1
|
Mori Y, Kawakami Y, Kanzaki K, Otsuki A, Kimura Y, Kanji H, Tanaka R, Tsukayama I, Hojo N, Suzuki-Yamamoto T, Kawakami T, Takahashi Y. Arachidonate 12S-lipoxygenase of platelet-type in hepatic stellate cells of methionine and choline-deficient diet-fed mice. J Biochem 2021; 168:455-463. [PMID: 32492133 DOI: 10.1093/jb/mvaa062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
A role of 12-lipoxygenase in the progression of non-alcoholic steatohepatitis (NASH) is suggested, although the underlying mechanism is not entirely understood. The catalytic activity of 12S-lipoxygenase that was hardly observed in liver cytosol of normal chow-fed mice was clearly detectable in that of NASH model mice prepared by feeding a methionine and choline-deficient (MCD) diet. The product profile, substrate specificity and immunogenicity indicated that the enzyme was the platelet-type isoform. The expression levels of mRNA and protein of platelet-type 12S-lipoxygenase in the liver of MCD diet-fed mice were significantly increased compared with those of normal chow-fed mice. Immunohistochemical analysis showed that platelet-type 12S-lipoxygenase colocalized with α-smooth muscle actin as well as vitamin A in the cells distributing along liver sinusoids. These results indicate that the expression level of platelet-type 12S-lipoxygenase in hepatic stellate cells was increased during the cell activation in MCD diet-fed mice, suggesting a possible role of the enzyme in pathophysiology of liver fibrosis.
Collapse
Affiliation(s)
- Yoshiko Mori
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Keita Kanzaki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan.,Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan
| | - Akemi Otsuki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yuka Kimura
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Hibiki Kanji
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Ryoma Tanaka
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Izumi Tsukayama
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Nana Hojo
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Takayo Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| |
Collapse
|
2
|
Toda K, Tsukayama I, Nagasaki Y, Konoike Y, Tamenobu A, Ganeko N, Ito H, Kawakami Y, Takahashi Y, Miki Y, Yamamoto K, Murakami M, Suzuki-Yamamoto T. Red-kerneled rice proanthocyanidin inhibits arachidonate 5-lipoxygenase and decreases psoriasis-like skin inflammation. Arch Biochem Biophys 2020; 689:108307. [PMID: 32112739 DOI: 10.1016/j.abb.2020.108307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
5-lipoxygenase is a key enzyme in the synthesis of leukotrienes from arachidonic acid. The produced leukotrienes are involved in inflammatory diseases including psoriasis, asthma, and atherosclerosis. A suitable 5-lipoxygenase inhibitor might be useful for preventing and improving the symptoms of leukotriene-related inflammatory diseases. Here, we investigate the mechanism underlying the anti-inflammatory effect of a proanthocyanidin found in red-kerneled rice. Red-kerneled rice proanthocyanidin exhibited potent mixed noncompetitive inhibition of human and rat 5-lipoxygenases, with an IC50 values of 15.1 μM against human enzyme, and 7.0 μM against rat enzyme, respectively. This compound decreased leukotriene B4 production in rat basophilic leukemia-2H3 cells. In imiquimod-induced psoriasis-like mouse skin, topical application of the proanthocyanidin suppressed hyperplasia, decreased inflammatory cell infiltration, and down-regulated expression of the psoriasis-associated genes Il17a, Il22, S100a9, and Krt1. Lipid metabolome analysis by electrospray ionization mass spectrometry showed that red-kerneled rice proanthocyanidin treatment of psoriasis-like mouse skin dose-dependently decreased the production of leukotriene B4 but no other arachidonate metabolites. Red-kerneled rice proanthocyanidin inhibits 5-lipoxygenase, resulting in a decrease in leukotriene B4 production and psoriasis-like mouse skin inflammation. These results suggest that this proanthocyanidin may be therapeutically effective for treating leukotriene-related diseases.
Collapse
Affiliation(s)
- Keisuke Toda
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Izumi Tsukayama
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuki Nagasaki
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuka Konoike
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan; Department of Nutrition and Life Science, Fukuyama University, Sanzo, Gakuen-cho 1, Fukuyama, Hiroshima, 729-0292, Japan
| | - Asako Tamenobu
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Natsuki Ganeko
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Hideyuki Ito
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, 2-1, Minami-jyosanjima-cho, Tokushima, 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama, 719-1197, Japan.
| |
Collapse
|
3
|
Involvement of the Hydroperoxy Group in the Irreversible Inhibition of Leukocyte-Type 12-Lipoxygenase by Monoterpene Glycosides Contained in the Qing Shan Lu Shui Tea. Molecules 2019; 24:molecules24020304. [PMID: 30650646 PMCID: PMC6358863 DOI: 10.3390/molecules24020304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 11/21/2022] Open
Abstract
We have previously found two novel monoterpene glycosides, liguroside A and liguroside B, with an inhibitory effect on the catalytic activity of the enzyme leukocyte-type 12-lipoxygenase in the Qing Shan Lu Shui tea. Here, two new monoterpene glycosides, liguroside C and liguroside D which inhibit this enzyme, were isolated from the same tea. The spectral and chemical evidence characterized the structures of these compounds as (5E)-7-hydroperoxy-3,7-dimethyl-1,5-octadienyl-3-O-(α-l-rhamnopyranosyl)-(1′′→3′)-(4′′′-O-trans-p-coumaroyl)-β-d-glucopyranoside and (2E)-6-hydroxy-3,7-dimethyl-2,7-octadienyl-3-O-(α-l-rhamnopyranosyl)-(1′′→3′)-(4′′′-O-trans-p-coumaroyl)-β-d-glucopyranoside, respectively. These ligurosides, which irreversibly inhibited leukocyte-type 12-lipoxygenase, have a hydroperoxy group in the monoterpene moiety. Additionally, monoterpene glycosides had the same backbone structure but did not have a hydroperoxy group, such as kudingoside A and lipedoside B-III, contained in the tea did not inhibit the enzyme. When a hydroperoxy group in liguroside A was reduced by using triphenylphosphine, the resultant compound, kudingoside B, showed a lower inhibitory effect on the enzyme. These results strongly suggest the involvement of the hydroperoxy group in the irreversible inhibition of the catalytic activity of leukocyte-type 12-lipoxygenase by the monoterpene glycosides contained in the Qing Shan Lu Shui tea.
Collapse
|
4
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
5
|
Takahashi Y, Otsuki A, Mori Y, Kawakami Y, Ito H. Inhibition of leukocyte-type 12-lipoxygenase by guava tea leaves prevents development of atherosclerosis. Food Chem 2015; 186:2-5. [DOI: 10.1016/j.foodchem.2015.03.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
|
6
|
Sharma S, Umar S, Potus F, Iorga A, Wong G, Meriwether D, Breuils-Bonnet S, Mai D, Navab K, Ross D, Navab M, Provencher S, Fogelman AM, Bonnet S, Reddy ST, Eghbali M. Apolipoprotein A-I mimetic peptide 4F rescues pulmonary hypertension by inducing microRNA-193-3p. Circulation 2014; 130:776-85. [PMID: 24963038 DOI: 10.1161/circulationaha.114.007405] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension is a chronic lung disease associated with severe pulmonary vascular changes. A pathogenic role of oxidized lipids such as hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids is well established in vascular disease. Apolipoprotein A-I mimetic peptides, including 4F, have been reported to reduce levels of these oxidized lipids and improve vascular disease. However, the role of oxidized lipids in the progression of pulmonary arterial hypertension and the therapeutic action of 4F in pulmonary arterial hypertension are not well established. METHODS AND RESULTS We studied 2 different rodent models of pulmonary hypertension (PH): a monocrotaline rat model and a hypoxia mouse model. Plasma levels of hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids were significantly elevated in PH. 4F treatment reduced these levels and rescued preexisting PH in both models. MicroRNA analysis revealed that microRNA-193-3p (miR193) was significantly downregulated in the lung tissue and serum from both patients with pulmonary arterial hypertension and rodents with PH. In vivo miR193 overexpression in the lungs rescued preexisting PH and resulted in downregulation of lipoxygenases and insulin-like growth factor-1 receptor. 4F restored PH-induced miR193 expression via transcription factor retinoid X receptor α. CONCLUSIONS These studies establish the importance of microRNAs as downstream effectors of an apolipoprotein A-I mimetic peptide in the rescue of PH and suggest that treatment with apolipoprotein A-I mimetic peptides or miR193 may have therapeutic value.
Collapse
Affiliation(s)
- Salil Sharma
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Soban Umar
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Francois Potus
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Andrea Iorga
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Gabriel Wong
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - David Meriwether
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Sandra Breuils-Bonnet
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Denise Mai
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Kaveh Navab
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - David Ross
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Mohamad Navab
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Steeve Provencher
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Alan M Fogelman
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Sébastien Bonnet
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Srinivasa T Reddy
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.)
| | - Mansoureh Eghbali
- From the Department of Anesthesiology, Division of Molecular Medicine (S.S., S.U., A.I., G.W., D. Mai, K.N., M.E.), Department of Medicine, Division of Cardiology (D. Meriwether, K.N., M.N., A.M.F., S.T.R.), Division of Pulmonary Critical Care Medicine (D.R.), Department of Molecular and Medical Pharmacology (S.T.R.), and Cardiovascular Research Laboratories (M.E.), David Geffen School of Medicine at University of California-Los Angeles; and Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada (F.P., S.B.-B., S.P., S.B.).
| |
Collapse
|
7
|
Tumor-Suppressive Lipoxygenases Inhibit the Expression of c-mycmRNA Coding Region Determinant-Binding Protein/Insulin-Like Growth Factor II mRNA-Binding Protein 1 in Human Prostate Carcinoma PC-3 Cells. Biosci Biotechnol Biochem 2014; 73:1811-7. [DOI: 10.1271/bbb.90185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Two new monoterpene glycosides from Qing Shan Lu Shui tea with inhibitory effects on leukocyte-type 12-lipoxygenase activity. Molecules 2013; 18:4257-66. [PMID: 23579993 PMCID: PMC6269904 DOI: 10.3390/molecules18044257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 11/16/2022] Open
Abstract
We evaluated the inhibitory effect of 12 Chinese teas on leukocyte-type 12-lipoxygenase (LOX) activity. Tea catechins such as epigallocatechin gallate have been known to exhibit leukocyte-type 12-LOX inhibition. Qing Shan Lu Shui, which contains lower catechin levels than the other tested teas, suppressed leukocyte-type 12-LOX activity. To characterize the bioactive components of Qing Shan Lu Shui, leukocyte-type 12-LOX inhibitory activity–guided fractionation of the aqueous ethanol extract of the tea was performed, resulting in the isolation of two new monoterpene glycosides: liguroside A (1) and B (2). The structures of compounds 1 and 2 were characterized as (2E,5E)-7-hydroperoxy-3,7-dimethyl-2,5-octadienyl-O-(α-l-rhamnopyranosyl)-(1″→3′)-(4′″-O-trans-p-coumaroyl)-β-d-glucopyranoside and (2E,5E)-7-hydroperoxy-3,7-dimethyl-2,5-octa-dienyl-O-(α-l-rhamnopyranosyl)-(1″→3′)-(4′″-O-cis-p-coumaroyl)-β-d-glucopyranoside, respectively, based on spectral and chemical evidence. Ligurosides A (1) and B (2) showed inhibitory effects on leukocyte-type 12-LOX activity, with IC50 values of 1.7 and 0.7 μM, respectively.
Collapse
|
9
|
|
10
|
Minamino T. [Role of 12/15 lipoxygenase-induced inflammation in heart failure]. Nihon Yakurigaku Zasshi 2011; 138:187-191. [PMID: 22075460 DOI: 10.1254/fpj.138.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
11
|
Ginkgolide B Reduces Inflammatory Protein Expression in Oxidized Low-density Lipoprotein-stimulated Human Vascular Endothelial Cells. J Cardiovasc Pharmacol 2011; 57:721-7. [DOI: 10.1097/fjc.0b013e31821a50a8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Hersberger M. Potential role of the lipoxygenase derived lipid mediators in atherosclerosis: leukotrienes, lipoxins and resolvins. Clin Chem Lab Med 2010; 48:1063-73. [DOI: 10.1515/cclm.2010.212] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Qin Z, Konaniah ES, Neltner B, Nemenoff RA, Hui DY, Weintraub NL. Participation of ATP7A in macrophage mediated oxidation of LDL. J Lipid Res 2009; 51:1471-7. [PMID: 19965596 DOI: 10.1194/jlr.m003426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ATP7A primarily functions to egress copper from cells, thereby supplying this cofactor to secreted copper-accepting enzymes. This ATPase has attracted significant attention since the discovery of its mutation leading to human Menkes disease and the demonstration of its distribution in various tissues. Recently, we reported that ATP7A is expressed in the human vasculature. In the present study, we investigated the cellular expression of ATP7A in atherosclerotic lesions of LDL receptor (-/-) mice. Subsequently, we examined the role of ATP7A in regulating the oxidation of LDL in a macrophage cell model. We observed that ATP7A is expressed in atherosclerotic murine aorta and colocalizes with macrophages. To investigate the function of ATP7A, we downregulated ATP7A expression in THP-1 derived macrophages using small interfering RNA (siRNA). ATP7A downregulation attenuated cell-mediated oxidation of LDL. Moreover, downregulation of ATP7A resulted in decreased expression and enzymatic activity of cytosolic phospholipase A(2) alpha (cPLA(2)alpha), a key intracellular enzyme involved in cell-mediated LDL oxidation. In addition, cPLA(2)alpha promoter activity was decreased after downregulation of ATP7A, suggesting that ATP7A transcriptionally regulates cPLA(2)alpha expression. Finally, cPLA(2)alpha overexpression increased LDL oxidation, which was blocked by coadministration of ATP7A siRNA oligonucleotides. These findings suggest a novel mechanism linking ATP7A to cPLA(2)alpha and LDL oxidation, suggesting that this copper transporter could play a previously unrecognized role in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Cardiovascular Diseases, Genome Research Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I, Takahashi H, Okada S, Tateno K, Moriya J, Yokoyama M, Nojima A, Yoshimura M, Egashira K, Aburatani H, Komuro I. Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. ACTA ACUST UNITED AC 2009; 206:1565-74. [PMID: 19546247 PMCID: PMC2715088 DOI: 10.1084/jem.20082596] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To identify a novel target for the treatment of heart failure, we examined gene expression in the failing heart. Among the genes analyzed, Alox15 encoding the protein 12/15 lipoxygenase (LOX) was markedly up-regulated in heart failure. To determine whether increased expression of 12/15-LOX causes heart failure, we established transgenic mice that overexpressed 12/15-LOX in cardiomyocytes. Echocardiography showed that Alox15 transgenic mice developed systolic dysfunction. Cardiac fibrosis increased in Alox15 transgenic mice with advancing age and was associated with the infiltration of macrophages. Consistent with these observations, cardiac expression of monocyte chemoattractant protein 1 (MCP-1) was up-regulated in Alox15 transgenic mice compared with wild-type mice. Treatment with 12-hydroxy-eicosatetraenoic acid, a major metabolite of 12/15-LOX, increased MCP-1 expression in cardiac fibroblasts and endothelial cells but not in cardiomyocytes. Inhibition of MCP-1 reduced the infiltration of macrophages into the myocardium and prevented both systolic dysfunction and cardiac fibrosis in Alox15 transgenic mice. Likewise, disruption of 12/15-LOX significantly reduced cardiac MCP-1 expression and macrophage infiltration, thereby improving systolic dysfunction induced by chronic pressure overload. Our results suggest that cardiac 12/15-LOX is involved in the development of heart failure and that inhibition of 12/15-LOX could be a novel treatment for this condition.
Collapse
Affiliation(s)
- Yosuke Kayama
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cai Y, Kumar RK, Zhou J, Foster PS, Webb DC. Ym1/2 promotes Th2 cytokine expression by inhibiting 12/15(S)-lipoxygenase: identification of a novel pathway for regulating allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 182:5393-9. [PMID: 19380786 DOI: 10.4049/jimmunol.0803874] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ym1/2 lectin is expressed abundantly in the allergic mouse lung in an IL-13-dependent manner. However, the role of Ym1/2 in the development of allergic airways disease is largely unknown. In this investigation, we show that treatment of mice with anti-Ym1/2 Ab during induction of allergic airways disease attenuated mediastinal lymph node production of IL-5 and IL-13. Ym1/2 was found to be expressed by dendritic cells (DCs) in an IL-13-dependent manner and supplementation of DC/CD4(+) T cell cocultures with Ym1/2 enhanced the ability of IL-13(-/-) DCs to stimulate the secretion of IL-5 and IL-13. Affinity chromatography identified 12/15(S)-lipoxygenase (12/15-LOX) as a Ym1/2-interacting protein and functional studies suggested that Ym1/2 promoted the ability of DCs to stimulate cytokine production by inhibiting 12/15-LOX-mediated catalysis of 12-hydroxyeicosatetraenoic acid (12(S)-HETE). Treatment of DC/CD4(+) T cell cultures with the 12/15-LOX inhibitor baicalein enhanced, whereas 12(S)-HETE inhibited the production of Th2 cytokines. Notably, delivery of 12(S)-HETE to the airways of mice significantly attenuated the development of allergic airways inflammation and the production of IL-5 and IL-13. In summary, our results suggest that production of Ym1/2 in response to IL-13 promotes Th2 cytokine production and allergic airways inflammation by inhibiting the production of 12(S)-HETE by 12/15-LOX.
Collapse
Affiliation(s)
- Yeping Cai
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|
16
|
Kawakami Y, Nakamura T, Hosokawa T, Suzuki-Yamamoto T, Yamashita H, Kimoto M, Tsuji H, Yoshida H, Hada T, Takahashi Y. Antiproliferative activity of guava leaf extract via inhibition of prostaglandin endoperoxide H synthase isoforms. Prostaglandins Leukot Essent Fatty Acids 2009; 80:239-45. [PMID: 19457650 DOI: 10.1016/j.plefa.2009.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/03/2009] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
Abstract
Prostaglandin endoperoxide H synthase (PGHS) is a key enzyme for the synthesis of prostaglandins (PGs) which play important roles in inflammation and carcinogenesis. Because the extract from Psidium guajava is known to have a variety of beneficial effects on our body including the anti-inflammatory, antioxidative and antiproliferative activities, we investigated whether the extract inhibited the catalytic activity of the two PGHS isoforms using linoleic acid as an alternative substrate. The guava leaf extract inhibited the cyclooxygenase reaction of recombinant human PGHS-1 and PGHS-2 as assessed by conversion of linoleic acid to 9- and 13-hydroxyoctadecadienoic acids (HODEs). The guava leaf extract also inhibited the PG hydroperoxidase activity of PGHS-1, which was not affected by nonsteroidal anti-inflammatory drugs (NSAIDs). Quercetin which was one of the major components not only inhibited the cyclooxygenase activity of both isoforms but also partially inhibited the PG hydroperoxidase activity. Overexpression of human PGHS-1 and PGHS-2 in the human colon carcinoma cells increased the DNA synthesis rate as compared with mock-transfected cells which did not express any isoforms. The guava leaf extract not only inhibited the PGE(2) synthesis but also suppressed the DNA synthesis rate in the PGHS-1- and PGHS-2-expressing cells to the same level as mock-transfected cells. These results demonstrate the antiproliferative activity of the guava leaf extract which is at least in part caused by inhibition of the catalytic activity of PGHS isoforms.
Collapse
Affiliation(s)
- Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hersberger M, Müller M, Marti-Jaun J, Heid IM, Coassin S, Young TF, Waechter V, Hengstenberg C, Meisinger C, Peters A, König W, Holmer S, Schunkert H, Klopp N, Kronenberg F, Illig T. No association of two functional polymorphisms in human ALOX15 with myocardial infarction. Atherosclerosis 2008; 205:192-6. [PMID: 19131063 DOI: 10.1016/j.atherosclerosis.2008.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
The 12/15-lipoxygenase plays a janus-role in inflammation with pro-inflammatory and anti-inflammatory effects in cell systems and even opposite effects on atherosclerosis in two different animal species. Screening of the human 15-lipoxygenase (ALOX15) gene detected a polymorphic C to T substitution at position c.-292, which led to three times higher ALOX15 activity in macrophages and showed a trend to be atheroprotective in a small case-control study for coronary artery disease (CAD). A second polymorphism at position c.1693C>T leading to an T560M exchange and an inactive enzyme was recently associated with increased CAD. We now investigated whether these polymorphisms or a certain haplotype of ALOX15 are associated with myocardial infarction (MI) in a case-control subset from the population-based MONIKA/KORA cohort S3. Six polymorphisms in ALOX15 were analyzed in 2629 participants to cover all major haplotypes with a frequency higher than 1% in the Caucasian population. None of the polymorphism was associated with MI but a rare ALOX15 haplotype showed a significant protective effect on the risk for MI (p=0.03). However, none of the polymorphisms or haplotypes was associated with CRP levels. These data suggest that ALOX15 may play a less prominent role during later stages of atherosclerosis involving atherothrombotic mechanisms than eventually during early plaque development.
Collapse
Affiliation(s)
- Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich and Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nagelin MH, Srinivasan S, Lee J, Nadler JL, Hedrick CC. 12/15-Lipoxygenase activity increases the degradation of macrophage ATP-binding cassette transporter G1. Arterioscler Thromb Vasc Biol 2008; 28:1811-9. [PMID: 18635820 DOI: 10.1161/atvbaha.108.167908] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the effect of 12/15-lipoxygenase (12/15LO) in macrophage ABCG1 expression and function associated with cholesterol efflux. METHODS AND RESULTS 12/15LO was stably overexpressed in J774 macrophages. 12/15LO-overexpressing macrophages had a 30% reduction in HDL-mediated cholesterol efflux, corresponding with significantly reduced ABCG1 protein expression. Treatment of 12/15LO-overexpressing macrophages with a 12/15LO ribozyme to reduce 12/15LO restored HDL-mediated efflux and ABCG1 protein expression. Treating macrophages with 12/15LO unsaturated fatty acid substrates or eicosanoid products also reduced HDL-mediated cholesterol efflux. Additionally, both 12/15LO overexpression in macrophages and incubation of macrophages with eicosanoids reduced ABCG1 protein, but not mRNA, expression. However, incubation of macrophages with linoleic or arachidonic acids significantly reduced both ABCG1 mRNA and protein expression, suggesting that 12/15LO substrates and eicosanoid products differentially regulate ABCG1 expression. 12/15LO fatty acids did not decrease ABCG1 translation; however, 12/15LO fatty acids increased ABCG1 degradation when blocked by cyclohexidmide. ABCG1 degradation may be regulated through posttranslational modifications. Treatment with the 12/15LO eicosanoid product 12SHETE increased serine phosphorylation of ABCG1. CONCLUSIONS We conclude that serine phosphorylation may increase the degradation rate of ABCG1, and as a result cause macrophage cholesterol accumulation. These findings provide evidence that 12/15LO activity in the vessel wall contributes to atherogenesis by impairing the macrophage ABCG1 cholesterol efflux pathway.
Collapse
Affiliation(s)
- Melissa H Nagelin
- Department of Pharmacology, The Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
19
|
Wen Y, Gu J, Vandenhoff GE, Liu X, Nadler JL. Role of 12/15-lipoxygenase in the expression of MCP-1 in mouse macrophages. Am J Physiol Heart Circ Physiol 2008; 294:H1933-8. [DOI: 10.1152/ajpheart.00260.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monocyte chemoattractant protein (MCP)-1 plays a key role in atherosclerosis and inflammation associated with visceral adiposity by inducing mononuclear cell migration. Evidence shows that mouse peritoneal macrophages (MPM) express a 12-lipoxygenase (12/15-LO) that has been clearly linked to accelerated atherosclerosis in mouse models and increased monocyte endothelial interactions in both rodent and human cells. However, the role of 12/15-LO products in regulating MCP-1 expression in macrophages has not been clarified. In this study, we tested the role of 12/15-LO products using MPM and the mouse macrophage cell line, J774A.1 cells. We found that 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] increased MCP-1 mRNA and protein expression in J774A.1 cells and MPM. In contrast, 12(R)-HETE, a lipid not derived from 12/15-LO, did not affect MCP-1 expression. 15(S)-HETE also increased MCP-1 mRNA expression, but the effect was less compared with 12(S)-HETE. MCP-1 mRNA expression was upregulated in a macrophage cell line stably overexpressing 12/15-LO (Plox-86 cells) and in MPM isolated from a 12/15-LO transgenic mouse. In addition, the expression of MCP-1 was downregulated in MPM isolated from 12/15-LO knockout mice. 12(S)-HETE-induced MCP-1 mRNA expression was attenuated by specific inhibitors of protein kinase C (PKC) and p38 mitogen-activated protein kinase (p38). 12(S)-HETE also directly activated NADPH oxidase activity. Two NADPH oxidase inhibitors, apocynin and diphenyleneiodonium chloride, blocked 12(S)-HETE-induced MCP-1 mRNA. Apocynin attenuated 12(S)-HETE-induced MCP-1 protein secretion. These data show that 12(S)-HETE increases MCP-1 expression by inducing PKC, p38, and NADPH oxidase activity. These results suggest a potentially important mechanism linking 12/15-LO activation to MCP-1 expression that induces inflammatory cell infiltration.
Collapse
|
20
|
Wittwer J, Hersberger M. The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2007; 77:67-77. [PMID: 17869078 DOI: 10.1016/j.plefa.2007.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 07/12/2007] [Accepted: 08/01/2007] [Indexed: 01/02/2023]
Abstract
Chronic inflammation plays a major role in atherogenesis and understanding the role of inflammation and its resolution will offer novel approaches to interfere with atherogenesis. The 15(S)-lipoxygenase (15-LOX) plays a janus-role in inflammation with pro-inflammatory and anti-inflammatory effects in cell cultures and primary cells and even opposite effects on atherosclerosis in two different animal species. There is evidence for a pro-atherosclerotic effect of 15-LOX including the direct contribution to LDL oxidation and to the recruitment of monocytes to the vessel wall, its role in angiotensin II mediated mechanisms and in vascular smooth muscle cell proliferation. In contrast to the pro-atherosclerotic effects of 15-LOX, there is also a broad line of evidence that 15-LOX metabolites of arachidonic and linoleic acid have anti-inflammatory effects. The 15-LOX arachidonic acid metabolite 15-HETE inhibits superoxide production and polymorphonuclear neutrophil (PMN) migration across cytokine-activated endothelium and can be further metabolized to the anti-inflammatory lipoxins. These promote vasorelaxation in the aorta and counteract the action of most other pro-inflammatory factors like leukotrienes and prostanoids. Anti-atherogenic properties are also reported for the linoleic acid oxidation product 13-HODE through inhibition of adhesion of several blood cells to the endothelium. Furthermore, there is evidence that 15-LOX is involved in the metabolism of the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) leading to a family of anti-inflammatory resolvins and protectins. From these cell culture and animal studies the role of the 15-LOX in human atherosclerosis cannot be predicted. However, recent genetic studies characterized the 15-LOX haplotypes in Caucasians and discovered a functional polymorphism in the human 15-LOX promoter. This will now allow large studies to investigate an association of 15-LOX with coronary artery disease and to answer the question whether 15-LOX is pro- or anti-atherogenic in humans.
Collapse
Affiliation(s)
- Jonas Wittwer
- Institute of Clinical Chemistry, Center for Integrative Human Physiology, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | | |
Collapse
|
21
|
Wen Y, Gu J, Chakrabarti SK, Aylor K, Marshall J, Takahashi Y, Yoshimoto T, Nadler JL. The role of 12/15-lipoxygenase in the expression of interleukin-6 and tumor necrosis factor-alpha in macrophages. Endocrinology 2007; 148:1313-22. [PMID: 17170102 DOI: 10.1210/en.2006-0665] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
12/15-lipoxygenase (12/15-LO) enzyme and products have been associated with inflammation and atherosclerosis. However, the mechanism of effects of the 12/15-LO products has not been fully clarified. To study the role of 12/15-LO in cytokine expression, experiments with direct additions of the12/15-LO products, 12(S)-hydroxyeicosa tetraenoic acid or 12(S)-hydroperoxyeicosa-5Z, 8Z, 10E, or 14Z-tetraenoic acid to macrophages were first carried out, and results showed that the 12/15-LO products stimulated mRNA and protein expression of IL-6 and TNF-alpha in a dose-dependent manner. In contrast, an inactive analogue of 12(S)-hydroxyeicosa tetraenoic acid had no effect. To further explore the role of endogenous 12/15-LO in cytokine expression, we used an in vitro and in vivo model to test the effect of 12/15-LO overexpression. The models included Plox-86 cells, a J774A.1 cell line that stably overexpresses leukocyte-type 12/15-LO and primary mouse peritoneal macrophages (MPMs) from 12/15-LO transgenic mice. The results showed a clear increase in IL-6 and TNF-alpha expression in Plox-86 cells and MPMs from 12/15-LO transgenic mice, compared with mock-transfected J774A.1 cells and MPMs from control C57BL6 mice. IL-1beta, IL-12, and monocyte chemoattractant protein (MCP)-1 mRNA were also increased in Plox-86 cells. These data clearly suggest a clear role of 12/15-LO pathway in cytokine production. We also demonstrated that signaling pathways including protein kinase C, p38 MAPK (p38), c-jun NH(2)-terminal kinase as well as nicotinamide adenine dinucleotide phosphate oxidase are important for 12-(S)-hydroxyeicosatetraenoic acid-induced increases in IL-6 and TNF-alpha gene expression. These results suggest a potentially important mechanism linking 12/15-LO activation to chronic inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Yeshao Wen
- Diabetes and Hormone Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Takahashi Y, Zhu H, Xu W, Murakami T, Iwasaki T, Hattori H, Yoshimoto T. Selective uptake and efflux of cholesteryl linoleate in LDL by macrophages expressing 12/15-lipoxygenase. Biochem Biophys Res Commun 2005; 338:128-35. [PMID: 16105647 DOI: 10.1016/j.bbrc.2005.07.182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 07/30/2005] [Indexed: 01/08/2023]
Abstract
Oxidation of low density lipoprotein (LDL) is a critical step for atherogenesis, and the role of the 12/15-lipoxygenase (12/15-LOX) as well as LDL receptor-related protein (LRP) expressed in macrophages in this process has been suggested. The oxygenation of cholesteryl linoleate in LDL by mouse macrophage-like J774A.1 cells overexpressing 12/15-LOX was inhibited by an anti-LRP antibody but not by an anti-LDL receptor antibody. When the cells were incubated with LDL double-labeled by [3H]cholesteryl linoleate and [125I]apoB, association with the cells of [3H]cholesteryl linoleate expressed as LDL protein equivalent exceeded that of [125I]apoB, indicating selective uptake of [3H]cholesteryl linoleate from LDL to these cells. An anti-LRP antibody inhibited the selective uptake of [3H]cholesteryl ester by 62% and 81% with the 12/15-LOX-expressing cells and macrophages, respectively. Furthermore, addition of LDL to the culture medium of the [3H]cholesteryl linoleate-labeled 12/15-LOX-expressing cells increased the release of [3H]cholesteryl linoleate to the medium in LDL concentration- and time-dependent manners. The transport of [3H]cholesteryl linoleate from the cells to LDL was also inhibited by an anti-LRP antibody by 75%. These results strongly suggest that LRP contributes to the LDL oxidation by 12/15-LOX in macrophages by selective uptake and efflux of cholesteryl ester in the LDL particle.
Collapse
Affiliation(s)
- Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Lipoxygenases (LOXs) form a heterogeneous family of lipid-peroxidizing enzymes, and several LOX-isoforms (12/15-LOX, 5-LOX) have been implicated in atherogenesis. However, the precise role of these enzymes is still a matter of discussion. 12/15-LOXs are capable of oxidizing lipoproteins (low-density lipoprotein (LDL), high-density lipoprotein (HDL)) to atherogenic forms, and functional inactivation of this enzyme in murine atherosclerosis models slows down lesion formation. In contrast, rabbits that overexpress this enzyme were protected from lesion formation when fed a lipid-rich diet. To contribute to this discussion, we recently investigated the impact of 12/15-LOX overexpression on in vitro foam cell formation. When 12/15-LOX-transfected J774 cells were incubated in culture with modified LDL, we found that intracellular lipid deposition was reduced in the transfected cells when compared with the corresponding control transfectants. This paper briefly summarizes the current status of knowledge on the biological activity of different LOX-isoforms in atherogenesis and will also provide novel experimental data characterizing the role of 12/15-LOX in cellular LDL modification and for in vitro foam cell formation.
Collapse
Affiliation(s)
- Hartmut Kühn
- Institute of Biochemistry, University Medicine Berlin, Berlin, Germany.
| | | | | |
Collapse
|
24
|
Belkner J, Chaitidis P, Stender H, Gerth C, Kuban RJ, Yoshimoto T, Kuhn H. Expression of 12/15-Lipoxygenase Attenuates Intracellular Lipid Deposition During In Vitro Foam Cell Formation. Arterioscler Thromb Vasc Biol 2005; 25:797-802. [PMID: 15681297 DOI: 10.1161/01.atv.0000157580.26858.2d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lipoxygenases with different positional specificity have been implicated in atherogenesis, but the precise roles of the various isoforms remain unclear. Because of its capability of oxidizing low-density lipoprotein (LDL) to an atherogenic form, 12/15-lipoxygenases have been suggested to initiate LDL oxidation in vivo; thus, these enzymes may exhibit pro-atherogenic activities. However, in several rabbit atherosclerosis models, the enzyme appears to act atheroprotective. METHODS AND RESULTS To test the impact of 12/15-lipoxygenase expression on early atherogenesis, we established an in vitro foam cell model, which is based on the uptake of acetylated LDL by murine macrophages. In this system, we found that 12/15-lipoxygenase expression protects the cells from intracellular lipid deposition. This effect was related to an attenuated uptake of modified LDL, as indicated by impaired expression of scavenger receptor A and to accelerated intracellular lipid metabolism. CONCLUSIONS Our results indicate that the role of 12/15-lipoxygenase in atherogenesis may not be restricted to oxidative LDL modification. Expression of this lipid-peroxidizing enzyme may impact both lipid uptake and intracellular lipid turnover. These data provide a plausible explanation for the antiatherogenic effect of 12/15-LOX in rabbit atherosclerosis models.
Collapse
Affiliation(s)
- Jutta Belkner
- Institute of Biochemistry, University Clinics Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Takahashi Y, Zhu H, Yoshimoto T. Essential roles of lipoxygenases in LDL oxidation and development of atherosclerosis. Antioxid Redox Signal 2005; 7:425-31. [PMID: 15706089 DOI: 10.1089/ars.2005.7.425] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative modification of low-density lipoprotein (LDL) is one of the critical steps for the development of atherosclerosis. Accumulating studies have indicated that 12/15-lipoxygenase highly expressed in macrophages plays an essential role in the oxidation of circulating LDL. It has been demonstrated that LDL needs to bind the LDL receptor-related protein (LRP), a cell-surface receptor, prior to its oxidation by 12/15-lipoxygenase expressed in macrophages. LRP is suggested to mediate the selective transfer of cholesteryl ester in LDL to the plasma membrane of macrophages without endocytosis and degradation of the LDL particle. At the same time, binding of LDL to LRP translocates the 12/15-lipoxygenase from the cytosol to the plasma membrane. It is also demonstrated that 5-lipoxygenase localized in macrophages generates leukotrienes, which exhibit strong proinflammatory activities in cardiovascular tissues and contribute to lesion development. Therefore, the inhibition of these lipoxygenases may be effective in the prevention and treatment of the inflammatory diseases.
Collapse
Affiliation(s)
- Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Kuboki 111, Soja, Okayama 719-1197, Japan.
| | | | | |
Collapse
|
26
|
Xu W, Takahashi Y, Iwasaki T, Hattori H, Yoshimoto T. LDL receptor-related protein plays an essential role in 12/15-lipoxygenase-mediated LDL oxidation by macrophages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 525:181-4. [PMID: 12751763 DOI: 10.1007/978-1-4419-9194-2_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Wanpeng Xu
- Department of Molecular Pharmacology, Kanazawa University Graduate School of Medical Science, Japan
| | | | | | | | | |
Collapse
|
27
|
Kawajiri H, Makino I, Yoshimoto T. Intracellular activation and induction of 12-lipoxygenase in mouse peritoneal macrophages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 507:161-4. [PMID: 12664580 DOI: 10.1007/978-1-4615-0193-0_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Hiroo Kawajiri
- Department of Pharmacology, Kanazawa University School of Medicine, 13-1 Takaramachi, Kanazawa 920-8640, Japan
| | | | | |
Collapse
|
28
|
Zhu H, Takahashi Y, Xu W, Kawajiri H, Murakami T, Yamamoto M, Iseki S, Iwasaki T, Hattori H, Yoshimoto T. Low density lipoprotein receptor-related protein-mediated membrane translocation of 12/15-lipoxygenase is required for oxidation of low density lipoprotein by macrophages. J Biol Chem 2003; 278:13350-5. [PMID: 12566436 DOI: 10.1074/jbc.m212104200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidation of low density lipoprotein (LDL) is the key step for the development of atherosclerosis. The 12/15-lipoxygenase expressed in macrophages is capable of oxygenating linoleic acid esterified to cholesterol in the LDL particle, and thus this enzyme is presumed to initiate LDL oxidation. We recently reported that LDL receptor-related protein (LRP) was required for the enzyme-mediated LDL oxidation by macrophages and suggested the selective uptake of cholesterol ester from LDL to the plasma membrane (Xu, W., Takahashi, Y., Sakashita, T., Iwasaki, T., Hattori, H., and Yoshimoto. T. (2001) J. Biol. Chem. 276, 36454-36459). To elucidate precise mechanisms of lipoxygenase-mediated LDL oxidation, we investigated the intracellular localization of 12/15-lipoxygenase. The 12/15-lipoxygenase was predominantly detected in cytosol of resting peritoneal macrophages and of macrophage-like J774A.1 cells permanently transfected with the cDNA for the enzyme. When the cells were treated with LDL and subjected to subcellular fractionation, the 12/15-lipoxygenase was detected in the membranes with a concomitant decrease in cytosol as shown by Western blot analysis. The levels of the enzyme associated with the membrane reached maximum in 15 min after LDL addition and then decreased. However, the enzymatic activity of 12/15-lipoxygenase in the membrane fraction was very weak even after LDL treatment. This fact supports the suicide inactivation of the enzyme by the oxygenation of cholesterol ester transferred from the LDL particle to the plasma membrane. Immunohistochemical analysis using an antibody against 12/15-lipoxygenase revealed that the plasma membrane was the major site of the enzyme translocation by the LDL treatment. LDL-dependent 12/15-lipoxygenase translocation was inhibited by a blocking antibody against LRP. Furthermore, an enzyme translocation inhibitor, L655238, inhibited the LDL oxidation caused by the 12/15-lipoxygenase. We propose that cholesterol ester selectively transferred from the LDL particle to the plasma membrane via LRP is oxygenated by 12/15-lipoxygenase translocated to this membrane.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Molecular Pharmacology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Arachidonate 12-lipoxygenase introduces a molecular oxygen at carbon 12 of arachidonic acid to generate a 12-hydroperoxy derivative. The enzymes generate 12-hydroperoxy derivatives with either S- or R-configurations. There are three isoforms of 12S-lipoxygenases named after the cells where they were first identified; platelet, leukocyte and epidermis. The leukocyte-type enzyme is widely distributed among cells, but the tissue distribution varies substantially from species to species. The platelet and epidermal enzymes are present in only a relatively limited number of cell types. Although the structures and enzymatic properties of the three isoforms of 12S-lipoxygenases have been elucidated, the physiological roles of the 12S-lipoxygenases are not yet fully understood. There are important roles for the enzymes and their products in several biological systems including those involved in atherosclerosis and neurotransmission.
Collapse
Affiliation(s)
- Tanihiro Yoshimoto
- Department of Molecular Pharmacology, Kanazawa University Graduate School of Medicine, Japan.
| | | |
Collapse
|
30
|
Schewe T, Sadik C, Klotz LO, Yoshimoto T, Kühn H, Sies H. Polyphenols of cocoa: inhibition of mammalian 15-lipoxygenase. Biol Chem 2001; 382:1687-96. [PMID: 11843182 DOI: 10.1515/bc.2001.204] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some cocoas and chocolates are rich in (-)-epicatechin and its related oligomers, the procyanidins. Fractions of these compounds, isolated from the seeds of Theobroma cacao, caused dose-dependent inhibition of isolated rabbit 15-lipoxygenase-1 with the larger oligomers being more active; the decamer fraction revealed an IC50 of 0.8 microM. Among the monomeric flavanols, epigallocatechin gallate (IC50 = 4 microM) and epicatechin gallate (5 microM) were more potent than (-)-epicatechin (IC50 = 60 microM). (-)-Epicatechin and procyanidin nonamer also inhibited the formation of 15-hydroxy-eicosatetraenoic acid from arachidonic acid in rabbit smooth muscle cells transfected with human 15-lipoxygenase-1. In contrast, inhibition of the lipoxygenase pathway in J774A.1 cells transfected with porcine leukocyte-type 12-lipoxygenase (another representative of the 12/15-lipoxygenase family) was only observed upon sonication of the cells, suggesting a membrane barrier for flavanols in these cells. Moreover, epicatechin (IC50 approx. 15 microM) and the procyanidin decamer inhibited recombinant human platelet 12-lipoxygenase. These observations suggest general lipoxygenase-inhibitory potency of flavanols and procyanidins that may contribute to their putative beneficial effects on the cardiovascular system in man. Thus, they may provide a plausible explanation for recent literature reports indicating that procyanidins decrease the leukotriene/prostacyclin ratio in humans and human aortic endothelial cells.
Collapse
Affiliation(s)
- T Schewe
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Xu W, Takahashi Y, Sakashita T, Iwasaki T, Hattori H, Yoshimoto T. Low density lipoprotein receptor-related protein is required for macrophage-mediated oxidation of low density lipoprotein by 12/15-lipoxygenase. J Biol Chem 2001; 276:36454-9. [PMID: 11479307 DOI: 10.1074/jbc.m105093200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oxidative modification of low density lipoprotein (LDL) has been implicated in the early stage of atherosclerosis through multiple potential pathways, and 12/15-lipoxygenase is suggested to be involved in this oxidation process. We demonstrated previously that the 12/15-lipoxygenase overexpressed in mouse macrophage-like J774A.1 cells was required for the cell-mediated LDL oxidation. However, the mechanism of the oxidation of extracellular LDL by the intracellular 12/15-lipoxygenase has not yet been elucidated. In the present study, we found that not only the LDL receptor but also LDL receptor-related protein (LRP), both of which are cell surface native LDL-binding receptors, were down-regulated by the preincubation of the cells with cholesterol or LDL and up-regulated by lipoprotein-deficient serum. Moreover, 12/15-lipoxygenase-expressing cell-mediated LDL oxidation was decreased by the preincubation of the cells with LDL or cholesterol and increased by the preincubation with lipoprotein-deficient serum. Heparin-binding protein 44, an antagonist of the LDL receptor family, also suppressed the cell-mediated LDL oxidation in a dose-dependent manner. The cell-mediated LDL oxidation was dose-dependently blocked by an anti-LRP antibody but not by an anti-LDL receptor antibody. Furthermore, antisense oligodeoxyribonucleotides against LRP reduced the cell-mediated LDL oxidation under the conditions in which the expression of LRP was decreased. The results taken together indicate that LRP was involved essentially for the cell-mediated LDL oxidation by 12/15-lipoxygenase expressed in J774A.1 cells, suggesting an important pathophysiological role of this receptor-enzyme system as the initial trigger of the progression of atherosclerosis.
Collapse
Affiliation(s)
- W Xu
- Department of Molecular Pharmacology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | |
Collapse
|
32
|
|