1
|
Harish J, Prasannakumar MK, Venkateshbabu G, Karan R, Mahesh HB, Devanna P, Sarangi AN, Patil SS, Tejashwini V, Lohithaswa HC, Kagale S. Molecular and genomic insights into the pathogenicity of Sarocladium zeae causing maize stalk rot disease. Microbiol Res 2025; 296:128146. [PMID: 40168814 DOI: 10.1016/j.micres.2025.128146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 04/03/2025]
Abstract
Post-flowering stalk rot (PFSR) of maize has been traditionally associated with Fusarium verticillioides. Conversely, this study reveals Sarocladium zeae as a new phytopathogen responsible for the disease. This research was conducted to gain a comprehensive understanding of S. zeae by investigating its pathogenic mechanisms, profiling its metabolome, and deciphering its genomic characteristics. Maize stalks displaying stalk rot symptoms were collected from various regions of India. S. zeae was isolated and characterized using ITS and TEF-1α sequencing. Cultures of S. zeae exhibited slower growth on PDA medium compared to F. verticillioides, which dominated due to its rapid growth rate. Pathogenicity was confirmed through a toothpick inoculation assay. The symptoms induced by S. zeae was characterized by powdery, dry, pale brown-black discoloration, were distinct from the typical dark-brown lesions of Fusarium stalk rot. Enzymatic assays revealed increased activity of β-glucosidase, cellulase, and pectate lyase in infected stalks, while qPCR analysis showed the upregulation of endoglucanase and β-glucosidase genes in infected stalks underscored the critical roles of cellulase and β-glucosidase in pathogenicity Metagenomic analysis identified S. zeae as the predominant species in infected stalk samples. Genome assembly revealed the pathogen's complete genetic repertoire, including genes encoding effector proteins and CAZymes involved in cell wall degradation. Moreover, we have demonstrated that the S. zeae as a causal agent of maize stalk rot and further shedding light on its transition from an endophytic to a pathogenic lifestyle. Taken together, this research represents the first report to attribute maize stalk rot to S. zeae and to present its complete genome assembly, significantly advancing the understanding of its biology and pathogenic potential.
Collapse
Affiliation(s)
- J Harish
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - M K Prasannakumar
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India.
| | - Gopal Venkateshbabu
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - R Karan
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - H B Mahesh
- Genomics and Genome Editing Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - Pramesh Devanna
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, Gangavathi, University of Agricultural Sciences, Raichur, Karnataka 584104, India
| | | | - Swathi S Patil
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - V Tejashwini
- PathoGenomics Laboratory, Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - H C Lohithaswa
- AICRP on Pigeonpea, ZARS, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| |
Collapse
|
2
|
Ahmad W, Zafar M, Anwar Z. Heterologous expression and characterization of mutant cellulase from indigenous strain of Aspergillus niger. PLoS One 2024; 19:e0298716. [PMID: 38748703 PMCID: PMC11095671 DOI: 10.1371/journal.pone.0298716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
The purpose of current research work was to investigate the effect of mutagenesis on endoglucanase B activity of indigenous strain of Aspergillus niger and its heterologous expression studies in the pET28a+ vector. The physical and chemical mutagens were employed to incorporate mutations in A. niger. For determination of mutations, mRNA was isolated followed by cDNA synthesis and cellulase gene was amplified, purified and sequenced both from native and mutant A. niger. On comparison of gene sequences, it was observed that 5 nucleotide base pairs have been replaced in the mutant cellulase. The mutant recombinant enzyme showed 4.5 times higher activity (428.5 µmol/mL/min) as compared to activity of native enzyme (94 µmol/mL/min). The mutant gene was further investigated using Phyre2 and I-Tesser tools which exhibited 71% structural homology with Endoglucanase B of Thermoascus aurantiacus. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg) and hydrogen bonds analysis were carried at 35°C and 50°C to explore the integrity of structure of recombinant mutant endoglucanase B which corresponded to its optimal temperature. Hydrogen bonds analysis showed more stability of recombinant mutant endoglucanase B as compared to native enzyme. Both native and mutant endoglucanase B genes were expressed in pET 28a+ and purified with nickel affinity chromatography. Theoretical masses determined through ExPaSy Protparam were found 38.7 and 38.5 kDa for native and mutant enzymes, respectively. The optimal pH and temperature values for the mutant were 5.0 and 50°C while for native these were found 4.0 and 35°C, respectively. On reacting with carboxy methyl cellulose (CMC) as substrate, the mutant enzyme exhibited less Km (0.452 mg/mL) and more Vmax (50.25 µmol/ml/min) as compared to native having 0.534 mg/mL as Km and 38.76 µmol/ml/min as Vmax. Among metal ions, Mg2+ showed maximum inducing effect (200%) on cellulase activity at 50 mM concentration followed by Ca2+ (140%) at 100 mM concentration. Hence, expression of a recombinant mutant cellulase from A. niger significantly enhanced its cellulytic potential which could be employed for further industrial applications at pilot scale.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muddassar Zafar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Zahid Anwar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
3
|
Kobayashi N, Wada N, Yokoyama H, Tanaka Y, Suzuki T, Habu N, Konno N. Extracellular enzymes secreted in the mycelial block of Lentinula edodes during hyphal growth. AMB Express 2023; 13:36. [PMID: 37185915 PMCID: PMC10130320 DOI: 10.1186/s13568-023-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Lentinula edodes (shiitake mushroom) is one of the most widely cultivated edible mushrooms and is primarily cultivated using sawdust medium. While there have been improvements in the cultivation technology, the mechanism of mycelial block cultivation, such as mycelial growth and enzymatic sawdust degradation, has not been clarified. In this study, the mycelium was elongated longitudinally in the bottle sawdust culture for 27 days, and the cultivated sawdust medium was divided into three sections (top, middle, and bottom parts). To determine spatial heterogeneity in the enzyme secretion, the enzymatic activities of each part were analyzed. Lignocellulose degradation enzymes, such as endoglucanase, xylanase, and manganese peroxidase were highly secreted in the top part of the medium. On the other hand, amylase, pectinase, fungal cell wall degradation enzyme (β-1,3-glucanase, β-1,6-glucanase, and chitinase), and laccase activities were higher in the bottom part. The results indicate that the principal sawdust degradation occurs after mycelial colonization. Proteins with the laccase activity were purified from the bottom part of the medium, and three laccases, Lcc5, Lcc6 and Lcc13, were identified. In particular, the expression of Lcc13 gene was higher in the bottom part compared with the level in the top part, suggesting Lcc13 is mainly produced from the tip region and have important roles for mycelial spread and nutrient uptake during early stage of cultivation.
Collapse
Affiliation(s)
- Nanae Kobayashi
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Nagisa Wada
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Haruna Yokoyama
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Yuki Tanaka
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Tomohiro Suzuki
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Naoto Habu
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan
| | - Naotake Konno
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
- Graduate School of Regional Development and Creativity, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Tochigi, Japan.
| |
Collapse
|
4
|
de Amorim Dos Santos A, Silva MJFE, Scatolino MV, Durães AFS, Dias MC, Damásio RAP, Tonoli GHD. Comparison of pre-treatments mediated by endoglucanase and TEMPO oxidation for eco-friendly low-cost energy production of cellulose nanofibrils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4934-4948. [PMID: 35978240 DOI: 10.1007/s11356-022-22575-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Specific kinds of enzymes have been used as an eco-friendly pre-treatment for mechanical extraction of cellulose nanofibrils (CNFs) from vegetal pulps. Another well-established pre-treatment is the 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated oxidation, which has gained considerable attention. Pre-treatments assist in fiber swelling, facilitating mechanical fibrillation, and reducing energy consumption; however, some of these methods are extremely expensive. This work aimed to evaluate the influence of enzymatic pre-treatment with endoglucanase on the energy consumption during mechanical fibrillation of cellulose pulps. Bleached pulps from Eucalyptus sp. and Pinus sp. were pre-treated with endoglucanase enzyme compared to TEMPO-meditated oxidation. Average diameters of CNFs pre-treated with enzymes were close to that found for TEMPO-oxidized nanofibrils (TOCNFs). Results showed that enzymatic pre-treatment did not significantly modify the pulp chemical and morphological characteristics with efficient stabilization of the CNFs suspension at higher supernatant turbidity. Energy consumption of pulps treated with endoglucanase enzymes was lower than that shown by pulps treated with TEMPO, reaching up to 58% of energy savings. The enzyme studied in the pulp treatment showed high efficiency in reducing energy consumption during mechanical fibrillation and production of films with high mechanical quality, being an eco-friendly option for pulp treatment.
Collapse
Affiliation(s)
- Allan de Amorim Dos Santos
- Forest Science Department, University of Lavras, University Campus, P.O. Box 3037, Lavras, MG, 37200-000, Brazil.
| | | | - Mário Vanoli Scatolino
- Agricultural Sciences Center, Federal University of the Semiarid (UFERSA), Mossoró, RN, 59625-900, Brazil
| | - Alisson Farley Soares Durães
- Forest Science Department, University of Lavras, University Campus, P.O. Box 3037, Lavras, MG, 37200-000, Brazil
| | - Matheus Cordazzo Dias
- Forest Science Department, University of Lavras, University Campus, P.O. Box 3037, Lavras, MG, 37200-000, Brazil
| | | | | |
Collapse
|
5
|
Response-Surface Statistical Optimization of Submerged Fermentation for Pectinase and Cellulase Production by Mucor circinelloides and M. hiemalis. FERMENTATION 2022. [DOI: 10.3390/fermentation8050205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cellulase and pectinase are degrading cellulosic and pectic substances that form plant cell walls and, thereby, they have a wide range of applications in the agro-industrial by-products recycling and food industries. In the current research, Mucor circinelloides and M. hiemalis strains were tested for their ability to produce cellulase and pectinase from tangerine peel by submerged fermentation. Experiments on five variables: temperature, pH, incubation period, inoculum size, and substrate concentration, were designed with a Box–Behnken design, as well as response surface methodology (RSM), and analysis of variance was performed. In addition, cellulase and pectinase were partially purified and characterized. At their optimum parameters, M. circinelloides and M. hiemalis afforded high cellulase production (37.20 U/mL and 33.82 U/mL, respectively) and pectinase (38.02 U/mL and 39.76 U/mL, respectively). The partial purification of M. circinelloides and M. hiemalis cellulase produced 1.73- and 2.03-fold purification with 31.12 and 32.02% recovery, respectively; meanwhile, 1.74- and 1.99-fold purification with 31.26 and 31.51% recovery, respectively, were obtained for pectinase. Partially purified cellulase and pectinase from M. circinelloides and M. hiemalis demonstrated the highest activity at neutral pH, and 70 and 50 °C, for cellulase and 50 and 60 °C, for pectinase, respectively. Moreover, 10 mM of K+ increased M. circinelloides enzymatic activity. The production of cellulase and pectinase from M. circinelloides and M. hiemalis utilizing RSM is deemed profitable for the decomposition of agro-industrial wastes.
Collapse
|
6
|
Naher L, Fatin SN, Sheikh MAH, Azeez LA, Siddiquee S, Zain NM, Karim SMR. Cellulase Enzyme Production from Filamentous Fungi Trichoderma reesei and Aspergillus awamori in Submerged Fermentation with Rice Straw. J Fungi (Basel) 2021; 7:jof7100868. [PMID: 34682288 PMCID: PMC8539901 DOI: 10.3390/jof7100868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/03/2022] Open
Abstract
Fungi are a diverse group of microorganisms that play many roles in human livelihoods. However, the isolation of potential fungal species is the key factor to their utilization in different sectors, including the enzyme industry. Hence, in this study, we used two different fungal repositories—soil and weed leaves—to isolate filamentous fungi and evaluate their potential to produce the cellulase enzyme. The fungal strains were isolated using dichloran rose bengal agar (DRBA) and potato dextrose agar (PDA). For cellulase enzyme production, a rice straw submerged fermentation process was used. The enzyme production was carried out at the different incubation times of 3, 5, and 7 days of culture in submerged conditions with rice straw. Fungal identification studies by morphological and molecular methods showed that the soil colonies matched with Trichoderma reesei, and the weed leaf colonies matched with Aspergillus awamori. These species were coded as T. reesei UMK04 and A. awamori UMK02, respectively. This is the first report of A. awamori UMK02 isolation in Malaysian agriculture. The results of cellulase production using the two fungi incorporated with rice straw submerged fermentation showed that T. reesei produced a higher amount of cellulase at Day 5 (27.04 U/mg of dry weight) as compared with A. awamori (15.19 U/mg of dry weight), and the concentration was significantly different (p < 0.05). Our results imply that T. reesei can be utilized for cellulase production using rice straw.
Collapse
Affiliation(s)
- Laila Naher
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Jeli Campus, Jeli 17600, Malaysia; (S.N.F.); (M.A.H.S.); (L.A.A.); (N.M.Z.)
- Institute of Food Security and Sustainable Agriculture, Universiti Malaysia Kelantan Jeli Campus, Jeli 17600, Malaysia
- Institute of Research and Poverty Management (InsPek), Universiti Malaysia Kelantan Bachok, Bachok 16400, Malaysia
- Correspondence:
| | - Siti Noor Fatin
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Jeli Campus, Jeli 17600, Malaysia; (S.N.F.); (M.A.H.S.); (L.A.A.); (N.M.Z.)
| | - Md Abdul Halim Sheikh
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Jeli Campus, Jeli 17600, Malaysia; (S.N.F.); (M.A.H.S.); (L.A.A.); (N.M.Z.)
| | - Lateef Adebola Azeez
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Jeli Campus, Jeli 17600, Malaysia; (S.N.F.); (M.A.H.S.); (L.A.A.); (N.M.Z.)
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Shaiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia;
| | - Norhafizah Md Zain
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Jeli Campus, Jeli 17600, Malaysia; (S.N.F.); (M.A.H.S.); (L.A.A.); (N.M.Z.)
- Institute of Food Security and Sustainable Agriculture, Universiti Malaysia Kelantan Jeli Campus, Jeli 17600, Malaysia
- Institute of Research and Poverty Management (InsPek), Universiti Malaysia Kelantan Bachok, Bachok 16400, Malaysia
| | | |
Collapse
|
7
|
Li MC, Wu Q, Moon RJ, Hubbe MA, Bortner MJ. Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006052. [PMID: 33870553 DOI: 10.1002/adma.202006052] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Indexed: 05/20/2023]
Abstract
Cellulose nanomaterials (CNMs), mainly including nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNCs), have attained enormous interest due to their sustainability, biodegradability, biocompatibility, nanoscale dimensions, large surface area, facile modification of surface chemistry, as well as unique optical, mechanical, and rheological performance. One of the most fascinating properties of CNMs is their aqueous suspension rheology, i.e., CNMs helping create viscous suspensions with the formation of percolation networks and chemical interactions (e.g., van der Waals forces, hydrogen bonding, electrostatic attraction/repulsion, and hydrophobic attraction). Under continuous shearing, CNMs in an aqueous suspension can align along the flow direction, producing shear-thinning behavior. At rest, CNM suspensions regain some of their initial structure immediately, allowing rapid recovery of rheological properties. These unique flow features enable CNMs to serve as rheological modifiers in a wide range of fluid-based applications. Herein, the dependence of the rheology of CNM suspensions on test protocols, CNM inherent properties, suspension environments, and postprocessing is systematically described. A critical overview of the recent progress on fluid applications of CNMs as rheology modifiers in some emerging industrial sectors is presented as well. Future perspectives in the field are outlined to guide further research and development in using CNMs as the next generation rheological modifiers.
Collapse
Affiliation(s)
- Mei-Chun Li
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| | - Robert J Moon
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695-8005, USA
| | - Michael J Bortner
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA
| |
Collapse
|
8
|
Zafar A, Aftab MN, Asif A, Karadag A, Peng L, Celebioglu HU, Afzal MS, Hamid A, Iqbal I. Efficient biomass saccharification using a novel cellobiohydrolase from Clostridium clariflavum for utilization in biofuel industry. RSC Adv 2021; 11:9246-9261. [PMID: 35423428 PMCID: PMC8695235 DOI: 10.1039/d1ra00545f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022] Open
Abstract
The present study describes the cloning of the cellobiohydrolase gene from a thermophilic bacterium Clostridium clariflavum and its expression in Escherichia coli BL21(DE3) utilizing the expression vector pET-21a(+). The optimization of various parameters (pH, temperature, isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration, time of induction) was carried out to obtain the maximum enzyme activity (2.78 ± 0.145 U ml-1) of recombinant enzyme. The maximum expression of recombinant cellobiohydrolase was obtained at pH 6.0 and 70 °C respectively. Enzyme purification was performed by heat treatment and immobilized metal anionic chromatography. The specific activity of the purified enzyme was 57.4 U mg-1 with 35.17% recovery and 3.90 purification fold. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the molecular weight of cellobiohydrolase was 78 kDa. Among metal ions, Ca2+ showed a positive impact on the cellobiohydrolase enzyme with increased activity by 115%. Recombinant purified cellobiohydrolase enzyme remained stable and exhibited 77% and 63% residual activity in comparison to control in the presence of n-butanol and after incubation at 80 °C for 1 h, respectively. Our results indicate that our purified recombinant cellobiohydrolase can be used in the biofuel industry.
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab Lahore Pakistan
| | | | - Anam Asif
- Institute of Industrial Biotechnology, GC University Lahore Pakistan +92-3444704190
| | - Ahmet Karadag
- Department of Chemistry, Faculty of Arts and Sciences, Yozgat Bozok University 66200 Yozgat Turkey
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | | | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT) Lahore Pakistan
| | - Attia Hamid
- Institute of Industrial Biotechnology, GC University Lahore Pakistan +92-3444704190
| | - Irfana Iqbal
- Department of Zoology, Lahore College for Women University Lahore Pakistan
| |
Collapse
|
9
|
Chávez-Guerrero L, Silva-Mendoza J, Sepúlveda-Guzmán S, Medina-Aguirre NA, Vazquez-Rodriguez S, Cantú-Cárdenas ME, García-Gómez NA. Enzymatic hydrolysis of cellulose nanoplatelets as a source of sugars with the concomitant production of cellulose nanofibrils. Carbohydr Polym 2019; 210:85-91. [DOI: 10.1016/j.carbpol.2019.01.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/25/2022]
|
10
|
Basic Mechanism of Lignocellulose Mycodegradation. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Boujemaoui A, Ansari F, Berglund LA. Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose–Poly(methyl methacrylate) Interface. Biomacromolecules 2018; 20:598-607. [DOI: 10.1021/acs.biomac.8b00701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Assya Boujemaoui
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Farhan Ansari
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205, United States
| | - Lars A. Berglund
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
12
|
|
13
|
Imran M, Anwar Z, Irshad M, Asad MJ, Ashfaq H. Cellulase Production from Species of Fungi and Bacteria from Agricultural Wastes and Its Utilization in Industry: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aer.2016.42005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Zhang X, Wang S, Wu X, Liu S, Li D, Xu H, Gao P, Chen G, Wang L. Subsite-specific contributions of different aromatic residues in the active site architecture of glycoside hydrolase family 12. Sci Rep 2015; 5:18357. [PMID: 26670009 PMCID: PMC4680936 DOI: 10.1038/srep18357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/16/2015] [Indexed: 01/22/2023] Open
Abstract
The active site architecture of glycoside hydrolase (GH) is a contiguous subregion of the enzyme constituted by residues clustered in the three-dimensional space, recognizing the monomeric unit of ligand through hydrogen bonds and hydrophobic interactions. Mutations of the key residues in the active site architecture of the GH12 family exerted different impacts on catalytic efficiency. Binding affinities between the aromatic amino acids and carbohydrate rings were quantitatively determined by isothermal titration calorimetry (ITC) and the quantum mechanical (QM) method, showing that the binding capacity order of Tyr>Trp>His (and Phe) was determined by their side-chain properties. The results also revealed that the binding constant of a certain residue remained unchanged when altering its location, while the catalytic efficiency changed dramatically. Increased binding affinity at a relatively distant subsite, such as the mutant of W7Y at the -4 subsite, resulted in a marked increase in the intermediate product of cellotetraose and enhanced the reactivity of endoglucanase by 144%; while tighter binding near the catalytic center, i.e. W22Y at the -2 subsite, enabled the enzyme to bind and hydrolyze smaller oligosaccharides. Clarification of the specific roles of the aromatics at different subsites may pave the way for a more rational design of GHs.
Collapse
Affiliation(s)
- Xiaomei Zhang
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P.R. China
| | - Shuai Wang
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P.R. China
| | - Xiuyun Wu
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P.R. China
| | - Shijia Liu
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P.R. China
| | - Dandan Li
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P.R. China
| | - Hao Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, Shandong University, Jinan, 250100, P.R. China
| | - Peiji Gao
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P.R. China
| | - Guanjun Chen
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P.R. China
| | - Lushan Wang
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P.R. China
| |
Collapse
|
15
|
Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydr Polym 2015; 128:75-81. [DOI: 10.1016/j.carbpol.2015.03.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 11/19/2022]
|
16
|
Hamid SBA, Islam MM, Das R. Cellulase biocatalysis: key influencing factors and mode of action. CELLULOSE 2015; 22:2157-2182. [DOI: 10.1007/s10570-015-0672-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Huy ND, Nguyen CL, Park HS, Loc NH, Choi MS, Kim DH, Seo JW, Park SM. Characterization of a novel manganese dependent endoglucanase belongs in GH family 5 from Phanerochaete chrysosporium. J Biosci Bioeng 2015; 121:154-9. [PMID: 26173955 DOI: 10.1016/j.jbiosc.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/31/2015] [Accepted: 06/18/2015] [Indexed: 01/22/2023]
Abstract
The cDNA encoding a putative glycoside hydrolase family 5, which has been predicted to be an endoglucanase (PcEg5A), was cloned from Phanerochaete chrysosporium and expressed in Pichia pastoris. PcEg5A contains a carbohydrate-binding domain and two important amino acids, E209 and E319, playing as proton donor and nucleophile in substrate catalytic domain. SDS-PAGE analysis indicated that the recombinant endoglucanase 5A (rPcEg5A) has a molecular size of 43 kDa which corresponds with the theoretical calculation. Optimum pH and temperature were found to be 4.5-6.0, and 50°C-60°C, respectively. Moreover, rPcEg5A exhibited maximal activity in the pH range of 3.0-8.0, whereas over 50% of activity still remained at 20°C and 80°C. rPcEg5A was stable at 60°C for 12 h incubation, indicating that rPcEg5A is a thermostable enzyme. Manganese ion enhanced the enzyme activity by 77%, indicating that rPcEg5A is a metal dependent enzyme. The addition of rPcEg5A to cellobiase (cellobiohydrolase and β-glucosidase) resulted in a 53% increasing saccharification of NaOH-pretreated barley straw, whereas the glucose release was 47% higher than that cellobiase treatment alone. Our study suggested that rPcEg5A is an enzyme with great potential for biomass saccharification.
Collapse
Affiliation(s)
- Nguyen Duc Huy
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752, Republic of Korea; Institute of Biotechnology, Hue University, Hue 530000, Viet Nam
| | - Cu Le Nguyen
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752, Republic of Korea
| | - Han-Sung Park
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752, Republic of Korea
| | | | - Myoung-Suk Choi
- Institute of Molecular Biology and Genetics, College of Natural Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Dae-Hyuk Kim
- Institute of Molecular Biology and Genetics, College of Natural Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Jeong-Woo Seo
- Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Seung-Moon Park
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752, Republic of Korea.
| |
Collapse
|
18
|
Manavalan T, Manavalan A, Thangavelu KP, Heese K. Characterization of a novel endoglucanase from Ganoderma lucidum. J Basic Microbiol 2015; 55:761-71. [PMID: 25895101 DOI: 10.1002/jobm.201400808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/01/2015] [Indexed: 12/28/2022]
Abstract
We evaluated the production and characterization of endoglucanase from Ganoderma lucidum using different lignocellulose biomasses. We purified a novel carboxymethyl cellulose (CMC) hydrolyzing endoglucanase from the white-rot fungus G. lucidum when the medium was supplemented with 1% (w/v) wheat bran. Endoglucanase was purified 12.5-fold via ammonium sulfate fractionation, Sephadex G-100, and Q-Sepharose column chromatography with a final yield of 15%. SDS-PAGE analysis revealed that the endoglucanase had a molecular mass of 64.0 kDa. The optimal activity of purified endoglucanase was at pH 5.0 and 35 °C, though it was stable between pH 4.0-7.0 and temperatures of 30-60 °C. The purified enzyme was specific to CMC as a suitable substrate. The metal ions Hg(2+), Fe(2+), and Cr(2+) inhibited enzyme activity, while Ca(2+), Mg(2+), and Mn(2+) enhanced enzyme activity. The endoglucanase showed high activity and stability in the presence of different surfactants and non-polar hydrophobic organic solvents. This endoglucanase is tolerant to high temperature, metal ions, surfactants, and solvents, suggesting that it is appropriate for use in biomass conversion for biofuel production under harsh environmental conditions.
Collapse
Affiliation(s)
- Tamilvendan Manavalan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - Arulmani Manavalan
- School of Biological Sciences, Nanyang Technological University, Singapore.,Institute of Advanced Studies, Nanyang Technological University, Singapore
| | | | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
20
|
Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Curr Microbiol 2014; 70:485-98. [DOI: 10.1007/s00284-014-0743-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/27/2014] [Indexed: 12/26/2022]
|
21
|
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 2014; 78:614-49. [PMID: 25428937 PMCID: PMC4248655 DOI: 10.1128/mmbr.00035-14] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jennifer Yuzon
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
The characterization of the endoglucanase Cel12A from Gloeophyllum trabeum reveals an enzyme highly active on β-glucan. PLoS One 2014; 9:e108393. [PMID: 25251390 PMCID: PMC4177221 DOI: 10.1371/journal.pone.0108393] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
The basidiomycete fungus Gloeophyllum trabeum causes a typical brown rot and is known to use reactive oxygen species in the degradation of cellulose. The extracellular Cel12A is one of the few endo-1,4-β-glucanase produced by G. trabeum. Here we cloned cel12A and heterologously expressed it in Aspergillus niger. The identity of the resulting recombinant protein was confirmed by mass spectrometry. We used the purified GtCel12A to determine its substrate specificity and basic biochemical properties. The G. trabeum Cel12A showed highest activity on β-glucan, followed by lichenan, carboxymethylcellulose, phosphoric acid swollen cellulose, microcrystalline cellulose, and filter paper. The optimal pH and temperature for enzymatic activity were, respectively, 4.5 and 50°C on β-glucan. Under these conditions specific activity was 239.2±9.1 U mg−1 and the half-life of the enzyme was 84.6±3.5 hours. Thermofluor studies revealed that the enzyme was most thermal stable at pH 3. Using β-glucan as a substrate, the Km was 3.2±0.5 mg mL−1 and the Vmax was 0.41±0.02 µmol min−1. Analysis of the effects of GtCel12A on oat spelt and filter paper by scanning electron microscopy revealed the morphological changes taking place during the process.
Collapse
|
23
|
Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, Baptista CDS, Powlowski J, Tsang A. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila. Fungal Genet Biol 2014; 72:10-20. [PMID: 24881579 DOI: 10.1016/j.fgb.2014.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 11/29/2022]
Abstract
Myceliophthora thermophila is a thermophilic fungus whose genome encodes a wide range of carbohydrate-active enzymes (CAZymes) involved in plant biomass degradation. Such enzymes have potential applications in turning different kinds of lignocellulosic feedstock into sugar precursors for biofuels and chemicals. The present study examined and compared the transcriptomes and exoproteomes of M. thermophila during cultivation on different types of complex biomass to gain insight into how its secreted enzymatic machinery varies with different sources of lignocellulose. In the transcriptome analysis three monocot (barley, oat, triticale) and three dicot (alfalfa, canola, flax) plants were used whereas in the proteome analysis additional substrates, i.e. wood and corn stover pulps, were included. A core set of 59 genes encoding CAZymes was up-regulated in response to both monocot and dicot straws, including nine polysaccharide monooxygenases and GH10, but not GH11, xylanases. Genes encoding additional xylanolytic enzymes were up-regulated during growth on monocot straws, while genes encoding additional pectinolytic enzymes were up-regulated in response to dicot biomass. Exoproteome analysis was generally consistent with the conclusions drawn from transcriptome analysis, but additional CAZymes that accumulated to high levels were identified. Despite the wide variety of biomass sources tested some CAZy family members were not expressed under any condition. The results of this study provide a comprehensive view from both transcriptome and exoproteome levels, of how M. thermophila responds to a wide range of biomass sources using its genomic resources.
Collapse
Affiliation(s)
- Magdalena Anna Kolbusz
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada; Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada; Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Nadeeza Ishmael
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Sandrine Marqueteau
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Marie-Claude Moisan
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Cassio da Silva Baptista
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Justin Powlowski
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada; Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada; Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
24
|
Wang TY, Huang CJ, Chen HL, Ho PC, Ke HM, Cho HY, Ruan SK, Hung KY, Wang IL, Cai YW, Sung HM, Li WH, Shih MC. Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion. BMC Biotechnol 2013; 13:71. [PMID: 24004614 PMCID: PMC3766678 DOI: 10.1186/1472-6750-13-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 08/29/2013] [Indexed: 11/28/2022] Open
Abstract
Background As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secretion. Thus, there is a need to genetically engineer the yeast to reduce its glycosylation strength and to increase its secretion ability. Results Saccharomyces cerevisiae gene-knockout strains were screened for improved extracellular activity of a recombinant exocellulase (PCX) from the cellulose digesting fungus Phanerochaete chrysosporium. Knockout mutants of 47 glycosylation-related genes and 10 protein-trafficking-related genes were transformed with a PCX expression construct and screened for extracellular cellulase activity. Twelve of the screened mutants were found to have a more than 2-fold increase in extracellular PCX activity in comparison with the wild type. The extracellular PCX activities in the glycosylation-related mnn10 and pmt5 null mutants were, respectively, 6 and 4 times higher than that of the wild type; and the extracellular PCX activities in 9 protein-trafficking-related mutants, especially in the chc1, clc1 and vps21 null mutants, were at least 1.5 times higher than the parental strains. Site-directed mutagenesis studies further revealed that the degree of N-glycosylation also plays an important role in heterologous cellulase activity in S. cerevisiae. Conclusions Systematic screening of knockout mutants of glycosylation- and protein trafficking-associated genes in S. cerevisiae revealed that: (1) blocking Golgi-to-endosome transport may force S. cerevisiae to export cellulases; and (2) both over- and under-glycosylation may alter the enzyme activity of cellulases. This systematic gene-knockout screening approach may serve as a convenient means for increasing the extracellular activities of recombinant proteins expressed in S. cerevisiae.
Collapse
Affiliation(s)
- Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, Cullen D. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia 2013; 105:1412-27. [PMID: 23935027 DOI: 10.3852/13-072] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (LPMO, formerly GH61), also have been implicated in cellulose degradation. To examine polysaccharide-degrading potential between white- and brown-rot fungi, we performed genomewide analysis of CAZys and these oxidative enzymes in 11 Polyporales, including recently sequenced monokaryotic strains of Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Furthermore, we conducted comparative secretome analysis of seven Polyporales grown on wood culture. As a result, it was found that genes encoding cellulases belonging to families GH6, GH7, GH9 and carbohydrate-binding module family CBM1 are lacking in genomes of brown-rot polyporales. In addition, the presence of CDH and the expansion of LPMO were observed only in white-rot genomes. Indeed, GH6, GH7, CDH and LPMO peptides were identified only in white-rot polypores. Genes encoding aldose 1-epimerase (ALE), previously detected with CDH and cellulases in the culture filtrates, also were identified in white-rot genomes, suggesting a physiological connection between ALE, CDH, cellulase and possibly LPMO. For hemicellulose degradation, genes and peptides corresponding to GH74 xyloglucanase, GH10 endo-xylanase, GH79 β-glucuronidase, CE1 acetyl xylan esterase and CE15 glucuronoyl methylesterase were significantly increased in white-rot genomes compared to brown-rot genomes. Overall, relative to brown-rot Polyporales, white-rot Polyporales maintain greater enzymatic diversity supporting lignocellulose attack.
Collapse
Affiliation(s)
- Chiaki Hori
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, l-l-l, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, and Institute for Microbial and Biochemical Technology, Forest Products Laboratory, 1 Gifford Pinchot Drive, Madison, Wisconsin 53726
| | | | | | | | | | | | | |
Collapse
|
26
|
Takeda T, Nakano Y, Takahashi M, Sakamoto Y, Konno N. Polysaccharide-inducible endoglucanases from Lentinula edodes exhibit a preferential hydrolysis of 1,3-1,4-β-glucan and xyloglucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7591-7598. [PMID: 23889585 DOI: 10.1021/jf401543m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three genes encoding glycoside hydrolase family 12 (GH12) enzymes from Lentinula edodes, namely Lecel12A, Lecel12B, and Lecel12C, were newly cloned by PCR using highly conserved sequence primers. To investigate enzymatic properties, recombinant enzymes encoded by L. edodes DNAs and GH12 genes from Postia placenta (PpCel12A and PpCel12B) and Schizophyllum commune (ScCel12A) were prepared in Brevibacillus choshinensis. Recombinant LeCel12A, PpCel12A, and PpCel12B, which were grouped in GH12 subfamily 1, preferentially hydrolyzed 1,3-1,4-β-glucan. By contrast, LeCel12B, LeCel12C, and ScCel12A, members of the subfamily 2, exhibited specific hydrolysis of xyloglucan. These results suggest that two subfamilies of GH12 are separated based on the substrate specificity. Transcript levels of L. edodes genes increased 72 h after growth of L. edodes mycelia cells in the presence of plant cell wall polymers such as xyloglucan, 1,3-1,4-β-glucan, and cellulose. These results suggest that L. edodes GH12 enzymes have evolved to hydrolyze 1,3-1,4-β-glucan and xyloglucan, which might enhance hyphal extension and nutrient acquisition.
Collapse
Affiliation(s)
- Takumi Takeda
- Iwate Biotechnology Research Center , 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | | | | | | | | |
Collapse
|
27
|
Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM, Himmel ME, Crowley MF, Horn SJ, Westereng B, Igarashi K, Samejima M, Ståhlberg J, Eijsink VGH, Sandgren M. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem 2013; 288:12828-39. [PMID: 23525113 PMCID: PMC3642327 DOI: 10.1074/jbc.m113.459396] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/15/2013] [Indexed: 01/11/2023] Open
Abstract
Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain.
Collapse
Affiliation(s)
- Miao Wu
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Gregg T. Beckham
- the National Bioenergy Center and
- the Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401
| | - Anna M. Larsson
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Takuya Ishida
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Christina M. Payne
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
- the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, and
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Michael F. Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Svein J. Horn
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Bjørge Westereng
- the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Kiyohiko Igarashi
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Samejima
- the Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jerry Ståhlberg
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Vincent G. H. Eijsink
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| | - Mats Sandgren
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| |
Collapse
|
28
|
Rebouillat S, Pla F. State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbnb.2013.42022] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Jäger G, Büchs J. Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol J 2012; 7:1122-36. [DOI: 10.1002/biot.201200033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/17/2012] [Accepted: 06/08/2012] [Indexed: 01/12/2023]
|
30
|
Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species. Appl Environ Microbiol 2011; 77:4499-507. [PMID: 21551287 DOI: 10.1128/aem.00508-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and complex carbon compounds. However, systematic comparative studies with different woody substrates have not been reported. To address this issue, we examined gene expression of these fungi colonizing aspen (Populus grandidentata) and pine (Pinus strobus). Transcript levels of genes encoding extracellular glycoside hydrolases, thought to be important for hydrolytic cleavage of hemicelluloses and cellulose, showed little difference for P. placenta colonizing pine versus aspen as the sole carbon source. However, 164 genes exhibited significant differences in transcript accumulation for these substrates. Among these, 15 cytochrome P450s were upregulated in pine relative to aspen. Of 72 P. placenta extracellular proteins identified unambiguously by mass spectrometry, 52 were detected while colonizing both substrates and 10 were identified in pine but not aspen cultures. Most of the 178 P. chrysosporium glycoside hydrolase genes showed similar transcript levels on both substrates, but 13 accumulated >2-fold higher levels on aspen than on pine. Of 118 confidently identified proteins, 31 were identified in both substrates and 57 were identified in pine but not aspen cultures. Thus, P. placenta and P. chrysosporium gene expression patterns are influenced substantially by wood species. Such adaptations to the carbon source may also reflect fundamental differences in the mechanisms by which these fungi attack plant cell walls.
Collapse
|
31
|
Wei W, Yang C, Luo J, Lu C, Wu Y, Yuan S. Synergism between cucumber alpha-expansin, fungal endoglucanase and pectin lyase. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1204-10. [PMID: 20478643 DOI: 10.1016/j.jplph.2010.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 05/11/2023]
Abstract
Several recombinant fungal enzymes (endoglucanase and pectinase) were studied for their interactions with alpha-expansin in cell wall extension and polysaccharide degradation. Both Cel12A and Cel5A were able to hydrolyze cellulose CMC-Na and mixed-linkage beta-glucan. In contrast to Cel5A, Cel12A could also hydrolyze xyloglucan and induce wall extension of cucumber hypocotyls in an in vitro assay. Combining alpha-expansin, even at high concentrations, with Cel12A did not enhance the maximum/final wall extension rate induced by Cel12A alone. These results strongly suggest that modification/degradation of the xyloglucan molecule/network is the key for cell wall extension, and alpha-expansin and Cel12A may share the same acting site in the substrate. Pectinase (Pel1, a pectin lyase) enhanced alpha-expansin-induced wall extension in a concentration-dependent manner, suggesting that the pectin network may normally regulate accessibility of expansin to the xyloglucan-cellulose complex. alpha-Expansin enhanced Cel12A's hydrolytic activity on cellulose CMC-Na but not on xyloglucan and beta-glucan. Expansin did not affect Cel5A's hydrolytic activity. Interestingly, expansin also enhanced Pel1's activity on degrading high esterified pectin. A potential explanation for why expansin could synergistically interact with only certain enzymes on specific polysaccharides is discussed. Additional results also suggested that cell wall swelling may not be a significant event during the action of expansin and hydrolases.
Collapse
Affiliation(s)
- Wei Wei
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
32
|
Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 2010; 76:3599-610. [PMID: 20400566 DOI: 10.1128/aem.00058-10] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.
Collapse
|
33
|
Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol 2009; 75:4058-68. [PMID: 19376920 DOI: 10.1128/aem.00314-09] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wood decay basidiomycete Phanerochaete chrysosporium was grown under standard ligninolytic or cellulolytic conditions and subjected to whole-genome expression microarray analysis and liquid chromatography-tandem mass spectrometry of extracellular proteins. A total of 545 genes were flagged on the basis of significant changes in transcript accumulation and/or peptide sequences of the secreted proteins. Under nitrogen or carbon limitation, lignin and manganese peroxidase expression increased relative to nutrient replete medium. Various extracellular oxidases were also secreted in these media, supporting a physiological connection based on peroxide generation. Numerous genes presumed to be involved in mobilizing and recycling nitrogen were expressed under nitrogen limitation, and among these were several secreted glutamic acid proteases not previously observed. In medium containing microcrystalline cellulose as the sole carbon source, numerous genes encoding carbohydrate-active enzymes were upregulated. Among these were six members of the glycoside hydrolase family 61, as well as several polysaccharide lyases and carbohydrate esterases. Presenting a daunting challenge for future research, more than 190 upregulated genes are predicted to encode proteins of unknown function. Of these hypothetical proteins, approximately one-third featured predicted secretion signals, and 54 encoded proteins detected in extracellular filtrates. Our results affirm the importance of certain oxidative enzymes and, underscoring the complexity of lignocellulose degradation, also support an important role for many new proteins of unknown function.
Collapse
|
34
|
Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 2008; 74:5628-34. [PMID: 18676702 DOI: 10.1128/aem.00812-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wood decay fungus Phanerochaete chrysosporium has served as a model system for the study of lignocellulose conversions, but aspects of its cellulolytic system remain uncertain. Here, we report identifying the gene that encodes the glycoside hydrolase (GH) family 45 endoglucanase (EG) from the fungus, cloning the cDNA, determining its heterologous expression in the methylotrophic yeast Pichia pastoris, and characterizing the recombinant protein. The cDNA consisted of 718 bp, including an open reading frame encoding a 19-amino-acid signal peptide, a 7-amino-acid presequence at the N-terminal region, and a 180-amino-acid mature protein, which has no cellulose binding domain. Analysis of the amino acid sequence revealed that the protein has a low similarity (<22%) to known fungal EGs belonging to the GH family 45 (EGVs). No conserved domain of this family was found by a BLAST search, suggesting that the protein should be classified into a new subdivision of this GH family. The recombinant protein has hydrolytic activity toward amorphous cellulose, carboxylmethyl cellulose, lichenan, barley beta-glucan, and glucomannan but not xylan. Moreover, a synergistic effect was observed with the recombinant GH family 6 cellobiohydrolase from the same fungus toward amorphous cellulose as a substrate, indicating that the enzyme may act in concert with other cellulolytic enzymes to hydrolyze cellulosic biomass in nature.
Collapse
|
35
|
Purification, molecular cloning, and enzymatic properties of a family 12 endoglucanase (EG-II) from fomitopsis palustris: role of EG-II in larch holocellulose hydrolysis. Appl Environ Microbiol 2008; 74:5857-61. [PMID: 18658283 DOI: 10.1128/aem.00435-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A family 12 endoglucanase with a molecular mass of 23,926 Da (EG-II) from the brown-rot basidiomycete Fomitopsis palustris was purified and characterized. One of the roles of EG-II in wood degradation is thought to be to loosen the polysaccharide network in cell walls by disentangling hemicelluloses that are associated with cellulose.
Collapse
|
36
|
|
37
|
Josefsson P, Henriksson G, Wågberg L. The Physical Action of Cellulases Revealed by a Quartz Crystal Microbalance Study Using Ultrathin Cellulose Films and Pure Cellulases. Biomacromolecules 2007; 9:249-54. [PMID: 18163575 DOI: 10.1021/bm700980b] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Josefsson
- Royal Institute of Technology, Fibre and Polymer Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Gunnar Henriksson
- Royal Institute of Technology, Fibre and Polymer Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Lars Wågberg
- Royal Institute of Technology, Fibre and Polymer Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| |
Collapse
|
38
|
Gao J, Weng H, Xi Y, Zhu D, Han S. Purification and characterization of a novel endo-beta-1,4-glucanase from the thermoacidophilic Aspergillus terreus. Biotechnol Lett 2007; 30:323-7. [PMID: 17928959 DOI: 10.1007/s10529-007-9536-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/04/2007] [Accepted: 09/04/2007] [Indexed: 11/29/2022]
Abstract
An endo-beta-1,4-glucanase from a thermoacidophilic fungus, Aspergillus terreus M11, was purified 18-fold with 14% yield and a specific activity of 67 U mg(-1) protein. The optimal pH was 2 and the cellulase was stable from pH 2 to 5. The cellulase had a temperature optimum of 60 degrees C measured over 30 min and retained more than 60% of its activity after heating at 70 degrees C for 1 h. The molecular mass of the cellulase was about 25 kDa. Its activity was inhibited by 77% by Hg(2+) (2 mM) and by 59% by Cu(2+) (2 mM).
Collapse
Affiliation(s)
- Jianmin Gao
- Department of Bioengineering, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, PR China
| | | | | | | | | |
Collapse
|
39
|
Henriksson M, Henriksson G, Berglund L, Lindström T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 2007. [DOI: 10.1016/j.eurpolymj.2007.05.038] [Citation(s) in RCA: 874] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Wymelenberg AV, Sabat G, Martinez D, Rajangam AS, Teeri TT, Gaskell J, Kersten PJ, Cullen D. The Phanerochaete chrysosporium secretome: Database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 2005; 118:17-34. [PMID: 15888348 DOI: 10.1016/j.jbiotec.2005.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 03/03/2005] [Accepted: 03/26/2005] [Indexed: 11/28/2022]
Abstract
The white rot basidiomycete, Phanerochaete chrysosporium, employs an array of extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose and lignin. Towards the identification of participating enzymes, 268 likely secreted proteins were predicted using SignalP and TargetP algorithms. To assess the reliability of secretome predictions and to evaluate the usefulness of the current database, we performed shotgun LC-MS/MS on cultures grown on standard cellulose-containing medium. A total of 182 unique peptide sequences were matched to 50 specific genes, of which 24 were among the secretome subset. Underscoring the rich genetic diversity of P. chrysosporium, identifications included 32 glycosyl hydrolases. Functionally interconnected enzyme groups were recognized. For example, the multiple endoglucanases and processive exocellobiohydrolases observed quite probably attack cellulose in a synergistic manner. In addition, a hemicellulolytic system included endoxylanases, alpha-galactosidase, acetyl xylan esterase, and alpha-l-arabinofuranosidase. Glucose and cellobiose metabolism likely involves cellobiose dehydrogenase, glucose oxidase, and various inverting glycoside hydrolases, all perhaps enhanced by an epimerase. To evaluate the completeness of the current database, mass spectroscopy analysis was performed on a larger and more inclusive dataset containing all possible ORFs. This allowed identification of a previously undetected hypothetical protein and a putative acid phosphatase. The expression of several genes was supported by RT-PCR amplification of their cDNAs.
Collapse
|
41
|
Hildén L, Johansson G. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 2005; 26:1683-93. [PMID: 15604820 DOI: 10.1007/s10529-004-4579-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This review concerns basic research on cellulases and cellulose-specific carbohydrate-binding modules (CBMs). As a background, glycosyl hydrolases are also briefly reviewed. The nomenclature of cellulases and CBMs is discussed. The main cellulase-producing organisms and their cellulases are described. Synergy, enantioseparation, cellulases in plants, cellulosomes, cellulases and CBMs as analytical tools and cellulase-like enzymes are also briefly reviewed.
Collapse
Affiliation(s)
- Lars Hildén
- WURC, Department of Wood Science, Swedish University of Agricultural Sciences, Box 7008, Uppsala, 750 07, Sweden.
| | | |
Collapse
|
42
|
Henriksson G, Christiernin M, Agnemo R. Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. J Ind Microbiol Biotechnol 2005; 32:211-4. [PMID: 15871037 DOI: 10.1007/s10295-005-0220-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 03/10/2005] [Indexed: 11/29/2022]
Abstract
Softwood dissolving pulp was treated with a commercial monocomponent fungal endocellulase. The reactivity of the pulp for the production of rayon and cellulose derivatives as determined with the Fock method increased drastically with relatively low amounts of enzyme, and the yield loss and decrease of viscosity were moderate. The mechanism behind the increased reactivity is discussed.
Collapse
Affiliation(s)
- Gunnar Henriksson
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden.
| | | | | |
Collapse
|
43
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Wymelenberg AV, Denman S, Dietrich D, Bassett J, Yu X, Atalla R, Predki P, Rudsander U, Teeri TT, Cullen D. Transcript analysis of genes encoding a family 61 endoglucanase and a putative membrane-anchored family 9 glycosyl hydrolase from Phanerochaete chrysosporium. Appl Environ Microbiol 2002; 68:5765-8. [PMID: 12406778 PMCID: PMC129927 DOI: 10.1128/aem.68.11.5765-5768.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phanerochaete chrysosporium cellulase genes were cloned and characterized. The cel61A product was structurally similar to fungal endoglucanases of glycoside hydrolase family 61, whereas the cel9A product revealed similarities to Thermobifida fusca Cel9A (E4), an enzyme with both endo- and exocellulase characteristics. The fungal Cel9A is apparently a membrane-bound protein, which is very unusual for microbial cellulases. Transcript levels of both genes were substantially higher in cellulose-grown cultures than in glucose-grown cultures. These results show that P. chrysosporium possesses a wide array of conventional and unconventional cellulase genes.
Collapse
Affiliation(s)
- Amber Vanden Wymelenberg
- Department of Bacteriology. Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002; 66:506-77, table of contents. [PMID: 12209002 PMCID: PMC120791 DOI: 10.1128/mmbr.66.3.506-577.2002] [Citation(s) in RCA: 2359] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Collapse
Affiliation(s)
- Lee R Lynd
- Chemical and Biochemical Engineering, Thayer School of Engineering and Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
46
|
Muñoz IG, Ubhayasekera W, Henriksson H, Szabó I, Pettersson G, Johansson G, Mowbray SL, Ståhlberg J. Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 A resolution and homology models of the isozymes. J Mol Biol 2001; 314:1097-111. [PMID: 11743726 DOI: 10.1006/jmbi.2000.5180] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellobiohydrolase 58 (Cel7D) is the major cellulase produced by the white-rot fungus Phanerochaete chrysosporium, constituting approximately 10 % of the total secreted protein in liquid culture on cellulose. The enzyme is classified into family 7 of the glycosyl hydrolases, together with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) from Trichoderma reesei. Like those enzymes, it catalyses cellulose hydrolysis with net retention of the anomeric carbon configuration. The structure of the catalytic module (431 residues) of Cel7D was determined at 3.0 A resolution using the structure of Cel7A from T. reesei as a search model in molecular replacement, and ultimately refined at 1.32 A resolution. The core structure is a beta-sandwich composed of two large and mainly antiparallel beta-sheets packed onto each other. A long cellulose-binding groove is formed by loops on one face of the sandwich. The catalytic residues are conserved and the mechanism is expected to be the same as for other family members. The Phanerochaete Cel7D binding site is more open than that of the T. reesei cellobiohydrolase, as a result of deletions and other changes in the loop regions, which may explain observed differences in catalytic properties. The binding site is not, however, as open as the groove of the corresponding endoglucanase. A tyrosine residue at the entrance of the tunnel may be part of an additional subsite not present in the T. reesei cellobiohydrolase. The Cel7D structure was used to model the products of the five other family 7 genes found in P. chrysosporium. The results suggest that at least two of these will have differences in specificity and possibly catalytic mechanism, thus offering some explanation for the presence of Cel7 isozymes in this species, which are differentially expressed in response to various growth conditions.
Collapse
Affiliation(s)
- I G Muñoz
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD, Ståhlberg J, Mitchinson C, Jones TA. The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 A resolution. J Mol Biol 2001; 308:295-310. [PMID: 11327768 DOI: 10.1006/jmbi.2001.4583] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present the three-dimensional structure of Trichoderma reesei endoglucanase 3 (Cel12A), a small, 218 amino acid residue (24.5 kDa), neutral pI, glycoside hydrolase family 12 cellulase that lacks a cellulose-binding module. The structure has been determined using X-ray crystallography and refined to 1.9 A resolution. The asymmetric unit consists of six non-crystallographic symmetry-related molecules that were exploited to improve initial multiple isomorphous replacement phasing, and subsequent structure refinement. The enzyme contains one disulfide bridge and is glycosylated at Asp164 by a single N-acetyl glucosamine residue. The protein has the expected fold for a glycoside hydrolase clan-C family 12 enzyme. It contains two beta-sheets, of six and nine strands, packed on top of one another, and one alpha-helix. The concave surface of the nine-stranded beta-sheet forms a large substrate-binding groove in which the active-site residues are located. In the active site, we find a carboxylic acid trio, similar to that of glycoside hydrolase families 7 and 16. The strictly conserved Asp99 hydrogen bonds to the nucleophile, the invariant Glu116. The binding crevice is lined with both aromatic and polar amino acid side-chains which may play a role in substrate binding. The structure of the fungal family 12 enzyme presented here allows a complete structural characterization of the glycoside hydrolase-C clan.
Collapse
Affiliation(s)
- M Sandgren
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|