclear-associated eEF1A is correlated with their antiproliferative effect in haematopoietic human cancer cell lines. FEBS J 2006; 273:1350-1361. [PMID: 16689924 DOI: 10.1111/j.1742-4658.2006.05143.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
G-rich GT oligonucleotides with a different content of G clusters have been evaluated for their ability to exert cytotoxicity and to bind to nuclear-associated proteins in T-lymphoblast CCRF-CEM cells. Only the oligomers that did not form G-based structures or had a poor structure, under physiological conditions, were able to exert significant cellular growth inhibition effect. The cytotoxicity of these oligomers was related to their binding to the nuclear-associated eEF1A protein, but not to the recognition of nucleolin or other proteins. In particular, GT oligomers adopting a conformation compatible with G-quadruplex, did not exert cytotoxicity and did not bind to eEF1A. The overall results suggest that the ability of oligomers to adopt a G-quadruplex-type secondary structure in a physiological buffer containing 150 mM NaCl is not a prerequisite for antiproliferative effect in haematopoietic cancer cells. The cytotoxicity of G-rich GT oligomers was shown to be tightly related to their binding affinity for eEF1A protein.
Collapse
Affiliation(s)
- Bruna Scaggiante
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Italy.
| | | | | | | |
Collapse
|
26
|
Chen L, Madura K. Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 2005; 65:5599-606. [PMID: 15994932 DOI: 10.1158/0008-5472.can-05-0201] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ubiquitin (Ub)/proteasome pathway facilitates the degradation of damaged proteins and regulators of growth and stress response. The activation of this pathway in various cancers and malignancies has been described, and several genetic determinants of breast cancer, including BRCA1 and BRCA2, are linked to protein degradation. To investigate the involvement of the Ub/proteasome system in breast cancer, we examined a collection of 25 patient-matched breast cancer and normal adjacent tissues and detected activation of numerous components of the Ub/proteasome pathway. The activity of the proteasome, and levels of proteasome subunits and various targeting factors, were increased in >90% of primary breast cancer tissue specimens. In contrast, no activation was observed in benign solid tumors, indicating that the response is specific to abnormal growth in neoplastic cells. Additionally, the accumulation of high levels of certain Ub-conjugating enzymes (UbcH1, UbcH2, and UbcH5), was specific to breast cancer, as no change in abundance was detected in primary colon cancer tissue extracts. Surprisingly, the Ub/proteasome system was not activated in a well-characterized cell culture-based breast cancer model system. Collectively, these findings suggest that the analysis of primary breast cancer tissue samples will be indispensable for the biochemical characterization of neoplastic growth and for the development of therapeutics.
Collapse
Affiliation(s)
- Li Chen
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
27
|
Cogoi S, Ballico M, Bonora GM, Xodo LE. Antiproliferative activity of a triplex-forming oligonucleotide recognizing a Ki-ras polypurine/polypyrimidine motif correlates with protein binding. Cancer Gene Ther 2005; 11:465-76. [PMID: 15118760 DOI: 10.1038/sj.cgt.7700722] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Ki-ras gene is frequently mutated and/or overexpressed in human cancer. Since it is suspected to play a key role in the pathogenesis of many tumors, there is interest to search for strategies aiming at the specific inhibition of this oncogene. In this paper, we investigated the capacity of a 20 mer G-rich oligonucleotide (ODN20) conjugated to high molecular weight monomethoxy polyethylene glycol (MPEG) to inhibit the expression of the Ki-ras gene and the proliferation of pancreatic cancer cells. The conjugate, MPEG ODN20, was designed to form a triplex with a critical pur/pyr sequence located in the promoter of the Ki-ras gene. To make the conjugate resistant to endogenous and exogenous nucleases, five phosphorothioate linkages were introduced in its backbone. Confocal microscopy and FACS experiments showed that MPEG ODN20 had a higher capacity to penetrate the cell membranes and accumulate in the nucleus of Panc-1 cells than ODN20. Incubation of Panc-1 cells with MPEG ODN20 reduced specifically the levels of Ki-ras mRNA and RAS protein p21RAS. A single-dose administration of MPEG ODN20 was sufficient to inhibit cell proliferation by about 50% compared with control. By contrast, the antiproliferative activity of the unconjugated ODN20 analog was found to be not significant. Band-shift and footprinting experiments showed that MPEG ODN20 formed a weak triplex (Kd approximately 1.5 microM at 37 degrees C, 50 mM Tris-acetate, pH 7.4, 10 mM NaCl, 10 mM MgCl2, 5 mM spermidine) with the Ki-ras pyr/pur motif, suggesting that its bioactivity can hardly be mediated by a triplex-based mechanism. Here, we provide evidence that, in vitro, ODN20 and MPEG ODN20 competitively inhibit the binding to the Ki-ras pur/pyr motif of a nuclear protein, suggesting that the activity of MPEG ODN20 occurs with an aptameric mechanism. The biological implications of this study are discussed.
Collapse
Affiliation(s)
- Susanna Cogoi
- Dipartimento di Scienze e Tecnologie Biomediche, Piazzale Kolbe 4, Università di Udine, 33100 Udine, Italy
| | | | | | | |
Collapse
|
28
|
Marco E, Martín-Santamaría S, Cuevas C, Gago F. Structural basis for the binding of didemnins to human elongation factor eEF1A and rationale for the potent antitumor activity of these marine natural products. J Med Chem 2004; 47:4439-52. [PMID: 15317456 DOI: 10.1021/jm0306428] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Didemnins and tamandarins are closely related marine natural products with potent inhibitory effects on protein synthesis and cell viability. On the basis of available biochemical and structural evidence and results from molecular dynamics simulations, a model is proposed that accounts for the strong and selective binding of these compounds to human elongation factor eEF1A in the presence of GTP. We suggest that the p-methoxyphenyl ring of these cyclic depsipeptides is inserted into the same pocket in eEF1A that normally lodges either the 3' terminal adenine of aminoacylated tRNA, as inferred from two prokaryotic EF-Tu.GTP.tRNA complexes, or the aromatic side chain of Phe/Tyr-163 from the nucleotide exchange factor eEF1Balpha, as observed in several X-ray crystal structures of a yeast eEF1A:eEF1Balpha complex. This pocket, which has a strong hydrophobic character, is formed by two protruding loops on the surface of eEF1A domain 2. Further stabilization of the bound depsipeptide is brought about by additional crucial interactions involving eEF1A domain 1 in such a way that the molecule fits snugly at the interface between these two domains. In the GDP-bound form of eEF1A, this binding site exists only as two separate halves, which accounts for the much greater affinity of didemnins for the GTP-bound form of this elongation factor. This binding mode is entirely different from those seen in the complexes of the homologous prokaryotic EF-Tu with kirromycin-type antibiotics or the cyclic thiazolyl peptide antibiotic GE2270A. Interestingly, the set of interactions used by didemnins to bind to eEF1A is also distinct from that used by eEF1Balpha or eEF1Bbeta, thus establishing a competition for binding to a common site that goes beyond simple molecular mimicry. The model presented here is consistent with both available biochemical evidence and known structure-activity relationships for these two classes of natural compounds and synthetic analogues and provides fertile ground for future research.
Collapse
Affiliation(s)
- Esther Marco
- Departamento de Farmacología, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|