1
|
Zhang W, Zhao X, Li L. Downregulationof circ_0001578 promotes gestational diabetes mellitus by inducing placental inflammation via the NF-κB and JNKs pathways. Front Endocrinol (Lausanne) 2022; 13:657802. [PMID: 36263320 PMCID: PMC9573949 DOI: 10.3389/fendo.2022.657802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common diseases during pregnancy. Some patients with GDM have adverse pregnancy outcomes. However, the pathogenesis of GDM is very complex and not well understood. In this study, we characterized the expression and functions of a circular RNA, circ_0001578, in GDM. In particular, using qRT-PCR, we verified previous RNA-seq results showing that circ_0001578 is significantly downregulated in the placental villous tissues of pregnant women with GMD. We demonstrated that plasma exosome circ_0001578 expression in the second trimester effectively predicts GDM at 28 weeks. Furthermore, in HTR-8/SVneo trophoblasts, the downregulation of circ_0001578 inhibited proliferation and migration and induced apoptosis. These changes may induce chronic inflammation in the placenta. These effects of circ_0001578 downregulation may be mediated by the upregulation of the NF-κB and JNK pathways, combined with increased expression levels of IL-1, IL-6, IL-8, TNF-α, and CRP. Collectively, the downregulation of circ_0001578 may promote GDM by inducing chronic inflammation in the placenta via the NF-κB and JNK pathways. Furthermore, our findings support that circ_0001578 has potential to serve as an early marker of GDM.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xudong Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Ling Li, ; Xudong Zhao,
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Ling Li, ; Xudong Zhao,
| |
Collapse
|
2
|
Chowdhury D, Alrefai H, Landero Figueroa JA, Candor K, Porollo A, Fecher R, Divanovic S, Deepe GS, Subramanian Vignesh K. Metallothionein 3 Controls the Phenotype and Metabolic Programming of Alternatively Activated Macrophages. Cell Rep 2020; 27:3873-3886.e7. [PMID: 31242420 DOI: 10.1016/j.celrep.2019.05.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022] Open
Abstract
Alternatively activated (M2) macrophages promote wound healing but weaken antimicrobial defenses. The mechanisms that enforce macrophage divergence and dictate the phenotypic and metabolic characteristics of M2 macrophages remain elusive. We show that alternative activation with interleukin (IL)-4 induces expression of metallothionein 3 (MT3) that regulates macrophage polarization and function. MT3 was requisite for metabolic reprograming in IL-4-stimulated macrophages or M(IL-4) macrophages to promote mitochondrial respiration and suppress glycolysis. MT3 fostered an M(IL-4) phenotype, suppressed hypoxia inducible factor (HIF)1α activation, and thwarted the emergence of a proinflammatory M1 program in macrophages. MT3 deficiency augmented macrophage plasticity, resulting in enhanced interferon γ (IFNγ) responsiveness and a dampened M(IL-4) phenotype. Thus, MT3 programs the phenotype and metabolic fate of M(IL-4) macrophages.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hani Alrefai
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Julio A Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kathleen Candor
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger Fecher
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY 10467, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | |
Collapse
|
3
|
Andéol Y, Bonneau J, M Gagné L, Jacquet K, Rivest V, Huot MÉ, Séguin C. The phosphoinositide 3-kinase pathway and glycogen synthase kinase-3 positively regulate the activity of metal-responsive transcription factor-1 in response to zinc ions. Biochem Cell Biol 2018; 96:1-8. [PMID: 29707960 DOI: 10.1139/bcb-2018-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Metal-responsive transcription factor-1 (MTF-1) is a metal-regulatory transcription factor essential for induction of the genes encoding metallothioneins (MTs) in response to transition metal ions. Activation of MTF-1 is dependent on the interaction of zinc with the zinc fingers of the protein. In addition, phosphorylation is essential for MTF-1 transactivation. We previously showed that inhibition of phosphoinositide 3-kinase (PI3K) abrogated Mt expression and metal-induced MTF-1 activation in human hepatocellular carcinoma (HCC) HepG2 and mouse L cells, thus showing that the PI3K signaling pathway positively regulates MTF-1 activity and Mt gene expression. However, it has also been reported that inhibition of PI3K has no significant effects on Mt expression in immortalized epithelial cells and increases Mt expression in HCC cells. To further characterize the role of the PI3K pathway on the activity of MTF-1, transfection experiments were performed in HEK293 and HepG2 cells in presence of glycogen synthase kinase-3 (GSK-3), mTOR-C1, and mTOR-C2 inhibitors, as well as of siRNAs targeting Phosphatase and TENsin homolog (PTEN). We showed that inhibition of the mTOR-C2 complex inhibits the activity of MTF-1 in HepG2 and HEK293 cells, while inhibition of the mTOR-C1 complex or of PTEN stimulates MTF-1 activity in HEK293 cells. These results confirm that the PI3K pathway positively regulates MTF-1 activity. Finally, we showed that GSK-3 is required for MTF-1 activation in response to zinc ions.
Collapse
Affiliation(s)
- Yannick Andéol
- a Équipe Enzymologie de l'ARN, ER6, 9 quai St Bernard, Faculté des Sciences et Technologies, Sorbonne-Université, 75252 Paris, Cedex 05, France
| | - Jessica Bonneau
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Laurence M Gagné
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Kevin Jacquet
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Véronique Rivest
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Marc-Étienne Huot
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| | - Carl Séguin
- b Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Université Laval and Centre de recherche du CHU de Québec, Axe Oncologie, Hôtel Dieu de Québec, 9 rue McMahon, Québec, QC G1R 3S3, Canada
| |
Collapse
|
4
|
Bousleiman J, Pinsky A, Ki S, Su A, Morozova I, Kalachikov S, Wiqas A, Silver R, Sever M, Austin RN. Function of Metallothionein-3 in Neuronal Cells: Do Metal Ions Alter Expression Levels of MT3? Int J Mol Sci 2017; 18:ijms18061133. [PMID: 28587098 PMCID: PMC5485957 DOI: 10.3390/ijms18061133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/25/2022] Open
Abstract
A study of factors proposed to affect metallothionein-3 (MT3) function was carried out to elucidate the opaque role MT3 plays in human metalloneurochemistry. Gene expression of Mt2 and Mt3 was examined in tissues extracted from the dentate gyrus of mouse brains and in human neuronal cell cultures. The whole-genome gene expression analysis identified significant variations in the mRNA levels of genes associated with zinc homeostasis, including Mt2 and Mt3. Mt3 was found to be the most differentially expressed gene in the identified groups, pointing to the existence of a factor, not yet identified, that differentially controls Mt3 expression. To examine the expression of the human metallothioneins in neurons, mRNA levels of MT3 and MT2 were compared in BE(2)C and SH-SY5Y cell cultures treated with lead, zinc, cobalt, and lithium. MT2 was highly upregulated by Zn2+ in both cell cultures, while MT3 was not affected, and no other metal had an effect on either MT2 or MT3.
Collapse
Affiliation(s)
- Jamie Bousleiman
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Alexa Pinsky
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Sohee Ki
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Angela Su
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Amen Wiqas
- Department of Biology, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rae Silver
- Department of Psychology and Program in Neuroscience, Barnard College of Columbia University, New York, NY 10027, USA.
- Department of Psychology, Columbia University, New York, NY 10027, USA.
- Department of Pathology and Cell Biology Columbia Health Sciences, New York, NY 10027, USA.
| | - Mary Sever
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| |
Collapse
|
5
|
Ostrakhovitch EA, Song YP, Cherian MG. Basal and copper-induced expression of metallothionein isoform 1,2 and 3 genes in epithelial cancer cells: The role of tumor suppressor p53. J Trace Elem Med Biol 2016; 35:18-29. [PMID: 27049123 DOI: 10.1016/j.jtemb.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are a ubiquitous low-molecular weight, cysteine rich proteins with a high affinity for metal ions. The expression and induction of MTs have been associated with protection against DNA damage, oxidative stress, and apoptosis. Our past research had shown that p53 is an important factor in metal regulation of MTs. The present study was undertaken to explore further the interrelationship between p53 and MTs. We investigated whether silencing of p53 could affect expression pattern of basal and copper induced metallothioneins. The silencing of wild-type p53 (wt-p53) in epithelial breast cancer MCF7 cells affected the basal level of MT-2A RNA, whereas the levels of MT-1A and MT-1X RNA remained largely unchanged. The expression of MT-3 was undetectable in MCF7 with either functional or silenced p53. MCF7 cells with silenced wt-p53 failed to upregulate MT-2A in response to copper and showed a reduced sensitivity toward copper induced cell apoptotic death. Similarly in MCF7-E6 and MDA-MB-231 cells, the presence of inactive/mutated p53 halted MT-1A and MT-2A gene expression in response to copper. Constitutive expression of MT-3 RNA was detectable in the presence of mutated p53 (mtp53). Transient transfection of MDA-MB-231 cells with wt-p53 enabled copper induced upregulation of both MT-1A and MT-2A but not basal level of MT-2A, MT-1E, MT-1X and MT-3. Inactivation of p53 in HepG2 cells amplified the basal expression of studied MT isoforms, including MT-3, as well as copper-induced mRNA expression of MTs except MT-1H and MT-3. Presented data demonstrate a direct relation between p53 and MT-1A and MT-2A and they also indicate that wt-p53 might be a negative regulator of MT-3 in epithelial cancer cells.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada.
| | - Y P Song
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada
| | - M G Cherian
- Department of Pathology, University of Western Ontario, Canada; Department of Chemistry, University of Western Ontario, Canada
| |
Collapse
|
6
|
Fernandes KCM, Martins Jr. AC, Oliveira A�SD, Antunes LMG, C�lus IMDS, Barbosa Jr. F, Barcelos GRM. Polymorphism of Metallothionein 2A Modifies Lead Body Burden in Workers Chronically Exposed to the Metal. Public Health Genomics 2015; 19:47-52. [DOI: 10.1159/000441713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/17/2015] [Indexed: 11/19/2022] Open
|
7
|
Raudenska M, Gumulec J, Podlaha O, Sztalmachova M, Babula P, Eckschlager T, Adam V, Kizek R, Masarik M. Metallothionein polymorphisms in pathological processes. Metallomics 2014; 6:55-68. [PMID: 24068159 DOI: 10.1039/c3mt00132f] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) are a class of metal-binding proteins characterized by a high cysteine content and low molecular weight. MTs play an important role in metal metabolism and protect cells against the toxic effects of radiation, alkylating agents and oxygen free radicals. The evidence that individual genetic characteristics of MTs play an important role in physiological and pathological processes associated with antioxidant defense and detoxification inspired targeted studies of genetic polymorphisms in a clinical context. In recent years, common MT polymorphisms were identified and associated with, particularly, western lifestyle diseases such as cancer, complications of atherosclerosis, and type 2 diabetes mellitus along with related complications. This review summarizes all evidence regarding MT polymorphisms of major human MTs (MT1, MT2, MT3 and MT4), their relation to pathological processes, and outlines specific applications of MTs as a set of genetic markers for certain pathologies.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kasaai B, Gaumond MH, Moffatt P. Regulation of the bone-restricted IFITM-like (Bril) gene transcription by Sp and Gli family members and CpG methylation. J Biol Chem 2013; 288:13278-94. [PMID: 23530031 DOI: 10.1074/jbc.m113.457010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND BRIL is a bone-specific membrane protein that is involved in osteogenesis imperfecta type V. RESULTS Bril transcription is activated by Sp1, Sp3, OSX, and GLI2 and by CpG demethylation. CONCLUSION Regulation of Bril involves trans-acting factors integrating at conserved promoter elements and epigenetic modifications. SIGNIFICANCE Identification of the mechanisms governing Bril transcription is important to understand its role in skeletal biology. Bril encodes a small membrane protein present in osteoblasts. In humans, a single recurrent mutation in the 5'-UTR of BRIL causes osteogenesis imperfecta type V. The exact function of BRIL and the mechanism by which it contributes to disease are still unknown. The goal of the current study was to characterize the mechanisms governing Bril transcription in humans, rats, and mice. In the three species, as detected by luciferase reporter assays in UMR106 cells, we found that most of the base-line regulatory activity was localized within ∼250 bp upstream of the coding ATG. Co-transfection experiments indicated that Sp1 and Sp3 were potent inducers of the promoter activity, through the binding of several GC-rich boxes. Osterix was a weak activator but acted cooperatively with Sp1 and GLI2 to synergistically induce the BRIL promoter. GLI2, a mediator of hedgehog signaling pathway, was also a potent activator of BRIL through a single GLI binding site. Correspondingly, agonists of the hedgehog pathway (purmorphamine and Indian hedgehog) in MC3T3 osteoblasts led to increased BRIL levels. The BRIL promoter activity was also found to be negatively modulated through two different mechanisms. First, the ZFP354C zinc finger protein repressed basal and Sp1-induced activity. Second, CpG methylation of the promoter region correlated with an inactive state and prevented Sp1 activation. The data provide the very first analyses of the cis- and trans-acting factors regulating Bril transcription. They revealed key roles for the Sp members and GLI2 that possibly cooperate to activate Bril when the promoter becomes demethylated.
Collapse
Affiliation(s)
- Bahar Kasaai
- Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada
| | | | | |
Collapse
|
9
|
Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 2012; 303:G32-41. [PMID: 22538402 PMCID: PMC3404581 DOI: 10.1152/ajpgi.00024.2012] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endotoxemia is a contributing cofactor to alcoholic liver disease (ALD), and alcohol-induced increased intestinal permeability is one of the mechanisms of endotoxin absorption. Probiotic bacteria have been shown to promote intestinal epithelial integrity and protect barrier function in inflammatory bowel disease (IBD) and in ALD. Although it is highly possible that some common molecules secreted by probiotics contribute to this action in IBD, the effect of probiotic culture supernatant has not yet been studied in ALD. We examined the effects of Lactobacillus rhamnosus GG culture supernatant (LGG-s) on the acute alcohol-induced intestinal integrity and liver injury in a mouse model. Mice on standard chow diet were supplemented with supernatant from LGG culture (10(9) colony-forming unit/mouse) for 5 days, and one dose of alcohol at 6 g/kg body wt was administered via gavage. Intestinal permeability was measured by FITC-FD-4 ex vivo. Alcohol-induced liver injury was examined by measuring the activity of alanine aminotransferase (ALT) in plasma, and liver steatosis was evaluated by triglyceride content and Oil Red O staining of the liver sections. LGG-s pretreatment restored alcohol-induced reduction in ileum mRNA levels of claudin-1, intestine trefoil factor (ITF), P-glycoprotein (P-gp), and cathelin-related antimicrobial peptide (CRAMP), which play important roles on intestinal barrier integrity. As a result, LGG-s pretreatment significantly inhibited the alcohol-induced intestinal permeability, endotoxemia and subsequently liver injury. Interestingly, LGG-s pretreatment increased ileum mRNA expression of hypoxia-inducible factor (HIF)-2α, an important transcription factor of ITF, P-gp, and CRAMP. These results suggest that LGG-s ameliorates the acute alcohol-induced liver injury by promoting HIF signaling, leading to the suppression of alcohol-induced increased intestinal permeability and endotoxemia. The use of bacteria-free LGG culture supernatant provides a novel strategy for prevention of acute alcohol-induced liver injury.
Collapse
Affiliation(s)
- Yuhua Wang
- Departments of 1Medicine, ,2College of Food Science and Engineering, Jilin Agricultural University, Changchun, China;
| | - Yanlong Liu
- Departments of 1Medicine, ,3School of Pharmacy, Wenzhou Medical College, Wenzhou, China;
| | | | - Zhenhua Ma
- Departments of 1Medicine, ,4First Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Craig McClain
- Departments of 1Medicine, ,5Pharmacology and Toxicology, School of Medicine, and ,7Alcohol Research Center, University of Louisville; ,6Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky;
| | - Wenke Feng
- Departments of 1Medicine, ,7Alcohol Research Center, University of Louisville;
| |
Collapse
|
10
|
Dubé A, Harrisson JF, Saint-Gelais G, Séguin C. Hypoxia acts through multiple signaling pathways to induce metallothionein transactivation by the metal-responsive transcription factor-1 (MTF-1). Biochem Cell Biol 2011; 89:562-77. [PMID: 22087877 PMCID: PMC4020849 DOI: 10.1139/o11-063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metal-responsive transcription factor-1 (MTF-1) is essential for the induction of genes encoding metallothionein by metals and hypoxia. Here, we studied the mechanism controlling the activation of MTF-1 by hypoxia. Hypoxia activation of Mt gene transcription is dependent on the presence of metal regulatory elements (MREs) in the promoter of Mt genes. We showed that MREa and MREd are the main elements controlling mouse Mt-1 gene induction by hypoxia. Transfection experiments in Mtf-1-null cells showed that MTF-1 is essential for induction by hypoxia. Chromatin immunoprecipitation analysis showed that MTF-1 DNA-binding activity was strongly enhanced in the presence of zinc but not by hypoxia. Notably, hypoxia inducible factor- (HIF) 1α was recruited to the Mt-1 promoter in response to hypoxia but not to zinc. MTF-1 activation was inhibited by PKC, JNK, and PI3K inhibitors and by the electron transport chain inhibitors rotenone and myxothiazol, but not by the antioxidant N-acetylcysteine. We showed that prolyl-hydroxylase inhibitors can activate MTF-1, but this activation requires the presence of HIF-1α. Finally, HIF-dependent transcription is enhanced in the presence of MTF-1 and induction of an MRE promoter is stimulated by HIF-1α, thus indicating cooperation between these 2 factors. However, coimmunoprecipitation experiments did not suggest direct interaction between MTF-1 and HIF-1α.
Collapse
Affiliation(s)
- Annie Dubé
- Centre de recherche en cancérologie de l'Université Laval, CHUQ, Hôtel-Dieu de QC, 9, rue McMahon, QC G1R 2J6, Canada
| | | | | | | |
Collapse
|
11
|
Reaction of human metallothionein-3 with cisplatin and transplatin. J Biol Inorg Chem 2009; 14:1129-38. [PMID: 19536566 DOI: 10.1007/s00775-009-0557-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Human metallothioneins, small cysteine- and metal-rich proteins, play an important role in the acquired resistance to platinum-based anticancer drugs. These proteins contain a M(II)4(CysS)11 cluster and a M(II)3(CysS)9 cluster localized in the alpha-domain and the beta-domain, respectively. The noninducible isoform metallothionein-3 (Zn7MT-3) is mainly expressed in the brain, but was found overexpressed in a number of cancer tissues. Since the structural properties of this isoform substantially differ from those of the ubiquitously occurring Zn7MT-1/Zn7MT-2 isoforms, the reactions of cis-diamminedichloridoplatinum(II) (cisplatin) and trans-diamminedichloridoplatinum(II) (transplatin) with human Zn7MT-3 were investigated and the products characterized. A comparison of the reaction kinetics revealed that transplatin reacts with cysteine ligands of Zn7MT-3 faster than cisplatin. In both binding processes, stoichiometric amounts of Zn(II) were released from the protein. Marked differences between the reaction rates of cisplatin and transplatin binding to Zn7MT-3 and the formation of the Pt-S bonds suggest that the binding of both Pt(II) compounds is a complex process, involving at least two subsequent binding steps. The electrospray ionization mass spectrometry characterization of the products showed that whereas all ligands in cisplatin were replaced by cysteine thiolates, transplatin retained its carrier ammine ligands. The 113Cd NMR studies of Pt1 113Cd6MT-3 revealed that cisplatin binds preferentially to the beta-domain of the protein. The rates of reaction of cisplatin and transplatin with Zn7MT-3 were much faster than those of cisplatin and transplatin with Zn7MT-2. The biological consequences of a substantially higher reactivity of cisplatin toward Zn7MT-3 than Zn7MT-2 in the acquired resistance to platinum-based drugs are discussed.
Collapse
|
12
|
Vašák M, Meloni G. Metallothionein-3, Zinc, and Copper in the Central Nervous System. METALLOTHIONEINS AND RELATED CHELATORS 2009. [DOI: 10.1039/9781847559531-00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metallothionein-3 (MT-3), also known as the neuronal growth inhibitory factor, has been discovered by Uchida and coworkers in 1991 in their search for a cellular component responsible for antagonizing aberrant neuritic sprouting and increased survival of cultured neurons stimulated by Alzheimer's disease (AD) brain extract. Since this initial discovery further studies showed that MT-3 possesses peculiar structural and functional properties not shared by other members of the mammalian MT family. Several lines of evidence suggest that the metal-binding protein MT-3 plays a vital role in zinc and copper homeostasis in the brain. Although far from being understood, the unusual structural properties of MT-3 are responsible for its neuronal growth inhibitory activity, involvement in trafficking of zinc vesicles in the central nervous system, protection against copper-mediated toxicity in AD and in controlling abnormal metal-protein interactions in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Milan Vašák
- Institute of Biochemistry, University of Zürich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| | - Gabriele Meloni
- Institute of Biochemistry, University of Zürich Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| |
Collapse
|
13
|
LaRochelle O, Labbé S, Harrisson JF, Simard C, Tremblay V, St-Gelais G, Govindan MV, Séguin C. Nuclear factor-1 and metal transcription factor-1 synergistically activate the mouse metallothionein-1 gene in response to metal ions. J Biol Chem 2008; 283:8190-8201. [PMID: 18230604 DOI: 10.1074/jbc.m800640200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metal activation of metallothionein (MT) gene transcription is dependent on the presence of metal regulatory elements (MREs), which are present in five non-identical copies (MREa through MREe) in the promoter of the mouse MT-1 gene and on the capacity of metal transcription factor-1 (MTF-1) to bind to the MREs in the presence of zinc. We detected a protein, distinct from MTF-1, specifically binding to the MREc region. DNA binding competition experiments using synthetic oligonucleotides and specific anti-NF1 antibodies showed that this protein binds to an NF1 site overlapping the MREc element as well as to a second site upstream of the Sp1a site and corresponds to NF1 or a related protein. Transfection experiments showed that loss of the two NF1 sites decreased metal-induced MT promoter activity by 55-70% in transiently transfected cells and almost completely abrogated metal and tert-butylhydroquinone (tBHQ) induction in stably transfected cells. Similarly, expression of an inactive NF1 protein strongly inhibited MT-1 promoter activity. Using synthetic promoters containing NF1 and MRE sites fused to a minimal MT promoter, we showed that these NF1 sites did not confer metal induction but enhanced metal-induced promoter activity. Chromatin immunoprecipitation assays confirmed that NF1 binds to the mouse MT-1 promoter in vivo and showed that NF1 binding is zinc-inducible. In addition, zinc-induced NF1 DNA binding was MTF-1-dependent. Taken together, these studies show that NF1 acts synergistically with MTF-1 to activate the mouse MT-1 promoter in response to metal ions and tert-butylhydroquinone and contributes to maximal activation of the gene.
Collapse
Affiliation(s)
- Olivier LaRochelle
- Centre de Recherche en Cancérologie de l'Université Laval, CHUQ, Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wen T, Fan X, Li M, Han J, Shi X, Xing L. Changes of metallothionein 1 and 3 mRNA levels with age in brain of senescence-accelerated mice and the effects of acupuncture. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2006; 34:435-47. [PMID: 16710893 DOI: 10.1142/s0192415x06003977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of aging and acupuncture on brain MT1 and MT3 mRNA levels in senescence-accelerated mice (SAMP10) and accelerated senescence resistant mice (SAMR1) were analyzed by Northern blot analysis. Both MT1 and MT3 mRNA levels in SAMR1 were increased significantly from birth to month 4 and decreased gradually thereafter. In SAMP10, the MT3 mRNA level followed the same pattern as in SAMR1 before month 4, then decreased from month 4 to 6, but was over-expressed and exceeded the previous level at month 8. The MT1 mRNA expression in SAMP10 showed a zigzag pattern. Of two groups of SAMP10 mice treated with acupuncture, the xingnao group (PC6 and Du26 as acupoints) and the zibuganshen group (BL18 and BL23 as acupoints), both showed a higher MT1 mRNA level and a lower MT3 mRNA level than the age-matched control group. Meanwhile, in both of the acupuncture groups, the ratios of MT3 to MT1 were down-regulated to the normal range. Overall, these results suggested that over-expression of MT3 mRNA and the increase in MT3 to MT1 ratios in SAMP10 were correlated with aging, and could be an important physiological and pathological event in the aging process. Acupuncture altered the expression levels of MT1 and MT3 mRNA and differences between the effects of the two stimulated acupoints were seen. Therefore, maintenance of the balance between MTs mRNA expression and correct MTs concentrations is crucial for brain-endocrine-immune response and normal aging. Acupuncture could improve zinc ion bioavailability, by maintaining the balance between MT1 and MT3 mRNA expression levels and might explain one of the mechanisms by which acupuncture treatments defer aging and treat some age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Tingyi Wen
- College of Life Science, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | |
Collapse
|
15
|
Zheng WJ, Wu F, Zhuang HQ, Lu C, Yang F, Ma WL, Hua ZC. Expression of Human Metallothionein III and Its Metalloabsorption Capability inEscherichia coli. Prep Biochem Biotechnol 2004; 34:265-78. [PMID: 15461142 DOI: 10.1081/pb-200026812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Human metallothionein III (MT III) gene was synthesized with Escherichia coli preference codon usage and expressed in E. coli in glutathione-S-transferase (GST) fusion form. The recombinant MT III was released by proteinase Factor Xa digestion and purified with the yield of 2 mg/L culture, and its specific Cd2+ binding capability was confirmed. E. coli strain BL21(DE3), expressing MT III, showed metal tolerance between 0.1 and 0.5 mM Cd2+ and bacterial growth was inhibited at 1 mM Cd2+. MT III expressing E. coli strain showed binding discrimination between different metal ions in combination use, with the preference order of Cd2+ > Cu2+ > Zn2+. It absorbed different metal ions with relatively constant ratio and showed a cumulative absorption capability for mixed heavy metals.
Collapse
Affiliation(s)
- Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, State Key Laboratory of Pollution Control and Resource Reuse, Institute of Molecular and Cell Biology, Department of Biochemistry, College of Life Sciences, Nanjing University, Nanjing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Fuminori Otsuka
- Department of Molecular Environmental Health, Faculty of Pharmaceutical Sciences, Teikyo University
| |
Collapse
|
17
|
Tanji K, Irie Y, Uchida Y, Mori F, Satoh K, Mizushima Y, Wakabayashi K. Expression of metallothionein-III induced by hypoxia attenuates hypoxia-induced cell death in vitro. Brain Res 2003; 976:125-9. [PMID: 12763630 DOI: 10.1016/s0006-8993(03)02633-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metallothioneins (MTs) are metal-binding proteins that are expressed in many tissues including brain. MTs protect cells and organs against metal toxicity and oxidants. Among MTs, a brain-predominant subtype MT-III has prominent neuroprotective activity against various types of damage. Here we show that the expression of MT-III is induced in cultured normal human astrocytes by hypoxia, and that overexpressed MT-III protects human embryonic kidney cells from hypoxia, suggesting that MT-III can protect the brain from hypoxic damage.
Collapse
Affiliation(s)
- Kunikazu Tanji
- Department of Molecular Biology, Institute of Brain Science, Hirosaki University School of Medicine, 5 Zaifu-cho, 036-8562 Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Dutta R, Sens DA, Somji S, Sens MA, Garrett SH. Metallothionein isoform 3 expression inhibits cell growth and increases drug resistance of PC-3 prostate cancer cells. Prostate 2002; 52:89-97. [PMID: 12111700 DOI: 10.1002/pros.10097] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The third isoform of metallothionein (MT-3) is overexpressed in prostate cancers and PIN lesions. The expression of MT-3 is highly variable but appears to correlate to Gleason score. The goal of the present study was to determine the effect of MT-3 overexpression on the growth of the PC-3 prostate cancer cell line. METHODS PC-3 cells were stably transfected with either the MT-3 or MT-1E gene. Cell growth was determined by counting DAPI-stained nuclei, drug resistance by the colony formation assay, MT mRNA expression by reverse transcriptase-polymerase chain reaction, and MT protein by immunoblot. RESULTS PC-3 cells that overexpress the MT-3 gene are growth inhibited compared with either untransfected cells, cells with blank vector, or cells with similar overexpression of the MT-1E gene. Furthermore, increased chemotherapeutic drug resistance occurred in PC-3 clones derived from MT-3- and MT-1E-transfected cells. CONCLUSION The overexpression of MT-3 can influence the growth and chemotherapeutic drug resistance of the PC-3 prostate cancer cell line.
Collapse
Affiliation(s)
- Rana Dutta
- Program in Genetics and Developmental Biology, West Virginia University, Morgantown, West Virginia 26506-9251, USA
| | | | | | | | | |
Collapse
|
19
|
Maden M. Role and distribution of retinoic acid during CNS development. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:1-77. [PMID: 11580199 DOI: 10.1016/s0074-7696(01)09010-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinoic acid (RA), the biologically active derivative of vitamin A, induces a variety of embryonal carcinoma and neuroblastoma cell lines to differentiate into neurons. The molecular events underlying this process are reviewed with a view to determining whether these data can lead to a better understanding of the normal process of neuronal differentiation during development. Several transcription factors, intracellular signaling molecules, cytoplasmic proteins, and extracellular molecules are shown to be necessary and sufficient for RA-induced differentiation. The evidence that RA is an endogenous component of the developing central nervous system (CNS) is then reviewed, data which include high-pressure liquid chromotography (HPLC) measurements, reporter systems and the distribution of the enzymes that synthesize RA. The latter is particularly relevant to whether RA signals in a paracrine fashion on adjacent tissues or whether it acts in an autocrine manner on cells that synthesize it. It seems that a paracrine system may operate to begin early patterning events within the developing CNS from adjacent somites and later within the CNS itself to induce subsets of neurons. The distribution of retinoid-binding proteins, retinoid receptors, and RA-synthesizing enzymes is described as well as the effects of knockouts of these genes. Finally, the effects of a deficiency and an excess of RA on the developing CNS are described from the point of view of patterning the CNS, where it seems that the hindbrain is the most susceptible part of the CNS to altered levels of RA or RA receptors and also from the point of view of neuronal differentiation where, as in the case of embryonal carcinoma (EC) cells, RA promotes neuronal differentiation. The crucial roles played by certain genes, particularly the Hox genes in RA-induced patterning processes, are also emphasized.
Collapse
Affiliation(s)
- M Maden
- MRC Centre for Developmental Neurobiology, King's College London, United Kingdom
| |
Collapse
|
20
|
Kim D, Garrett SH, Sens MA, Somji S, Sens DA. Metallothionein isoform 3 and proximal tubule vectorial active transport. Kidney Int 2002; 61:464-72. [PMID: 11849386 DOI: 10.1046/j.1523-1755.2002.00153.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Metallothionein isoform 3 (MT-3) is expressed in the proximal tubule cells of the human kidney. The goal of the present study was to further characterize the basal expression of MT-3 in the proximal tubule and to determine if MT-3 participates in the maintenance of proximal tubule cell function. METHODS Expression of MT-3 mRNA was determined in the intact proximal tubule using microdissection and reverse transcription-polymerase chain reaction (RT-PCR). Basal expression of MT-3 mRNA and protein was determined in cultured human proximal tubule (HPT) cells and an immortalized proximal tubular cell line, HK-2 cells, using RT-PCR and immunoblotting. The MT-3 gene was stably transfected into the HK-2 cell line using the pcDNA3.1/Hygro (+) vector. RESULTS MT-3 mRNA was detected in the proximal tubule of the in situ kidney with relative expression in excess to that of the beta-actin housekeeping gene. The mortal HPT cells were shown to express both MT-3 mRNA and protein and to form domes, while immortal HK-2 cells were shown to have no expression of MT-3 mRNA and protein nor to form domes. The stable transfection of MT-3 in HK-2 restored MT-3 expression and dome formation to the HK-2 cells. CONCLUSIONS MT-3 mRNA is present in the human proximal tubule, and MT-3 expression is involved in the transport function of a human renal cell line that retains properties of the proximal tubule.
Collapse
Affiliation(s)
- Doyeob Kim
- Department of Surgery, Program in Genetics and Developmental Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506-9251, USA
| | | | | | | | | |
Collapse
|
21
|
LaRochelle O, Gagné V, Charron J, Soh JW, Séguin C. Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem 2001; 276:41879-88. [PMID: 11551972 DOI: 10.1074/jbc.m108313200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the role of phosphorylation in the activation of metal-regulatory transcription factor-1 (MTF-1) and metallothionein (MT) gene expression. We showed that MTF-1 is phosphorylated in vivo and that zinc stimulates MTF-1 phosphorylation 2-4-fold. Several kinase inhibitors were used to examine the possible involvement of kinase cascades in the activation of MTF-1. Metal-induced MT gene expression was abrogated by protein kinase C (PKC), c-Jun N-terminal kinase (JNK), phosphoinositide 3-kinase, and tyrosine-specific protein kinases inhibitors, as assayed by Northern analysis and by cotransfection experiments using a metal regulatory element-luciferase reporter plasmid. The extracellular signal-activated protein kinase and the p38 kinase cascades did not appear to be essential for the activation of MT gene transcription by metals. By using dominant-negative mutants of PKC, JNK, mitogen-activated kinase kinase 4 (MKK4), and MKK7, we provide further evidence supporting a role for PKC and JNK in the activation of MTF-1 in response to metals. Notably, increased MTF-1 DNA binding in response to zinc and MTF-1 nuclear localization was not inhibited in cells preincubated with the different kinase inhibitors despite strong inhibition of MTF-1-mediated gene expression. This suggests that phosphorylation is essential for MTF-1 transactivation function. We hypothesize that metal-induced phosphorylation of MTF-1 is one of the primary events leading to increased MTF-1 activity. Thus, metal ions such as cadmium could activate MTF-1 and induce MT gene expression by stimulating one or several kinases in the MTF-1 signal transduction pathway.
Collapse
Affiliation(s)
- O LaRochelle
- Centre de Recherche en Cancérologie de l'Université Laval, CHUQ, Hôtel-Dieu de Québec, Québec, Québec G1R 2J6, Canada
| | | | | | | | | |
Collapse
|