1
|
Beverley KM, Ahn SJ, Levitan I. Flow-sensitive ion channels in vascular endothelial cells: Mechanisms of activation and roles in mechanotransduction. Biophys J 2025:S0006-3495(25)00193-6. [PMID: 40156185 DOI: 10.1016/j.bpj.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
The purpose of this review is to evaluate the current knowledge about the mechanisms by which mechanosensitive ion channels are activated by fluid shear stress in endothelial cells. We focus on three classes of endothelial ion channels that are most well studied for their sensitivity to flow and roles in mechanotransduction: inwardly rectifying K+ channels, Piezo channels, and TRPV channels. We also discuss the mechanisms by which these channels initiate and contribute to mechanosensitive signaling pathways. Three types of mechanisms have been described for flow-induced activation of ion channels: 1) through interaction with apical membrane flow sensors, such as glycocalyx, which is likely to be deformed by flow, 2) directly by sensing membrane stretch that is induced by shear stress, or 3) via flow-sensitive channel-channel or lipid channel interactions. We also demonstrate the physiological role of these channels and how they are related to cardiovascular and neurological diseases. Further studies are needed to determine how these channels function cooperatively to mediate the endothelial response to flow.
Collapse
Affiliation(s)
- Katie M Beverley
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| | - Sang Joon Ahn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Shen Z, Lengyel M, Niethammer P. The yellow brick road to nuclear membrane mechanotransduction. APL Bioeng 2022; 6:021501. [PMID: 35382443 PMCID: PMC8967412 DOI: 10.1063/5.0080371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The nuclear membrane may function as a mechanosensory surface alongside the plasma membrane. In this Review, we discuss how this idea emerged, where it currently stands, and point out possible implications, without any claim of comprehensiveness.
Collapse
Affiliation(s)
| | - Miklós Lengyel
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
3
|
Toft-Bertelsen TL, MacAulay N. TRPing on Cell Swelling - TRPV4 Senses It. Front Immunol 2021; 12:730982. [PMID: 34616399 PMCID: PMC8488219 DOI: 10.3389/fimmu.2021.730982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
The transient receptor potential vanilloid 4 channel (TRPV4) is a non-selective cation channel that is widely expressed and activated by a range of stimuli. Amongst these stimuli, changes in cell volume feature as a prominent regulator of TRPV4 activity with cell swelling leading to channel activation. In experimental settings based on abrupt introduction of large osmotic gradients, TRPV4 activation requires co-expression of an aquaporin (AQP) to facilitate such cell swelling. However, TRPV4 readily responds to cell volume increase irrespectively of the molecular mechanism underlying the cell swelling and can, as such, be considered a sensor of increased cell volume. In this review, we will discuss the proposed events underlying the molecular coupling from cell swelling to channel activation and present the evidence of direct versus indirect swelling-activation of TRPV4. With this summary of the current knowledge of TRPV4 and its ability to sense cell volume changes, we hope to stimulate further experimental efforts in this area of research to clarify TRPV4’s role in physiology and pathophysiology.
Collapse
Affiliation(s)
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Rayees S, Rochford I, Joshi JC, Joshi B, Banerjee S, Mehta D. Macrophage TLR4 and PAR2 Signaling: Role in Regulating Vascular Inflammatory Injury and Repair. Front Immunol 2020; 11:2091. [PMID: 33072072 PMCID: PMC7530636 DOI: 10.3389/fimmu.2020.02091] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages play a central role in dictating the tissue response to infection and orchestrating subsequent repair of the damage. In this context, macrophages residing in the lungs continuously sense and discriminate among a wide range of insults to initiate the immune responses important to host-defense. Inflammatory tissue injury also leads to activation of proteases, and thereby the coagulation pathway, to optimize injury and repair post-infection. However, long-lasting inflammatory triggers from macrophages can impair the lung's ability to recover from severe injury, leading to increased lung vascular permeability and neutrophilic injury, hallmarks of Acute Lung Injury (ALI). In this review, we discuss the roles of toll-like receptor 4 (TLR4) and protease activating receptor 2 (PAR2) expressed on the macrophage cell-surface in regulating lung vascular inflammatory signaling.
Collapse
Affiliation(s)
- Sheikh Rayees
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Ian Rochford
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Bhagwati Joshi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Somenath Banerjee
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| |
Collapse
|
5
|
Toft-Bertelsen TL, Yarishkin O, Redmon S, Phuong TTT, Križaj D, MacAulay N. Volume sensing in the transient receptor potential vanilloid 4 ion channel is cell type-specific and mediated by an N-terminal volume-sensing domain. J Biol Chem 2019; 294:18421-18434. [PMID: 31619514 DOI: 10.1074/jbc.ra119.011187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/11/2019] [Indexed: 12/29/2022] Open
Abstract
Many retinal diseases are associated with pathological cell swelling, but the underlying etiology remains to be established. A key component of the volume-sensitive machinery, the transient receptor potential vanilloid 4 (TRPV4) ion channel, may represent a sensor and transducer of cell swelling, but the molecular link between the swelling and TRPV4 activation is unresolved. Here, our results from experiments using electrophysiology, cell volumetric measurements, and fluorescence imaging conducted in murine retinal cells and Xenopus oocytes indicated that cell swelling in the physiological range activated TRPV4 in Müller glia and Xenopus oocytes, but required phospholipase A2 (PLA2) activity exclusively in Müller cells. Volume-dependent TRPV4 gating was independent of cytoskeletal rearrangements and phosphorylation. Our findings also revealed that TRPV4-mediated transduction of volume changes is dependent by its N terminus, more specifically by its distal-most part. We conclude that the volume sensitivity and function of TRPV4 in situ depend critically on its functional and cell type-specific interactions.
Collapse
Affiliation(s)
- Trine L Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Bldg. 24.6, 2200 Copenhagen N, Denmark
| | - Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Sarah Redmon
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132.
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Bldg. 24.6, 2200 Copenhagen N, Denmark.
| |
Collapse
|
6
|
Abstract
Cancer metastasis is the second leading cause of death in the United States. Despite its morbidity, metastasis is an inefficient process that few cells can survive. However, cancer cells can overcome these metastatic barriers via cellular responses to microenvironmental cues, such as through mechanotransduction. This review focuses on the mechanosensitive ion channels TRPV4 and P2X7, and their roles in metastasis, as both channels have been shown to significantly affect tumor cell dissemination. Upon activation, these channels help form tumor neovasculature, promote transendothelial migration, and increase cell motility. Conversely, they have also been linked to forms of cancer cell death dependent upon levels of activation, implying the complex functionality of mechanosensitive ion channels. Understanding the roles of TRPV4, P2X7 and other mechanosensitive ion channels in these processes may reveal new possible drug targets that modify channel function to reduce a tumor's metastatic potential.
Collapse
|
7
|
Structural determinants of 5',6'-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep 2017; 7:10522. [PMID: 28874838 PMCID: PMC5585255 DOI: 10.1038/s41598-017-11274-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 11/08/2022] Open
Abstract
TRPV4 cation channel activation by cytochrome P450-mediated derivatives of arachidonic acid (AA), epoxyeicosatrienoic acids (EETs), constitute a major mechanisms of endothelium-derived vasodilatation. Besides, TRPV4 mechano/osmosensitivity depends on phospholipase A2 (PLA2) activation and subsequent production of AA and EETs. However, the lack of evidence for a direct interaction of EETs with TRPV4 together with claims of EET-independent mechanical activation of TRPV4 has cast doubts on the validity of this mechanism. We now report: 1) The identification of an EET-binding pocket that specifically mediates TRPV4 activation by 5',6'-EET, AA and hypotonic cell swelling, thereby suggesting that all these stimuli shared a common structural target within the TRPV4 channel; and 2) A structural insight into the gating of TRPV4 by a natural agonist (5',6'-EET) in which K535 plays a crucial role, as mutant TRPV4-K535A losses binding of and gating by EET, without affecting GSK1016790A, 4α-phorbol 12,13-didecanoate and heat mediated channel activation. Together, our data demonstrates that the mechano- and osmotransducing messenger EET gates TRPV4 by a direct action on a site formed by residues from the S2-S3 linker, S4 and S4-S5 linker.
Collapse
|
8
|
Soni H, Peixoto-Neves D, Matthews AT, Adebiyi A. TRPV4 channels contribute to renal myogenic autoregulation in neonatal pigs. Am J Physiol Renal Physiol 2017; 313:F1136-F1148. [PMID: 28768667 DOI: 10.1152/ajprenal.00300.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
Myogenic response, a phenomenon in which resistance size arteries and arterioles swiftly constrict or dilate in response to an acute elevation or reduction, respectively, in intravascular pressure is a key component of renal autoregulation mechanisms. Although it is well established that the renal system is functionally immature in neonates, mechanisms that regulate neonatal renal blood flow (RBF) remain poorly understood. In this study, we investigated the hypothesis that members of the transient receptor potential vanilloid (TRPV) channels are molecular components of renal myogenic constriction in newborns. We show that unlike TRPV1-3, TRPV4 channels are predominantly expressed in neonatal pig preglomerular vascular smooth muscle cells (SMCs). Intracellular Ca2+ concentration ([Ca2+]i) elevation induced by osmotic cell swelling was attenuated by TRPV4, L-type Ca2+, and stretch-activated Ca2+ channel blockers but not phospholipase A2 inhibitor. Blockade of TRPV4 channels reversed steady-state myogenic tone and inhibited pressure-induced membrane depolarization, [Ca2+]i elevation, and constriction in distal interlobular arteries. A step increase in arterial pressure induced efficient autoregulation of renal cortical perfusion and total RBF in anesthetized and mechanically ventilated neonatal pigs. Moreover, intrarenal arterial infusion of the TRPV4 channel blockers HC 067047 and RN 1734 attenuated renal autoregulation in the pigs. These data suggest that renal myogenic autoregulation is functional in neonates. Our findings also indicate that TRPV4 channels are mechanosensors in neonatal pig preglomerular vascular SMCs and contribute to renal myogenic autoregulation.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dieniffer Peixoto-Neves
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anberitha T Matthews
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
9
|
Toft-Bertelsen TL, Križaj D, MacAulay N. When size matters: transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J Physiol 2017; 595:3287-3302. [PMID: 28295351 DOI: 10.1113/jp274135] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Mammalian cells are frequently exposed to stressors causing volume changes. The transient receptor potential vanilloid 4 (TRPV4) channel translates osmotic stress into ion flux. The molecular mechanism coupling osmolarity to TRPV4 activation remains elusive. TRPV4 responds to isosmolar cell swelling and osmolarity translated via different aquaporins. TRPV4 functions as a volume-sensing ion channel irrespective of the origin of the cell swelling. ABSTRACT Transient receptor potential channel 4 of the vanilloid subfamily (TRPV4) is activated by a diverse range of molecular cues, such as heat, lipid metabolites and synthetic agonists, in addition to hyposmotic challenges. As a non-selective cation channel permeable to Ca2+ , it transduces physical stress in the form of osmotic cell swelling into intracellular Ca2+ -dependent signalling events. Its contribution to cell volume regulation might include interactions with aquaporin (AQP) water channel isoforms, although the proposed requirement for a TRPV4-AQP4 macromolecular complex remains to be resolved. To characterize the elusive mechanics of TRPV4 volume-sensing, we expressed the channel in Xenopus laevis oocytes together with AQP4. Co-expression with AQP4 facilitated the cell swelling induced by osmotic challenges and thereby activated TRPV4-mediated transmembrane currents. Similar TRPV4 activation was induced by co-expression of a cognate channel, AQP1. The level of osmotically-induced TRPV4 activation, although proportional to the degree of cell swelling, was dependent on the rate of volume changes. Importantly, isosmotic cell swelling obtained by parallel activation of the co-expressed water-translocating Na+ /K+ /2Cl- cotransporter promoted TRPV4 activation despite the absence of the substantial osmotic gradients frequently employed for activation. Upon simultaneous application of an osmotic gradient and the selective TRPV4 agonist GSK1016790A, enhanced TRPV4 activation was observed only with subsaturating stimuli, indicating that the agonist promotes channel opening similar to that of volume-dependent activation. We propose that, contrary to the established paradigm, TRPV4 is activated by increased cell volume irrespective of the molecular mechanism underlying cell swelling. Thus, the channel functions as a volume-sensor, rather than as an osmo-sensor.
Collapse
Affiliation(s)
- Trine L Toft-Bertelsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Benedetto R, Sirianant L, Pankonien I, Wanitchakool P, Ousingsawat J, Cabrita I, Schreiber R, Amaral M, Kunzelmann K. Relationship between TMEM16A/anoctamin 1 and LRRC8A. Pflugers Arch 2016; 468:1751-63. [PMID: 27514381 DOI: 10.1007/s00424-016-1862-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
TMEM16A/anoctamin 1/ANO1 and VRAC/LRRC8 are independent chloride channels activated either by increase in intracellular Ca(2+) or cell swelling, respectively. In previous studies, we observed overlapping properties for both types of channels. (i) TMEM16A/ANO1 and LRRC8 are inhibited by identical compounds, (ii) the volume-regulated anion channel VRAC requires compartmentalized Ca(2+) increase to be fully activated, (iii) anoctamins are activated by cell swelling, (iv) both channels have a role for apoptotic cell death, (v) both channels are possibly located in lipid rafts/caveolae like structures, and (vi) VRAC and anoctamin 1 currents are not additive when each are fully activated. In the present study, we demonstrate in different cell types that loss of LRRC8A expression not only inhibited VRAC, but also attenuated Ca(2+) activated Cl(-) currents. Moreover, expression of LRRC8A enhanced Ca(2+) activated Cl(-) currents, and both LRRC8A and ANO1 could be coimmunoprecipitated. We found that LRRC8A becomes accessible to biotinylation upon exposure to hypotonic bath solution, while membrane capacitance was not enhanced. When intracellular Ca(2+) was increased in ANO1-expressing cells, the membrane capacitance was enhanced and increased binding of FM4-64 to the membrane was observed. As this was not seen in cells lacking ANO1 expression, a role of ANO1 for exocytosis was suggested. We propose that ANO1 and LRRC8A are activated in parallel. Thus, ionomycin or purinergic stimulation will not only activate ANO1 but also LRRC8 currents. Cell swelling will not only activate LRRC8/VRAC, but also stimulate ANO1 currents by enhancing compartmentalized Ca(2+) increase and/or through swelling induced autocrine release of ATP.
Collapse
Affiliation(s)
- Roberta Benedetto
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Lalida Sirianant
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Ines Pankonien
- Faculty of Sciences, Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Podchanart Wanitchakool
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Ines Cabrita
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Margarida Amaral
- Faculty of Sciences, Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.
| |
Collapse
|
11
|
Sun L, Fang J. Macromolecular crowding effect is critical for maintaining SIRT1's nuclear localization in cancer cells. Cell Cycle 2016; 15:2647-2655. [PMID: 27463693 DOI: 10.1080/15384101.2016.1211214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
SIRT1 is a principle class III histone deacetylase which exhibits versatile functions in stress response, development, and pathological processes including cancer. Although SIRT1 deacetylates a wide range of nuclear and cytoplasmic proteins, its subcellular localization in cancer cells has been controversial. In this study, we uncovered the inconsistent reports about SIRT1 subcellular localization is partially due to different analysis approaches. While immunofluorescence and live cell imaging reveal a predominant nuclear localization of SIRT1, conventional cell fractionation often results in a severe leaking of SIRT1 into the cytoplasm. Such a leakage is mainly caused by loss of cytoplasmic macromolecular crowding effect as well as hypotonic dwelling during the isolation of the nuclei. We also developed an improved cell fractionation procedure which maintains SIRT1 in its original subcellular localization. Analyzing a variety of human cancer cell lines using this approach and other methods demonstrate that SIRT1 predominantly localizes to the nucleus in cancer cells.
Collapse
Affiliation(s)
- Lidong Sun
- a Department of Tumor Biology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Jia Fang
- a Department of Tumor Biology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| |
Collapse
|
12
|
Bao Y, Gao Y, Yang L, Kong X, Zheng H, Hou W, Hua B. New insights into protease-activated receptor 4 signaling pathways in the pathogenesis of inflammation and neuropathic pain: a literature review. Channels (Austin) 2015; 9:5-13. [PMID: 25664811 DOI: 10.4161/19336950.2014.995001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pain is an unpleasant sensory and emotional experience that is commonly associated with actual or potential tissue damage. Despite decades of pain research, many patients continue to suffer from chronic pain that is refractory to current treatments. Accumulating evidence has indicated an important role of protease-activated receptor 4 (PAR4) in the pathogenesis of inflammation and neuropathic pain. Here we reviewed PAR4 expression and activation via intracellular signaling pathways and the role of PAR4 signaling pathways in the development and maintenance of pain. Understanding PAR4 and its corresponding signaling pathways will provide insight to further explore the molecular basis of pain, which will also help to identify new targets for pharmacological intervention for pain relief.
Collapse
Affiliation(s)
- Yanju Bao
- a Department of Oncology ; Guang'anmen Hospital ; China Academy of Chinese Medical Sciences; Beixiange 5 ; Xicheng District , Beijing , P. R. China
| | | | | | | | | | | | | |
Collapse
|
13
|
Thorsteinsdottir UA, Thorsteinsdottir M, Lambert IH. Protolichesterinic Acid, Isolated from the Lichen Cetraria islandica
, Reduces LRRC8A Expression and Volume-Sensitive Release of Organic Osmolytes in Human Lung Epithelial Cancer Cells. Phytother Res 2015; 30:97-104. [DOI: 10.1002/ptr.5507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Unnur Arna Thorsteinsdottir
- Department of Biology, Section of Cell biology and Physiology; University of Copenhagen; 13 Universitetsparken Copenhagen DK-2100 Denmark
- School of Health Sciences, Faculty of Pharmaceutical Sciences; University of Iceland; 101 Reykjavik Iceland
| | - Margret Thorsteinsdottir
- School of Health Sciences, Faculty of Pharmaceutical Sciences; University of Iceland; 101 Reykjavik Iceland
| | - Ian Henry Lambert
- Department of Biology, Section of Cell biology and Physiology; University of Copenhagen; 13 Universitetsparken Copenhagen DK-2100 Denmark
| |
Collapse
|
14
|
Cellular volume regulation by anoctamin 6: Ca²⁺, phospholipase A2 and osmosensing. Pflugers Arch 2015; 468:335-49. [PMID: 26438191 DOI: 10.1007/s00424-015-1739-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/30/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023]
Abstract
During cell swelling, Cl(-) channels are activated to lower intracellular Cl(-) concentrations and to reduce cell volume, a process termed regulatory volume decrease (RVD). We show that anoctamin 6 (ANO6; TMEM16F) produces volume-regulated anion currents and controls cell volume in four unrelated cell types. Volume regulation is compromised in freshly isolated intestinal epithelial cells from Ano6-/- mice and also in lymphocytes from a patient lacking expression of ANO6. Ca(2+) influx is activated and thus ANO6 is stimulated during cell swelling by local Ca(2+) increase probably in functional nanodomains near the plasma membrane. This leads to stimulation of phospholipase A2 (PLA2) and generation of plasma membrane lysophospholipids, which activates ANO6. Direct application of lysophospholipids also activates an anion current that is inhibited by typical ANO6 blocker. An increase in intracellular Ca(2+) supports activation of ANO6, but is not required when PLA2 is fully activated, while re-addition of arachidonic acid completely blocked ANO6. Moreover, ANO6 is activated by low intracellular Cl(-) concentrations and may therefore operate as a cellular osmosensor. High intracellular Cl(-) concentration inhibits ANO6 and activation by PLA2. Taken together, ANO6 supports volume regulation and volume activation of anion currents by action as a Cl(-) channel or by scrambling membrane phospholipids. Thereby, it may support the function of LRRC8 proteins.
Collapse
|
15
|
Bao Y, Hou W, Hua B. Protease-activated receptor 2 signalling pathways: a role in pain processing. Expert Opin Ther Targets 2013; 18:15-27. [PMID: 24147628 DOI: 10.1517/14728222.2014.844792] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Pain is a complex biological phenomenon that includes intricate neurophysiological, behavioural, psychosocial and affective components. Despite decades of pain research, many patients continue suffering from chronic pain that may be refractory to current medical regimens. Accumulating evidence has indicated an important role of protease-activated receptor 2 (PAR2) in the pathogenesis of pain, including inflammation, neuropathic and cancer pain. AREAS COVERED In this review, the role of the PAR2 signalling pathway in pain processes, basic mechanism of PAR2 activation and expression of PAR2 in the nervous system is covered. Furthermore, intracellular signalling pathways that are activated by PAR2 are also described. EXPERT OPINION The role of PAR2 in pain processing is becoming increasingly clear, and although causal implication remains to be established, PAR2 activation has been observed in several disease model systems. Since PAR2 is activated after nerve injury as well as by trypsin and related serine proteases, and PAR2 plays an important role in pain development and maintenance, exploring PAR2 and its corresponding signalling pathways will provide unfathomable knowledge in understanding the molecular basis of pain. This will also help to identify new targets for pharmacological intervention; however, in the context of potential PAR2-directed therapies, several aspects should be clarified.
Collapse
Affiliation(s)
- Yanju Bao
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Department of Oncology , Beixiange 5, Xicheng District, Beijing 100053 , China +86 10 88001221 ; +86 10 88001430 ; ; ;
| | | | | |
Collapse
|
16
|
Tissue damage detection by osmotic surveillance. Nat Cell Biol 2013; 15:1123-30. [PMID: 23934216 PMCID: PMC3826879 DOI: 10.1038/ncb2818] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
Abstract
How tissue damage is detected to induce inflammatory responses is unclear. Most studies have focused on damage signals released by cell breakage and necrosis1. Whether tissues utilize other cues besides cell lysis to detect that they are damaged is unknown. We find that osmolarity differences between interstitial fluid and the external environment mediate rapid leukocyte recruitment to sites of tissue damage in zebrafish by activating cytosolic phospholipase a2 (cPLA2) at injury sites. cPLA2 initiates the production of non-canonical arachidonate metabolites that mediate leukocyte chemotaxis via a 5-oxo-ETE receptor (OXE-R). Thus, tissues can detect damage through direct surveillance of barrier integrity. By this mechanism, cell-swelling likely functions as a pro-inflammatory intermediate.
Collapse
|
17
|
Holm JB, Grygorczyk R, Lambert IH. Volume-sensitive release of organic osmolytes in the human lung epithelial cell line A549: role of the 5-lipoxygenase. Am J Physiol Cell Physiol 2013; 305:C48-60. [PMID: 23485709 DOI: 10.1152/ajpcell.00412.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathophysiological conditions challenge cell volume homeostasis and perturb cell volume regulatory mechanisms leading to alterations of cell metabolism, active transepithelial transport, cell migration, and death. We report that inhibition of the 5-lipoxygenase (5-LO) with AA861 or ETH 615-139, the cysteinyl leukotriene 1 receptor (CysLT₁) with the antiasthmatic drug Zafirlukast, or the volume-sensitive organic anion channel (VSOAC) with DIDS blocks the release of organic osmolytes (taurine, meAIB) and the concomitant cell volume restoration following hypoosmotic swelling of human type II-like lung epithelial cells (A549). Reactive oxygen species (ROS) are produced in A549 cells upon hypotonic cell swelling by a diphenylene iodonium-sensitive NADPH oxidase. The swelling-induced taurine release is suppressed by ROS scavenging (butylated hydroxytoluene, N-acetyl cysteine) and potentiated by H₂O₂. Ca²⁺ mobilization with ionomycin or ATP stimulates the swelling-induced taurine release whereas calmodulin inhibition (W7) inhibits the release. Chelation of the extracellular Ca²⁺ (EGTA) had no effect on swelling-induced taurine release but prevented ATP-induced stimulation. H₂O₂, ATP, and ionomycin were unable to stimulate the taurine release in the presence of AA861 or Zafirlukast, placing 5-LO and CysLT₁ as essential elements in the swelling-induced activation of VSOAC with ROS and Ca²⁺ as potent modulators. Inhibition of tyrosine kinases (genistein, cucurbitacin) reduces volume-sensitive taurine release, adding tyrosine kinases (Janus kinase) as regulators of VSOAC activity. Caspase-3 activity during hypoxia is unaffected by inhibition of 5-LO/CysLT₁ but reduced when swelling-induced taurine loss via VSOAC is prevented by DIDS excess extracellular taurine, indicating a beneficial role of taurine under hypoxia.
Collapse
Affiliation(s)
- Jacob Bak Holm
- Department of Biology, Section of Cellular and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
18
|
Hoffmann EK. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells. Cell Physiol Biochem 2011; 28:1061-78. [PMID: 22178996 DOI: 10.1159/000335843] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 12/26/2022] Open
Abstract
This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death.
Collapse
Affiliation(s)
- Else Kay Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Pedersen SF, Kapus A, Hoffmann EK. Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 2011; 22:1587-97. [PMID: 21852585 DOI: 10.1681/asn.2010121284] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Perturbations of cellular and systemic osmolarity severely challenge the function of all organisms and are consequently regulated very tightly. Here we outline current evidence on how cells sense volume perturbations, with particular focus on mechanisms relevant to the kidneys and to extracellular osmolarity and whole body volume homeostasis. There are a variety of molecular signals that respond to perturbations in cell volume and osmosensors or volume sensors responding to these signals. The early signals of volume perturbation include integrins, the cytoskeleton, receptor tyrosine kinases, and transient receptor potential channels. We also present current evidence on the localization and function of central and peripheral systemic osmosensors and conclude with a brief look at the still limited evidence on pathophysiological conditions associated with deranged sensing of cell volume.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|
20
|
Lambert IH, Hansen DB. Regulation of Taurine Transport Systems by Protein Kinase CK2 in Mammalian Cells. Cell Physiol Biochem 2011; 28:1099-110. [DOI: 10.1159/000335846] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2011] [Indexed: 12/28/2022] Open
|
21
|
Ceppa E, Cattaruzza F, Lyo V, Amadesi S, Pelayo JC, Poole DP, Vaksman N, Liedtke W, Cohen DM, Grady EF, Bunnett NW, Kirkwood KS. Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol 2010; 299:G556-71. [PMID: 20539005 PMCID: PMC2950679 DOI: 10.1152/ajpgi.00433.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanisms of pancreatic pain, a cardinal symptom of pancreatitis, are unknown. Proinflammatory agents that activate transient receptor potential (TRP) channels in nociceptive neurons can cause neurogenic inflammation and pain. We report a major role for TRPV4, which detects osmotic pressure and arachidonic acid metabolites, and TRPA1, which responds to 4-hydroxynonenal and cyclopentenone prostaglandins, in pancreatic inflammation and pain in mice. Immunoreactive TRPV4 and TRPA1 were detected in pancreatic nerve fibers and in dorsal root ganglia neurons innervating the pancreas, which were identified by retrograde tracing. Agonists of TRPV4 and TRPA1 increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in these neurons in culture, and neurons also responded to the TRPV1 agonist capsaicin and are thus nociceptors. Intraductal injection of TRPV4 and TRPA1 agonists increased c-Fos expression in spinal neurons, indicative of nociceptor activation, and intraductal TRPA1 agonists also caused pancreatic inflammation. The effects of TRPV4 and TRPA1 agonists on [Ca(2+)](i), pain and inflammation were markedly diminished or abolished in trpv4 and trpa1 knockout mice. The secretagogue cerulein induced pancreatitis, c-Fos expression in spinal neurons, and pain behavior in wild-type mice. Deletion of trpv4 or trpa1 suppressed c-Fos expression and pain behavior, and deletion of trpa1 attenuated pancreatitis. Thus TRPV4 and TRPA1 contribute to pancreatic pain, and TRPA1 also mediates pancreatic inflammation. Our results provide new information about the contributions of TRPV4 and TRPA1 to inflammatory pain and suggest that channel antagonists are an effective therapy for pancreatitis, when multiple proinflammatory agents are generated that can activate and sensitize these channels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wolfgang Liedtke
- 3Department of Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina; and
| | - David M. Cohen
- 4Portland Veterans Affairs Medical Center, Portland, Oregon
| | | | - Nigel W. Bunnett
- Departments of 1Surgery and ,2Physiology, University of California, San Francisco, San Francisco, California;
| | | |
Collapse
|
22
|
Villumsen KR, Duelund L, Lambert IH. Acute cholesterol depletion leads to net loss of the organic osmolyte taurine in Ehrlich Lettré tumor cells. Amino Acids 2010; 39:1521-36. [DOI: 10.1007/s00726-010-0621-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 05/05/2010] [Indexed: 11/30/2022]
|
23
|
|
24
|
Lambert IH, Klausen TK, Bergdahl A, Hougaard C, Hoffmann EK. ROS activate KCl cotransport in nonadherent Ehrlich ascites cells but K+ and Cl- channels in adherent Ehrlich Lettré and NIH3T3 cells. Am J Physiol Cell Physiol 2009; 297:C198-206. [PMID: 19419998 DOI: 10.1152/ajpcell.00613.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Addition of H(2)O(2) (0.5 mM) to Ehrlich ascites tumor cells under isotonic conditions results in a substantial (22 +/- 1%) reduction in cell volume within 25 min. The cell shrinkage is paralleled by net loss of K(+), which was significant within 8 min, whereas no concomitant increase in the K(+) or Cl(-) conductances could be observed. The H(2)O(2)-induced cell shrinkage was unaffected by the presence of clofilium and clotrimazole, which blocks volume-sensitive and Ca(2+)-activated K(+) channels, respectively, and is unaffected by a raise in extracellular K(+) concentration to a value that eliminates the electrochemical driving force for K(+). On the other hand, the H(2)O(2)-induced cell shrinkage was impaired in the presence of the KCl cotransport inhibitor (dihydro-indenyl)oxyalkanoic acid (DIOA), following substitution of NO(3)(-) for Cl(-), and when the driving force for KCl cotransport was omitted. It is suggested that H(2)O(2) activates electroneutral KCl cotransport in Ehrlich ascites tumor cells and not K(+) and Cl(-) channels. Addition of H(2)O(2) to hypotonically exposed cells accelerates the regulatory volume decrease and the concomitant net loss of K(+), whereas no additional increase in the K(+) and Cl(-) conductance was observed. The effect of H(2)O(2) on cell volume was blocked by the serine-threonine phosphatase inhibitor calyculin A, indicating an important role of serine-threonine phosphorylation in the H(2)O(2)-mediated activation of KCl cotransport in Ehrlich cells. In contrast, addition of H(2)O(2) to adherent cells, e.g., Ehrlich Lettré ascites cells, a subtype of the Ehrlich ascites tumor cells, and NIH3T3 mouse fibroblasts increased the K(+) and Cl(-) conductances after hypotonic cell swelling. Hence, H(2)O(2) induces KCl cotransport or K(+) and Cl(-) channels in nonadherent and adherent cells, respectively.
Collapse
Affiliation(s)
- Ian Henry Lambert
- Dept. of Biology, The August Krogh Building, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1054] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
26
|
Abstract
Cell volume perturbation initiates a wide array of intracellular signalling cascades, leading to protective and adaptive events and, in most cases, activation of volume-regulatory osmolyte transport, water loss, and hence restoration of cell volume and cellular function. Cell volume is challenged not only under physiological conditions, e.g. following accumulation of nutrients, during epithelial absorption/secretion processes, following hormonal/autocrine stimulation, and during induction of apoptosis, but also under pathophysiological conditions, e.g. hypoxia, ischaemia and hyponatremia/hypernatremia. On the other hand, it has recently become clear that an increase or reduction in cell volume can also serve as a specific signal in the regulation of physiological processes such as transepithelial transport, cell migration, proliferation and death. Although the mechanisms by which cell volume perturbations are sensed are still far from clear, significant progress has been made with respect to the nature of the sensors, transducers and effectors that convert a change in cell volume into a physiological response. In the present review, we summarize recent major developments in the field, and emphasize the relationship between cell volume regulation and organism physiology/pathophysiology.
Collapse
Affiliation(s)
- I H Lambert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
27
|
Gomis A, Soriano S, Belmonte C, Viana F. Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J Physiol 2008; 586:5633-49. [PMID: 18832422 DOI: 10.1113/jphysiol.2008.161257] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential (TRP) channels mediate a wide array of sensory functions. We investigated the role of TRPC5, a poorly characterized channel widely expressed in the central and peripheral nervous system, as a potential osmosensory protein. Here we show that hypoosmotic stimulation activates TRPC5 channels resulting in a large calcium influx. The response to osmotically induced membrane stretch is blocked by GsMTx-4, an inhibitor of stretch activated ion channels. Direct hypoosmotic activation of TRPC5 is independent of phospholipase C function. However, the osmotic response is inhibited in a cell line in which PIP(2) levels are reduced by regulated overexpression of a lipid phosphatase. The response was restored by increasing intracellular PIP(2) levels through the patch pipette. The mechano-sensitivity of the channel was probed in the whole-cell configuration by application of steps of positive pressure through the patch pipette. Pressure-induced membrane stretch also activated TRPC5 channels, suggesting its role as a transducer of osmo-mechanical stimuli. We also demonstrated the expression of TRPC5 in sensory neurones which together with the osmo-mechanical characteristics of TRPC5 channels suggest its putative role in mechanosensory transduction events.
Collapse
Affiliation(s)
- Ana Gomis
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández. Av. Ramón y Cajal s/n. 03550 Sant Joan d'Alacant, Alicante, Spain.
| | | | | | | |
Collapse
|
28
|
Sipe WEB, Brierley SM, Martin CM, Phillis BD, Cruz FB, Grady EF, Liedtke W, Cohen DM, Vanner S, Blackshaw LA, Bunnett NW. Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1288-98. [PMID: 18325985 DOI: 10.1152/ajpgi.00002.2008] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protease-activated receptor (PAR(2)) is expressed by nociceptive neurons and activated during inflammation by proteases from mast cells, the intestinal lumen, and the circulation. Agonists of PAR(2) cause hyperexcitability of intestinal sensory neurons and hyperalgesia to distensive stimuli by unknown mechanisms. We evaluated the role of the transient receptor potential vanilloid 4 (TRPV4) in PAR(2)-induced mechanical hyperalgesia of the mouse colon. Colonic sensory neurons, identified by retrograde tracing, expressed immunoreactive TRPV4, PAR(2), and calcitonin gene-related peptide and are thus implicated in nociception. To assess nociception, visceromotor responses (VMR) to colorectal distension (CRD) were measured by electromyography of abdominal muscles. In TRPV4(+/+) mice, intraluminal PAR(2) activating peptide (PAR(2)-AP) exacerbated VMR to graded CRD from 6-24 h, indicative of mechanical hyperalgesia. PAR(2)-induced hyperalgesia was not observed in TRPV4(-/-) mice. PAR(2)-AP evoked discharge of action potentials from colonic afferent neurons in TRPV4(+/+) mice, but not from TRPV4(-/-) mice. The TRPV4 agonists 5',6'-epoxyeicosatrienoic acid and 4alpha-phorbol 12,13-didecanoate stimulated discharge of action potentials in colonic afferent fibers and enhanced current responses recorded from retrogradely labeled colonic dorsal root ganglia neurons, confirming expression of functional TRPV4. PAR(2)-AP enhanced these responses, indicating sensitization of TRPV4. Thus TRPV4 is expressed by primary spinal afferent neurons innervating the colon. Activation of PAR(2) increases currents in these neurons, evokes discharge of action potentials from colonic afferent fibers, and induces mechanical hyperalgesia. These responses require the presence of functional TRPV4. Therefore, TRPV4 is required for PAR(2)-induced mechanical hyperalgesia and excitation of colonic afferent neurons.
Collapse
Affiliation(s)
- Walter E B Sipe
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143-0660, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernández-Fernández JM, Valverde MA. IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5'-6'-epoxyeicosatrienoic acid. ACTA ACUST UNITED AC 2008; 181:143-55. [PMID: 18378772 PMCID: PMC2287294 DOI: 10.1083/jcb.200712058] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanical and osmotic sensitivity of the transient receptor potential vanilloid 4 (TRPV4) channel depends on phospholipase A2 (PLA2) activation and the subsequent production of the arachidonic acid metabolites, epoxyeicosatrienoic acid (EET). We show that both high viscous loading and hypotonicity stimuli in native ciliated epithelial cells use PLA2–EET as the primary pathway to activate TRPV4. Under conditions of low PLA2 activation, both also use extracellular ATP-mediated activation of phospholipase C (PLC)–inositol trisphosphate (IP3) signaling to support TRPV4 gating. IP3, without being an agonist itself, sensitizes TRPV4 to EET in epithelial ciliated cells and cells heterologously expressing TRPV4, an effect inhibited by the IP3 receptor antagonist xestospongin C. Coimmunoprecipitation assays indicated a physical interaction between TRPV4 and IP3 receptor 3. Collectively, our study suggests a functional coupling between plasma membrane TRPV4 channels and intracellular store Ca2+ channels required to initiate and maintain the oscillatory Ca2+ signal triggered by high viscosity and hypotonic stimuli that do not reach a threshold level of PLA2 activation.
Collapse
Affiliation(s)
- Jacqueline Fernandes
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Cohen DM. The transient receptor potential vanilloid-responsive 1 and 4 cation channels: role in neuronal osmosensing and renal physiology. Curr Opin Nephrol Hypertens 2007; 16:451-8. [PMID: 17693761 DOI: 10.1097/mnh.0b013e32821f6060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of recent developments in the field of systemic osmoregulation, with attention to the brain and kidney. RECENT FINDINGS A number of pivotal observations underscore the primary importance of transient receptor potential channels in systemic osmoregulation and their involvement constitutes the focus of this review. Recent data suggest that transient receptor potential vanilloid-responsive 4 is a central sensor or effector of systemic hypotonicity, whereas an unidentified variant of transient receptor potential vanilloid-responsive 1 potentially serves an analogous role in systemic hypertonicity. SUMMARY Members of the transient receptor potential vanilloid-responsive subfamily of transient receptor potential channels are likely to serve as central sensors of systemic anisotonicity.
Collapse
Affiliation(s)
- David M Cohen
- Nephrology Section, Portland Veterans Affairs Medical Center and Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
31
|
Hoffmann EK, Schettino T, Marshall WS. The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:29-43. [PMID: 17289411 DOI: 10.1016/j.cbpa.2006.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/08/2006] [Accepted: 11/23/2006] [Indexed: 11/25/2022]
Abstract
This review focuses on using the knowledge on volume-sensitive transport systems in Ehrlich ascites tumour cells and NIH-3T3 cells to elucidate osmotic regulation of salt transport in epithelia. Using the intestine of the European eel (Anguilla anguilla) (an absorptive epithelium of the type described in the renal cortex thick ascending limb (cTAL)) we have focused on the role of swelling-activated K+- and anion-conductive pathways in response to hypotonicity, and on the role of the apical (luminal) Na+-K+-2Cl- cotransporter (NKCC2) in the response to hypertonicity. The shrinkage-induced activation of NKCC2 involves an interaction between the cytoskeleton and protein phosphorylation events via PKC and myosin light chain kinase (MLCK). Killifish (Fundulus heteroclitus) opercular epithelium is a Cl(-)-secreting epithelium of the type described in exocrine glands, having a CFTR channel on the apical side and the Na+/K+ ATPase, NKCC1 and a K+ channel on the basolateral side. Osmotic control of Cl- secretion across the operculum epithelium includes: (i) hyperosmotic shrinkage activation of NKCC1 via PKC, MLCK, p38, OSR1 and SPAK; (ii) deactivation of NKCC by hypotonic cell swelling and a protein phosphatase, and (iii) a protein tyrosine kinase acting on the focal adhesion kinase (FAK) to set levels of NKCC activity.
Collapse
Affiliation(s)
- E K Hoffmann
- Department of Molecular Biology, The August Krogh Building, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
32
|
Lambert IH. Activation and inactivation of the volume-sensitive taurine leak pathway in NIH3T3 fibroblasts and Ehrlich Lettre ascites cells. Am J Physiol Cell Physiol 2007; 293:C390-400. [PMID: 17537804 DOI: 10.1152/ajpcell.00104.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypotonic exposure provokes the mobilization of arachidonic acid, production of ROS, and a transient increase in taurine release in Ehrlich Lettre cells. The taurine release is potentiated by H2O2 and the tyrosine phosphatase inhibitor vanadate and reduced by the phospholipase A2 (PLA2) inhibitors bromoenol lactone (BEL) and manoalide, the 5-lipoxygenase (5-LO) inhibitor ETH-615139, the NADPH oxidase inhibitor diphenyl iodonium (DPI), and antioxidants. Thus, swelling-induced taurine efflux in Ehrlich Lettre cells involves Ca2+-independent (iPLA2)/secretory PLA2 (sPLA2) plus 5-LO activity and modulation by ROS. Vanadate and H2O2 stimulate arachidonic acid mobilization and vanadate potentiates ROS production in Ehrlich Lettre cells and NIH3T3 fibroblasts under hypotonic conditions. However, vanadate-induced potentiation of the volume-sensitive taurine efflux is, in both cell types, impaired in the presence of BEL and DPI and following restoration of the cell volume. Thus, potentiation of the volume-sensitive taurine efflux pathway following inhibition of tyrosine phosphatase activity reflects increased arachidonic acid mobilization and ROS production for downstream signaling. Vanadate delays the inactivation of volume-sensitive taurine efflux in NIH3T3 cells, and this delay is impaired in the presence of DPI. Vanadate has no effect on the inactivation of swelling-induced taurine efflux in Ehrlich Lettre cells. It is suggested that increased tyrosine phosphorylation of regulatory components of NADPH oxidase leads to increased ROS production and a subsequent delay in inactivation of the volume-sensitive taurine efflux pathway and that NADPH oxidase or antioxidative capacity differ between NIH3T3 and Ehrlich Lettre cells.
Collapse
|
33
|
Lambert IH, Pedersen SF. Multiple PLA2 isoforms regulate taurine release in NIH3T3 mouse fibroblasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 583:99-108. [PMID: 17153593 DOI: 10.1007/978-0-387-33504-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Ian Henry Lambert
- Dept. of Biochemistry, Institute for Molecular Biology and Physiology, The August Krogh Building, 13, Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
34
|
Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 2006; 578:715-33. [PMID: 17124270 PMCID: PMC2151332 DOI: 10.1113/jphysiol.2006.121111] [Citation(s) in RCA: 308] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR2) on afferent nerves to cause mechanical hyperalgesia in the skin and intestine by unknown mechanisms. We hypothesized that PAR2-mediated mechanical hyperalgesia requires sensitization of the ion channel transient receptor potential vanilloid 4 (TRPV4). Immunoreactive TRPV4 was coexpressed by rat dorsal root ganglia (DRG) neurons with PAR2, substance P (SP) and calcitonin gene-related peptide (CGRP), mediators of pain transmission. In PAR2-expressing cell lines that either naturally expressed TRPV4 (bronchial epithelial cells) or that were transfected to express TRPV4 (HEK cells), pretreatment with a PAR2 agonist enhanced Ca2+ and current responses to the TRPV4 agonists phorbol ester 4alpha-phorbol 12,13-didecanoate (4alphaPDD) and hypotonic solutions. PAR2-agonist similarly sensitized TRPV4 Ca2+ signals and currents in DRG neurons. Antagonists of phospholipase Cbeta and protein kinases A, C and D inhibited PAR2-induced sensitization of TRPV4 Ca2+ signals and currents. 4alphaPDD and hypotonic solutions stimulated SP and CGRP release from dorsal horn of rat spinal cord, and pretreatment with PAR2 agonist sensitized TRPV4-dependent peptide release. Intraplantar injection of PAR2 agonist caused mechanical hyperalgesia in mice and sensitized pain responses to the TRPV4 agonists 4alphaPDD and hypotonic solutions. Deletion of TRPV4 prevented PAR2 agonist-induced mechanical hyperalgesia and sensitization. This novel mechanism, by which PAR2 activates a second messenger to sensitize TRPV4-dependent release of nociceptive peptides and induce mechanical hyperalgesia, may underlie inflammatory hyperalgesia in diseases where proteases are activated and released.
Collapse
Affiliation(s)
- Andrew D Grant
- Department of Surgery, UCSF, 513 Parnassus Ave., Room S1268, San Francisco, CA 94143-0660, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pedersen SF, Poulsen KA, Lambert IH. Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts. Am J Physiol Cell Physiol 2006; 291:C1286-96. [PMID: 16855215 DOI: 10.1152/ajpcell.00325.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osmotic swelling of NIH3T3 mouse fibroblasts activates a bromoenol lactone (BEL)-sensitive taurine efflux, pointing to the involvement of a Ca(2+)-independent phospholipase A(2) (iPLA(2)) (Lambert IH. J Membr Biol 192: 19-32, 2003). We report that taurine efflux from NIH3T3 cells was not only increased by cell swelling but also decreased by cell shrinkage. Arachidonic acid release to the cell exterior was similarly decreased by shrinkage yet not detectably increased by swelling. NIH3T3 cells were found to express cytosolic calcium-dependent cPLA(2)-IVA, cPLA(2)-IVB, cPLA(2)-IVC, iPLA(2)-VIA, iPLA(2)-VIB, and secretory sPLA(2)-V. Arachidonic acid release from swollen cells was partially inhibited by BEL and by the sPLA(2)-inhibitor manoalide. Cell swelling elicited BEL-sensitive arachidonic acid release from the nucleus, to which iPLA(2)-VIA localized. Exposure to the bee venom peptide melittin, to increase PLA(2) substrate availability, potentiated arachidonic acid release and osmolyte efflux in a volume-sensitive, 5-lipoxygenase-dependent, cyclooxygenase-independent manner. Melittin-induced arachidonic acid release was inhibited by manoalide and slightly but significantly by BEL. A BEL-sensitive, melittin-induced PLA(2) activity was also detected in lysates devoid of sPLA(2), indicating that both sPLA(2) and iPLA(2) contribute to arachidonic acid release in vivo. Swelling-induced taurine efflux was inhibited potently by BEL and partially by manoalide, whereas the reverse was true for melittin-induced taurine efflux. It is suggested that in NIH3T3 cells, swelling-induced taurine efflux is dependent at least in part on arachidonic acid release by iPLA(2) and possibly also by sPLA(2), whereas melittin-induced taurine efflux is dependent on arachidonic acid release by sPLA(2) and, to a lesser extent, iPLA(2).
Collapse
Affiliation(s)
- Stine F Pedersen
- Department of Biochemistry, Institute for Molecular Biology and Physiology, Copenhagen, Denmark.
| | | | | |
Collapse
|
36
|
Giri S, Khan M, Rattan R, Singh I, Singh AK. Krabbe disease: psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. J Lipid Res 2006; 47:1478-92. [PMID: 16645197 DOI: 10.1194/jlr.m600084-jlr200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Globoid cell leukodystrophy (Krabbe disease) is an inherited neurological disorder caused by the pathogenomic accumulation of psychosine (galactosylsphingosine), a substrate for the deficient enzyme galactocerebroside beta-galactosidase. This study underscores the mechanism of action of psychosine in the regulation of oligodendrocyte cell death via the generation of lysophosphatidylcholine (LPC) and arachidonic acid (AA) by the activation of secretory phospholipase A2 (sPLA2). There was a significant increase in the level of LPC, indicating a phospholipase A2 (PLA2)-dependent pathobiology, in the brains of Krabbe disease patients and those of twitcher mice, an animal model of Krabbe disease. In vitro studies of the treatment of primary oligodendrocytes and the oligodendrocyte MO3.13 cell line with psychosine also showed the generation of LPC and the release of AA in a dose- and time-dependent manner, indicating psychosine-induced activation of PLA2. Studies with various pharmacological inhibitors of cytosolic phospholipase A2 and sPLA2 and psychosine-mediated induction of sPLA2 enzymatic activity in media supernatant suggest that psychosine-induced release of AA and generation of LPC is mainly contributed by sPLA2. An inhibitor of sPLA2, 7,7-dimethyl eicosadienoic acid, completely attenuated the psychosine-mediated accumulation of LPC levels, release of AA, and generation of reactive oxygen species, and blocked oligodendroyte cell death, as evident from cell survival, DNA fragmentation, and caspase 3 activity assays. This study documents for the first time that psychosine-induced cell death is mediated via the sPLA2 signaling pathway and that inhibitors of sPLA2 may hold a therapeutic potential for protection against oligodendrocyte cell death and resulting demyelination in Krabbe disease.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Arachidonic Acid/metabolism
- Brain/metabolism
- Cell Line
- Cells, Cultured
- Disease Models, Animal
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Fatty Acids, Unsaturated/pharmacology
- Female
- Humans
- Leukodystrophy, Globoid Cell/genetics
- Leukodystrophy, Globoid Cell/metabolism
- Leukodystrophy, Globoid Cell/pathology
- Lysophosphatidylcholines/metabolism
- MAP Kinase Signaling System/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Neurologic Mutants
- Models, Biological
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Phospholipases A/antagonists & inhibitors
- Phospholipases A/metabolism
- Phospholipases A2
- Psychosine/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- S Giri
- Department of Pediatrics, Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, 29425, USA
| | | | | | | | | |
Collapse
|
37
|
Stutzin A, Hoffmann EK. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol (Oxf) 2006; 187:27-42. [PMID: 16734740 DOI: 10.1111/j.1748-1716.2006.01537.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under physiological control. Thus, cell volume is under a tight and dynamic control and abnormal cell volume regulation will ultimately lead to severe cellular dysfunction, including alterations in cell proliferation and cell death. This review describes the different swelling-activated ion channels that participate as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis.
Collapse
Affiliation(s)
- A Stutzin
- Centro de Estudios Moleculares de la Célula and Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
38
|
Lambert IH, Pedersen SF, Poulsen KA. Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia. Acta Physiol (Oxf) 2006; 187:75-85. [PMID: 16734744 DOI: 10.1111/j.1748-1716.2006.01557.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phospholipase A2 (PLA2) activity is increased in mammalian cells in response to numerous stimuli such as osmotic challenge, oxidative stress and exposure to allergens. The increased PLA2 activity is seen as an increased release of free, polyunsaturated fatty acids, e.g. arachidonic acid and membrane-bound lysophospholipids. Even though arachidonic acid acts as a second messenger in its own most mammalian cells seem to rely on oxidation of the fatty acid into highly potent second messengers via, e.g. cytochrome P450, the cyclo-oxygenase, or the lipoxygenase systems for downstream signalling. Here, we review data that illustrates that stress-induced PLA2 activity involves various PLA2 subtypes and that the PLA2 in question is determined by the cell type and the physiological stress condition.
Collapse
Affiliation(s)
- I H Lambert
- Institute for Molecular Biology and Physiology, The August Krogh Building, Universitetsparken, Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
39
|
Bevan S. Chapter 7 TRP Channels as Thermosensors. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Abstract
Transient receptor potential vanilloid 4 (TRPV4) was identified as the mammalian homologue of the Caenorhabditis elegans osmosensory channel protein, OSM-9. In mammals, TRPV4 is activated by a variety of stimuli including thermal stress, fatty acid metabolites, and hypotonicity. Two distinct mechanisms have been described through which TRPV4 may be activated by hypotonicity: one involves the Src family of nonreceptor protein tyrosine kinases, whereas a second is mediated via arachidonic acid metabolites. TRPV4 likely plays a role in systemic osmoregulation; accordingly, it is expressed in the blood-brain barrier-deficient osmosensory nuclei of the hypothalamus. TRPV4 is also abundantly expressed in the kidney, and its precisely demarcated distribution along the kidney tubule permits speculation about a physiological role in this tissue. TRPV4-expressing and TRPV4-negative tubule segments co-exist at all levels of the kidney, from the cortex through the inner medulla. It is conceivable that basolaterally expressed TRPV4 transmits signals arising in the interstitium (e.g, changing tonicity) to more-distal tubule segments where "fine-tuning" of the incipient urine takes place.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology and Hypertension, Oregon Health and Science University and the Portland Veterans Affairs Medical Center, 3314 SW US Veterans Hospital Rd., Mailcode PP262, Portland, OR 97239, USA.
| |
Collapse
|
41
|
Parhamifar L, Jeppsson B, Sjölander A. Activation of cPLA 2 is required for leukotriene D 4 -induced proliferation in colon cancer cells. Carcinogenesis 2005; 26:1988-98. [PMID: 15975962 DOI: 10.1093/carcin/bgi159] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well documented that prolonged inflammatory conditions, particularly those relating to the colon, have been shown to induce cancer. We have previously demonstrated that the pro-inflammatory mediator leukotriene D(4) (LTD(4)) induces survival and proliferation in intestinal cells and that its receptor, CysLT(1), is upregulated in human colon cancer tissue. Here we demonstrate, for the first time that in both Int 407 (a non-transformed human intestinal epithelial cell line) and Caco-2 cells (a human colorectal carcinoma cell line), cytosolic phospholipase A(2)alpha (cPLA(2)alpha) is activated and translocates to the nucleus upon LTD(4) stimulation via a calcium-dependent mechanism that involves activation of protein kinase C (PKC), and the mitogen-activated protein kinases ERK1/2 and p38. We also show with a cPLA(2)alpha promoter luciferase assay, that LTD(4) induces an increase in the transcriptional activity of cPLA(2)alpha via activation of cPLA(2)alpha and the transcription factor NFkappaB. Interestingly we demonstrate here that both the basal and the LTD(4)-induced cPLA(2)alpha activity is elevated approximately 3-fold in Caco-2 colon cancer cells compared with Int 407 cells. The difference in basal activity was confirmed in human colon tumor samples by the finding of a similar increase in cPLA(2)alpha activity when compared with normal colon tissue. A functional role of the increased cPLA(2)alpha activity in tumor cells was revealed by our findings that inhibition of this enzyme reduced both basal and LTD(4)-induced proliferation, the effects being most pronounced in Caco-2 tumor cells. The present data reveal that cPLA(2)alpha, an important intracellular signal activated by inflammatory mediators, is an important regulator of colon tumor growth.
Collapse
Affiliation(s)
- Ladan Parhamifar
- Experimental Pathology, The Department of Laboratory Medicine and Surgery, Lund University, Malmö University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
42
|
Andrade YN, Fernandes J, Vázquez E, Fernández-Fernández JM, Arniges M, Sánchez TM, Villalón M, Valverde MA. TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. ACTA ACUST UNITED AC 2005; 168:869-74. [PMID: 15753126 PMCID: PMC2171792 DOI: 10.1083/jcb.200409070] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autoregulation of the ciliary beat frequency (CBF) has been proposed as the mechanism used by epithelial ciliated cells to maintain the CBF and prevent the collapse of mucociliary transport under conditions of varying mucus viscosity. Despite the relevance of this regulatory response to the pathophysiology of airways and reproductive tract, the underlying cellular and molecular aspects remain unknown. Hamster oviductal ciliated cells express the transient receptor potential vanilloid 4 (TRPV4) channel, which is activated by increased viscous load involving a phospholipase A2–dependent pathway. TRPV4-transfected HeLa cells also increased their cationic currents in response to high viscous load. This mechanical activation is prevented in native ciliated cells loaded with a TRPV4 antibody. Application of the TRPV4 synthetic ligand 4α-phorbol 12,13-didecanoate increased cationic currents, intracellular Ca2+, and the CBF in the absence of a viscous load. Therefore, TRPV4 emerges as a candidate to participate in the coupling of fluid viscosity changes to the generation of the Ca2+ signal required for the autoregulation of CBF.
Collapse
Affiliation(s)
- Yaniré N Andrade
- Grup de Fisiologia Cellular i Molecular, Unitat de Senyalització Cellular, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.
Collapse
Affiliation(s)
- Ian Henry Lambert
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, DK-2100, Copenhagen O, Denmark.
| |
Collapse
|
44
|
Abstract
The three known human Group IV phospholipase A2 (PLA2) paralogs, Group IVA, IVB and IVC, were overexpressed in Sf9 insect cells using the baculovirus expression system. An endogenous, calcium-independent PLA2 activity was identified in the insect cell lysates, which can be inhibited by bromoenol lactone (BEL). The Group IV PLA2 enzymes were characterized in overexpressing insect cell lysates in the presence of BEL, enabling their differentiation from the endogenous PLA2 activity. Group IVC PLA2 was found to have significant lysophospholipase activity, while Group IVB PLA2 did not. Of the three paralogs, only the Group IVA PLA2 shows enhanced activity in the presence of PIP2, which enables its differential detection in cell homogenates. RT-PCR was used to demonstrate the presence of all three enzymes in human U937 and human WISH cells, while only Group IVA and Group IVB PLA2 were detected in murine P388D1 cells and human astrocytes at the mRNA level.
Collapse
Affiliation(s)
- Karin Killermann Lucas
- Department of Chemistry and Biochemistry, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
45
|
Nilius B, Vriens J, Prenen J, Droogmans G, Voets T. TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 2004; 286:C195-205. [PMID: 14707014 DOI: 10.1152/ajpcell.00365.2003] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vanilloid receptor-1 (VR1, now TRPV1) was the founding member of a subgroup of cation channels within the TRP family. The TRPV subgroup contains six mammalian members, which all function as Ca2+ entry channels gated by a variety of physical and chemical stimuli. TRPV4, which displays 45% sequence identity with TRPV1, is characterized by a surprising gating promiscuity: it is activated by hypotonic cell swelling, heat, synthetic 4alpha-phorbols, and several endogenous substances including arachidonic acid (AA), the endocannabinoids anandamide and 2-AG, and cytochrome P-450 metabolites of AA, such as epoxyeicosatrienoic acids. This review summarizes data on TRPV4 as a paradigm of gating diversity in this subfamily of Ca2+ entry channels.
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratorium voor Fysiologie, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Lambert IH. Modulation of volume-sensitive taurine release from NIH3T3 mouse fibroblasts by reactive oxygen species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 559:369-378. [PMID: 18727256 DOI: 10.1007/0-387-23752-6_34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Ian Henry Lambert
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, DK-2300 Copenhagen O, Denmark.
| |
Collapse
|
47
|
Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 2003; 101:396-401. [PMID: 14691263 PMCID: PMC314196 DOI: 10.1073/pnas.0303329101] [Citation(s) in RCA: 479] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TRPV4 is a Ca(2+)- and Mg(2+)-permeable cation channel within the vanilloid receptor subgroup of the transient receptor potential (TRP) family, and it has been implicated in Ca(2+)-dependent signal transduction in several tissues, including brain and vascular endothelium. TRPV4-activating stimuli include osmotic cell swelling, heat, phorbol ester compounds, and 5',6'-epoxyeicosatrienoic acid, a cytochrome p450 epoxygenase metabolite of arachidonic acid (AA). It is presently unknown how these distinct activators converge on opening of the channel. Here, we demonstrate that blockers of phospholipase A(2) (PLA(2)) and cytochrome p450 epoxygenase inhibit activation of TRPV4 by osmotic cell swelling but not by heat and 4alpha-phorbol 12,13-didecanoate. Mutating a tyrosine residue (Tyr-555) in the N-terminal part of the third transmembrane domain to an alanine strongly impairs activation of TRPV4 by 4alpha-phorbol 12,13-didecanoate and heat but has no effect on activation by cell swelling or AA. We conclude that TRPV4-activating stimuli promote channel opening by means of distinct pathways. Cell swelling activates TRPV4 by means of the PLA(2)-dependent formation of AA, and its subsequent metabolization to 5',6'-epoxyeicosatrienoic acid by means of a cytochrome p450 epoxygenase-dependent pathway. Phorbol esters and heat operate by means of a distinct, PLA(2)- and cytochrome p450 epoxygenase-independent pathway, which critically depends on an aromatic residue at the N terminus of the third transmembrane domain.
Collapse
Affiliation(s)
- J Vriens
- Department of Physiology, Campus Gasthuisberg, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Perturbations of cell hydration as provoked by changes in ambient osmolarity or under isoosmotic conditions by hormones, second messengers, intracellular substrate accumulation, or reactive oxygen intermediates critically contribute to the physiological regulation of cell function. In general an increase in cell hydration stimulates anabolic metabolism and proliferation and provides cytoprotection, whereas cellular dehydration leads to a catabolic situation and sensitizes cells to apoptotic stimuli. Insulin produces cell swelling by inducing a net K+ and Na+ accumulation inside the cell, which results from a concerted activation of Na+/H+ exchange, Na+/K+/2Cl- symport, and the Na+/K(+)-ATPase. In the liver, insulin-induced cell swelling is critical for stimulation of glycogen and protein synthesis as well as inhibition of autophagic proteolysis. These insulin effects can largely be mimicked by hypoosmotic cell swelling, pointing to a role of cell swelling as a trigger of signal transduction. This article discusses insulin-induced signal transduction upstream of swelling and introduces the hypothesis that cell swelling as a signal amplifyer represents an essential component in insulin signaling, which contributes to the full response to insulin at the level of signal transduction and function. Cellular dehydration impairs insulin signaling and may be a major cause of insulin resistance, which develops in systemic hyperosmolarity, nutrient deprivation, uremia, oxidative challenges, and unbalanced production of insulin-counteracting hormones. Hydration changes affect cell functions at multiple levels (such as transcriptom, proteom, phosphoproteom, and the metabolom) and a system biological approach may allow us to develop a more holistic view on the hydration dependence of insulin signaling in the future.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
49
|
Ørtenblad N, Young JF, Oksbjerg N, Nielsen JH, Lambert IH. Reactive oxygen species are important mediators of taurine release from skeletal muscle cells. Am J Physiol Cell Physiol 2003; 284:C1362-73. [PMID: 12519746 DOI: 10.1152/ajpcell.00287.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study illustrates elements of the signal cascades involved in the activation of taurine efflux pathways in myotubes derived from skeletal muscle cells. Exposing primary skeletal muscle cells, loaded with (14)C-taurine, to 1) hypotonic media, 2) the phospholipase A(2) (PLA(2)) activator melittin, 3) anoxia, or 4) lysophosphatidyl choline (LPC) causes an increase in (14)C-taurine release and a concomitant production of reactive oxygen species (ROS). The antioxidants butulated hydroxy toluene and vitamin E inhibit the taurine efflux after cell swelling, anoxia, and addition of LPC. The muscle cells possess two separate taurine efflux pathways, i.e., a swelling- and melittin-induced pathway that requires 5-lipoxygenase activity for activation and a LPC-induced pathway. The two pathways are distinguished by their opposing sensitivity toward the anion channel blocker DIDS and cholesterol. These data provide evidence for PLA(2) products and ROS as key mediators of the signal cascade leading to taurine efflux in muscle.
Collapse
Affiliation(s)
- Niels Ørtenblad
- Danish Institute of Agricultural Sciences, Research Center Foulum, DK-8830, Tjele, Denmark
| | | | | | | | | |
Collapse
|
50
|
Dutta AK, Okada Y, Sabirov RZ. Regulation of an ATP-conductive large-conductance anion channel and swelling-induced ATP release by arachidonic acid. J Physiol 2002; 542:803-16. [PMID: 12154180 PMCID: PMC2290458 DOI: 10.1113/jphysiol.2002.019802] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mouse mammary C127 cells responded to hypotonic stimulation with activation of the volume-dependent ATP-conductive large conductance (VDACL) anion channel and massive release of ATP. Arachidonic acid downregulated both VDACL currents and swelling-induced ATP release in the physiological concentration range with K(d) of 4- 6 microM. The former effect observed in the whole-cell or excised patch mode was more prominent than the latter effect observed in intact cells. The arachidonate effects were direct and not mediated by downstream metabolic products, as evidenced by their insensitivity to inhibitors of arachidonate-metabolizing oxygenases, and by the observation that they were mimicked by cis-unsaturated fatty acids, which are not substrates for oxygenases. A membrane-impermeable analogue, arachidonyl coenzyme A was effective only from the cytosolic side of membrane patches suggesting that the binding site is localized intracellularly. Non-charged arachidonate analogues as well as trans-unsaturated and saturated fatty acids had no effect on VDACL currents and ATP release, indicating the importance of arachidonate's negative charge and specific hydrocarbon chain conformation in the inhibitory effect. VDACL anion channels were inhibited by arachidonic acid in two different ways: channel shutdown (K(d) of 4- 5 microM) and reduced unitary conductance (K(d) of 13-14 microM) without affecting voltage dependence of open probability. ATP(4-)-conducting inward currents measured in the presence of 100 mM ATP in the bath were reversibly inhibited by arachidonic acid. Thus, we conclude that swelling-induced ATP release and its putative pathway, the VDACL anion channel, are under a negative control by intracellular arachidonic acid signalling in mammary C127 cells.
Collapse
Affiliation(s)
- Amal K Dutta
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | |
Collapse
|