1
|
Shea Z, Ogando do Granja M, Fletcher EB, Zheng Y, Bewick P, Wang Z, Singer WM, Zhang B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr Issues Mol Biol 2024; 46:4203-4233. [PMID: 38785525 PMCID: PMC11120442 DOI: 10.3390/cimb46050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources-soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
Collapse
Affiliation(s)
- Zachary Shea
- United States Department of Agriculture–Agricultural Research Service, Raleigh Agricultural Research Station, Raleigh, NC 27606, USA;
| | - Matheus Ogando do Granja
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Elizabeth B. Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Yaojie Zheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - William M. Singer
- Center for Advanced Innovation in Agriculture, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| |
Collapse
|
2
|
Maiello S, Iglesias R, Polito L, Citores L, Bortolotti M, Ferreras JM, Bolognesi A. Sequence, Structure, and Binding Site Analysis of Kirkiin in Comparison with Ricin and Other Type 2 RIPs. Toxins (Basel) 2021; 13:toxins13120862. [PMID: 34941700 PMCID: PMC8705660 DOI: 10.3390/toxins13120862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Kirkiin is a new type 2 ribosome-inactivating protein (RIP) purified from the caudex of Adenia kirkii with a cytotoxicity compared to that of stenodactylin. The high toxicity of RIPs from Adenia genus plants makes them interesting tools for biotechnology and therapeutic applications, particularly in cancer therapy. The complete amino acid sequence and 3D structure prediction of kirkiin are here reported. Gene sequence analysis revealed that kirkiin is encoded by a 1572 bp open reading frame, corresponding to 524 amino acid residues, without introns. The amino acid sequence analysis showed a high degree of identity with other Adenia RIPs. The 3D structure of kirkiin preserves the overall folding of type 2 RIPs. The key amino acids of the active site, described for ricin and other RIPs, are also conserved in the kirkiin A chain. Sugar affinity studies and docking experiments revealed that both the 1α and 2γ sites of the kirkiin B chain exhibit binding activity toward lactose and D-galactose, being lower than ricin. The replacement of His246 in the kirkiin 2γ site instead of Tyr248 in ricin causes a different structure arrangement that could explain the lower sugar affinity of kirkiin with respect to ricin.
Collapse
Affiliation(s)
- Stefania Maiello
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (S.M.); (M.B.); (A.B.)
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (L.C.); (J.M.F.)
- Correspondence: (R.I.); (L.P.)
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (S.M.); (M.B.); (A.B.)
- Correspondence: (R.I.); (L.P.)
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (L.C.); (J.M.F.)
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (S.M.); (M.B.); (A.B.)
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (L.C.); (J.M.F.)
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (S.M.); (M.B.); (A.B.)
| |
Collapse
|
3
|
Iglesias R, Polito L, Bortolotti M, Pedrazzi M, Citores L, Ferreras JM, Bolognesi A. Primary Sequence and 3D Structure Prediction of the Plant Toxin Stenodactylin. Toxins (Basel) 2020; 12:toxins12090538. [PMID: 32825611 PMCID: PMC7551084 DOI: 10.3390/toxins12090538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/04/2023] Open
Abstract
Stenodactylin is one of the most potent type 2 ribosome-inactivating proteins (RIPs); its high toxicity has been demonstrated in several models both in vitro and in vivo. Due to its peculiarities, stenodactylin could have several medical and biotechnological applications in neuroscience and cancer treatment. In this work, we report the complete amino acid sequence of stenodactylin and 3D structure prediction. The comparison between the primary sequence of stenodactylin and other RIPs allowed us to identify homologies/differences and the amino acids involved in RIP toxic activity. Stenodactylin RNA was isolated from plant caudex, reverse transcribed through PCR and the cDNA was amplificated and cloned into a plasmid vector and further analyzed by sequencing. Nucleotide sequence analysis showed that stenodactylin A and B chains contain 251 and 258 amino acids, respectively. The key amino acids of the active site described for ricin and most other RIPs are also conserved in the stenodactylin A chain. Stenodactylin amino acid sequence shows a high identity degree with volkensin (81.7% for A chain, 90.3% for B chain), whilst when compared with other type 2 RIPs the identity degree ranges from 27.7 to 33.0% for the A chain and from 42.1 to 47.7% for the B chain.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E−47011 Valladolid, Spain; (R.I.); (L.C.)
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, General Pathology Section, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (L.P.); (M.B.); (M.P.)
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, General Pathology Section, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (L.P.); (M.B.); (M.P.)
| | - Manuela Pedrazzi
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, General Pathology Section, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (L.P.); (M.B.); (M.P.)
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E−47011 Valladolid, Spain; (R.I.); (L.C.)
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E−47011 Valladolid, Spain; (R.I.); (L.C.)
- Correspondence: (J.M.F.); (A.B.)
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, General Pathology Section, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (L.P.); (M.B.); (M.P.)
- Correspondence: (J.M.F.); (A.B.)
| |
Collapse
|
4
|
Zhao P, Zhao C, Li X, Gao Q, Huang L, Xiao P, Gao W. The genus Polygonatum : A review of ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:274-291. [PMID: 29246502 DOI: 10.1016/j.jep.2017.12.006] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/09/2023]
Affiliation(s)
- Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Chengcheng Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Lapadula WJ, Ayub MJ. Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon 2017; 136:6-14. [PMID: 28651991 DOI: 10.1016/j.toxicon.2017.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023]
Abstract
Ribosome Inactivating Proteins (RIPs) are rRNA N-glycosidases that inhibit protein synthesis through the elimination of a single adenine residue from 28S rRNA. Many of these toxins have been characterized in depth from a biochemical and molecular point of view. In addition, their potential use in medicine as highly selective toxins is being explored. In contrast, the evolutionary history of RIP encoding genes has remained traditionally underexplored. In recent years, accumulation of large genomic data has fueled research on this issue and revealed unexpected information about the origin and evolution of RIP toxins. In this review we summarize the current evidence available on the occurrence of different evolutionary mechanisms (gene duplication and losses, horizontal gene transfer, synthesis de novo and domain combination) involved in the evolution of the RIP gene family. Finally, we propose a revised nomenclature for RIP genes based on their evolutionary history.
Collapse
Affiliation(s)
- Walter Jesús Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
6
|
Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L. Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules 2016; 21:molecules21121627. [PMID: 27898041 PMCID: PMC6273060 DOI: 10.3390/molecules21121627] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
This review provides a historical overview of the research on plant ribosome-inactivating proteins (RIPs), starting from the first studies at the end of eighteenth century involving the purification of abrin and ricin, as well as the immunological experiments of Paul Erlich. Interest in these plant toxins was revived in 1970 by the observation of their anticancer activity, which has given rise to a large amount of research contributing to the development of various scientific fields. Biochemistry analyses succeeded in identifying the enzymatic activity of RIPs and allowed for a better understanding of the ribosomal machinery. Studies on RIP/cell interactions were able to detail the endocytosis and intracellular routing of ricin, thus increasing our knowledge of how cells handle exogenous proteins. The identification of new RIPs and the finding that most RIPs are single-chain polypeptides, together with their genetic sequencing, has aided in the development of new phylogenetic theories. Overall, the biological properties of these proteins, including their abortifacient, anticancer, antiviral and neurotoxic activities, suggest that RIPs could be utilized in agriculture and in many biomedical fields, including clinical drug development.
Collapse
Affiliation(s)
- Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Stefania Maiello
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
7
|
Schrot J, Weng A, Melzig MF. Ribosome-inactivating and related proteins. Toxins (Basel) 2015; 7:1556-615. [PMID: 26008228 PMCID: PMC4448163 DOI: 10.3390/toxins7051556] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 01/15/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs.
Collapse
Affiliation(s)
- Joachim Schrot
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Alexander Weng
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| |
Collapse
|
8
|
|
9
|
Maveyraud L, Niwa H, Guillet V, Svergun DI, Konarev PV, Palmer RA, Peumans WJ, Rougé P, Van Damme EJM, Reynolds CD, Mourey L. Structural basis for sugar recognition, including the Tn carcinoma antigen, by the lectin SNA-II from Sambucus nigra. Proteins 2009; 75:89-103. [PMID: 18798567 DOI: 10.1002/prot.22222] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bark of elderberry (Sambucus nigra) contains a galactose (Gal)/N-acetylgalactosamine (GalNAc)-specific lectin (SNA-II) corresponding to slightly truncated B-chains of a genuine Type-II ribosome-inactivating protein (Type-II RIPs, SNA-V), found in the same species. The three-dimensional X-ray structure of SNA-II has been determined in two distinct crystal forms, hexagonal and tetragonal, at 1.90 A and 1.35 A, respectively. In both crystal forms, the SNA-II molecule folds into two linked beta-trefoil domains, with an overall conformation similar to that of the B-chains of ricin and other Type-II RIPs. Glycosylation is observed at four sites along the polypeptide chain, accounting for 14 saccharide units. The high-resolution structures of SNA-II in complex with Gal and five Gal-related saccharides (GalNAc, lactose, alpha1-methylgalactose, fucose, and the carcinoma-specific Tn antigen) were determined at 1.55 A resolution or better. Binding is observed in two saccharide-binding sites for most of the sugars: a conserved aspartate residue interacts simultaneously with the O3 and O4 atoms of saccharides. In one of the binding sites, additional interactions with the protein involve the O6 atom. Analytical gel filtration, small angle X-ray scattering studies and crystal packing analysis indicate that, although some oligomeric species are present, the monomeric species predominate in solution.
Collapse
Affiliation(s)
- Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, Université Paul Sabatier Toulouse III/CNRS, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Castilho PV, Goto LS, Roberts LM, Araújo APU. Isolation and characterization of four type 2 ribosome inactivating pulchellin isoforms from Abrus pulchellus seeds. FEBS J 2008; 275:948-59. [DOI: 10.1111/j.1742-4658.2008.06258.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
|
12
|
Vandenbussche F, Peumans WJ, Desmyter S, Proost P, Ciani M, Van Damme EJM. The type-1 and type-2 ribosome-inactivating proteins from Iris confer transgenic tobacco plants local but not systemic protection against viruses. PLANTA 2004; 220:211-21. [PMID: 15278456 DOI: 10.1007/s00425-004-1334-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 05/29/2004] [Indexed: 05/24/2023]
Abstract
The antiviral activity of the type-2 ribosome-inactivating protein (RIP) IRAb from Iris was analyzed by expressing IRAb in tobacco (Nicotiana tabacum L. cv. Samsun NN) plants and challenging the transgenic plants with tobacco mosaic virus (TMV). Although constitutive expression of IRAb resulted in an aberrant phenotype, the plants were fertile. Transgenic tobacco lines expressing IRAb showed a dose-dependent enhanced resistance against TMV infection but the level of protection was markedly lower than in plants expressing IRIP, the type-1 RIP from Iris that closely resembles the A-chain of IRAb. To verify whether IRIP or IRAb can also confer systemic protection against viruses, transgenic RIP-expressing scions were grafted onto control rootstocks and leaves of the rootstocks challenged with tobacco etch virus (TEV). In spite of the strong local antiviral effect of IRIP and IRAb the RIPs could not provide systemic protection against TEV. Hence our results demonstrate that expression of the type-1 and type-2 RIPs from Iris confers tobacco plants local protection against two unrelated viruses. The antiviral activity of both RIPs was not accompanied by an induction of pathogenesis-related proteins. It is suggested that the observed antiviral activity of both Iris RIPs relies on their RNA N-glycohydrolase activity towards TMV RNA and plant rRNA.
Collapse
Affiliation(s)
- Frank Vandenbussche
- Laboratory for Phytopathology and Plant Protection, Katholieke Universiteit Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Lectins are carbohydrate binding (glyco)proteins which are ubiquitous in nature. In plants, they are distributed in various families and hence ingested daily in appreciable amounts by both humans and animals. One of the most nutritionally important features of plant lectins is their ability to survive digestion by the gastrointestinal tract of consumers. This allows the lectins to bind to membrane glycosyl groups of the cells lining the digestive tract. As a result of this interaction a series of harmful local and systemic reactions are triggered placing this class of molecules as antinutritive and/or toxic substances. Locally, they can affect the turnover and loss of gut epithelial cells, damage the luminal membranes of the epithelium, interfere with nutrient digestion and absorption, stimulate shifts in the bacterial flora and modulate the immune state of the digestive tract. Systemically, they can disrupt lipid, carbohydrate and protein metabolism, promote enlargement and/or atrophy of key internal organs and tissues and alter the hormonal and immunological status. At high intakes, lectins can seriously threaten the growth and health of consuming animals. They are also detrimental to numerous insect pests of crop plants although less is presently known about their insecticidal mechanisms of action. This current review surveys the recent knowledge on the antinutritional/toxic effects of plant lectins on higher animals and insects.
Collapse
Affiliation(s)
- Ilka M Vasconcelos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Caixa Postal 6020, Campus do Pici, CEP 60451-970, Fortaleza, CE, Brazil.
| | | |
Collapse
|
14
|
Singh J, Singh J, Kamboj SS. A novel mitogenic and antiproliferative lectin from a wild cobra lily, Arisaema flavum. Biochem Biophys Res Commun 2004; 318:1057-65. [PMID: 15147981 DOI: 10.1016/j.bbrc.2004.04.135] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Indexed: 11/17/2022]
Abstract
A novel lectin having specificity towards a complex glycoprotein asialofetuin was purified from tubers of Arisaema flavum (Schott.) by affinity chromatography on asialofetuin-linked amino-activated silica beads. A. flavum gave a single peak on HPLC size exclusion and a single band on non-denatured PAGE at pH 4.5. The molecular mass of the lectin, as determined by gel filtration chromatography, was 56 kDa. In SDS-PAGE, pH 8.3, the lectin migrated as a single band of 13.5 kDa, under reducing and non-reducing conditions, indicating the homotetrameric nature. A. flavum lectin (AFL) readily agglutinated rabbit, rat, sheep, goat, and guinea pig erythrocytes but not human ABO blood group erythrocytes even after neuraminidase treatment. This lectin is stable up to 55 degrees C and does not require metal ions for its hemagglutination activity. AFL was completely devoid of sulphur containing amino acids and was rich in aspartic acid and glycine. In Oucterlony's double immunodiffusion, the antisera raised against A. flavum lectin showed distinct lines of identity with those of other araceous lectins. AFL showed potent mitogenic activity towards BALB/c splenocytes and human lymphocytes in comparison to Con A, a well-known plant mitogen. AFL also showed significant in vitro antiproliferative activity towards J774 and P388D1 murine cancer cell lines.
Collapse
Affiliation(s)
- Jagmohan Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India.
| | | | | |
Collapse
|
15
|
Vandenbussche F, Desmyter S, Ciani M, Proost P, Peumans WJ, Van Damme EJM. Analysis of the in planta antiviral activity of elderberry ribosome-inactivating proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2004; 271:1508-15. [PMID: 15066176 DOI: 10.1111/j.1432-1033.2004.04059.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the type-2 ribosome-inactivating proteins (SNA-I, SNA-V, SNLRP) from elderberry (Sambucus nigra L.) are all devoid of rRNA N-glycosylase activity towards plant ribosomes, some of them clearly show polynucleotide-adenosine glycosylase activity towards tobacco mosaic virus RNA. This particular substrate specificity was exploited to further unravel the mechanism underlying the in planta antiviral activity of ribosome-inactivating proteins. Transgenic tobacco (Nicotiana tabacum L. cv Samsun NN) plants expressing the elderberry ribosome-inactivating proteins were generated and challenged with tobacco mosaic virus in order to analyze their antiviral properties. Although some transgenic plants clearly showed antiviral activity, no clear correlation was observed between in planta antiviral activity of transgenic tobacco lines expressing the different ribosome-inactivating proteins and the in vitro polynucleotide-adenosine glycosylase activity of the respective proteins towards tobacco mosaic virus genomic RNA. However, our results suggest that the in planta antiviral activity of some ribosome-inactivating proteins may rely on a direct mechanism on the virus. In addition, it is evident that the working mechanism proposed for pokeweed antiviral protein cannot be extrapolated to elderberry ribosome-inactivating proteins because the expression of SNA-V is not accompanied by induction of pathogenesis-related proteins.
Collapse
Affiliation(s)
- Frank Vandenbussche
- Laboratory for Phytopathology and Plant Protection, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Chambery A, Di Maro A, Monti MM, Stirpe F, Parente A. Volkensin from Adenia volkensii Harms (kilyambiti plant), a type 2 ribosome-inactivating protein. ACTA ACUST UNITED AC 2004; 271:108-17. [PMID: 14686924 DOI: 10.1046/j.1432-1033.2003.03909.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Volkensin, a type 2 ribosome-inactivating protein from the roots of Adenia volkensii Harms (kilyambiti plant) was characterized both at the protein and nucleotide level by direct amino acid sequencing and cloning of the gene encoding the protein. Gene sequence analysis revealed that volkensin is encoded by a 1569-bp ORF (523 amino acid residues) without introns, with an internal linker sequence of 45 bp. Differences in residues present at several sequence positions (reproduced after repeated protein sequence analyses), with respect to the gene sequence, suggest several isoforms for the volkensin A-chain. Based on the crystallographic coordinates of ricin, which shares a high sequence identity with volkensin, a molecular model of volkensin was obtained. The 3D model suggests that the amino acid residues of the active site of the ricin A-chain are conserved at identical spatial positions, including Ser203, a novel amino acid residue found to be conserved in all known ribosome-inactivating proteins. The sugar binding site 1 of the ricin B-chain is also conserved in the volkensin B-chain, whilst in binding site 2, His246 replaces Tyr248. Native volkensin contains two free cysteinyl residues out of 14 derived from the gene sequence, thus suggesting a further disulphide bridge in the B chain, in addition to the inter- and intrachain disulphide bond pattern common to other type 2 ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Angela Chambery
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Caserta, Italy
| | | | | | | | | |
Collapse
|
17
|
Sujatha MS, Balaji PV. Identification of common structural features of binding sites in galactose-specific proteins. Proteins 2004; 55:44-65. [PMID: 14997539 DOI: 10.1002/prot.10612] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Galactose-binding proteins characterize an important subgroup of sugar-binding proteins that are involved in a variety of biological processes. Structural studies have shown that the Gal-specific proteins encompass a diverse range of primary and tertiary structures. The binding sites for galactose also seem to vary in different protein-galactose complexes. No common binding site features that are shared by the Gal-specific proteins to achieve ligand specificity are so far known. With the assumption that common recognition principles will exist for common substrate recognition, the present study was undertaken to identify and characterize any unique galactose-binding site signature by analyzing the three-dimensional (3D) structures of 18 protein-galactose complexes. These proteins belong to 7 nonhomologous families; thus, there is no sequence or structural similarity across the families. Within each family, the binding site residues and their relative distances were well conserved, but there were no similarities across families. A novel, yet simple, approach was adopted to characterize the binding site residues by representing their relative spatial dispositions in polar coordinates. A combination of the deduced geometrical features with the structural characteristics, such as solvent accessibility and secondary structure type, furnished a potential galactose-binding site signature. The signature was evaluated by incorporation into the program COTRAN to search for potential galactose-binding sites in proteins that share the same fold as the known galactose-binding proteins. COTRAN is able to detect galactose-binding sites with a very high specificity and sensitivity. The deduced galactose-binding site signature is strongly validated and can be used to search for galactose-binding sites in proteins. PROSITE-type signature sequences have also been inferred for galectin and C-type animal lectin-like fold families of Gal-binding proteins.
Collapse
Affiliation(s)
- M S Sujatha
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
18
|
|
19
|
Wacker R, Stoeva S, Pfüller K, Pfüller U, Voelter W. Complete structure determination of the A chain of mistletoe lectin III fromViscum albumL. ssp.album. J Pept Sci 2003; 10:138-48. [PMID: 15113086 DOI: 10.1002/psc.505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The complete primary structure of the A chain of mistletoe lectin III (ML3A), a type II ribosome-inactivating protein, was determined using proteolytic digests of ML3A, HPLC separation of the peptides, Edman degration and MALDI-MS. Based on our results, ML3A consists of 254 amino acid residues, showing a high homology to the A chain of isolectin ML1 with only 24 amino acid residue exchanges. A striking important structural difference compared with ML1A is the lack of the single N-glycosylation site in ML3A due to an amino acid exchange at position 112 (ML1A: NL112GS ==> ML3A: T112GS). The alignment of ML3A with the A chains of ML1, isoabrins, ricin D, Ricinus communis agglutinin and three lectins, identified from the Korean mistletoe Viscum album ssp. coloratum, demonstrates the rigid conservation of all amino acid residues, responsible for the RNA-N-glycosidase activity as reported for ricin D. In addition, the fully determined primary structure of ML3A will give further information about the biological mechanism of mistletoe lectin therapy.
Collapse
Affiliation(s)
- Roland Wacker
- Abteilung für Physikalische Biochemie der Universität Tübingen, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
20
|
Carlini CR, Grossi-de-Sá MF. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 2002; 40:1515-39. [PMID: 12419503 DOI: 10.1016/s0041-0101(02)00240-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To meet the demands for food of the expanding world population, there is need of new ways for protecting plant crops against predators and pathogens while avoiding the use of environmentally aggressive chemicals. A milestone in this field was the introduction into crop plants of genes expressing Bacillus thuringiensis entomotoxic proteins. In spite of the success of this new technology, however, there are difficulties for acceptance of these 'anti-natural' products by the consumers and some concerns about its biosafety in mammals. An alternative could be exploring the plant's own defense mechanisms, by manipulating the expression of their endogenous defense proteins, or introducing an insect control gene derived from another plant. This review deals with the biochemical features and mechanisms of actions of plant proteins supposedly involved in defense mechanisms against insects, including lectins, ribosome-inactivating proteins, enzymes inhibitors, arcelins, chitinases, ureases, and modified storage proteins. The potentialities of genetic engineering of plants with increased resistance to insect predation relying on the repertoire of genes found in plants are also discussed. Several different genes encoding plant entomotoxic proteins have been introduced into crop genomes and many of these insect resistant plants are now being tested in field conditions or awaiting commercialization.
Collapse
Affiliation(s)
- Célia R Carlini
- Department of Biophysics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, 91.501-970 Porto Alegre, RS, Brazil.
| | | |
Collapse
|
21
|
Lavelle EC, Grant G, Pusztai A, Pfüller U, Leavy O, McNeela E, Mills KHG, O'Hagan DT. Mistletoe lectins enhance immune responses to intranasally co-administered herpes simplex virus glycoprotein D2. Immunology 2002; 107:268-74. [PMID: 12383207 PMCID: PMC1782787 DOI: 10.1046/j.1365-2567.2002.01492.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mucosal adjuvant properties of the three type 2 ribosome-inactivating proteins (RIPs) from the European mistletoe, Viscum album L., were investigated. Mistletoe lectins were compared with cholera toxin (CT) as adjuvants when delivered nasotracheally together with herpes simplex virus glycoprotein D2 (gD2). All three mistletoe lectins (MLI, MLII, MLIII) were potent mucosal adjuvants. Co-administration of MLI, MLII or MLIII with gD2 led to significantly higher levels of gD2-specific mucosal immunoglobulin A (IgA) and systemic immunoglobulin G (IgG) antibody than when the antigen was delivered alone. The levels of antibodies induced were similar to those generated in mice immunized with gD2 and the potent mucosal adjuvant CT. Administration of ML1 with gD2 enhanced the antigen-specific splenic T-cell proliferative response. Interleukin-5 (IL-5), but not interferon-gamma (IFN-gamma), was detected in supernatants from splenocytes stimulated in vitro with gD2. This indicates that MLI enhanced type 2 T-helper cell (Th2) responses to the bystander antigen, gD2. Analysis of the gD2- and lectin-specific IgG subclass titres in mice immunized with gD2 and MLI, MLII or MLIII revealed a high ratio of IgG1 : IgG2a, which is compatible with the selective induction of Th2-type immune responses.
Collapse
Affiliation(s)
- E C Lavelle
- Rowett Research Institute, Bucksburn, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang Q, Liu RS, Gong ZZ, Liu WY. Studies of three genes encoding Cinnamomin (a type II RIP) isolated from the seeds of camphor tree and their expression patterns. Gene 2002; 284:215-23. [PMID: 11891062 DOI: 10.1016/s0378-1119(01)00890-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cinnamomin, which has three isoforms, is a type II ribosome-inactivating protein (RIP) purified from the mature seeds of camphor tree (Cinnamomum camphora). In a previous study, an incomplete cDNA that encoded the A- and B-chain of Cinnamomin but lacked signal peptide sequence was cloned. In the present paper, its full-length cDNA was obtained by 5' rapid amplification of cDNA ends (5'RACE). Subsequently, polymerase chain reaction (PCR) amplification of its genomic DNA was performed. Unexpectedly, sequence analysis of the PCR products revealed three cinnamomin genes with >98.0% sequence identity. One of them corresponded to the published cDNA and was designated as cinnamomin I, whereas the other two genes were named as cinnamomin II and cinnamomin III, respectively. RT-PCR amplification of the cDNAs of cinnamomin II and III manifested that these two genes were functional. The three genes have no intron. Three Cinnamomin precursors that were inferred from the cDNA sequence of three cinnamomin genes exhibited relatively high sequence homology with other type II RIPs. Northern blot analysis demonstrated that the cinnamomin genes only expressed in cotyledons of C. camphora seeds and the acmes of expression emerged at 75-90 DAF when seeds were close to maturity. It is proposed that the three cinnamomin genes may encode three isoforms of Cinnamomin. The physiological function of Cinnamomin in C. camphora seeds is briefly discussed.
Collapse
Affiliation(s)
- Qiang Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
23
|
Lombard S, Helmy ME, Piéroni G. Lipolytic activity of ricin from Ricinus sanguineus and Ricinus communis on neutral lipids. Biochem J 2001; 358:773-81. [PMID: 11535138 PMCID: PMC1222111 DOI: 10.1042/0264-6021:3580773] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study was carried out with a view of determining ricin lipolytic activity on neutral lipids in emulsion and in a membrane-like model. Using 2,3-dimercapto-1-propanol tributyrate (BAL-TC(4)) as substrate, the lipolytic activity of ricin was found to be proportional to ricin and substrate concentrations, with an apparent K(m) (K(m,app)) of 2.4 mM, a k(cat) of 200 min(-1) and a specific activity of 1.0 unit/mg of protein. This work was extended to p-nitrophenyl (pNP) fatty acid esters containing two to twelve carbon atoms. Maximum lipolytic activity was registered on pNP decanoate (pNPC(10)), with a K(m,app) of 3.5 mM, a k(cat) of 173 min(-1) and a specific activity of 3.5 units/mg of protein. Ricin lipolytic activity is pH and galactose dependent, with a maximum at pH 7.0 in the presence of 0.2 M galactose. Using the monolayer technique with dicaprin as substrate, ricin showed a lipolytic activity proportional to the ricin concentration at 20 mN/m, which is dependent on the surface pressure of the lipid monolayer and is detectable up to 30 mN/m, a surface pressure that is of the same order of magnitude as that of natural cell membranes. The methods based on pNPC(10) and BAL-TC(4) hydrolysis are simple and reproducible; thus they can be used for routine studies of ricin lipolytic activity. Ricin from Ricinus communis and R. sanguineus were treated with diethyl p-nitrophenylphosphate, an irreversible serine esterase inhibitor, and their lipolytic activities on BAL-TC(4) and pNPC(10), and cytotoxic activity, were concurrently recorded. A reduction in lipolytic activity was accompanied by a decrease in cytotoxicity on Caco2 cells. These data support the idea that the lipolytic activity associated with ricin is relevant to a lipase whose activity is pH and galactose dependent, sensitive to diethyl p-nitrophenylphosphate, and that a lipolytic step may be involved in the process of cell poisoning by ricin. Both colorimetric tests used in this study are sensitive enough to be helpful in the detection of possible lipolytic activities associated with other cytotoxins or lectins.
Collapse
Affiliation(s)
- S Lombard
- INSERM U476, 18 avenue Mozart, 13009 Marseille, France
| | | | | |
Collapse
|
24
|
Frigerio L, Jolliffe NA, Di Cola A, Felipe DH, Paris N, Neuhaus JM, Lord JM, Ceriotti A, Roberts LM. The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. PLANT PHYSIOLOGY 2001; 126:167-75. [PMID: 11351080 PMCID: PMC102291 DOI: 10.1104/pp.126.1.167] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2000] [Accepted: 01/12/2001] [Indexed: 05/18/2023]
Abstract
Ricin is a heterodimeric toxin that accumulates in the storage vacuoles of castor bean (Ricinus communis) endosperm. Proricin is synthesized as a single polypeptide precursor comprising the catalytic A chain and the Gal-binding B chain joined by a 12-amino acid linker propeptide. Upon arrival in the vacuole, the linker is removed. Here, we replicate these events in transfected tobacco (Nicotiana tabacum) leaf protoplasts. We show that the internal linker propeptide is responsible for vacuolar sorting and is sufficient to redirect the ricin heterodimer to the vacuole when fused to the A or the B chain. This internal peptide can also target two different secretory protein reporters to the vacuole. Moreover, mutation of the isoleucine residue within an NPIR-like motif of the propeptide affects vacuolar sorting in proricin and in the reconstituted A-B heterodimer. This is the first reported example of a sequence-specific vacuolar sorting signal located within an internal propeptide.
Collapse
Affiliation(s)
- L Frigerio
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hao Q, Van Damme EJ, Hause B, Barre A, Chen Y, Rougé P, Peumans WJ. Iris bulbs express type 1 and type 2 ribosome-inactivating proteins with unusual properties. PLANT PHYSIOLOGY 2001; 125:866-76. [PMID: 11161044 PMCID: PMC64888 DOI: 10.1104/pp.125.2.866] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Revised: 10/05/2000] [Accepted: 10/25/2000] [Indexed: 05/20/2023]
Abstract
Two closely related lectins from bulbs of the Dutch iris (Iris hollandica var. Professor Blaauw) have been isolated and cloned. Both lectins, called Iris agglutinin b and Iris agglutinin r, possess N-glycosidase activity and share a high sequence similarity with previously described type 2 ribosome-inactivating proteins (RIP). However, these lectins show only 57% to 59% sequence identity to a previously characterized type 1 RIP from iris, called IRIP. The identification of the iris lectins as type 2 RIP provides unequivocal evidence for the simultaneous occurrence of type 1 and type 2 RIP in iris bulbs and allowed a detailed comparison of type 1 and type 2 RIP from a single plant, which provides further insight into the molecular evolution of RIP. Binding studies and docking experiments revealed that the lectins exhibit binding activity not only toward Gal/N-acetylgalactosamine, but also toward mannose, demonstrating for the first time that RIP-binding sites can accommodate mannose.
Collapse
Affiliation(s)
- Q Hao
- Laboratory for Phytopathology and Plant Protection, Katholieke Universiteit Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|