1
|
Weichseldorfer M, Tagaya Y, Reitz M, DeVico AL, Latinovic OS. Identifying CCR5 coreceptor populations permissive for HIV-1 entry and productive infection: implications for in vivo studies. J Transl Med 2022; 20:39. [PMID: 35073923 PMCID: PMC8785515 DOI: 10.1186/s12967-022-03243-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background The chemokine receptor CCR5 is the major coreceptor for HIV-1 cell entry. We previously observed that not all CCR5 mAbs reduce HIV-1 infection, suggesting that only some CCR5 populations are permissive for HIV-1 entry. This study aims to better understand the relevant conformational states of the cellular coreceptor, CCR5, involved in HIV entry. We hypothesized that CCR5 assumes multiple configurations during normal cycling on the plasma membrane, but only particular forms facilitate HIV-1 infection. Methods To this end, we quantified different CCR5 populations using six CCR5 monoclonal antibodies (mAbs) with different epitope specificities and visualized them with super-resolution microscopy. We quantified each surface CCR5 population before and after HIV-1 infection. Results Based on CCR5 conformational changes, down-modulation, and trafficking rates (internalization and recycling kinetics), we were able to distinguish among heterogeneous CCR5 populations and thus which populations might best be targeted to inhibit HIV-1 entry. We assume that a decreased surface presence of a particular CCR5 subpopulation following infection means that it has been internalized due to HIV-1 entry, and that it therefore represents a highly relevant target for future antiviral therapy strategies. Strikingly, this was most true for antibody CTC8, which targets the N-terminal region of CCR5 and blocks viral entry more efficiently than it blocks chemokine binding. Conclusions Defining the virus-host interactions responsible for HIV-1 transmission, including specific coreceptor populations capable of establishing de novo infections, is essential for the development of an HIV-1 vaccine. This study hopefully will facilitate further development of inhibitors to block CCR5 usage by HIV-1, as well as inform future HIV-1 vaccine design. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03243-8.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA
| | - Yutaka Tagaya
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Marvin Reitz
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Anthony L DeVico
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Olga S Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Regulation of CXCR6 Expression on Adipocytes and Osteoblasts Differentiated from Human Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8870133. [PMID: 32922452 PMCID: PMC7453243 DOI: 10.1155/2020/8870133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
Human mesenchymal stem cells derived from adipose tissue (hADMSCs) are a desirable candidate in regenerative medicine. hADMSCs secrete growth factors, cytokines, and chemokines and also express various receptors that are important in cell activation, differentiation, and migration to injured tissue. We showed that the expression level of chemokine receptor CXCR6 was significantly increased by ~2.5-fold in adipogenic-differentiated cells (Ad), but not in osteogenic-differentiated cells (Os) when compared with hADMSCs. However, regulation of CXCR6 expression on hADMSCs by using lentiviral particles did not affect the differentiation potential of hADMSCs. Increased expression of CXCR6 on Ad was mediated by both receptor recycling, which was in turn regulated by secretion of CXCL16, and de novo synthesis. The level of soluble CXCL16 was highly increased in both Ad and Os in particular, which inversely correlates with the expression on a transmembrane-bound form of CXCL16 that is cleaved by disintegrin and metalloproteinase. We concluded that the expression of CXCR6 is regulated by receptor degradation or recycling when it is internalized by interaction with CXCL16 and by de novo synthesis of CXCR6. Overall, our study may provide an insight into the molecular mechanisms of the CXCR6 reciprocally expressed on differentiated cells from hADMSCs.
Collapse
|
3
|
Laufer JM, Hauser MA, Kindinger I, Purvanov V, Pauli A, Legler DF. Chemokine Receptor CCR7 Triggers an Endomembrane Signaling Complex for Spatial Rac Activation. Cell Rep 2019; 29:995-1009.e6. [DOI: 10.1016/j.celrep.2019.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/09/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
|
4
|
Rac1 plays a role in CXCL12 but not CCL3-induced chemotaxis and Rac1 GEF inhibitor NSC23766 has off target effects on CXCR4. Cell Signal 2018; 42:88-96. [DOI: 10.1016/j.cellsig.2017.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022]
|
5
|
Liebick M, Schläger C, Oppermann M. Analysis of Chemokine Receptor Trafficking by Site-Specific Biotinylation. PLoS One 2016; 11:e0157502. [PMID: 27310579 PMCID: PMC4911081 DOI: 10.1371/journal.pone.0157502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022] Open
Abstract
Chemokine receptors undergo internalization and desensitization in response to ligand activation. Internalized receptors are either preferentially directed towards recycling pathways (e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a method for the analysis of receptor internalization and recycling based on specific Bir A-mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more detailed analysis of receptor trafficking compared to classical antibody-based detection methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1% ± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5; 15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also demonstrate the advantages of specific biotinylation compared to classical antibody detection during agonist-induced receptor internalization, which may be used for immunofluorescence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking of transmembrane proteins, in general.
Collapse
MESH Headings
- Amides/pharmacology
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Basophils/cytology
- Basophils/drug effects
- Basophils/metabolism
- Biotin/chemistry
- Biotin/metabolism
- Biotinylation
- CCR5 Receptor Antagonists/pharmacology
- Carbon-Nitrogen Ligases/genetics
- Carbon-Nitrogen Ligases/metabolism
- Cell Line, Tumor
- Chemokine CCL5/pharmacology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Mice
- Protein Transport/drug effects
- Quaternary Ammonium Compounds/pharmacology
- Rats
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, CXCR5/antagonists & inhibitors
- Receptors, CXCR5/genetics
- Receptors, CXCR5/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transfection
Collapse
Affiliation(s)
- Marcel Liebick
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany
| | - Christian Schläger
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany
| | - Martin Oppermann
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany
| |
Collapse
|
6
|
Jans J, elMoussaoui H, de Groot R, de Jonge MI, Ferwerda G. Actin- and clathrin-dependent mechanisms regulate interferon gamma release after stimulation of human immune cells with respiratory syncytial virus. Virol J 2016; 13:52. [PMID: 27004689 PMCID: PMC4802911 DOI: 10.1186/s12985-016-0506-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/14/2016] [Indexed: 12/02/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause recurrent and severe respiratory tract infections. Cytoskeletal proteins are often involved during viral infections, either for cell entry or the initiation of the immune response. The importance of actin and clathrin dynamics for cell entry and the initiation of the cellular immune response against RSV in human immune cells is not known yet. The aim of this study was to investigate the role of actin and clathrin on cell entry of RSV and the subsequent effect on T cell activation and interferon gamma release in human immune cells. Methods Peripheral blood mononuclear cells and purified monocytes were isolated from healthy adults and stimulated in vitro with RSV. Actin and clathrin dynamics were inhibited with respectively cytochalasin D and chlorpromazine. T cell receptor signaling was inhibited with cyclosporin A. Flow cytometry was used to determine the role of actin and clathrin on cell entry and T cell activation by RSV. Enzyme-linked immunosorbent assays were used to investigate the contribution of actin and clathrin on the release of interferon gamma. Results Cell entry, virus gene transcription and interferon gamma release are actin-dependent. Post-endocytic processes like the increased expression of major histocompatibility complex II on monocytes , T cell activation and the release of interferon gamma are clathrin-dependent. Finally, T cell receptor signaling affects T cell activation, whereas soluble interleukin 18 is dispensable. Conclusion Analysis of cell entry and interferon gamma release after infection with RSV reveals the importance of actin- and clathrin-dependent signaling in human immune cells. Insights into the cellular biology of the human immune response against respiratory syncytial virus will provide a better understanding of disease pathogenesis and may prove useful in the development of preventive strategies.
Collapse
Affiliation(s)
- Jop Jans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hicham elMoussaoui
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Science, Radboud university medical center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Crottès D, Félix R, Meley D, Chadet S, Herr F, Audiger C, Soriani O, Vandier C, Roger S, Angoulvant D, Velge-Roussel F. Immature human dendritic cells enhance their migration through KCa3.1 channel activation. Cell Calcium 2016; 59:198-207. [PMID: 27020659 DOI: 10.1016/j.ceca.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
Abstract
Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization.
Collapse
Affiliation(s)
- David Crottès
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Romain Félix
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Daniel Meley
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Stéphanie Chadet
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Florence Herr
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Cindy Audiger
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France
| | - Olivier Soriani
- Institut de Biologie Valrose (iBV), CNRS UMR7277, Inserm U1091, UNS 28, Avenue Valrose, 06108 Nice, France
| | - Christophe Vandier
- Institut National de la Santé et de la Recherche Médicale U1069, Université François-Rabelais de Tours, 10 Bd Tonnellé, F-37032 Tours, France
| | - Sébastien Roger
- Institut National de la Santé et de la Recherche Médicale U1069, Université François-Rabelais de Tours, 10 Bd Tonnellé, F-37032 Tours, France
| | - Denis Angoulvant
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France; Service de cardiologie, CHRU de Tours, 2 Bd Tonnellé, F-37032 Tours, France
| | - Florence Velge-Roussel
- EA 4245Cellules Dendritiques, Immuno-modulation et Greffes, Université François-Rabelais de Tours, UFR de Médecine, 10 Bd Tonnellé, F-37032 Tours, France; UFR des Sciences Pharmaceutiques, Av Monge, F-37000 Tours, France.
| |
Collapse
|
8
|
Li CH, Xu LL, Zhao JX, Sun L, Yao ZQ, Deng XL, Liu R, Yang L, Xing R, Liu XY. CXCL16 upregulates RANKL expression in rheumatoid arthritis synovial fibroblasts through the JAK2/STAT3 and p38/MAPK signaling pathway. Inflamm Res 2015; 65:193-202. [PMID: 26621504 DOI: 10.1007/s00011-015-0905-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To explore the influence of chemokine, CXCL16, on the expression of the receptor activator nuclear factor κB ligand (RANKL) in rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS). METHODS The expression of CXCL16/CXCR6 and RANKL in RA or osteoarthritis (OA) patient synovia was examined by Western blot and immunohistochemistry. The serum concentration of CXCL16 and RANKL was measured by enzyme-linked immunosorbent assay (ELISA). RA-FLS were treated with recombinant CXCL16, and RANKL mRNA and protein were measured using PCR, Western blot and ELISA. RESULTS The synovial expression of CXCL16, CXCR6, and RANKL was higher in RA patients than in patients with OA. The serum CXCL16 and RANKL levels were higher in RA patients compared with OA patients and healthy controls. CXCL16 correlated with erythrocyte sedimentation rate, C reactive protein, disease activity, serum rheumatoid factor, and RANKL. RA-FLS treated with CXCL16 showed markedly increased expression of RANKL. When STAT3 or p38 activation was blocked by an inhibitor, CXCL16 failed to upregulate RANKL expression. In contrast, inhibiting the Akt or Erk pathway did not achieve the same effect. CONCLUSIONS CXCL16 upregulates RANKL expression in RA-FLS and these effects are mainly mediated by the JAK2/STAT3 and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Chang-hong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lin-lin Xu
- Department of Clinical Nutrition, First Hospital of Tsinghua Univiersity, Beijing, 100016, People's Republic of China
| | - Jin-xia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Zhong-qiang Yao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiao-li Deng
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Rui Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Lin Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Rui Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiang-yuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
9
|
Jacques RO, Mills SC, Cazzonatto Zerwes P, Fagade FO, Green JE, Downham S, Sexton DW, Mueller A. Dynamin function is important for chemokine receptor-induced cell migration. Cell Biochem Funct 2015; 33:407-14. [DOI: 10.1002/cbf.3131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/22/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Richard O. Jacques
- School of Pharmacy; University of East Anglia, Norwich Research Park; Norwich UK
| | - Shirley C. Mills
- School of Pharmacy; University of East Anglia, Norwich Research Park; Norwich UK
| | | | - Feyisope O. Fagade
- School of Pharmacy; University of East Anglia, Norwich Research Park; Norwich UK
| | - John E. Green
- School of Pharmacy; University of East Anglia, Norwich Research Park; Norwich UK
| | - Scott Downham
- School of Pharmacy; University of East Anglia, Norwich Research Park; Norwich UK
| | - Darren W. Sexton
- Norwich Medical School; University of East Anglia, Norwich Research Park; Norwich UK
- School of Pharmacy and Biomolecular Science; Liverpool John Moores University; Liverpool UK
| | - Anja Mueller
- School of Pharmacy; University of East Anglia, Norwich Research Park; Norwich UK
| |
Collapse
|
10
|
Madera L, Hancock REW. Anti-infective peptide IDR-1002 augments monocyte chemotaxis towards CCR5 chemokines. Biochem Biophys Res Commun 2015; 464:800-6. [PMID: 26168734 DOI: 10.1016/j.bbrc.2015.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/07/2015] [Indexed: 12/24/2022]
Abstract
Innate defense regulator (IDR) peptides are a class of immunomodulators which enhance and modulate host innate immune responses against microbial pathogens. While IDR-mediated protection against a range of bacterial pathogens is dependent on enhanced monocyte recruitment to the site of infection, the mechanisms through which they increase monocyte trafficking remain unclear. In this study, anti-infective peptide IDR-1002 was shown to enhance monocyte chemotaxis towards chemokines CCL3 and CCL5. This enhancement correlated with the selective upregulation of CCR5 surface expression by peptide-treated monocytes. It was found that IDR-1002 enhancement of monocyte chemotaxis was fully dependent on CCR5 function. Furthermore, IDR-1002 enhanced chemokine-induced monocyte p38 MAPK phosphorylation in a CCR5-dependent fashion. Overall, these results indicate that peptide IDR-1002 can selectively influence monocyte recruitment by host chemokines through the regulation of chemokine receptors.
Collapse
Affiliation(s)
- Laurence Madera
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, 2259 Lower Mall Research Station, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, 2259 Lower Mall Research Station, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| |
Collapse
|
11
|
Ward ST, Li KK, Hepburn E, Weston CJ, Curbishley SM, Reynolds GM, Hejmadi RK, Bicknell R, Eksteen B, Ismail T, Rot A, Adams DH. The effects of CCR5 inhibition on regulatory T-cell recruitment to colorectal cancer. Br J Cancer 2014; 112:319-28. [PMID: 25405854 PMCID: PMC4301825 DOI: 10.1038/bjc.2014.572] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/02/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Regulatory T cells (Treg) are enriched in human colorectal cancer (CRC) where they suppress anti-tumour immunity. The chemokine receptor CCR5 has been implicated in the recruitment of Treg from blood into CRC and tumour growth is delayed in CCR5-/- mice, associated with reduced tumour Treg infiltration. METHODS Tissue and blood samples were obtained from patients undergoing resection of CRC. Tumour-infiltrating lymphocytes were phenotyped for chemokine receptors using flow cytometry. The presence of tissue chemokines was assessed. Standard chemotaxis and suppression assays were performed and the effects of CCR5 blockade were tested in murine tumour models. RESULTS Functional CCR5 was highly expressed by human CRC infiltrating Treg and CCR5(high) Treg were more suppressive than their CCR5(low) Treg counterparts. Human CRC-Treg were more proliferative and activated than other T cells suggesting that local proliferation could provide an alternative explanation for the observed tumour Treg enrichment. Pharmacological inhibition of CCR5 failed to reduce tumour Treg infiltration in murine tumour models although it did result in delayed tumour growth. CONCLUSIONS CCR5 inhibition does not mediate anti-tumour effects as a consequence of inhibiting Treg recruitment. Other mechanisms must be found to explain this effect. This has important implications for anti-CCR5 therapy in CRC.
Collapse
Affiliation(s)
- S T Ward
- Centre for Liver Research & NIHR Birmingham Biomedical Research Unit, Level 5 Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - K K Li
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - E Hepburn
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - C J Weston
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - S M Curbishley
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - G M Reynolds
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - R K Hejmadi
- Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2WW, UK
| | - R Bicknell
- Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - B Eksteen
- Snyder Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - T Ismail
- Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham B15 2WW, UK
| | - A Rot
- Institute for Biomedical Research, University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| | - D H Adams
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU), University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Wu Y, Tapia PH, Fisher GW, Waggoner AS, Jarvik J, Sklar LA. High-throughput flow cytometry compatible biosensor based on fluorogen activating protein technology. Cytometry A 2013; 83:220-6. [PMID: 23303704 DOI: 10.1002/cyto.a.22242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/30/2012] [Accepted: 11/20/2012] [Indexed: 12/16/2022]
Abstract
Monitoring the trafficking of multiple proteins simultaneously in live cells is of great interest because many receptor proteins are found to function together with others in the same cell. However, existing fluorescent labeling techniques have restricted the mechanistic study of functional receptor pairs. We have expanded a hybrid system combining fluorogen-activating protein (FAP) technology and high-throughput flow cytometry to a new type of biosensor that is robust, sensitive, and versatile. This provides the opportunity to study multiple trafficking proteins in the same cell. Human beta2 adrenergic receptor (β2AR) fused with FAP AM2.2 and murine C-C chemokines receptor type 5 fused with FAP MG13 was chosen for our model system. The function of the receptor and the binding between MG13 and fluorogen MG-2p have been characterized by flow cytometry and confocal microscopy assays. The binding of fluorogen and the FAP pair is highly specific, while both FAP-tagged fusion proteins function similarly to their wild-type counterparts. The system has successfully served as a counter screen assay to eliminate false positive compounds identified in a screen against NIH Molecular Libraries Small Molecule Repository targeting regulators of the human β2AR.
Collapse
Affiliation(s)
- Yang Wu
- UNM Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Kuang YQ, Pang W, Zheng YT, Dupré DJ. NHERF1 regulates gp120-induced internalization and signaling by CCR5, and HIV-1 production. Eur J Immunol 2011; 42:299-310. [PMID: 22028271 DOI: 10.1002/eji.201141801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/15/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022]
Abstract
The scaffolding protein Na(+) /H(+) exchanger regulator factor 1 (NHERF1) plays an important role in the trafficking of G protein-coupled receptors. We previously demonstrated that NHERF1 is involved in chemokine receptor CCR5 homodimer internalization and signal transduction. Given the importance of CCR5 internalization during HIV-1 infection, we evaluated NHERF1's contribution in HIV-1 infection. We challenged human osteosarcoma cells coexpressing CD4 and CCR5 cells expressing either NHERF1 fragment domains or WT NHERF1 with an HIV-1 strain to examine the effects of NHERF1 on HIV-1 entry and replication. WT NHERF1 potentiates HIV-1 envelope gp120-induced CCR5 internalization, and promotes the replication of HIV-1. In order to better understand how NHERF1 affects signal transduction, different domains of NHERF1 were overexpressed in cells to analyze their effect on the different signaling pathways. Here, we show that NHERF1 can associate with CCR5, and promote activation of the gp120-induced MAPK/ERK, focal adhesion kinase and RhoA (Ras homolog gene family member A) signaling pathways. NHERF1 overexpression also increases HIV-1 host cell migration triggered by gp120 via focal adhesion kinase (FAK) signaling. Finally, NHERF1 enhanced actin filament rearrangement in host cells, an important step in post-entry HIV-1 replication events. While postsynaptic density 95/disk-large/zonula occludens 2 (PDZ2) appears to be the major contributor in those events, other domains also participate in the regulation of gp120-induced signaling pathways. Altogether, our results suggest a very important role of the scaffold NHERF1 in the regulation of HIV-1 entry and replication.
Collapse
Affiliation(s)
- Yi-Qun Kuang
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | | | |
Collapse
|
14
|
Bennett LD, Fox JM, Signoret N. Mechanisms regulating chemokine receptor activity. Immunology 2011; 134:246-56. [PMID: 21977995 PMCID: PMC3209565 DOI: 10.1111/j.1365-2567.2011.03485.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/04/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022] Open
Abstract
Co-ordinated movement and controlled positioning of leucocytes is key to the development, maintenance and proper functioning of the immune system. Chemokines and their receptors play an essential role in these events by mediating directed cell migration, often referred to as chemotaxis. The chemotactic property of these molecules is also thought to contribute to an array of pathologies where inappropriate recruitment of specific chemokine receptor-expressing leucocytes is observed, including cancer and inflammatory diseases. As a result, chemokine receptors have become major targets for therapeutic intervention, and during the past 15 years much research has been devoted to understanding the regulation of their biological activity. From these studies, processes which govern the availability of functional chemokine receptors at the cell surface have emerged as playing a central role. In this review, we summarize and discuss current knowledge on the molecular mechanisms contributing to the regulation of chemokine receptor surface expression, from gene transcription and protein degradation to post-translational modifications, multimerization, intracellular transport and cross-talk.
Collapse
Affiliation(s)
- Laura D Bennett
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | | | | |
Collapse
|
15
|
Kiefer F, Siekmann AF. The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci 2011; 68:2811-30. [PMID: 21479594 PMCID: PMC11115067 DOI: 10.1007/s00018-011-0677-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/09/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Chemokines are a vertebrate-specific group of small molecules that regulate cell migration and behaviour in diverse contexts. So far, around 50 chemokines have been identified in humans, which bind to 18 different chemokine receptors. These are members of the seven-transmembrane receptor family. Initially, chemokines were identified as modulators of the immune response. Subsequently, they were also shown to regulate cell migration during embryonic development. Here, we discuss the influence of chemokines and their receptors on angiogenesis, or the formation of new blood vessels. We highlight recent advances in our understanding of how chemokine signalling might directly influence endothelial cell migration. We furthermore examine the contributions of chemokine signalling in immune cells during this process. Finally, we explore possible implications for disease settings, such as chronic inflammation and tumour progression.
Collapse
Affiliation(s)
- Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany
| |
Collapse
|
16
|
Hammad MM, Kuang YQ, Yan R, Allen H, Dupré DJ. Na+/H+ exchanger regulatory factor-1 is involved in chemokine receptor homodimer CCR5 internalization and signal transduction but does not affect CXCR4 homodimer or CXCR4-CCR5 heterodimer. J Biol Chem 2010; 285:34653-64. [PMID: 20801883 PMCID: PMC2966081 DOI: 10.1074/jbc.m110.106591] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 08/25/2010] [Indexed: 11/06/2022] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor (GPCR) family. CCR5 is also the principal co-receptor for macrophage-tropic strains of human immunodeficiency virus, type 1 (HIV-1), and efforts have been made to develop ligands to inhibit HIV-1 infection by promoting CCR5 receptor endocytosis. Given the nature of GPCRs and their propensity to form oligomers, one can consider ligand-based therapies as unselective in terms of the oligomeric composition of complexes. For example, a ligand targeting a CCR5 homomer could likely induce signal transduction on a heteromeric CCR5-CXCR4. Other avenues could therefore be explored. We identified a receptor adaptor interacting specifically with one receptor complex but not others. NHERF1, an adaptor known for its role in desensitization, internalization, and regulation of the ERK signaling cascade for several GPCRs, interacts via its PDZ2 domain with the CCR5 homodimer but not with the CXCR4-CCR5 heterodimer or CXCR4 homodimer. To further characterize this interaction, we also show that NHERF1 increases the CCR5 recruitment of arrestin2 following stimulation. NHERF1 is also involved in CCR5 internalization, as we demonstrate that co-expression of constructs bearing the PDZ2 domain can block CCR5 internalization. We also show that NHERF1 potentiates RANTES (regulated on activation normal T cell expressed and secreted)-induced ERK1/2 phosphorylation via CCR5 activation and that this activation requires NHERF1 but not arrestin2. Taken together, our results suggest that oligomeric receptor complexes can associate specifically with partners and that in this case NHERF1 could represent an interesting new target for the regulation of CCR5 internalization and potentially HIV infection.
Collapse
Affiliation(s)
- Maha M. Hammad
- From the Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Yi-Qun Kuang
- From the Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Ronald Yan
- From the Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Heather Allen
- From the Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Denis J. Dupré
- From the Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| |
Collapse
|
17
|
Dai HY, Wang P, Feng LY, Liu LM, Meng ZQ, Zhu XY, Wang K, Hua YQ, Mao YX, Chen LY, Chen Z. The molecular mechanisms of traditional Chinese medicine ZHENG syndromes on pancreatic tumor growth. Integr Cancer Ther 2010; 9:291-7. [PMID: 20702498 DOI: 10.1177/1534735410373922] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) syndromes (ZHENG in Chinese) are the abstraction from the comprehensive analysis of clinical information gained by the four main diagnostic TCM methods: observation, listening, questioning, and pulse analyses. Proper TCM diagnosis is the most important principle to guide the prescribing of Chinese herbs. OBJECTIVE To evaluate the specific effect of TCM ZHENG on tumor growth and to examine the molecular mechanisms underlying ZHENG and tumor growth. METHODS The authors established subcutaneous tumor models of pancreatic cancer ZHENG syndromes of Damp heat (Shi-Re) and Spleen deficiency (Pi-Xu). Tissue samples of the subcutaneous transplanted tumors from each model were studied versus control tumors. CCR5 and CXCR4 proteins in these tissues were assayed by immunohistochemical staining. The expression of CCR5/CCL5/CCL4/CCL3 and CXCR4/SDF-1 mRNA was investigated by reverse transcriptase-polymerase chain reaction (RT-PCR). SDF-1, CCL4, CCL5, and CCL3, which are ligands of CXCR4 and CCR5, were examined by ELISA. RESULTS The study found that tumor models with different ZHENG were successfully established in each group; the tumor growth of Shi-Re group was slower than that of the control group. It was found that there was a significant difference in CCR5 mRNA expression levels among the Pi-Xu, Shi-Re, and control groups. The results of immunohistochemistry staining revealed that the positive rate of CCR5 protein in Shi-Re group, Pi-Xu group, and control group was 25.00%, 53.33%, 83.33%, respectively. The Shi-Re group expressed the lowest levels of CCL5 and CCL4. CONCLUSION The results of the study suggest that the existence of TCM ZHENG may influence the tumor growth in pancreatic cancer, which might be mediated by the expression of CCR5/CCL5/CCL4. This finding may lead to the development of TCM ZHENG as a prognostic indicator in pancreatic tumor growth.
Collapse
Affiliation(s)
- Hai-Yan Dai
- Department of Integrative Oncology, Cancer Hospital, Fudan University, 270 Dong An Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wildenberg ME, van Helden-Meeuwsen CG, van de Merwe JP, Moreno C, Drexhage HA, Versnel MA. Lack of CCR5 on dendritic cells promotes a proinflammatory environment in submandibular glands of the NOD mouse. J Leukoc Biol 2008; 83:1194-200. [DOI: 10.1189/jlb.1107794] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
19
|
Leach K, Charlton SJ, Strange PG. Analysis of second messenger pathways stimulated by different chemokines acting at the chemokine receptor CCR5. Biochem Pharmacol 2007; 74:881-90. [PMID: 17645873 DOI: 10.1016/j.bcp.2007.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/14/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
The chemokine receptor, CCR5, responds to several chemokines leading to changes in activity in several signalling pathways. Here, we investigated the ability of different chemokines to provide differential activation of pathways. The effects of five CC chemokines acting at CCR5 were investigated for their ability to inhibit forskolin-stimulated 3'-5'-cyclic adenosine monophosphate (cAMP) accumulation and to stimulate Ca(2+) mobilisation in Chinese hamster ovary (CHO) cells expressing CCR5. Macrophage inflammatory protein 1alpha (D26A) (MIP-1alpha (D26A), CCL3 (D26A)), regulated on activation, normal T-cell expressed and secreted (RANTES, CCL5), MIP-1beta (CCL4) and monocyte chemoattractant protein 2 (MCP-2, CCL8) were able to inhibit forskolin-stimulated cAMP accumulation, whilst MCP-4 (CCL13) could not elicit a response. CCL3 (D26A), CCL4, CCL5, CCL8 and CCL13 were able to stimulate Ca(2+) mobilisation through CCR5, although CCL3 (D26A) and CCL5 exhibited biphasic concentration-response curves. The Ca(2+) responses induced by CCL4, CCL5, CCL8 and CCL13 were abolished by pertussis toxin, whereas the response to CCL3 (D26A) was only partially inhibited by pertussis toxin, indicating G(i/o)-independent signalling induced by this chemokine. Although the rank order of potency of chemokines was similar between the two assays, certain chemokines displayed different pharmacological profiles in cAMP inhibition and Ca(2+) mobilisation assays. For instance, whilst CCL13 could not inhibit forskolin-stimulated cAMP accumulation, this chemokine was able to induce Ca(2+) mobilisation via CCR5. It is concluded that different chemokines acting at CCR5 can induce different pharmacological responses, which may account for the broad spectrum of chemokines that can act at CCR5.
Collapse
Affiliation(s)
- K Leach
- School of Pharmacy, University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, United Kingdom
| | | | | |
Collapse
|
20
|
Xu J, Lecanu L, Tan M, Yao W, Greeson J, Papadopoulos V. The benzamide derivative N-[1-(7-tert-Butyl-1H-indol-3-ylmethyl)-2-(4-cyclopropanecarbonyl-3-methyl-piperazin-1-yl)-2-oxo-ethyl]-4-nitro-benzamide (SP-10) reduces HIV-1 infectivity in vitro by modifying actin dynamics. Antivir Chem Chemother 2007; 17:331-42. [PMID: 17249247 DOI: 10.1177/095632020601700603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current treatments for patients infected with HIV are suboptimal. There is a need for new HIV therapies that act through different mechanisms than current treatments. We investigated the in vitro efficacy, safety and mechanism of action of the benzamide derivative N-[1-(7-tert-Butyl-1H-indol-3-ylmethyl)-2-(4-cyclopropanecarbonyl-3-methyl-piperazin-1-yl)-2-oxo-ethyl]-4-nitro-benzamide (SP-10), a potential new HIV treatment. When HIV-1-responsive engineered HeLa cells were pre-incubated for 48 h with either SP-10 or zidovudine (AZT), SP-10 was able to inhibit viral replication at much lower concentrations (IC50 = 0.036 nM) than AZT (IC50 = 27.4 nM). In contrast to AZT, SP-10 also inhibited replication of the multidrug-resistant HIV-1 strain MDR-769 in the HeLa cell model. In co-incubation experiments, SP-10 also inhibited the CCR5-sensitive HIV-1 BaL virus replication in human peripheral blood mononuclear cells. SP-10 displayed very low toxicity compared with current antiviral treatments. Confocal laser scanning microscopy and immunoprecipitation studies showed that SP-10 reduced the expression of CD4 and CCR5 on the surface of the host cell. SP-10 also reduced the level of gp120 binding to the cell surface. Confocal laser scanning microscopy studies showed that SP-10 blocked the formation of actin filaments (F-actin) and altered actin accumulation near the cell surface. These promising results suggest that SP-10 has a novel mechanism of action that enables effective inhibition of HIV-1 binding and cell entry. Further development of SP-10 as a new HIV treatment appears warranted.
Collapse
Affiliation(s)
- Jing Xu
- Department of Biochemistry, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
21
|
Morrison PT, Thomas LH, Sharland M, Friedland JS. RSV-infected airway epithelial cells cause biphasic up-regulation of CCR1 expression on human monocytes. J Leukoc Biol 2007; 81:1487-95. [PMID: 17389578 DOI: 10.1189/jlb.1006611] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection can cause extensive airway inflammation, which is orchestrated by chemokines and their receptors. RSV-infected epithelial cells secrete many cytokines and chemokines, but little is known about regulation of chemokine receptors on target cells. We investigated the effects of conditioned media (CM) from RSV-infected epithelial cells on monocyte CCR1, CCR2, and CCR5 expression. RSV-CM but not control-CM stimulated a biphasic increase in cell-surface CCR1, and levels peaked at 36 h and 96 h poststimulation. Similar CCR1 up-regulation occurred on monocyte-derived macrophages. Cytochlasin D and colchicine blocked both peaks of expression, demonstrating requirement of a functional cytoskeleton. Intracellular staining revealed little internal sequestration of CCR1 protein, and CCR1 up-regulation was inhibited by actinomycin D and cycloheximide, indicating that both waves of RSV-CM-induced surface CCR1 expression were dependent on de novo transcription and protein synthesis. Cytokine-neutralizing experiments showed that the effects of RSV-CM were decreased by blocking TNF-alpha (percent inhibition=51+/-2.3% at 36 h peak and 42+/-7.7% at 96 h peak) and to a lesser extent, IL-1 (percent inhibition=32+/-7.2% at 36 h and 23+/-2.9% at 96 h). In summary, RSV-CM causes a biphasic up-regulation of surface CCR1 on monocytes, which is dependent on an intact cytoskeleton, requires new gene transcription and protein synthesis, and is mediated in part by the proinflammatory cytokines TNF-alpha and IL-1.
Collapse
Affiliation(s)
- Paul T Morrison
- Department of Infectious Diseases and Immunity, Imperial College, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | | | | | | |
Collapse
|
22
|
Li W, Yu M, Bai L, Bu D, Xu X. Downregulation of CCR5 expression on cells by recombinant adenovirus containing antisense CCR5, a possible measure to prevent HIV-1 from entering target cells. J Acquir Immune Defic Syndr 2007; 43:516-22. [PMID: 17019368 DOI: 10.1097/01.qai.0000243102.95640.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chemokine (C-C motif) receptor 5 (CCR5) is one of the major co-receptors for the macrophage (M)-tropic HIV-1. To prevent HIV-1 from entering into target cells, we inhibited CCR5 expression on target cell surface by recombinant adenovirus containing anti-sense CCR5 cDNA. A fragment of 653 bp cDNA located in the 5' region of CCR5 cDNA was reversely inserted into pAdTrack-CMV. Recombinant adenovirus containing antisense CCR5 cDNA (Ad-antiR5) was obtained by homologous recombination of resultant plasmid with the adenoviral backbone plasmid pAdEasy-2 in E. coli BJ5183 and then packed in AD-293 cells. Rate of positive CCR5 on U937 cell surface measured by flow cytometry was decreased from 89.53% to 1.88% after U937 cells infected with Ad-antiR5 for 24 hours, and this reduction lasted at least for 10 days. After challenged with HIV-1, the U937 cells infected with Ad-antiR5 produced much less p24 antigen in cultured medium than those infected with control recombinant adenovirus and the uninfected cells. The recombinant adenovirus had no effect on chemotactic activity and proliferation of the U937 cells. Therefore, the recombinant adenovirus containing anti-sense CCR5 cDNA can down-regulate CCR5 expression on U937 cells and protect the cells from HIV-1 infection without effects on their chemotaxis activity and proliferation function.
Collapse
Affiliation(s)
- Wengang Li
- Department of Infectious Diseases, Peking University First Hospital, No. 8 Xishiku Street, Beijing 100034, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Ubogu EE, Callahan MK, Tucky BH, Ransohoff RM. CCR5 expression on monocytes and T cells: modulation by transmigration across the blood-brain barrier in vitro. Cell Immunol 2007; 243:19-29. [PMID: 17257590 PMCID: PMC2268100 DOI: 10.1016/j.cellimm.2006.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 10/29/2006] [Accepted: 11/29/2006] [Indexed: 12/24/2022]
Abstract
Observational studies in multiple sclerosis (MS) demonstrated altered expression of chemokine receptors (CkRs) on comparable populations of mononuclear cells (e.g. CD4(+)/CD45RO(+) T-cells) in brain sections compared with blood. These findings raised questions about the regulation of CkRs on trafficking cells. Regulatory processes for CkRs are complex: examples include down-regulation following ligand engagement during migration and either up- or down-regulation following activation. Additionally, CkRs that mediate transmigration without being down-regulated will be selectively enriched on migrating cells in the inflammatory site. Finally, CkRs may act as functionally neutral markers of activated cells capable of undergoing transmigration. Clarifying CkR regulation may aid in the selection and application of antagonists for treating neuroinflammation. Mechanisms of receptor regulation during transmigration cannot be studied by descriptive methods. We evaluated CCR5 expression on CD14(+) monocytes and CD3(+) T-cells following CCL5-driven transmigration through an in vitro blood-brain barrier (IVBBB), as both T-cells and monocytes in MS lesions express CCR5. CCR5 expression was augmented on non-migrating CD14(+) but not CD3(+) cells, suggesting selective activation of monocytes by incubation in contact with endothelial cells. As proposed from observational studies, CCR5 was enriched on monocytes that migrated spontaneously in the absence of exogenous chemokine. Addition of the CCR5 ligand CCL5 to the lower chamber led to enhanced CD3(+) T-cell migration. Interestingly, CCR5 was down-regulated on both CD14(+) monocytes and CD3(+) T cells during CCL5-driven migration. These results are distinct from those obtained in comparable studies of CCR2 and CXCR3, suggesting that the specifics for CkR expression should be studied for individual receptors on each leukocyte subpopulation during the design of strategies for pharmacological blockade in neuroinflammation.
Collapse
Affiliation(s)
- Eroboghene E. Ubogu
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
- Neurology Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center and Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Melissa K. Callahan
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Barbara H. Tucky
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
- The Mellen Center for Multiple Sclerosis Treatment and Research, Department of Neurology, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
24
|
Otero C, Groettrup M, Legler DF. Opposite fate of endocytosed CCR7 and its ligands: recycling versus degradation. THE JOURNAL OF IMMUNOLOGY 2006; 177:2314-23. [PMID: 16887992 DOI: 10.4049/jimmunol.177.4.2314] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 play a crucial role for the homing of lymphocytes and dendritic cells to secondary lymphoid tissues. Nevertheless, how CCR7 senses the gradient of chemokines and how migration is terminated are poorly understood. In this study, we demonstrate that CCR7(-GFP) is endocytosed into early endosomes containing transferrin receptor upon CCL19 binding, but less upon CCL21 triggering. Internalization of CCR7 was independent of lipid rafts but relied on dynamin and Eps15 and was inhibited by hypertonic sucrose, suggesting clathrin-dependent endocytosis. After chemokine removal, internalized CCR7 recycled back to the plasma membrane and was able to mediate migration again. In contrast, internalized CCL19 was sorted to lysosomes for degradation, showing opposite fate for endocytosed CCR7 and its ligand.
Collapse
Affiliation(s)
- Carolina Otero
- Biotechnology Institute Thurgau, University of Konstanz, Konstanzerstrasse 19, CH-8274 Tägerwilen, Switzerland
| | | | | |
Collapse
|
25
|
Walwyn WM, Wei W, Xie CW, Chiu K, Kieffer BL, Evans CJ, Maidment NT. Mu opioid receptor-effector coupling and trafficking in dorsal root ganglia neurons. Neuroscience 2006; 142:493-503. [PMID: 16887280 DOI: 10.1016/j.neuroscience.2006.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/11/2006] [Accepted: 06/13/2006] [Indexed: 01/25/2023]
Abstract
Morphine induces profound analgesic tolerance in vivo despite inducing little internalization of the mu opioid receptor (muOR). Previously proposed explanations suggest that this lack of internalization could either lead to prolonged signaling and associated compensatory changes in downstream signaling systems, or that the receptor is unable to recycle and resensitize and so loses efficacy, either mechanism resulting in tolerance. We therefore examined, in cultured neurons, the relationship between muOR internalization and desensitization in response to two agonists, D-Ala2, N-MePhe4, Gly5-ol-enkephalin (DAMGO) and morphine. In addition, we studied the chimeric mu/delta opioid receptor (mu/ partial differentialOR) which could affect internalization and desensitization in neurons. Dorsal root ganglia neurons from muOR knockout mice were transduced with an adenovirus expressing either receptor and their respective internalization, desensitization and trafficking profiles determined. Both receptors desensitized equally, measured by Ca2+ current inhibition, during the first 5 min of agonist exposure to DAMGO or morphine treatment, although the mu/partial differentialOR desensitized more extensively. Such rapid desensitization was unrelated to internalization as DAMGO, but not morphine, internalized both receptors after 20 min. In response to DAMGO the mu/partial differentialOR internalized more rapidly than the muOR and was trafficked through Rab4-positive endosomes and lysosomal-associated membrane protein-1-labeled lysosomes whereas the muOR was trafficked through Rab4 and Rab11-positive endosomes. Chronic desensitization of the Ca2+ current response, after 24 h of morphine or DAMGO incubation, was seen in the DAMGO, but not morphine-treated, muOR-expressing cells. Such persistence of signaling after chronic morphine treatment suggests that compensation of downstream signaling systems, rather than loss of efficacy due to poor receptor recycling, is a more likely mechanism of morphine tolerance in vivo. In contrast to the muOR, the mu/partial differentialOR showed equivalent desensitization whether morphine or DAMGO treated, but internalized further with DAMGO than morphine. Such ligand-independent desensitization could be a result of the observed higher rate of synthesis and degradation of this chimeric receptor.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analysis of Variance
- Animals
- Animals, Newborn
- Baclofen/pharmacology
- Cells, Cultured
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalins/pharmacology
- Flow Cytometry/methods
- GABA Agonists/pharmacology
- Ganglia, Spinal/cytology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Membrane Potentials/radiation effects
- Mice
- Mice, Knockout
- Morphine/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Protein Transport/drug effects
- Protein Transport/genetics
- Protein Transport/physiology
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/physiology
- Time Factors
- Transfection/methods
Collapse
Affiliation(s)
- W M Walwyn
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, NPI Box 77, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Thirkill TL, Vedagiri H, Douglas GC. Macaque trophoblast migration toward RANTES is inhibited by cigarette smoke-conditioned medium. Toxicol Sci 2006; 91:557-67. [PMID: 16514183 DOI: 10.1093/toxsci/kfj147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trophoblast migration within the endometrium and uterine vasculature is essential for normal placental and fetal development. We previously demonstrated that macaque trophoblasts express the chemokine receptor CCR5 and that this receptor mediates trophoblast migration toward RANTES (regulated upon activation normal T-cell expressed and secreted). In the present paper we have used primary cultures of early gestation macaque trophoblasts to test the hypothesis that tobacco smoke inhibits trophoblast migration as the result of dysregulation of the RANTES/CCR5 chemotactic axis. Early gestation macaque trophoblasts were incubated in the absence or presence of cigarette smoke-conditioned medium (CSM). Cell migration was quantified using migration chambers. CCR5 and G protein receptor kinase 2 (GRK2) expression was measured by immunofluorescence microscopy and Western blotting. cAMP levels were measured by enzyme-linked immunosorbent assay. Trophoblast migration toward RANTES was reduced when cells were incubated in CSM. Trophoblasts also showed reduced expression of CCR5, increased levels of cAMP, and increased expression of GRK2. Finally, the secretion of RANTES by uterine endothelial cells was reduced by exposing the cells to CSM. These results support the idea that cigarette smoke constituents inhibit directional trophoblast migration by causing increased desensitization of trophoblast CCR5 and inhibiting the secretion of RANTES by endothelial cells.
Collapse
Affiliation(s)
- Twanda L Thirkill
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, California 95616-8643, USA
| | | | | |
Collapse
|
27
|
Abstract
Hijacking of the host cell’s signal transduction machinery has been increasingly regarded as an important strategy for facilitating virus propagation. The positive-transcription elongation factor (P-TEFb) complex, cyclin-dependent kinase (CDK)9/cyclin T1, is an example of such an attack by HIV. Upon infection of cells, the HIV protein transactivator of transcription (Tat) forms a highly specific complex with the two host cell proteins CDK9 and cyclin T1. This complex ensures phosphorylation of the native CDK9 substrate, RNA polymerase II, leading to productive elongation of viral RNA in the host cell. Although challenging, inhibition of CDK9 activity with small molecules is a therapeutically valid strategy to inhibit HIV replication. Other than direct antiviral agents, that inhibit HIV replication through a direct interaction with viral proteins, CDK9 inhibitors might not suffer from the emergence of resistant virus strains. This review outlines the advantages and prospects of selective CDK9 inhibitors in the management of HIV infections.
Collapse
Affiliation(s)
- Bert M Klebl
- GPC Biotech AG, Fraunhoferstr. 20, D-82152 Martinsried, Germany
| | - Axel Choidas
- GPC Biotech AG, Fraunhoferstr. 20, D-82152 Martinsried, Germany
| |
Collapse
|
28
|
Stanasila L, Abuin L, Diviani D, Cotecchia S. Ezrin directly interacts with the alpha1b-adrenergic receptor and plays a role in receptor recycling. J Biol Chem 2005; 281:4354-63. [PMID: 16352594 DOI: 10.1074/jbc.m511989200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the yeast two-hybrid system, we identified ezrin as a protein interacting with the C-tail of the alpha1b-adrenergic receptor (AR). The interaction was shown to occur in vitro between the receptor C-tail and the N-terminal portion of ezrin, or Four-point-one ERM (FERM) domain. The alpha1b-AR/ezrin interaction occurred inside the cells as shown by the finding that the transfected alpha1b-AR and FERM domain or ezrin could be coimmunoprecipitated from human embryonic kidney 293 cell extracts. Mutational analysis of the alpha1b-AR revealed that the binding site for ezrin involves a stretch of at least four arginines on the receptor C-tail. The results from both receptor biotinylation and immunofluorescence experiments indicated that the FERM domain impaired alpha1b-AR recycling to the plasma membrane without affecting receptor internalization. The dominant negative effect of the FERM domain, which relies on its ability to mask the ezrin binding site for actin, was mimicked by treatment of cells with cytochalasin D, an actin depolymerizing agent. A receptor mutant (DeltaR8) lacking its binding site in the C-tail for ezrin displayed delayed receptor recycling. These findings identify ezrin as a new protein directly interacting with a G protein-coupled receptor and demonstrate the direct implication of ezrin in GPCR trafficking via an actin-dependent mechanism.
Collapse
Affiliation(s)
- Laura Stanasila
- Département de Pharmacologie et de Toxicologie, Faculté de Biologie et de Médecine, Lausanne, Switzerland
| | | | | | | |
Collapse
|
29
|
Tardif MR, Tremblay MJ. Regulation of LFA-1 activity through cytoskeleton remodeling and signaling components modulates the efficiency of HIV type-1 entry in activated CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2005; 175:926-35. [PMID: 16002691 DOI: 10.4049/jimmunol.175.2.926] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Besides interactions between the viral envelope glycoproteins with cell surface receptors, interactions between cell-derived molecules incorporated onto virions and their ligand could also modulate HIV type-1 (HIV-1) entry inside CD4(+) T lymphocytes. Although incorporation of host ICAM-1 within HIV-1 increases both virus attachment and fusion, the precise mechanism through which this phenomenon is occurring is still unclear. We demonstrate in this study that activation of primary human CD4(+) T lymphocytes increases LFA-1 affinity and avidity states, two events promoting the early events of the HIV-1 replication cycle through interactions between virus-embedded host ICAM-1 and LFA-1 clusters. Confocal analyses suggest that HIV-1 is concentrated in microdomains rich in LFA-1 clusters that also contain CD4 and CXCR4 molecules. Experiments performed with specific inhibitors revealed that entry of HIV-1 in activated CD4(+) T cells is regulated by LFA-1-dependent ZAP70, phospholipase Cgamma1, and calpain enzymatic activities. By using laboratory and clinical strains of HIV-1 produced in primary human cells, we demonstrate the importance of the LFA-1 activation state and cluster formation in the initial step of the virus life cycle. Overall, these data provide new insights into the complex molecular events involved in HIV-1 binding and entry.
Collapse
Affiliation(s)
- Mélanie R Tardif
- Research Center in Infectious Diseases, Centre Hospitalier de l'Université Laval (CHUL) Research Center, and Faculty of Medicine, Laval University, 2705 Laurier Boulevard, Quebec, Canada G1V 4G2
| | | |
Collapse
|
30
|
Spagnolo P, Renzoni EA, Wells AU, Copley SJ, Desai SR, Sato H, Grutters JC, Abdallah A, Taegtmeyer A, du Bois RM, Welsh KI. C-C Chemokine Receptor 5 Gene Variants in Relation to Lung Disease in Sarcoidosis. Am J Respir Crit Care Med 2005; 172:721-8. [PMID: 15976369 DOI: 10.1164/rccm.200412-1707oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Genetic factors are likely to influence the clinical course and pattern of sarcoidosis, a granulomatous disease of unknown origin. OBJECTIVES We tested this hypothesis for C-C chemokine receptor 5 (CCR5), a molecule involved in recruitment and activation of mononuclear cells. METHODS In addition to the known CCR5 Delta 32 insertion/deletion, we evaluated a further eight single-nucleotide polymorphisms in 106 British patients and 142 British unaffected subjects, and second-setted the results in 112 Dutch patients and 169 healthy Dutch control subjects. MEASUREMENTS AND MAIN RESULTS In the British population, the frequency of one of the identified haplotypes (HHC) was strongly associated with the presence of parenchymal disease (radiographic stage >or= II versus stages 0 and I) at presentation (odds ratio [OR], 5.2; 95% confidence interval [CI], 1.96-13.7; corrected p = 0.02), at 2 (OR, 6.6; 95% CI, 2.5-17.6; corrected p = 0.006), and at 4 years follow-up (OR, 6.8; 95% CI, 2.5-18.0; corrected p = 0.0045). In the Dutch population, the same association was seen at 2 (OR, 6.7; 95% CI, 2.8-16.4; corrected p = 0.002), and 4 years follow-up (OR, 9.0; 95% CI, 3.5-23.1; corrected p = 0.0009). CONCLUSIONS No association between the CCR5 haplotype HHC and susceptibility to sarcoidosis was observed, indicating that this relevant gene only operates after disease induction. In summary, we report a strong association between CCR5 haplotype HHC and persistent lung involvement in sarcoidosis.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Clinical Genomic Group, National Heart and Lung Institute, Department of Occupational and Environmental Medicine, Imperial College of Science, Technology and Medicine, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Neel NF, Schutyser E, Sai J, Fan GH, Richmond A. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev 2005; 16:637-58. [PMID: 15998596 PMCID: PMC2668263 DOI: 10.1016/j.cytogfr.2005.05.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/03/2005] [Indexed: 01/25/2023]
Abstract
The internalization and intracellular trafficking of chemokine receptors have important implications for the cellular responses elicited by chemokine receptors. The major pathway by which chemokine receptors internalize is the clathrin-mediated pathway, but some receptors may utilize lipid rafts/caveolae-dependent internalization routes. This review discusses the current knowledge and controversies regarding these two different routes of endocytosis. The functional consequences of internalization and the regulation of chemokine receptor recycling will also be addressed. Modifications of chemokine receptors, such as palmitoylation, ubiquitination, glycosylation, and sulfation, may also impact trafficking, chemotaxis and signaling. Finally, this review will cover the internalization and trafficking of viral and decoy chemokine receptors.
Collapse
Affiliation(s)
- Nicole F Neel
- Department of Veterans Affairs Medical Center, Vanderbilt University School of Medicine, 432 PRB, 23rd Avenue South at Pierce, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
32
|
Schweneker M, Bachmann AS, Moelling K. JM4 is a four-transmembrane protein binding to the CCR5 receptor. FEBS Lett 2005; 579:1751-8. [PMID: 15757671 DOI: 10.1016/j.febslet.2005.02.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/23/2022]
Abstract
The CC chemokine receptor 5 (CCR5) is a major co-receptor for human immunodeficiency virus (HIV) and CCR5 mutants lacking the carboxy (C)-terminus interfere with HIV infection. Therefore, we analysed the C-terminus of CCR5 and here describe Jena-Muenchen 4 (JM4), a novel CCR5-interacting protein. JM4 is membrane-associated, co-precipitates with CCR5, and is ubiquitously expressed. It shares about 62% sequence similarity with JWA and glutamate transporter-associated protein 3-18 (GTRAP3-18), a regulator of an amino acid transporter. JWA, like JM4, is a four-transmembrane protein, which binds to the CCR5 receptor. Furthermore, JM4, JWA, and GTRAP3-18 co-localise and heterodimerise indicating a functional relationship. JM4 co-localises with calnexin in the endoplasmic reticulum and with the mannose 6-phosphate receptor in the Golgi. JM4 and GTRAP3-18 harbor a Rab-acceptor motif, indicating a function in vesicle formation at the Golgi complex. In conclusion, we describe a CCR5-interacting protein, which is suggested to function in trafficking and membrane localisation of the receptor, possibly also other receptors or amino acid transporters.
Collapse
Affiliation(s)
- Marc Schweneker
- Institute of Medical Virology, University Zurich, Gloriastr. 30, 8028 Zürich, Switzerland
| | | | | |
Collapse
|
33
|
Pocernich CB, Boyd-Kimball D, Poon HF, Thongboonkerd V, Lynn BC, Klein JB, Calebrese V, Nath A, Butterfield DA. Proteomics analysis of human astrocytes expressing the HIV protein Tat. ACTA ACUST UNITED AC 2005; 133:307-16. [PMID: 15710248 DOI: 10.1016/j.molbrainres.2004.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
Astrocyte infection in HIV has been associated with rapid progression of dementia in a subset of HIV/AIDS patients. Astrogliosis and microglial activation are observed in areas of axonal and dendritic damage in HIVD. In HIV-infected astrocytes, the regulatory gene tat is over expressed and mRNA levels for Tat are elevated in brain extracts from individuals with HIV-1 dementia. Tat can be detected in HIV-infected astrocytes in vivo. The HIV-1 protein Tat transactivates viral and cellular gene expression, is actively secreted mainly from astrocytes, microglia and macrophages, into the extracellular environment, and is taken up by neighboring uninfected cells such as neurons. The HIV-1 protein Tat released from astrocytes reportedly produces trimming of neurites, mitochondrial dysfunction and cell death in neurons, while protecting its host, the astrocyte. We utilized proteomics to investigate protein expression changes in human astrocytes intracellularly expressing Tat (SVGA-Tat). By coupling 2D fingerprinting and identification of proteins by mass spectrometry, we identified phosphatase 2A, isocitrate dehydrogenase, nuclear ribonucleoprotein A1, Rho GDP dissociation inhibitor alpha, beta-tubulin, crocalbin like protein/calumenin, and vimentin/alpha-tubulin to have decreased protein expression levels in SVGA-Tat cells compared to the SVGA-pcDNA cells. Heat shock protein 70, heme oxygenase-1, and inducible nitric oxide synthase were found to have increased protein expression in SVGA-Tat cells compared to controls by slotblot technique. These findings are discussed with reference to astrocytes serving as a reservoir for the HIV virus and how Tat promotes survival of the astrocytic host.
Collapse
Affiliation(s)
- Chava B Pocernich
- Department of Chemistry and Center of Membrane Sciences, 125 Chemistry-Physics Building, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|