1
|
Shirley JD, Gillingham JR, Nauta KM, Diwakar S, Carlson EE. kinact/ KI Value Determination for Penicillin-Binding Proteins in Live Cells. ACS Infect Dis 2024; 10:4137-4145. [PMID: 39628314 PMCID: PMC11984511 DOI: 10.1021/acsinfecdis.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Penicillin-binding proteins (PBPs) are an essential family of bacterial enzymes that are covalently inhibited by the β-lactam class of antibiotics. PBP inhibition disrupts peptidoglycan biosynthesis, which results in deficient growth and proliferation, and ultimately leads to lysis. IC50 values are often employed as descriptors of enzyme inhibition and inhibitor selectivity, but can be misleading in the study of time-dependent, covalent inhibitors. Due to this disconnect, the second-order rate constant, kinact/KI, is a more appropriate metric of covalent-inhibitor potency. Despite being the gold standard measurement of potency, kinact/KI values are typically obtained from in vitro assays, which limits assay throughput if investigating an enzyme family with multiple homologues (such as the PBPs). Therefore, we developed a whole-cell kinact/KI assay to define inhibitor potency for the PBPs in Streptococcus pneumoniae using the fluorescent, activity-based probe, Bocillin-FL. Our results align with in vitro kinact/KI data and show a comparable relationship to previously established IC50 values. These results support the validity of our in vivo kinact/KI method as a means of obtaining β-lactam potency for a suite of PBPs to enable structure-activity relationship studies.
Collapse
Affiliation(s)
- Joshua D. Shirley
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Jacob R. Gillingham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| | - Kelsie M. Nauta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Shivani Diwakar
- Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| | - Erin E. Carlson
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
2
|
Kollár L, Grabrijan K, Hrast Rambaher M, Bozovičar K, Imre T, Ferenczy GG, Gobec S, Keserű GM. Boronic acid inhibitors of penicillin-binding protein 1b: serine and lysine labelling agents. J Enzyme Inhib Med Chem 2024; 39:2305833. [PMID: 38410950 PMCID: PMC10901194 DOI: 10.1080/14756366.2024.2305833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | | | | | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
3
|
Shirley JD, Nauta KM, Gillingham JR, Diwakar S, Carlson EE. kinact / KI Value Determination for Penicillin-Binding Proteins in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592586. [PMID: 38746240 PMCID: PMC11092749 DOI: 10.1101/2024.05.05.592586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Penicillin-binding proteins (PBPs) are an essential family of bacterial enzymes that are inhibited by the β-lactam class of antibiotics. PBP inhibition disrupts cell wall biosynthesis, which results in deficient growth and proliferation, and ultimately leads to lysis. IC 50 values are often employed as descriptors of enzyme inhibition and inhibitor selectivity but can be misleading in the study of time-dependent, irreversible inhibitors. Due to this disconnect, the second order rate constant k inact / K I is a more appropriate metric of covalent inhibitor potency. Despite being the gold standard measurement of potency, k inact / K I values are typically obtained from in vitro assays, which limits assay throughput if investigating an enzyme family with multiple homologs (such as the PBPs). Therefore, we developed a whole-cell k inact / K I assay to define inhibitor potency for the PBPs in Streptococcus pneumoniae using the fluorescent activity-based probe Bocillin-FL. Our results align with in vitro k inact / K I data and show a comparable relationship to previously established IC 50 values. These results support the validity of our in vivo k inact / K I method as a means of obtaining a full picture of β-lactam potency for a suite of PBPs. Abstract Figure
Collapse
|
4
|
Mitchell SL, Kearns DB, Carlson EE. Penicillin-binding protein redundancy in Bacillus subtilis enables growth during alkaline shock. Appl Environ Microbiol 2024; 90:e0054823. [PMID: 38126750 PMCID: PMC10807460 DOI: 10.1128/aem.00548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape maintenance, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Apparently-redundant proteins can be important for enabling an organism to cope with environmental stressors. In this study, we evaluated the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of PBPs in B. subtilis change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are favored for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly-redundant periplasmic enzymes.IMPORTANCEMicrobes adapt to ever-changing environments and thrive over a vast range of conditions. While bacterial genomes are relatively small, significant portions encode for "redundant" functions. Apparent redundancy is especially pervasive in bacterial proteins that reside outside of the inner membrane. While conditions within the cytoplasm are carefully controlled, those of the periplasmic space are largely determined by the cell's exterior environment. As a result, proteins within this environmentally exposed region must be capable of functioning under a vast array of conditions, and/or there must be several similar proteins that have evolved to function under a variety of conditions. This study examines the activity of a class of enzymes that is essential in cell wall construction to determine if individual proteins might be adapted for activity under particular growth conditions. Our results indicate that a subset of these proteins are preferred for growth under alkaline conditions, while others are readily dispensable.
Collapse
Affiliation(s)
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Departments of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Huang LD, Gou XY, Yang MJ, Li MJ, Chen SN, Yan J, Liu XX, Sun AH. Peptidoglycan biosynthesis-associated enzymatic kinetic characteristics and β-lactam antibiotic inhibitory effects of different Streptococcus pneumoniae penicillin-binding proteins. Int J Biol Macromol 2024; 254:127784. [PMID: 37949278 DOI: 10.1016/j.ijbiomac.2023.127784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/15/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Penicillin-binding proteins (PBPs) include transpeptidases, carboxypeptidases, and endopeptidases for biosynthesis of peptidoglycans in the cell wall to maintain bacterial morphology and survival in the environment. Streptococcus pneumoniae expresses six PBPs, but their enzymatic kinetic characteristics and inhibitory effects on different β-lactam antibiotics remain poorly understood. In this study, all the six recombinant PBPs of S. pneumoniae displayed transpeptidase activity with different substrate affinities (Km = 1.56-9.11 mM) in a concentration-dependent manner, and rPBP3 showed a greater catalytic efficiency (Kcat = 2.38 s-1) than the other rPBPs (Kcat = 3.20-7.49 × 10-2 s-1). However, only rPBP3 was identified as a carboxypeptidase (Km = 8.57 mM and Kcat = 2.57 s-1). None of the rPBPs exhibited endopeptidase activity. Penicillin and cefotaxime inhibited the transpeptidase and carboxypeptidase activity of all the rPBPs but imipenem did not inhibited the enzymatic activities of rPBP3. Except for the lack of binding of imipenem to rPBP3, penicillin, cefotaxime, and imipenem bound to all the other rPBPs (KD = 3.71-9.35 × 10-4 M). Sublethal concentrations of penicillin, cefotaxime, and imipenem induced a decrease of pneumococcal pbps-mRNA levels (p < 0.05). These results indicated that all six PBPs of S. pneumoniae are transpeptidases, while only PBP3 is a carboxypeptidase. Imipenem has no inhibitory effect on pneumococcal PBP3. The pneumococcal genes for encoding endopeptidases remain to be determined.
Collapse
Affiliation(s)
- Li-Dan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China; Yiwu Central Blood Station, Yiwu, Zhejiang 322000, PR China
| | - Xiao-Yu Gou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Mei-Juan Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China; The First Hospital of Putian City, Putian, Fujian 351100, PR China
| | - Meng-Jie Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Sui-Ning Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Jie Yan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xiao-Xiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China.
| | - Ai-Hua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
6
|
Harris-Jones TN, Pérez Medina KM, Hackett KT, Schave MA, Klimowicz AK, Schaub RE, Dillard JP. Mutation of mltG increases peptidoglycan fragment release, cell size, and antibiotic susceptibility in Neisseria gonorrhoeae. J Bacteriol 2023; 205:e0027723. [PMID: 38038461 PMCID: PMC10729727 DOI: 10.1128/jb.00277-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Neisseria gonorrhoeae is unusual in that the bacteria release larger amounts of cell wall material as they grow as compared to related bacteria, and the released cell wall fragments induce inflammation that leads to tissue damage in infected people. The study of MltG revealed the importance of this enzyme for controlling cell wall growth, cell wall fragment production, and bacterial cell size and suggests a role for MltG in a cell wall synthesis and degradation complex. The increased antibiotic sensitivities of mltG mutants suggest that an antimicrobial drug inhibiting MltG would be useful in combination therapy to restore the sensitivity of the bacteria to cell wall targeting antibiotics to which the bacteria are currently resistant.
Collapse
Affiliation(s)
- Tiffany N. Harris-Jones
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Krizia M. Pérez Medina
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Melanie A. Schave
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amy K. Klimowicz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
7
|
López-Argüello S, Montaner M, Mármol-Salvador A, Velázquez-Escudero A, Docobo-Pérez F, Oliver A, Moya B. Penicillin-Binding Protein Occupancy Dataset for 18 β-Lactams and 4 β-Lactamase Inhibitors in Neisseria gonorrhoeae. Microbiol Spectr 2023; 11:e0069223. [PMID: 37093051 PMCID: PMC10269775 DOI: 10.1128/spectrum.00692-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
The lack of effective first-line antibiotic treatments against Neisseria gonorrhoeae, and the worldwide dissemination of resistant strains, are the main drivers of a worsening global health crisis. β-lactam antibiotics have been the backbone of therapeutic armamentarium against gonococci. However, we are lacking critical insights to design rationally optimized therapies. In the present work, we generated the first PBP-binding data set on 18 currently available and clinically relevant β-lactams and 4 β-lactamase inhibitors in two N. gonorrhoeae ATCC type collection strains, 19424 and 49226 (PBP2 type XXII and A39T change in mtrR). PBP binding (IC50) was determined via the Bocillin FL binding assay in isolated membrane preparations. Three clusters of differential PBP IC50s were identified and were mostly consistent across both strains, but with quantitative differences. Carbapenems were coselective for PBP2 and PBP3 (0.01 to 0.03 mg/L). Third- and fourth-generation cephalosporins cefixime, cefotaxime, ceftazidime, cefepime, and ceftriaxone showed the lowest IC50 values for PBP2 (0.01 mg/L), whereas cefoxitin, ceftaroline, and ceftolozane required higher concentrations (0.04 to >2 mg/L). Aztreonam was selective for PBP2 in both strains (0.03 to 0.07 mg/L); amdinocillin bound this PBP at higher concentrations (1.33 to 2.94 mg/L). Penicillins specifically targeted PBP2 in strain ATCC 19424 (0.02 to 0.19 mg/L) and showed limited inhibition in strain ATCC 49226 (0.01 to >2 mg/L). Preferential PBP2 binding was observed by β-lactam-based β-lactamase inhibitors sulbactam and tazobactam (1.07 to 6.02 mg/L); meanwhile, diazabicyclooctane inhibitors relebactam and avibactam were selective for PBP3 (1.27 to 5.40 mg/L). This data set will set the bar for future studies that will help the rational use and translational development of antibiotics against multidrug-resistant (MDR) N. gonorrhoeae. IMPORTANCE The manuscript represents the first N. gonorrhoeae PBP-binding data set for 22 chemically different drugs in two type strains with different genetic background. We have identified three clusters of drugs according to their PBP binding IC50s and highlighted the binding differences across the two strains studied. With the currently available genomic information and the PBP-binding data, we have been able to correlate the target attainment differences and the mutations that affect the drug uptake with the MIC changes. The results of the current work will allow us to develop molecular tools of great practical use for the study and the design of new rationally designed therapies capable of combating the growing MDR gonococci threat.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Maria Montaner
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Amanda Mármol-Salvador
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana Velázquez-Escudero
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fernando Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
8
|
Evolution of Ceftriaxone Resistance of Penicillin-Binding Proteins 2 Revealed by Molecular Modeling. Int J Mol Sci 2022; 24:ijms24010176. [PMID: 36613627 PMCID: PMC9820184 DOI: 10.3390/ijms24010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Penicillin-binding proteins 2 (PBP2) are critically important enzymes in the formation of the bacterial cell wall. Inhibition of PBP2 is utilized in the treatment of various diseases, including gonorrhea. Ceftriaxone is the only drug used to treat gonorrhea currently, and recent growth in PBP2 resistance to this antibiotic is a serious threat to human health. Our study reveals mechanistic aspects of the inhibition reaction of PBP2 from the wild-type FA19 strain and mutant 35/02 and H041 strains of Neisseria Gonorrhoeae by ceftriaxone. QM(PBE0-D3/6-31G**)/MM MD simulations show that the reaction mechanism for the wild-type PBP2 consists of three elementary steps including nucleophilic attack, C-N bond cleavage in the β-lactam ring and elimination of the leaving group in ceftriaxone. In PBP2 from the mutant strains, the second and third steps occur simultaneously. For all considered systems, the acylation rate is determined by the energy barrier of the first step that increases in the order of PBP2 from FA19, 35/02 and H041 strains. Dynamic behavior of ES complexes is analyzed using geometry and electron density features including Fukui electrophilicity index and Laplacian of electron density maps. It reveals that more efficient activation of the carbonyl group of the antibiotic leads to the lower energy barrier of nucleophilic attack and larger stabilization of the first reaction intermediate. Dynamical network analysis of MD trajectories explains the differences in ceftriaxone binding affinity: in PBP2 from the wild-type strain, the β3-β4 loop conformation facilitates substrate binding, whereas in PBP2 from the mutant strains, it exists in the conformation that is unfavorable for complex formation. Thus, we clarify that the experimentally observed decrease in the second-order rate constant of acylation (k2/KS) in PBP2 from the mutant strains is due to both a decrease in the acylation rate constant k2 and an increase in the dissociation constant KS.
Collapse
|
9
|
Golparian D, Unemo M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev Mol Diagn 2021; 22:29-48. [PMID: 34872437 DOI: 10.1080/14737159.2022.2015329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several nucleic acid amplification tests (NAATs), mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae are promising, and some may be ready to apply at the point-of-care (POC), but important limitations remain with most NAATs. Next-generation sequencing (NGS) can overcome many of these limitations.Areas covered: Recent advances, with main focus on publications since 2017, in the development and use of NAATs and NGS to predict gonococcal AMR for surveillance and clinical use, and pros and cons of these tests as well as future perspectives for appropriate use of molecular AMR prediction for N. gonorrhoeae.Expert Commentary: NAATs and/or NGS for AMR prediction should supplement culture-based AMR surveillance, which will remain because it detects also AMR due to unknown AMR determinants, and translation into POC tests is imperative for the end-goal of individualized treatment, sparing ceftriaxone±azithromycin. Several challenges for direct testing of clinical, especially pharyngeal, specimens and for accurate prediction of cephalosporins and azithromycin resistance, especially using NAATs, remain. The choice of AMR prediction assay needs to carefully consider the intended use of the assay; limitations intrinsic to the AMR prediction technology, algorithms and specific to chosen methodology; specimen types analyzed; and cost-effectiveness.
Collapse
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
10
|
Lonergan ZR, Nairn BL, Wang J, Hsu YP, Hesse LE, Beavers WN, Chazin WJ, Trinidad JC, VanNieuwenhze MS, Giedroc DP, Skaar EP. An Acinetobacter baumannii, Zinc-Regulated Peptidase Maintains Cell Wall Integrity during Immune-Mediated Nutrient Sequestration. Cell Rep 2019; 26:2009-2018.e6. [PMID: 30784584 PMCID: PMC6441547 DOI: 10.1016/j.celrep.2019.01.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 01/10/2023] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen capable of causing wound infections, pneumonia, and bacteremia. During infection, A. baumannii must acquire Zn to survive and colonize the host. Vertebrates have evolved mechanisms to sequester Zn from invading pathogens by a process termed nutritional immunity. One of the most upregulated genes during Zn starvation encodes a putative cell wall-modifying enzyme which we named ZrlA. We found that inactivation of zrlA diminished growth of A. baumannii during Zn starvation. Additionally, this mutant strain displays increased cell envelope permeability, decreased membrane barrier function, and aberrant peptidoglycan muropeptide abundances. This altered envelope increases antibiotic efficacy both in vitro and in an animal model of A. baumannii pneumonia. These results establish ZrlA as a crucial link between nutrient metal uptake and cell envelope homeostasis during A. baumannii pathogenesis, which could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brittany L Nairn
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jiefei Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Yen-Pang Hsu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Laura E Hesse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, USA; Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Michael S VanNieuwenhze
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - David P Giedroc
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Neisseria gonorrhoeae PBP3 and PBP4 Facilitate NOD1 Agonist Peptidoglycan Fragment Release and Survival in Stationary Phase. Infect Immun 2019; 87:IAI.00833-18. [PMID: 30510100 DOI: 10.1128/iai.00833-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 01/16/2023] Open
Abstract
Neisseria gonorrhoeae releases peptidoglycan fragments during growth, and these molecules induce an inflammatory response in the human host. The proinflammatory molecules include peptidoglycan monomers, peptidoglycan dimers, and free peptides. These molecules can be released by the actions of lytic transglycosylases or an amidase. However, >40% of the gonococcal cell wall is cross-linked, where the peptide stem on one peptidoglycan strand is linked to the peptide stem on a neighboring strand, suggesting that endopeptidases may be required for the release of many peptidoglycan fragments. Therefore, we characterized mutants with individual or combined mutations in genes for the low-molecular-mass penicillin-binding proteins PBP3 and PBP4. Mutations in either dacB, encoding PBP3, or pbpG, encoding PBP4, did not significantly reduce the release of peptidoglycan monomers or free peptides. A mutation in dacB caused the appearance of a larger-sized peptidoglycan monomer, the pentapeptide monomer, and an increased release of peptidoglycan dimers, suggesting the involvement of this enzyme in both the removal of C-terminal d-Ala residues from stem peptides and the cleavage of cross-linked peptidoglycan. Mutation of both dacB and pbpG eliminated the release of tripeptide-containing peptidoglycan fragments concomitantly with the appearance of pentapeptide and dipeptide peptidoglycan fragments and higher-molecular-weight peptidoglycan dimers. In accord with the loss of tripeptide peptidoglycan fragments, the level of human NOD1 activation by the dacB pbpG mutants was significantly lower than that by the wild type. We conclude that PBP3 and PBP4 overlap in function for cross-link cleavage and that these endopeptidases act in the normal release of peptidoglycan fragments during growth.
Collapse
|
12
|
Antibiotic Targets in Gonococcal Cell Wall Metabolism. Antibiotics (Basel) 2018; 7:antibiotics7030064. [PMID: 30037076 PMCID: PMC6164560 DOI: 10.3390/antibiotics7030064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
The peptidoglycan cell wall that encloses the bacterial cell and provides structural support and protection is remodeled by multiple enzymes that synthesize and cleave the polymer during growth. This essential and dynamic structure has been targeted by multiple antibiotics to treat gonococcal infections. Up until now, antibiotics have been used against the biosynthetic machinery and the therapeutic potential of inhibiting enzymatic activities involved in peptidoglycan breakdown has not been explored. Given the major antibiotic resistance problems we currently face, it is crucial to identify other possible targets that are key to maintaining cell integrity and contribute to disease development. This article reviews peptidoglycan as an antibiotic target, how N. gonorrhoeae has developed resistance to currently available antibiotics, and the potential of continuing to target this essential structure to combat gonococcal infections by attacking alternative enzymatic activities involved in cell wall modification and metabolism.
Collapse
|
13
|
Obergfell KP, Schaub RE, Priniski LL, Dillard JP, Seifert HS. The low-molecular-mass, penicillin-binding proteins DacB and DacC combine to modify peptidoglycan cross-linking and allow stable Type IV pilus expression in Neisseria gonorrhoeae. Mol Microbiol 2018; 109:135-149. [PMID: 29573486 PMCID: PMC6153085 DOI: 10.1111/mmi.13955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2018] [Indexed: 11/28/2022]
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea and is adapted to survive in humans, its only host. The N. gonorrhoeae cell wall is critical for maintaining envelope integrity, resisting immune cell killing and production of cytotoxic peptidoglycan (PG) fragments. Deletion of the N. gonorrhoeae strain FA1090 genes encoding two predicted low-molecular-mass, penicillin-binding proteins (LMM PBPs), DacB and DacC, substantially altered the PG cross-linking. Loss of the DacB peptidase resulted in global alterations to the PG composition, while loss of the DacC protein affected a much narrower subset of PG peptide components. A double ΔdacB/ΔdacC mutant resembled the ΔdacB single mutant, but had an even greater level of cross-linked PG. While single ΔdacB or ΔdacC mutants did not show any major phenotypes, the ΔdacB/ΔdacC mutant displayed an altered cellular morphology, decreased resistance to antibiotics and increased sensitivity to detergent-mediated death. Loss of the two proteins also drastically reduced the number of Type IV pili (Tfp), a critical virulence factor. The decreased piliation reduced transformation efficiency and correlated with increased growth rate. While these two LMM PBPs differentially alter the PG composition, their overlapping effects are essential to proper envelope function and expression of factors critical for pathogenesis.
Collapse
Affiliation(s)
- Kyle P. Obergfell
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Lauren L. Priniski
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Chan JM, Dillard JP. Attention Seeker: Production, Modification, and Release of Inflammatory Peptidoglycan Fragments in Neisseria Species. J Bacteriol 2017; 199:e00354-17. [PMID: 28674065 PMCID: PMC5637178 DOI: 10.1128/jb.00354-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Maintenance of the structural macromolecule peptidoglycan (PG), which involves regulated cycles of PG synthesis and PG degradation, is pivotal for cellular integrity and survival. PG fragments generated from the degradation process are usually efficiently recycled by Gram-negative bacteria. However, Neisseria gonorrhoeae and a limited number of Gram-negative bacteria release PG fragments in amounts sufficient to induce host tissue inflammation and damage during an infection. Due to limited redundancy in PG-modifying machineries and genetic tractability, N. gonorrhoeae serves as a great model organism for the study of biological processes related to PG. This review summarizes the generation, modification, and release of inflammatory PG molecules by N. gonorrhoeae and related species and discusses these findings in the context of understanding bacterial physiology and pathogenesis.
Collapse
Affiliation(s)
- Jia Mun Chan
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P Dillard
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins. Antibiotics (Basel) 2016; 5:antibiotics5040035. [PMID: 27690121 PMCID: PMC5187516 DOI: 10.3390/antibiotics5040035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other β-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP), in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context.
Collapse
|
16
|
Fedarovich A, Cook E, Tomberg J, Nicholas RA, Davies C. Structural effect of the Asp345a insertion in penicillin-binding protein 2 from penicillin-resistant strains of Neisseria gonorrhoeae. Biochemistry 2014; 53:7596-603. [PMID: 25403720 PMCID: PMC4263433 DOI: 10.1021/bi5011317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A hallmark
of penicillin-binding protein 2 (PBP2) from penicillin-resistant
strains of Neisseria gonorrhoeae is insertion of
an aspartate after position 345. The insertion resides on a loop near
the active site and is immediately adjacent to an existing aspartate
(Asp346) that forms a functionally important hydrogen bond with Ser363
of the SxN conserved motif. Insertion of other amino acids, including
Glu and Asn, can also lower the rate of acylation by penicillin, but
these insertions abolish transpeptidase function. Although the kinetic
consequences of the Asp insertion are well-established, how it impacts
the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution
crystal structure of a truncated construct of PBP2 containing all
five mutations present in PBP2 from the penicillin-resistant strain
6140, including the Asp insertion. Commensurate with the strict specificity
for the Asp insertion over similar amino acids, the insertion does
not cause disordering of the structure, but rather induces localized
flexibility in the β2c−β2d loop. The crystal structure
resolves the ambiguity of whether the insertion is Asp345a or Asp346a
(due to the adjacent Asp) because the hydrogen bond between Asp346
and Ser362 is preserved and the insertion is therefore Asp346a. The
side chain of Asp346a projects directly toward the β-lactam-binding
site near Asn364 of the SxN motif. The Asp insertion may lower the
rate of acylation by sterically impeding binding of the antibiotic
or by hindering breakage of the β-lactam ring during acylation
because of the negative charge of its side chain.
Collapse
Affiliation(s)
- Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | | | | | | | | |
Collapse
|
17
|
Dzhekieva L, Kumar I, Pratt RF. Inhibition of Bacterial DD-Peptidases (Penicillin-Binding Proteins) in Membranes and in Vivo by Peptidoglycan-Mimetic Boronic Acids. Biochemistry 2012; 51:2804-11. [DOI: 10.1021/bi300148v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| | - Ish Kumar
- School of Natural
Sciences, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| |
Collapse
|
18
|
Stohl EA, Chan YA, Hackett KT, Kohler PL, Dillard JP, Seifert HS. Neisseria gonorrhoeae virulence factor NG1686 is a bifunctional M23B family metallopeptidase that influences resistance to hydrogen peroxide and colony morphology. J Biol Chem 2012; 287:11222-33. [PMID: 22334697 DOI: 10.1074/jbc.m111.338830] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Symptomatic gonococcal infection, caused exclusively by the human-specific pathogen Neisseria gonorrhoeae (the gonococcus), is characterized by the influx of polymorphonuclear leukocytes (PMNs) to the site of infection. Although PMNs possess a potent antimicrobial arsenal comprising both oxidative and non-oxidative killing mechanisms, gonococci survive this interaction, suggesting that the gonococcus has evolved many defenses against PMN killing. We previously identified the NG1686 protein as a gonococcal virulence factor that protects against both non-oxidative PMN-mediated killing and oxidative killing by hydrogen peroxide. In this work, we show that deletion of ng1686 affects gonococcal colony morphology but not cell morphology and that overexpression of ng1686 does not confer enhanced survival to hydrogen peroxide on gonococci. NG1686 contains M23B endopeptidase active sites found in proteins that cleave bacterial cell wall peptidoglycan. Strains of N. gonorrhoeae expressing mutant NG1686 proteins with substitutions in many, but not all, conserved metallopeptidase active sites recapitulated the hydrogen peroxide sensitivity and altered colony morphology of the Δng1686 mutant strain. We showed that purified NG1686 protein degrades peptidoglycan in vitro and that mutations in many conserved active site residues abolished its degradative activity. Finally, we demonstrated that NG1686 possesses both dd-carboxypeptidase and endopeptidase activities. We conclude that the NG1686 protein is a M23B peptidase with dual activities that targets the cell wall to affect colony morphology and resistance to hydrogen peroxide and PMN-mediated killing.
Collapse
Affiliation(s)
- Elizabeth A Stohl
- Department of Microbiology-Immunology, Northwestern Medical School Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Nemmara VV, Dzhekieva L, Sarkar KS, Adediran SA, Duez C, Nicholas RA, Pratt RF. Substrate specificity of low-molecular mass bacterial DD-peptidases. Biochemistry 2011; 50:10091-101. [PMID: 22029692 DOI: 10.1021/bi201326a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases achieve substrate specificity, both in vitro and in vivo, remains unknown.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Adediran SA, Kumar I, Nagarajan R, Sauvage E, Pratt RF. Kinetics of Reactions of the Actinomadura R39 dd-Peptidase with Specific Substrates. Biochemistry 2010; 50:376-87. [DOI: 10.1021/bi101760p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. A. Adediran
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Ish Kumar
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Rajesh Nagarajan
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Eric Sauvage
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
21
|
Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev 2010; 111:209-37. [PMID: 21171664 DOI: 10.1021/cr100093b] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Dzhekieva L, Rocaboy M, Kerff F, Charlier P, Sauvage E, Pratt RF. Crystal Structure of a Complex between the Actinomadura R39 dd-Peptidase and a Peptidoglycan-mimetic Boronate Inhibitor: Interpretation of a Transition State Analogue in Terms of Catalytic Mechanism. Biochemistry 2010; 49:6411-9. [DOI: 10.1021/bi100757c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| | - Mathieu Rocaboy
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Frédéric Kerff
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Paulette Charlier
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Eric Sauvage
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| |
Collapse
|
23
|
Abstract
The MEROPS website (http://merops.sanger.ac.uk) includes information on peptidase inhibitors as well as on peptidases and their substrates. Displays have been put in place to link peptidases and inhibitors together. The classification of protein peptidase inhibitors is continually being revised, and currently inhibitors are grouped into 67 families based on comparisons of protein sequences. These families can be further grouped into 38 clans based on comparisons of tertiary structure. Small molecule inhibitors are important reagents for peptidase characterization and, with the increasing importance of peptidases as drug targets, they are also important to the pharmaceutical industry. Small molecule inhibitors are now included in MEROPS and over 160 summaries have been written.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
24
|
Trippier PC, McGuigan C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MEDCHEMCOMM 2010. [DOI: 10.1039/c0md00119h] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Inglis SR, Zervosen A, Woon ECY, Gerards T, Teller N, Fischer DS, Luxen A, Schofield CJ. Synthesis and evaluation of 3-(dihydroxyboryl)benzoic acids as D,D-carboxypeptidase R39 inhibitors. J Med Chem 2009; 52:6097-106. [PMID: 19731939 DOI: 10.1021/jm9009718] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin binding proteins (PBPs) catalyze steps in the biosynthesis of bacterial cell walls and are the targets for the beta-lactam antibiotics. Non-beta-lactam based antibiotics that target PBPs are of interest because bacteria have evolved resistance to the beta-lactam antibiotics. Boronic acids have been developed as inhibitors of the mechanistically related serine beta-lactamases and serine proteases; however, they have not been explored extensively as PBP inhibitors. Here we report aromatic boronic acid inhibitors of the D,D-carboxypeptidase R39 from Actinomadura sp. strain. Analogues of an initially identified inhibitor [3-(dihydroxyboryl)benzoic acid 1, IC(50) 400 microM] were prepared via routes involving pinacol boronate esters, which were deprotected via a two-stage procedure involving intermediate trifluorborate salts that were hydrolyzed to provide the free boronic acids. 3-(Dihydroxyboryl)benzoic acid analogues containing an amide substituent in the meta, but not ortho position were up to 17-fold more potent inhibitors of the R39 PBP and displayed some activity against other PBPs. These compounds may be useful for the development of even more potent boronic acid based PBP inhibitors with a broad spectrum of antibacterial activity.
Collapse
|
26
|
Peddi S, Nicholas RA, Gutheil WG. Neisseria gonorrhoeae penicillin-binding protein 3 demonstrates a pronounced preference for N(epsilon)-acylated substrates. Biochemistry 2009; 48:5731-7. [PMID: 19413336 DOI: 10.1021/bi9003099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis and are the lethal targets of beta-lactam antibiotics. Despite their importance, their roles in cell wall biosynthesis remain enigmatic. A series of eight substrates, based on variation of the pentapeptide Boc-l-Ala-gamma-d-Glu-l-Lys-d-Ala-d-Ala, were synthesized to test specificity for three features of PBP substrates: (1) the presence or absence of an N(epsilon)-acyl group, (2) the presence of d-IsoGln in place of gamma-d-Glu, and (3) the presence or absence of the N-terminal l-Ala residue. The capacity of these peptides to serve as substrates for Neisseria gonorrhoeae (NG) PBP3 was assessed. NG PBP3 demonstrated good catalytic efficiency (2.5 x 10(5) M(-1) s(-1)) with the best of these substrates, with a pronounced preference (50-fold) for N(epsilon)-acylated substrates over N(epsilon)-nonacylated substrates. This observation suggests that NG PBP3 is specific for the approximately d-Ala-d-Ala moiety of pentapeptides engaged in cross-links in the bacterial cell wall, such that NG PBP3 would act after transpeptidase-catalyzed reactions generate the acylated amino group required for its specificity. NG PBP3 demonstrated low selectivity for gamma-d-Glu vs d-IsoGln and for the presence or absence of the terminal l-Ala residue. The implications of this substrate specificity of NG PBP3 with respect to its possible role in cell wall biosynthesis, and for understanding the substrate specificity of the LMM PBPs in general, are discussed.
Collapse
Affiliation(s)
- Sridhar Peddi
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
27
|
Powell AJ, Tomberg J, Deacon AM, Nicholas RA, Davies C. Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J Biol Chem 2009; 284:1202-12. [PMID: 18986991 PMCID: PMC2613624 DOI: 10.1074/jbc.m805761200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/23/2008] [Indexed: 11/06/2022] Open
Abstract
Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for beta-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by beta-lactam antibiotics.
Collapse
Affiliation(s)
- Ailsa J Powell
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
28
|
Ghosh AS, Chowdhury C, Nelson DE. Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol 2008; 16:309-17. [PMID: 18539032 DOI: 10.1016/j.tim.2008.04.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/09/2008] [Accepted: 04/30/2008] [Indexed: 11/16/2022]
Abstract
Bacterial cell shape is, in part, mediated by the peptidoglycan (murein) sacculus. Penicillin-binding proteins (PBPs) catalyze the final stages of murein biogenesis and are the targets of beta-lactam antibiotics. Several low molecular mass PBPs including PBP4, PBP5, PBP6 and DacD seem to possess DD-carboxypeptidase (DD-CPase) activity, but these proteins are dispensable for survival in laboratory culture. The physiological functions of DD-CPases in vivo are unresolved and it is unclear why bacteria retain these seemingly non-essential and enzymatically redundant enzymes. However, PBP5 clearly contributes to maintenance of cell shape in some PBP mutant backgrounds. In this review, we focus on recent findings concerning the physiological functions of the DD-CPases in vivo, identify gaps in the current knowledge of these proteins and suggest some possible courses for future study that might help reconcile current models of bacterial cell morphology.
Collapse
Affiliation(s)
- Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, District-West Midnapore, West Bengal, PIN-721302, India.
| | | | | |
Collapse
|
29
|
|
30
|
Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:234-58. [PMID: 18266856 DOI: 10.1111/j.1574-6976.2008.00105.x] [Citation(s) in RCA: 918] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Institut de Physique B5a et Institut de Chimie B6a, University of Liège, Sart Tilman, Belgium.
| | | | | | | | | |
Collapse
|
31
|
Ochiai S, Sekiguchi S, Hayashi A, Shimadzu M, Ishiko H, Matsushima-Nishiwaki R, Kozawa O, Yasuda M, Deguchi T. Decreased affinity of mosaic-structure recombinant penicillin-binding protein 2 for oral cephalosporins in Neisseria gonorrhoeae. J Antimicrob Chemother 2007; 60:54-60. [PMID: 17540669 DOI: 10.1093/jac/dkm166] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES In Neisseria gonorrhoeae, the mosaic structure of penicillin-binding protein 2 (PBP 2), composed of fragments of PBP 2 from Neisseria cinerea and Neisseria perflava, was significantly associated with decreased susceptibility to cephalosporins, particularly oral cephalosporins. The aim of this study was to determine the affinity of mosaic PBP 2 for cephalosporins in N. gonorrhoeae. METHODS Two types of non-mosaic PBP 2 from the type strain of N. gonorrhoeae (ATCC 19424) and a clinical strain (GU01-29), as well as the mosaic PBP 2 from a clinical strain (GU01-89), were expressed in insect cells, and recombinant PBP 2s were purified. ATCC 19424 and GU01-29 were susceptible to cephalosporins. GU01-89 showed decreased susceptibility to cephalosporins. Bindings of fluorescent penicillin to PBP 2 were characterized by the Scatchard plot analysis. The affinity of the recombinant PBP 2s for cefdinir, cefixime and ceftriaxone was determined by PBP 2 competition assays with fluorescent penicillin. RESULTS The K(d) value of mosaic PBP 2 for fluorescent penicillin was higher than that of non-mosaic PBP 2s. The affinity of mosaic PBP 2 for cefdinir or cefixime was lower than that of the non-mosaic PBP 2s. The affinity of the mosaic PBP 2 for ceftriaxone was not changed, compared with that of the non-mosaic PBP 2s. CONCLUSIONS Other mechanisms may be involved in clinical isolates with decreased susceptibility to cephalosporins, but this study suggests that the decreased affinity of mosaic-structure recombinant PBP 2 for oral cephalosporins may contribute to decreased susceptibility to these antibiotics in N. gonorrhoeae.
Collapse
Affiliation(s)
- Susumu Ochiai
- Research and Development Department, Mitsubishi Kagaku Bio-Clinical Laboratories, Inc., 3-30-1 Shimura, Itabashi-Ku, Tokyo 174-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|