1
|
Buechel ER, Dimitrova VS, Karagiaridi A, Kenney LG, Pinkett HW. Structurally diverse C-terminal accessory domains in type I ABC importers reveal distinct regulatory mechanisms. Structure 2025; 33:843-857. [PMID: 40132581 PMCID: PMC12048282 DOI: 10.1016/j.str.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are critical for cellular processes, facilitating the transport of various substrates across membranes by harnessing ATP hydrolysis. These transporters are divided into importers and exporters, with importers playing key roles in nutrient uptake and bacterial virulence. Despite their therapeutic potential as drug targets, the regulatory mechanisms governing ABC importers remain poorly understood. ABC importers often possess additional cytosolic C-terminal accessory domains fused to nucleotide-binding domains (NBDs). These accessory domains, also referred to as C-terminal regulatory domains (CRDs), modulate transport activity by inhibiting NBD dimerization or ATP hydrolysis in response to environmental cues, thus regulating substrate transport. The diversity in CRD folds, architectures, and regulatory mechanisms adds additional complexity to transporter regulation. This review explores the current understanding of C-terminal accessory domains in type I ABC importers, highlighting their contributions to transporter function.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Valentina S Dimitrova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alexandra Karagiaridi
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Lydia G Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
The TAP translocation machinery in adaptive immunity and viral escape mechanisms. Essays Biochem 2012; 50:249-64. [PMID: 21967061 DOI: 10.1042/bse0500249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The adaptive immune system plays an essential role in protecting vertebrates against a broad range of pathogens and cancer. The MHC class I-dependent pathway of antigen presentation represents a sophisticated cellular machinery to recognize and eliminate infected or malignantly transformed cells, taking advantage of the proteasomal turnover of the cell's proteome. TAP (transporter associated with antigen processing) 1/2 (ABCB2/3, where ABC is ATP-binding cassette) is the principal component in the recognition, translocation, chaperoning, editing and final loading of antigenic peptides on to MHC I complexes in the ER (endoplasmic reticulum) lumen. These different tasks are co-ordinated within a dynamic macromolecular peptide-loading complex consisting of TAP1/2 and various auxiliary factors, such as the adapter protein tapasin, the oxidoreductase ERp57, the lectin chaperone calreticulin, and the final peptide acceptor the MHC I heavy chain associated with β2-microglobulin. In this chapter, we summarize the structural organization and molecular mechanism of the antigen-translocation machinery as well as various modes of regulation by viral factors and in genetic diseases and tumour development.
Collapse
|
3
|
Procko E, Gaudet R. Antigen processing and presentation: TAPping into ABC transporters. Curr Opin Immunol 2009; 21:84-91. [PMID: 19261456 DOI: 10.1016/j.coi.2009.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/11/2009] [Indexed: 01/08/2023]
Abstract
Adaptive, cell-mediated immunity involves the presentation of antigenic peptides on class I MHC molecules at the cell surface. This requires an ABC transporter associated with antigen processing (TAP) to transport antigenic peptides generated in the cytosol into the endoplasmic reticulum (ER) for loading onto class I MHC. Recent crystal structures of bacterial ABC transporters suggest how the transmembrane domains of TAP form a peptide-binding cavity that acquires peptides from the cytosol, and following ATP-induced conformational changes, the peptide-binding cavity closes to the cytosol and instead opens to the ER lumen for peptide release. Extensive biochemical studies show how transport is driven by ATP binding and hydrolysis on an asymmetric pair of cytosolic nucleotide-binding domains, which are physically coupled to the peptide-binding site to propagate conformational changes through the protein.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
4
|
Procko E, O'Mara ML, Bennett WFD, Tieleman DP, Gaudet R. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J 2009; 23:1287-302. [PMID: 19174475 DOI: 10.1096/fj.08-121855] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The shuttling of substrates across a cellular membrane frequently requires a specialized ATP-binding cassette (ABC) transporter, which couples the energy of ATP binding and hydrolysis to substrate transport. Due to its importance in immunity, the ABC transporter associated with antigen processing (TAP) has been studied extensively and is an excellent model for other ABC transporters. The TAP protein pumps cytosolic peptides into the endoplasmic reticulum for loading onto class I major histocompatibility complex (MHC) for subsequent immune surveillance. Here, we outline a potential mechanism for the TAP protein with supporting evidence from bacterial transporter structures. The similarities and differences between TAP and other transporters support the notion that ABC transporters in general have adapted around a universal transport mechanism.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University 7 Divinity Ave., Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
5
|
Verweij MC, Koppers-Lalic D, Loch S, Klauschies F, de la Salle H, Quinten E, Lehner PJ, Mulder A, Knittler MR, Tampé R, Koch J, Ressing ME, Wiertz EJHJ. The varicellovirus UL49.5 protein blocks the transporter associated with antigen processing (TAP) by inhibiting essential conformational transitions in the 6+6 transmembrane TAP core complex. THE JOURNAL OF IMMUNOLOGY 2008; 181:4894-907. [PMID: 18802093 DOI: 10.4049/jimmunol.181.7.4894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.
Collapse
Affiliation(s)
- Marieke C Verweij
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Procko E, Gaudet R. Functionally important interactions between the nucleotide-binding domains of an antigenic peptide transporter. Biochemistry 2008; 47:5699-708. [PMID: 18452308 DOI: 10.1021/bi7024854] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transporter associated with antigen processing (TAP), an ABC transporter, pumps cytosolic peptides into the endoplasmic reticulum, where the peptides are loaded onto class I MHC molecules for presentation to the immune system. Transport is fueled by the binding of ATP to two cytosolic nucleotide-binding domains (NBDs) and ATP hydrolysis. We demonstrate biochemically that there are two electrostatic interactions across the interface between the two TAP NBDs and that these interactions are important for peptide transport. Notably, disrupting these interactions by mutagenesis does not greatly alter the ATP hydrolysis rate in an isolated NBD model system, suggesting that the interactions function at alternative stages in the transport cycle. The data support the general model for ABC transporters in which the NBDs form a tight, closed conformation during transport. Our results are discussed in relation to other ABC transporters that do or do not conserve potential interacting residues of opposite charges at the homologous positions.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
7
|
Hosy E, Dérand R, Revilloud J, Vivaudou M. Remodelling of the SUR-Kir6.2 interface of the KATP channel upon ATP binding revealed by the conformational blocker rhodamine 123. J Physiol 2007; 582:27-39. [PMID: 17510180 PMCID: PMC2075286 DOI: 10.1113/jphysiol.2007.134288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ATP-sensitive K+ channels (K(ATP) channels) are metabolic sensors formed by association of a K+ channel, Kir6, and an ATP-binding cassette (ABC) protein, SUR, which allosterically regulates channel gating in response to nucleotides and pharmaceutical openers and blockers. How nucleotide binding to SUR translates into modulation of Kir6 gating remains largely unknown. To address this issue, we have used a novel conformational KATP channel inhibitor, rhodamine 123 (Rho123) which targets the Kir6 subunit in a SUR-dependent manner. Rho123 blocked SUR-less Kir6.2 channels with an affinity of approximately 1 microM, regardless of the presence of nucleotides, but it had no effect on channels formed by the association of Kir6.2 and the N-terminal transmembrane domain TMD0 of SUR. Rho123 blocked SUR + Kir6.2 channels with the same affinity as Kir6.2 but this effect was antagonized by ATP. Protection from Rho123 block by ATP was due to direct binding of ATP to SUR and did not entail hydrolysis because it was not mimicked by AMP, did not require Mg2+ and was reduced by mutations in the nucleotide-binding domains of SUR. These results suggest that Rho123 binds at the TMD0-Kir6.2 interface and that binding of ATP to SUR triggers a change in the structure of the contact zone between Kir6.2 and domain TMD0 of SUR that causes masking of the Rho123 site on Kir6.2.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adenosine Triphosphate/metabolism
- Allosteric Regulation/drug effects
- Animals
- Binding, Competitive
- Cloning, Molecular
- Cricetinae
- Female
- Fluorescent Dyes/metabolism
- Fluorescent Dyes/pharmacology
- Ion Channel Gating/drug effects
- Membrane Potentials/drug effects
- Mice
- Mutation
- Oocytes
- Patch-Clamp Techniques
- Potassium Channel Blockers/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels/chemistry
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying/antagonists & inhibitors
- Potassium Channels, Inwardly Rectifying/chemistry
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Protein Conformation/drug effects
- Protein Structure, Tertiary
- Rats
- Receptors, Drug/chemistry
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Rhodamine 123/metabolism
- Rhodamine 123/pharmacology
- Sulfonylurea Receptors
- Time Factors
- Xenopus laevis
Collapse
Affiliation(s)
- Eric Hosy
- Institute of Structural Biology, UMR5075 CEA-CNRS-University J. Fourier, 41, rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | |
Collapse
|
8
|
Plewnia G, Schulze K, Hunte C, Tampé R, Koch J. Modulation of the antigenic peptide transporter TAP by recombinant antibodies binding to the last five residues of TAP1. J Mol Biol 2007; 369:95-107. [PMID: 17418234 DOI: 10.1016/j.jmb.2007.02.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/19/2007] [Accepted: 02/23/2007] [Indexed: 11/30/2022]
Abstract
The transporter associated with antigen processing (TAP) plays a pivotal role in the major histocompatibility complex (MHC) class I mediated immune response against infected or malignantly transformed cells. It belongs to the ATP-binding cassette (ABC) superfamily and consists of TAP1 (ABCB2) and TAP2 (ABCB3), each of which possesses a transmembrane and a nucleotide-binding domain (NBD). Here we describe the generation of recombinant Fv and Fab antibody fragments to human TAP from a hybridoma cell line expressing the TAP1-specific monoclonal antibody mAb148.3. The epitope of the antibody was mapped to the very last five C-terminal amino acid residues of TAP1 on solid-supported peptide arrays. The recombinant antibody fragments were heterologously expressed in Escherichia coli and purified to homogeneity from periplasmic extracts by affinity chromatography. The monoclonal and recombinant antibodies bind with nanomolar affinity to the last five C-terminal amino acid residues of TAP1 as demonstrated by ELISA and surface plasmon resonance. Strikingly, the recombinant antibody fragments confer thermal stability to the heterodimeric TAP complex. At the same time TAP is arrested in a peptide transport incompetent conformation, although ATP and peptide binding to TAP are not affected. Based on our results we suggest that the C terminus of TAP1 modulates TAP function presumably as part of the dimer interface of the NBDs.
Collapse
Affiliation(s)
- Gabriele Plewnia
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-69438 Frankfurt a. M., Germany
| | | | | | | | | |
Collapse
|
9
|
Zhang LX, Zhao LF, Zhang AS, Chen XG, Xu CS. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: cellular immune response. World J Gastroenterol 2006; 12:7514-21. [PMID: 17167843 PMCID: PMC4087600 DOI: 10.3748/wjg.v12.i46.7514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/01/2006] [Accepted: 10/07/2006] [Indexed: 02/07/2023] Open
Abstract
AIM To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level. METHODS Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array. RESULTS A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from G(0)-G(1) (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity, these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total up- and down-regulated expression times were 419 and 274, respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns, they were classified into 21 types, showing the activities were diverse and complicated during LR. CONCLUSION Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.
Collapse
Affiliation(s)
- Lian-Xing Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, China
| | | | | | | | | |
Collapse
|
10
|
Ehses S, Leonhardt RM, Hansen G, Knittler MR. Functional Role of C-Terminal Sequence Elements in the Transporter Associated with Antigen Processing. THE JOURNAL OF IMMUNOLOGY 2004; 174:328-39. [PMID: 15611256 DOI: 10.4049/jimmunol.174.1.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TAP delivers antigenic peptides into the endoplasmic reticulum (ER) that are subsequently bound by MHC class I molecules. TAP consists of two subunits (TAP1 and TAP2), each with a transmembrane (TMD) and a nucleotide-binding (NBD) domain. The two TAP-NBDs have distinct biochemical properties and control different steps during the peptide translocation process. We noted previously that the nonhomologous C-terminal tails of rat TAP1 and TAP2 determine the distinct functions of TAP-NBD1 and -NBD2. To identify the sequence elements responsible for the asymmetrical NBD function, we constructed chimeric rat TAP variants in which we systematically exchanged sequence regions of different length between the two TAP-NBDs. Our fine-mapping studies demonstrate that a nonhomologous region containing the alpha6/beta10-loop in conjunction with the downstream switch region is directly responsible for the functional separation of the TAP-NBDs. The alpha6/beta10-loop determines the nonsynonymous nucleotide binding of NBD1 and NBD2, whereas the switch region seems to play a critical role in regulating the functional cross-talk between the structural domains of TAP. Based on our findings, we postulate that these two sequence elements build a minimal functional unit that controls the asymmetry of the two TAP-NBDs.
Collapse
Affiliation(s)
- Sarah Ehses
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | | | | | | |
Collapse
|
11
|
Boardman BK, Satchell KJF. Vibrio cholerae strains with mutations in an atypical type I secretion system accumulate RTX toxin intracellularly. J Bacteriol 2004; 186:8137-43. [PMID: 15547287 PMCID: PMC529086 DOI: 10.1128/jb.186.23.8137-8143.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study shows that the Vibrio cholerae RTX toxin is secreted by a four-component type I secretion system (TISS) encoded by rtxB, rtxD, rtxE, and tolC. ATP-binding site mutations in both RtxB and RtxE blocked secretion, demonstrating that this atypical TISS requires two transport ATPases that may function as a heterodimer.
Collapse
Affiliation(s)
- Bethany Kay Boardman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
12
|
Abele R, Tampé R. The ABCs of Immunology: Structure and Function of TAP, the Transporter Associated with Antigen Processing. Physiology (Bethesda) 2004; 19:216-24. [PMID: 15304636 DOI: 10.1152/physiol.00002.2004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is essential for peptide delivery from the cytosol into the lumen of the endoplasmic reticulum (ER), where these peptides are loaded on major histocompatibility complex (MHC) I molecules. Loaded MHC I leave the ER and display their antigenic cargo on the cell surface to cytotoxic T cells. Subsequently, virus-infected or malignantly transformed cells can be eliminated. Here we discuss the structure, function, and mechanism of TAP as a central part of the peptide-loading complex. Furthermore, aspects of virus and tumor escape strategies are presented.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biozentrum Frankfurt, Johann Wolfgang Goethe-University, D-60439 Frankfurt am Main, Germany
| | | |
Collapse
|