1
|
Gurzeler LA, Link M, Ibig Y, Schmidt I, Galuba O, Schoenbett J, Gasser-Didierlaurant C, Parker CN, Mao X, Bitsch F, Schirle M, Couttet P, Sigoillot F, Ziegelmüller J, Uldry AC, Teodorowicz W, Schmiedeberg N, Mühlemann O, Reinhardt J. Drug-induced eRF1 degradation promotes readthrough and reveals a new branch of ribosome quality control. Cell Rep 2023; 42:113056. [PMID: 37651229 DOI: 10.1016/j.celrep.2023.113056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/15/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.1-that restore substantial levels of functional full-length CFTR and IDUA proteins in disease models for cystic fibrosis and Hurler syndrome, respectively. In contrast to other readthrough promoters that affect stop codon decoding, the NVS compounds stimulate PTC suppression by triggering rapid proteasomal degradation of the translation termination factor eRF1. Our results show that this occurs by trapping eRF1 in the terminating ribosome, causing ribosome stalls and subsequent ribosome collisions, and activating a branch of the ribosome-associated quality control network, which involves the translational stress sensor GCN1 and the catalytic activity of the E3 ubiquitin ligases RNF14 and RNF25.
Collapse
Affiliation(s)
- Lukas-Adrian Gurzeler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marion Link
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Yvonne Ibig
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabel Schmidt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Olaf Galuba
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | - Xiaohong Mao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Francis Bitsch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Philipp Couttet
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Jana Ziegelmüller
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Wojciech Teodorowicz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Jürgen Reinhardt
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
2
|
Hong X, Ma N, Li D, Zhang M, Dong W, Huang J, Ci X, Zhang S. UBE2E2 enhances Snail-mediated epithelial-mesenchymal transition and Nrf2-mediated antioxidant activity in ovarian cancer. Cell Death Dis 2023; 14:100. [PMID: 36765041 PMCID: PMC9918489 DOI: 10.1038/s41419-023-05636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Dissemination of ovarian cancer (OvCa) cells can lead to inoperable metastatic lesions in the bowel and omentum, which have a poor prognosis despite surgical and chemotherapeutical options. A better understanding of the mechanisms underlying metastasis is urgently needed. In this study, bioinformatics analyses revealed that UBE2E2, a less-studied ubiquitin (Ub)-conjugating enzyme (E2), was upregulated in OvCa and was associated with poor prognosis. Subsequently, we performed western blot analysis and IHC staining with 88 OvCa and 26 normal ovarian tissue samples, which further confirmed that UBE2E2 protein is highly expressed in OvCa tissue but weakly expressed in normal tissue. Furthermore, the silencing of UBE2E2 blocked OvCa cell migration, epithelial-mesenchymal transition (EMT) and metastasis in vitro, whereas UBE2E2 overexpression exerted the opposite effects. Mechanistically, UBE2E2 promoted p62 accumulation and increased the activity of the Nrf2-antioxidant response element (ARE) system, which ultimately activated the Snail signaling pathway by inhibiting the ubiquitin-mediated degradation of Snail. Additionally, co-IP and immunofluorescence demonstrated that a direct interaction exists between UBE2E2 and Nrf2, and the N-terminal of UBE2E2 (residues 1-52) is required and sufficient for its interaction with Nrf2 protein. Mutations in the active site cysteine (Cys139) impaired both the function and cellular distribution of UBE2E2. More importantly, the deletion of UBE2E2 reduced tumorigenicity and metastasis in xenograft OvCa mouse models. Taken together, our findings reveal the role of the UBE2E2-Nrf2-p62-Snail signaling axis in OvCa and thus provides novel therapeutic targets for the prevention of OvCa metastasis.
Collapse
Affiliation(s)
- Xiaoling Hong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Ning Ma
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Danjie Li
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Mengwen Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wenqiuzi Dong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Insights into the Evolution of Spermatogenesis-Related Ubiquitin-Proteasome System Genes in Abdominal Testicular Laurasiatherians. Genes (Basel) 2021; 12:genes12111780. [PMID: 34828386 PMCID: PMC8620446 DOI: 10.3390/genes12111780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022] Open
Abstract
During embryonic development in mammals, the testicles generally descend into the scrotum, making the testicular temperature 2–4 °C lower than the core temperature via heat exchange and clearance, and thus more beneficial for normal spermatogenesis. Failure to descend, known as cryptorchidism, carries a series of risks such as infertility and testicular cancer. However, some mammals have evolved abdominal testes while maintaining healthy reproduction. To explore the underlying molecular mechanism, we conducted comparative genomic analyses and functional assays on the spermatogenesis-related ubiquitin–proteasome system (UPS) genes essential to sperm formation in representative laurasiatherians. Here, positive selection and rapid evolution of spermatogenesis-related UPS genes were identified in the abdominal testicular laurasiatherians. Moreover, potential convergent amino acids were found between distantly related species with similar abdominal testicles and functional analyses showed RNF8 (V437I) in abdominal testicular species (437I) has a stronger ubiquitination ability, which suggests that the mammals with abdominal testes might exhibit enhanced sperm cell histone clearance to maintain sperm formation. This evidence implies that, in response to “cryptorchidism injury”, spermatogenesis-related UPS genes in the abdominal testicular species might have undergone adaptive evolution to stabilize sperm formation. Thus, our study could provide some novel insights into the reproductive adaptation in abdominal testicular mammals.
Collapse
|
4
|
Datta KK, Periasamy P, Mohan SV, Ziegman R, Gowda H. Temporal Quantitative Proteomics Reveals Proteomic and Phosphoproteomic Alterations Associated with Adaptive Response to Hypoxia in Melanoma Cells. Cancers (Basel) 2021; 13:cancers13092175. [PMID: 33946525 PMCID: PMC8124723 DOI: 10.3390/cancers13092175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Most solid tumours, including melanoma (skin cancer), are riddled with areas lacking adequate oxygen supply due to insufficient vasculature. Cancer cells in these regions are resistant to therapies and contribute to cancer spread and poor treatment response in patients. Understanding the mechanisms by which cancer cells adapt to survive in such a hostile environment will provide novel avenues for treatment. In this study, we investigated mechanisms that melanoma cells use to adapt and survive in an oxygen-poor environment. We used four different melanoma cell lines and studied how protein levels and phosphorylation patterns on thousands of proteins change when the cells are exposed to poor oxygen conditions. This revealed potential mechanisms on which cancer cells are dependent for survival. These survival mechanisms can be potentially targeted to achieve durable response to therapy. We demonstrate this by targeting one such mechanism required for cancer cell survival. Abstract Hypoxia is a common feature in various solid tumours, including melanoma. Cancer cells in hypoxic environments are resistant to both chemotherapy and radiation. Hypoxia is also associated with immune suppression. Identification of proteins and pathways that regulate cancer cell survival in hypoxic environments can reveal potential vulnerabilities that can be exploited to improve the efficacy of anticancer therapies. We carried out temporal proteomic and phosphoproteomic profiling in melanoma cell lines to identify hypoxia-induced protein expression and phosphorylation changes. By employing a TMT-based quantitative proteomics strategy, we report the identification and quantitation of >7000 proteins and >10,000 phosphosites in melanoma cell lines grown in hypoxia. Proteomics data show metabolic reprogramming as one of the prominent adaptive responses in hypoxia. We identify several novel hypoxia-mediated phosphorylation changes that have not been reported before. They reveal kinase signalling pathways that are potentially involved in modulating cellular response to hypoxia. In addition to known protein expression changes, we identify several novel proteomic alterations associated with adaptive response to hypoxia. We show that cancer cells require the ubiquitin–proteasome system to survive in both normoxia and hypoxia. Inhibition of proteasome activity affects cell survival and may provide a novel therapeutic avenue to target cancer cells in hypoxia. Our study can serve as a valuable resource to pursue novel candidates to target hypoxia in cancers and improve the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Keshava K. Datta
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
- Correspondence: (K.K.D.); (H.G.)
| | - Parthiban Periasamy
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Sonali V. Mohan
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Rebekah Ziegman
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
| | - Harsha Gowda
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.P.); (S.V.M.); (R.Z.)
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia
- Correspondence: (K.K.D.); (H.G.)
| |
Collapse
|
5
|
Wang L, Yang L, Wang C, Zhao W, Ju Z, Zhang W, Shen J, Peng Y, An C, Luu YT, Song S, Yap TA, Ajani JA, Mills GB, Shen X, Peng G. Inhibition of the ATM/Chk2 axis promotes cGAS/STING signaling in ARID1A-deficient tumors. J Clin Invest 2021; 130:5951-5966. [PMID: 33016929 DOI: 10.1172/jci130445] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
ARID1A, a component of the chromatin-remodeling complex SWI/SNF, is one of the most frequently mutated genes in human cancer. We sought to develop rational combination therapy to potentiate the efficacy of immune checkpoint blockade in ARID1A-deficient tumors. In a proteomic analysis of a data set from The Cancer Genomic Atlas, we found enhanced expression of Chk2, a DNA damage checkpoint kinase, in ARID1A-mutated/deficient tumors. Surprisingly, we found that ARID1A targets the nonchromatin substrate Chk2 for ubiquitination. Loss of ARID1A increased the Chk2 level through modulating autoubiquitination of the E3-ligase RNF8 and thereby reducing RNF8-mediated Chk2 degradation. Inhibition of the ATM/Chk2 DNA damage checkpoint axis led to replication stress and accumulation of cytosolic DNA, which subsequently activated the DNA sensor STING-mediated innate immune response in ARID1A-deficient tumors. As expected, tumors with mutation or low expression of both ARID1A and ATM/Chk2 exhibited increased tumor-infiltrating lymphocytes and were associated with longer patient survival. Notably, an ATM inhibitor selectively potentiated the efficacy of immune checkpoint blockade in ARID1A-depleted tumors but not in WT tumors. Together, these results suggest that ARID1A's targeting of the nonchromatin substrate Chk2 for ubiquitination makes it possible to selectively modulate cancer cell-intrinsic innate immunity to enhance the antitumor activity of immune checkpoint blockade.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Yang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chen Wang
- Department of Medical Oncology, Tongji Hospital, The University of Huazhong Science & Technology, Wuhan, China
| | | | | | - Wei Zhang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianfeng Shen
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Peng
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Clemens An
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yen T Luu
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, and
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Gordon B Mills
- Department of Cell Development and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, USA
| | - Xuetong Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Li L, Bai J, Fan H, Yan J, Li S, Jiang P. E2 ubiquitin-conjugating enzyme UBE2L6 promotes Senecavirus A proliferation by stabilizing the viral RNA polymerase. PLoS Pathog 2020; 16:e1008970. [PMID: 33104725 PMCID: PMC7588118 DOI: 10.1371/journal.ppat.1008970] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022] Open
Abstract
Senecavirus A (SVA), discovered in 2002, is an emerging pathogen of swine that has since been reported in numerous pork producing countries. To date, the mechanism of SVA replication remains poorly understood. In this study, utilizing iTRAQ analysis we found that UBE2L6, an E2 ubiquitin-conjugating enzyme, is up-regulated in SVA-infected BHK-21 cells, and that its overexpression promotes SVA replication. We determined that UBE2L6 interacts with, and ubiquitinates the RNA-dependent RNA polymerase of SVA, (the 3D protein) and this ubiquitination serves to inhibit the degradation of 3D. UBE2L6-mediated ubiquitination of 3D requires a cystine at residue 86 in UBE2L6, and lysines at residues 169 and 321 in 3D. Virus with mutations in 3D (rK169R and rK321R) exhibited significantly decreased replication compared to wild type SVA and the repaired viruses, rK169R(R) and rK321R(R). These data indicate that UBE2L6, the enzyme, targets the 3D polymerase, the substrate, during SVA infection to facilitate replication. Senecavirus A (SVA) is a newly emerging pathogen causing swine idiopathic vesicular disease and epidemic transient neonatal losses. Infections have been reported in many pork producing countries, yet the mechanism of SVA replication remains poorly understood. In this study, we found that UBE2L6, an E2 ubiquitin-conjugating enzyme, is up-regulated in SVA-infected BHK-21 cells. The viral RNA dependent RNA polymerase (RdRp) 3D is ubiquitinated by UBE2L6, and the lysines at residues 169 and 321 of 3D are the required ubiquitination sites. The level of replication of recombinant viruses harboring ubiquitination-deficient 3D was significantly decreased compared to parental SVA. Our data demonstrate that UBE2L6 ubiquitinates SVA 3D, thereby facilitating SVA infection. These results may make it possible to identify novel targets for disease treatment.
Collapse
Affiliation(s)
- Liang Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JB); (PJ)
| | - Hui Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junfang Yan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shihai Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JB); (PJ)
| |
Collapse
|
7
|
Tsai L, Lopezcolorado F, Bhargava R, Mendez-Dorantes C, Jahanshir E, Stark J. RNF8 has both KU-dependent and independent roles in chromosomal break repair. Nucleic Acids Res 2020; 48:6032-6052. [PMID: 32427332 PMCID: PMC7293022 DOI: 10.1093/nar/gkaa380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Chromosomal double strand breaks (DSBs) can initiate several signaling events, such as ubiquitination, however the precise influence of such signaling on DSB repair outcomes remains poorly understood. With an RNA interference screen, we found that the E3 ubiquitin ligase RNF8 suppresses a deletion rearrangement mediated by canonical non-homologous end joining (C-NHEJ). We also found that RNF8 suppresses EJ without insertion/deletion mutations, which is a hallmark of C-NHEJ. Conversely, RNF8 promotes alternative EJ (ALT-EJ) events involving microhomology that is embedded from the edge of the DSB. These ALT-EJ events likely require limited end resection, whereas RNF8 is not required for single-strand annealing repair involving extensive end resection. Thus, RNF8 appears to specifically facilitate repair events requiring limited end resection, which we find is dependent on the DSB end protection factor KU. However, we also find that RNF8 is important for homology-directed repair (HDR) independently of KU, which appears linked to promoting PALB2 function. Finally, the influence of RNF8 on EJ is distinct from 53BP1 and the ALT-EJ factor, POLQ. We suggest that RNF8 mediates both ALT-EJ and HDR, but via distinct mechanisms, since only the former is dependent on KU.
Collapse
Affiliation(s)
- Linda Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Deshar R, Yoo W, Cho EB, Kim S, Yoon JB. RNF8 mediates NONO degradation following UV-induced DNA damage to properly terminate ATR-CHK1 checkpoint signaling. Nucleic Acids Res 2019; 47:762-778. [PMID: 30445466 PMCID: PMC6344893 DOI: 10.1093/nar/gky1166] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/02/2018] [Indexed: 12/26/2022] Open
Abstract
RNF8 plays a critical role in DNA damage response (DDR) to initiate ubiquitination-dependent signaling. To better characterize the role of RNF8 in UV-induced DDR, we searched for novel substrates of RNF8 and identified NONO as one intriguing substrate. We found that: (i) RNF8 ubiquitinates NONO and (ii) UV radiation triggers NONO ubiquitination and its subsequent degradation. Depletion of RNF8 inhibited UV-induced degradation of NONO, suggesting that RNF8 targets NONO for degradation in response to UV damage. In addition, we found that 3 NONO lysine residues (positions 279, 290 and 295) are important for conferring its instability in UV-DDR. Depletion of RNF8 or expression of NONO with lysine to arginine substitutions at positions 279, 290 and 295 prolonged CHK1 phosphorylation over an extended period of time. Furthermore, expression of the stable mutant, but not wild-type NONO, induced a prolonged S phase following UV exposure. Stable cell lines expressing the stable NONO mutant showed increased UV sensitivity in a clonogenic survival assay. Since RNF8 recruitment to the UV-damaged sites is dependent on ATR, we propose that RNF8-mediated NONO degradation and subsequent inhibition of NONO-dependent chromatin loading of TOPBP1, a key activator of ATR, function as a negative feedback loop critical for turning off ATR-CHK1 checkpoint signaling in UV-DDR.
Collapse
Affiliation(s)
- Rakesh Deshar
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Korea
| | - Wonjin Yoo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Eun-Bee Cho
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Sungjoo Kim
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
9
|
Yan W, Li J, Zhang Y, Yin Y, Cheng Z, Wang J, Hu G, Liu S, Wang Y, Xu Y, Peng H, Zhang G. RNF8 is responsible for ATRA resistance in variant acute promyelocytic leukemia with GTF2I/RARA fusion, and inhibition of the ubiquitin-proteasome pathway contributes to the reversion of ATRA resistance. Cancer Cell Int 2019; 19:84. [PMID: 30992691 PMCID: PMC6449960 DOI: 10.1186/s12935-019-0803-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/23/2019] [Indexed: 01/20/2023] Open
Abstract
Background GTF2I-RARA is a newly identified RARA fusion gene in variant acute promyelocytic leukemia (APL) patients with t(7;17)(q11;q21). Clinical manifestation in the patient showed that it is a sort of ATRA-insensitive oncogene and is different from the classic PML-RARA in terms of therapeutic reaction. Methods To reveal the functional characteristics and regulating mechanism of the GTF2I-RARA fusion gene, we established a GTF2I-RARA-transfected HL60 cell model and examined its sensitivity to ATRA by western blot, MTT assay, flow cytometry, and Wright-Giemsa staining. Coimmunoprecipitation and confocal microscopy were used to examine the binding of GTF2I-RARA and transcriptional corepressors. We also performed ChIP-seq to search for potential target genes. Immunoprecipitation, ubiquitination assay, western blot, luciferase assay, and real-time PCR were used to analyze the effects of RNF8 on RARA. Flow cytometry and Wright-Giemsa staining were used to study the effect of MG132 and ATRA on the GTF2I-RARA-transfected HL60 cell model. Result We confirmed resistance of GTF2I-RARA to ATRA. Compared with PML-RARA, GTF2I-RARA has a higher affinity to HDAC3 under ATRA treatment. Using the ChIP-sequencing approach, we identified 221 GTF2I-RARA binding sites in model cells and found that the RING finger protein 8 (RNF8) is a target gene of GTF2I-RARA. RNF8 participates in disease progression and therapy resistance in APL with the GTF2I-RARA transcript. Elevated RNF8 expression promotes the interaction between RARA and RNF8 and induces RARA Lys-48 linkage ubiquitylation and degradation, resulting in attenuated transcriptional activation of RARA. Conclusion Our results suggest that RNF8 is a key GTF2I-RARA downstream event. Using the combination of MG132 and ATRA to treat GTF2I-RARA-HL60 cells, a synergistic effect leading to GTF2I-RARA-HL60 cell differentiation was confirmed. Taken together, the targeting of RNF8 may be an alternative choice for treatment in variant APL with GTF2I-RARA fusion. Electronic supplementary material The online version of this article (10.1186/s12935-019-0803-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenzhe Yan
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Ji Li
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yang Zhang
- 2Department of Oncology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yafei Yin
- Department of Hematology, Xiangtan Central Hospital, Changsha, 410011 Hunan China
| | - Zhao Cheng
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Jiayi Wang
- 4Department of Nephrology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Guoyu Hu
- 5Department of Hematology, Zhuzhou No.1 Hospital, Zhuzhou, 410011 Hunan China
| | - Sufang Liu
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yewei Wang
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Yunxiao Xu
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Hongling Peng
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Guangsen Zhang
- 1Department of Hematology, The Secong Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
10
|
Zhou T, Yi F, Wang Z, Guo Q, Liu J, Bai N, Li X, Dong X, Ren L, Cao L, Song X. The Functions of DNA Damage Factor RNF8 in the Pathogenesis and Progression of Cancer. Int J Biol Sci 2019; 15:909-918. [PMID: 31182912 PMCID: PMC6535783 DOI: 10.7150/ijbs.31972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
The really interesting new gene (RING) finger protein 8 (RNF8) is a central factor in DNA double strand break (DSB) signal transduction. DSB damage is the most toxic type of DNA damage to cells and is related to genomic instability. Multiple roles for RNF8 have been identified in DNA damage response as well as in other functions, such as telomere protection, cell cycle control and transcriptional regulation. These functions are closely correlated to tumorigenesis and cancer progression. Indeed, deficiency of RNF8 caused spontaneous tumorigenesis in a mouse model. Deciphering these mechanisms of RNF8 may shed light on strategies for cancer treatment. In this review, we summarize the current understanding of both classical and nonclassical functions of RNF8, and discuss its roles in the pathogenesis and progression of tumor.
Collapse
Affiliation(s)
- Tingting Zhou
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Fei Yi
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Zhuo Wang
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Qiqiang Guo
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Jingwei Liu
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ning Bai
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoman Li
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiang Dong
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ling Ren
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Liu Cao
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Institute of Translational Medicine, China Medical University; Key Laboratory of Medical Cell Biology, Ministry of Education; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
11
|
Bernadotte A, Kumar R, Winblad B, Pavlov PF. In silico identification and biochemical characterization of the human dicarboxylate clamp TPR protein interaction network. FEBS Open Bio 2018; 8:1830-1843. [PMID: 30410862 PMCID: PMC6212638 DOI: 10.1002/2211-5463.12521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022] Open
Abstract
Dicarboxylate clamp tetratricopeptide repeat (dcTPR) motif‐containing proteins are well‐known partners of the heat shock protein (Hsp) 70 and Hsp90 molecular chaperones. Together, they facilitate a variety of intracellular processes, including protein folding and maturation, protein targeting, and protein degradation. An extreme C‐terminal sequence, the EEVD motif, is identical in Hsp70 and Hsp90, and is indispensable for their interaction with dcTPR proteins. However, almost no information is available on the existence of other potential dcTPR‐interacting proteins. We searched the human protein database for proteins with C‐terminal sequences similar to that of Hsp70/Hsp90 to identify potential partners of dcTPR proteins. The search identified 112 proteins containing a Hsp70/Hsp90‐like signature at their C termini. Gene Ontology enrichment analysis of identified proteins revealed enrichment of distinct protein classes, such as molecular chaperones and proteins of the ubiquitin–proteasome system, highlighting the possibility of functional specialization of proteins containing a Hsp70/Hsp90‐like signature. We confirmed interactions of selected proteins containing Hsp70/Hsp90‐like C termini with dcTPR proteins both in vitro and in situ. Analysis of interactions of 10‐amino‐acid peptides corresponding to the C termini of identified proteins with dcTPR proteins revealed significant differences in binding strength between various peptides. We propose a hierarchical mode of interaction within the dcTPR protein network. These findings describe a novel dcTPR protein interaction networks and provide a rationale for selective regulation of protein–protein interactions within this network.
Collapse
Affiliation(s)
- Alexandra Bernadotte
- Department of Molecular Biochemistry and Biophysics Karolinska Institutet Solna Sweden.,Faculty of Mechanics and Mathematics Lomonosov Moscow State University Russia
| | - Rajnish Kumar
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden.,Memory Clinic Theme Aging Karolinska University Hospital Huddinge Sweden
| | - Pavel F Pavlov
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden.,Memory Clinic Theme Aging Karolinska University Hospital Huddinge Sweden
| |
Collapse
|
12
|
Valnegri P, Huang J, Yamada T, Yang Y, Mejia LA, Cho HY, Oldenborg A, Bonni A. RNF8/UBC13 ubiquitin signaling suppresses synapse formation in the mammalian brain. Nat Commun 2017; 8:1271. [PMID: 29097665 PMCID: PMC5668370 DOI: 10.1038/s41467-017-01333-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/08/2017] [Indexed: 11/09/2022] Open
Abstract
Although ubiquitin ligases have been implicated in autism, their roles and mechanisms in brain development remain incompletely understood. Here, we report that in vivo knockdown or conditional knockout of the autism-linked ubiquitin ligase RNF8 or associated ubiquitin-conjugating enzyme UBC13 in rodent cerebellar granule neurons robustly increases the number of parallel fiber presynaptic boutons and functional parallel fiber/Purkinje cell synapses. In contrast to the role of nuclear RNF8 in proliferating cells, RNF8 operates in the cytoplasm in neurons to suppress synapse differentiation in vivo. Proteomics analyses reveal that neuronal RNF8 interacts with the HECT domain protein HERC2 and scaffold protein NEURL4, and knockdown of HERC2 or NEURL4 phenocopies the inhibition of RNF8/UBC13 signaling on synapse differentiation. In behavior analyses, granule neuron-specific knockout of RNF8 or UBC13 impairs cerebellar-dependent learning. Our study defines RNF8 and UBC13 as components of a novel cytoplasmic ubiquitin-signaling network that suppresses synapse formation in the brain.
Collapse
Affiliation(s)
- Pamela Valnegri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yue Yang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luis A Mejia
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ha Y Cho
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
RNF8 identified as a co-activator of estrogen receptor α promotes cell growth in breast cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1615-1628. [PMID: 28216286 DOI: 10.1016/j.bbadis.2017.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
The ring finger protein 8 (RNF8), a key component of protein complex crucial for DNA-damage response, consists of a forkhead-associated (FHA) domain and a really interesting new gene (RING) domain that enables it to function as an E3 ubiquitin ligase. However, the biological functions of RNF8 in estrogen receptor α (ERα)-positive breast cancer and underlying mechanisms have not been fully defined. Here, we have explored RNF8 as an associated partner of ERα in breast cancer cells, and co-activates ERα-mediated transactivation. Accordingly, RNF8 depletion inhibits the expression of endogenous ERα target genes. Interestingly, our results have demonstrated that RNF8 increases ERα stability at least partially if not all via triggering ERα monoubiquitination. RNF8 functionally promotes breast cancer cell proliferation. RNF8 is highly expressed in clinical breast cancer samples and the expression of RNF8 positively correlates with that of ERα. Up-regulation of ERα-induced transactivation by RNF8 might contribute to the promotion of breast cancer progression by allowing enhancement of ERα target gene expression. Our study describes RNF8 as a co-activator of ERα increases ERα stability via post-transcriptional pathway, and provides a new insight into mechanisms for RNF8 to promote cell growth of ERα-positive breast cancer.
Collapse
|
14
|
Santos LN, Silva ES, Santos AS, De Sá PH, Ramos RT, Silva A, Cooper PJ, Barreto ML, Loureiro S, Pinheiro CS, Alcantara-Neves NM, Pacheco LGC. De novo assembly and characterization of the Trichuris trichiura adult worm transcriptome using Ion Torrent sequencing. Acta Trop 2016; 159:132-41. [PMID: 27038556 DOI: 10.1016/j.actatropica.2016.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
Abstract
Infection with helminthic parasites, including the soil-transmitted helminth Trichuris trichiura (human whipworm), has been shown to modulate host immune responses and, consequently, to have an impact on the development and manifestation of chronic human inflammatory diseases. De novo derivation of helminth proteomes from sequencing of transcriptomes will provide valuable data to aid identification of parasite proteins that could be evaluated as potential immunotherapeutic molecules in near future. Herein, we characterized the transcriptome of the adult stage of the human whipworm T. trichiura, using next-generation sequencing technology and a de novo assembly strategy. Nearly 17.6 million high-quality clean reads were assembled into 6414 contiguous sequences, with an N50 of 1606bp. In total, 5673 protein-encoding sequences were confidentially identified in the T. trichiura adult worm transcriptome; of these, 1013 sequences represent potential newly discovered proteins for the species, most of which presenting orthologs already annotated in the related species T. suis. A number of transcripts representing probable novel non-coding transcripts for the species T. trichiura were also identified. Among the most abundant transcripts, we found sequences that code for proteins involved in lipid transport, such as vitellogenins, and several chitin-binding proteins. Through a cross-species expression analysis of gene orthologs shared by T. trichiura and the closely related parasites T. suis and T. muris it was possible to find twenty-six protein-encoding genes that are consistently highly expressed in the adult stages of the three helminth species. Additionally, twenty transcripts could be identified that code for proteins previously detected by mass spectrometry analysis of protein fractions of the whipworm somatic extract that present immunomodulatory activities. Five of these transcripts were amongst the most highly expressed protein-encoding sequences in the T. trichiura adult worm. Besides, orthologs of proteins demonstrated to have potent immunomodulatory properties in related parasitic helminths were also predicted from the T. trichiura de novo assembled transcriptome.
Collapse
Affiliation(s)
- Leonardo N Santos
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Eduardo S Silva
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - André S Santos
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Pablo H De Sá
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rommel T Ramos
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Philip J Cooper
- Institute of Infection and Immunity, St. George's University of London, London, UK; Centro de Investigacion en Enfermedades Infecciosas y Cronicas, Pontificia Universidad Catolica del Ecuador, Quito, Ecuador
| | - Maurício L Barreto
- Institute of Public Health, Federal University of Bahia, Salvador, BA, Brazil; Centro de Pesquisas Gonçalo Muniz, FIOCRUZ-BA, Salvador, BA, Brazil
| | - Sebastião Loureiro
- Institute of Public Health, Federal University of Bahia, Salvador, BA, Brazil
| | - Carina S Pinheiro
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | | | - Luis G C Pacheco
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
15
|
Kuang J, Li L, Guo L, Su Y, Wang Y, Xu Y, Wang X, Meng S, Lei L, Xu L, Shao G. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:88. [PMID: 27259701 PMCID: PMC4893263 DOI: 10.1186/s13046-016-0363-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) is a crucial step for solid tumor progression and plays an important role in cancer invasion and metastasis. RNF8 is an ubiquitin E3 ligase with RING domain, and plays essential roles in DNA damage response and cell cycle regulation. However the role of RNF8 in the pathogenesis of breast cancer is still unclear. Methods The expression of RNF8 was examined in different types of breast cell lines by Western Blotting. EMT associated markers were examined by Immunofluorescence and Western Blotting in MCF-7 when RNF8 was ectopically overexpressed, or in MDA-MB-231 when RNF8 was depleted. Transwell and wound healing assays were performed to assess the effect of RNF8 on cell mobility. The xenograft model was done with nude mice to investigate the role of RNF8 in tumor metastasis in vivo. Breast tissue arrays were used to examine the expression of RNF8 by immunohistochemistry. Kaplan-Meier survival analysis for the relationship between survival time and RNF8 signature in breast cancer was done with an online tool (http://kmplot.com/analysis/). Results RNF8 is overexpressed in highly metastatic breast cancer cell lines. Overexpression of RNF8 in MCF-7 significantly promoted EMT phenotypes and facilitated cell migration. On the contrary, silencing of RNF8 in MDA-MB-231 induced MET phenotypes and inhibited cell migration. Furthermore, we proved that these metastatic behavior promoting effects of RNF8 in breast cancer was associated with the inactivation of GSK-3β and activation of β-catenin signaling. With nude mice xenograft model, we found that shRNA mediated-downregulation of RNF8 reduced tumor metastasis in vivo. In addition, we found that RNF8 expression was higher in malignant breast cancer than that of the paired normal breast tissues, and was positively correlated with lymph node metastases and poor survival time. Conclusions RNF8 induces EMT in the breast cancer cells and promotes breast cancer metastasis, suggesting that RNF8 could be used as a potential therapeutic target for the prevention and treatment of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0363-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingyu Kuang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Limei Guo
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanrong Su
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Yuxuan Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yongjie Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaozhen Wang
- Department of Breast Surgery, the First Hospital of Jilin University, Changchun, 130021, China
| | - Shucong Meng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Liandi Lei
- Lab of Molecular Imaging, Health Science Analysis Center, Peking University, Beijing, 100191, China
| | - Luzheng Xu
- Lab of Molecular Imaging, Health Science Analysis Center, Peking University, Beijing, 100191, China
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
16
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Long DX, Wang P, Sun YJ, Chen R, Wu YJ. Neuropathy Target Esterase Is Degraded by the Ubiquitin-Proteasome Pathway with ARA54 as the Ubiquitin Ligase. Biochemistry 2015; 54:7385-92. [PMID: 26606397 DOI: 10.1021/acs.biochem.5b00879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropathy target esterase (NTE) is an endoplasmic reticulum membrane-associated phospholipase B, which is essential for embryonic and nervous system development. However, the regulation of NTE at the protein level had not been thoroughly investigated. Our previous study showed that NTE was degraded not only by the macroautophagy-lysosome pathway but also by the ubiquitin-proteasome pathway. Here we further reveal that androgen receptor-associated protein 54 (ARA54) regulated the ubiquitin-proteasome degradation of NTE. We find that deletion of the regulatory domain of NTE, which possesses a putative destruction box and thus is essential for its degradation by the proteasome, prevented its degradation by the proteasome. In addition, we demonstrate that ARA54, which has a RING finger domain and E3 ligase activity, interacts directly with NTE. Overexpression of ARA54 downregulates the protein level of NTE, and knockdown of ARA54 inhibits the degradation of NTE. The mutation in the RING domain of ARA54 blocks the degradation of NTE by ARA54, which indicates that the RING domain is essential for ARA54's E3 activity. These findings suggest that ARA54 acts as the ubiquitin ligase to regulate the ubiquitin-proteasome degradation of NTE.
Collapse
Affiliation(s)
- Ding-Xin Long
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, P. R. China.,School of Public Health, University of South China , Hengyang 421001, P. R. China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, P. R. China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, P. R. China.,Department of Veterinary Medicine and Animal Science, Beijing Agriculture College , Beijing 102206, P. R. China
| | - Rui Chen
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, P. R. China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, P. R. China
| |
Collapse
|
18
|
Dantuma NP, van Attikum H. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J 2015; 35:6-23. [PMID: 26628622 DOI: 10.15252/embj.201592595] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
A timely and accurate cellular response to DNA damage requires tight regulation of the action of DNA damage response (DDR) proteins at lesions. A multitude of posttranslational modifications (PTMs) of chromatin and chromatin-associated proteins coordinates the recruitment of critical proteins that dictate the appropriate DNA repair pathway and enable the actual repair of lesions. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are among the DNA damage-induced PTMs that have taken center stage as important DDR regulators. Redundant and multivalent interactions of DDR proteins with PTMs may not only be a means to facilitate efficient relocalization, but also a feature that allows high temporal and spatial resolution of protein recruitment to, and extraction from, DNA damage sites. In this review, we will focus on the complex interplay between such PTMs, and discuss the importance of their interconnectivity in coding DNA lesions and maintaining the integrity of the genome.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
WANG MAOXIN, CHEN XIANMING, CHEN HUI, ZHANG XIAN, LI JIANZHONG, GONG HONGXUN, SHIYAN CHEN, YANG FAN. RNF8 plays an important role in the radioresistance of human nasopharyngeal cancer cells in vitro. Oncol Rep 2015; 34:341-9. [DOI: 10.3892/or.2015.3958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
|
20
|
Ambivero CT, Cilenti L, Main S, Zervos AS. Mulan E3 ubiquitin ligase interacts with multiple E2 conjugating enzymes and participates in mitophagy by recruiting GABARAP. Cell Signal 2014; 26:2921-9. [PMID: 25224329 DOI: 10.1016/j.cellsig.2014.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022]
Abstract
Mulan is an E3 ubiquitin ligase embedded in the outer mitochondrial membrane (OMM) with its RING finger facing the cytoplasm and a large domain located in the intermembrane space (IMS). Mulan is known to have an important role in cell growth, cell death, and more recently in mitophagy. The mechanism of its function is poorly understood; but as an E3 ligase it is expected to interact with specific E2 ubiquitin conjugating enzymes and these complexes will bind and ubiquitinate specific substrates. The unique topology of Mulan can provide a direct link of communicating mitochondrial signals to the cytoplasm. Our studies identified four different E2 conjugating enzymes (Ube2E2, Ube2E3, Ube2G2 and Ube2L3) as specific interactors of Mulan. Each of these E2 conjugating enzymes was fused to the RING finger domain of Mulan and used in a modified yeast two-hybrid screen. Several unique interactors for each Mulan-E2 complex were isolated. One such specific interactor of Mulan-Ube2E3 was the GABARAP (GABAA receptor-associated protein). GABARAP is a member of the Atg8 family of proteins that plays a major role in autophagy/mitophagy. The interaction of GABARAP with Mulan-Ube2E3 required an LC3-interacting region (LIR) located in the RING finger domain of Mulan as well as the presence of Ube2E3. The isolation of four different E2 conjugating enzymes, as specific partners of Mulan E3 ligase, suggests that Mulan is involved in multiple biological pathways. In addition, the interaction of GABARAP with Mulan-Ube2E3 supports the role of Mulan as an important regulator of mitophagy and provides a plausible mechanism for its function in this process.
Collapse
Affiliation(s)
- Camilla T Ambivero
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Lucia Cilenti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Stacey Main
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Antonis S Zervos
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
21
|
Abstract
The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.
Collapse
|
22
|
Smit JJ, Sixma TK. RBR E3-ligases at work. EMBO Rep 2014; 15:142-54. [PMID: 24469331 PMCID: PMC3989860 DOI: 10.1002/embr.201338166] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 11/07/2022] Open
Abstract
The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region.
Collapse
Affiliation(s)
- Judith J Smit
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, The Netherlands Cancer InstituteAmsterdam, The Netherlands
| |
Collapse
|
23
|
Oliveira DV, Kato A, Nakamura K, Ikura T, Okada M, Kobayashi J, Yanagihara H, Saito Y, Tauchi H, Komatsu K. Histone chaperone FACT regulates homologous recombination by chromatin remodeling through interaction with RNF20. J Cell Sci 2013; 127:763-72. [PMID: 24357716 DOI: 10.1242/jcs.135855] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The E3 ubiquitin ligase RNF20 regulates chromatin structure through ubiquitylation of histone H2B, so that early homologous recombination repair (HRR) proteins can access the DNA in eukaryotes during repair. However, it remains unresolved how RNF20 itself approaches the DNA in the presence of chromatin structure. Here, we identified the histone chaperone FACT as a key protein in the early steps of HRR. Depletion of SUPT16H, a component of FACT, caused pronounced defects in accumulations of repair proteins and, consequently, decreased HRR activity. This led to enhanced sensitivity to ionizing radiation (IR) and mitomycin-C in a fashion similar to RNF20-deficient cells, indicating that SUPT16H is essential for RNF20-mediated pathway. Indeed, SUPT16H directly bound to RNF20 in vivo, and mutation at the RING-finger domain in RNF20 abolished its interaction and accumulation, as well as that of RAD51 and BRCA1, at sites of DNA double-strand breaks (DSBs), whereas the localization of SUPT16H remained intact. Interestingly, PAF1, which has been implicated in transcription as a mediator of FACT and RNF20 association, was dispensable for DNA-damage-induced interaction of RNF20 with SUPT16H. Furthermore, depletion of SUPT16H caused pronounced defects in RNF20-mediated H2B ubiquitylation and thereby, impaired accumulation of the chromatin remodeling factor SNF2h. Consistent with this observation, the defective phenotypes of SUPT16H were effectively counteracted by enforced nucleosome relaxation. Taken together, our results indicate a primary role of FACT in RNF20 recruitment and the resulting chromatin remodeling for initiation of HRR.
Collapse
Affiliation(s)
- Douglas V Oliveira
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sasaki Y, Osada S, Mori R, Imai H, Tanaka Y, Matsuhashi N, Okumura N, Nonaka K, Takahashi T, Yoshida K. Determining timing of hepatectomy for colorectal cancer with distant metastasis according to imaging-based tumor shrinkage ratio. Int J Med Sci 2013; 10:1231-41. [PMID: 23935401 PMCID: PMC3739023 DOI: 10.7150/ijms.6244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/22/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The optimal timing of surgical resection of liver metastasis remains controversial, and guidelines regarding the upper limits of operative indications have not yet been defined. Surgical indication for metastasis from colorectal cancer (CLM) based on results of preoperative chemotherapy and RNF8 was investigated. METHODS Differences in CLM size on CT were evaluated as shrinkage rate/day by dividing tumor shrinkage rates by the interval in days between CT. Levels of RNF8 of resected colorectal cancer and CLM frozen specimen were detected. RESULTS When the cut line for shrinkage rate at 12 weeks was set at 0.35%, disease-free survival was significantly better in patients with a shrinkage rate >0.35% vs. ≤0.35% (p=0.003). RNF8 expression was significantly higher in Tis (p=0.001). In liver metastasis, RNF8 expression level was significantly lower in patients with partial response to FOLFOX than with stable disease, (p=0.017). CONCLUSIONS A strategy of FOLFOX administration for 12 weeks to patients with low RNF8 expression and hepatectomy planned after 4 weeks rest may be accepted as the best therapeutic option for treating CLM.
Collapse
Affiliation(s)
| | - Shinji Osada
- Surgical Oncology, Gifu University, Graduate School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Ring Finger Protein 14 is a new regulator of TCF/β-catenin-mediated transcription and colon cancer cell survival. EMBO Rep 2013; 14:347-55. [PMID: 23449499 DOI: 10.1038/embor.2013.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 11/08/2022] Open
Abstract
T-cell factor/lymphoid enhancer factor (TCF/LEF) proteins regulate transcription by recruiting β-catenin and its associated co-regulators. Whether TCF/LEFs also recruit more factors through independent, direct interactions is not well understood. Here we discover Ring Finger Protein 14 (RNF14) as a new binding partner for all TCF/LEF transcription factors. We show that RNF14 positively regulates Wnt signalling in human cancer cells and in an in vivo zebrafish model by binding to target promoters with TCF and stabilizing β-catenin recruitment. RNF14 depletion experiments demonstrate that it is crucial for colon cancer cell survival. Therefore, we have identified a key interacting factor of TCF/β-catenin complexes to regulate Wnt gene transcription.
Collapse
|
27
|
Chahwan R, Gravel S, Matsusaka T, Jackson SP. Dma/RNF8 proteins are evolutionarily conserved E3 ubiquitin ligases that target septins. Cell Cycle 2013; 12:1000-8. [PMID: 23442799 PMCID: PMC3637335 DOI: 10.4161/cc.23947] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The budding yeast proteins Dma1 and Dma2 are members of the unique FHA-RING domain protein family and are linked to mitotic regulation and septin organization by ill-defined mechanisms. We show that Dma2 has ubiquitin ligase activity, and that septins Shs1 and Cdc11 are likely direct in vivo targets. We further propose that human RNF8, rather than Chfr, is the mammalian Dma homolog. As in yeast, RNF8 localizes to the centrosomes and cell division sites and promotes ubiquitylation of the septin SEPT7, whose depletion increases cell division anomalies. Together, these findings reveal evolutionary and functional conservation of Dma proteins, and suggest that RNF8 maintains genome stability through independent, yet analogous, nuclear and cytoplasmic ubiquitylation activities.
Collapse
Affiliation(s)
- Richard Chahwan
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
28
|
Zhang S, Zhou Y, Sarkeshik A, Yates JR, Thomson TM, Zhang Z, Lee EYC, Lee MYWT. Identification of RNF8 as a ubiquitin ligase involved in targeting the p12 subunit of DNA polymerase δ for degradation in response to DNA damage. J Biol Chem 2012; 288:2941-50. [PMID: 23233665 DOI: 10.1074/jbc.m112.423392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase δ consists of four subunits, one of which, p12, is degraded in response to DNA damage through the ubiquitin-proteasome pathway. However, the identities of the ubiquitin ligase(s) that are responsible for the proximal biochemical events in triggering proteasomal degradation of p12 are unknown. We employed a classical approach to identifying a ubiquitin ligase that is involved in p12 degradation. Using UbcH5c as ubiquitin-conjugating enzyme, a ubiquitin ligase activity that polyubiquitinates p12 was purified from HeLa cells. Proteomic analysis revealed that RNF8, a RING finger ubiquitin ligase that plays an important role in the DNA damage response, was the only ubiquitin ligase present in the purified preparation. In vivo, DNA damage-induced p12 degradation was significantly reduced by shRNA knockdown of RNF8 in cultured human cells and in RNF8(-/-) mouse epithelial cells. These studies provide the first identification of a ubiquitin ligase activity that is involved in the DNA damage-induced destruction of p12. The identification of RNF8 allows new insights into the integration of the control of p12 degradation by different DNA damage signaling pathways.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu CS, Truong LN, Aslanian A, Shi LZ, Li Y, Hwang PYH, Koh KH, Hunter T, Yates JR, Berns MW, Wu X. The RING finger protein RNF8 ubiquitinates Nbs1 to promote DNA double-strand break repair by homologous recombination. J Biol Chem 2012; 287:43984-94. [PMID: 23115235 DOI: 10.1074/jbc.m112.421545] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination plays an important role in the DNA damage response. We identified a novel interaction of the E3 ubiquitin ligase RNF8 with Nbs1, a key regulator of DNA double-strand break (DSB) repair. We found that Nbs1 is ubiquitinated both before and after DNA damage and is a direct ubiquitination substrate of RNF8. We also identified key residues on Nbs1 that are ubiquitinated by RNF8. By using laser microirradiation and live-cell imaging, we observed that RNF8 and its ubiquitination activity are important for promoting optimal binding of Nbs1 to DSB-containing chromatin. We also demonstrated that RNF8-mediated ubiquitination of Nbs1 contributes to the efficient and stable binding of Nbs1 to DSBs and is important for HR-mediated DSB repair. Taken together, these studies suggest that Nbs1 is one important target of RNF8 to regulate DNA DSB repair.
Collapse
Affiliation(s)
- Chi-Sheng Lu
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aguado-Llera D, Doménech R, Marenchino M, Vidal M, Neira JL. Non-canonical residues of the marginally stable monomeric ubiquitin conjugase from goldfish are involved in binding to the C terminus of Ring 1B. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:991-1001. [PMID: 22609416 DOI: 10.1016/j.bbapap.2012.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
E2 ubiquitin conjugases are ~20kDa enzymes involved in ubiquitination processes in eukaryotes. The E2s are responsible for the transference of ubiquitin (Ub) to E3 enzymes, which finally transfer Ub to diverse target proteins, labelling them for degradation, localization and regulation. Although their functions are relatively well-characterized, their conformational stabilities are poorly known. In this work, we have used, as a model for our biophysical and binding studies, the E2-C from Carassius auratus (goldfish), a homologue of the human ubiquitin conjugase UbcH10. E2-C(ca) was a monomeric protein with an elongated shape; moreover, the protein was only marginally stable within a narrow pH range (from 6.0 to 8.0). We also explored the binding of E2-C(ca) towards non-canonical E3 ligases. Binding of E2-C(ca) to the C terminus of murine Ring 1B (C-Ring1B), which does not contain the RING finger of the whole Ring1B, occurred with an affinity of ~400nM, as shown by fluorescence and ITC. Furthermore, binding of E2-C(ca) to C-Ring1B did not occur at its canonical E2-loops, since residues M43 and F53, far away from those loops, were involved in binding. Thus, the C-Ring1B-interacting region of E2-C(ca) comprises the first β-strand and nearby residues.
Collapse
Affiliation(s)
- David Aguado-Llera
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante, Spain
| | | | | | | | | |
Collapse
|
31
|
Rai R, Li JM, Zheng H, Lok GTM, Deng Y, Huen MSY, Chen J, Jin J, Chang S. The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection. Nat Struct Mol Biol 2011; 18:1400-7. [PMID: 22101936 DOI: 10.1038/nsmb.2172] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/07/2011] [Indexed: 12/16/2022]
Abstract
The mammalian shelterin component TPP1 has essential roles in telomere maintenance and, together with POT1, is required for the repression of DNA damage signaling at telomeres. Here we show that in Mus musculus, the E3 ubiquitin ligase Rnf8 localizes to uncapped telomeres and promotes the accumulation of DNA damage proteins 53Bp1 and γ-H2ax. In the absence of Rnf8, Tpp1 is unstable, resulting in telomere shortening and chromosome fusions through the alternative nonhomologous end-joining (A-NHEJ) repair pathway. The Rnf8 RING-finger domain is essential for Tpp1 stability and retention at telomeres. Rnf8 physically interacts with Tpp1 to generate Ubc13-dependent Lys63 polyubiquitin chains that stabilize Tpp1 at telomeres. The conserved Tpp1 residue Lys233 is important for Rnf8-mediated Tpp1 ubiquitylation and localization to telomeres. Thus, Tpp1 is a newly identified substrate for Rnf8, indicating a previously unrecognized role for Rnf8 in telomere end protection.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lok GTM, Sy SMH, Dong SS, Ching YP, Tsao SW, Thomson TM, Huen MSY. Differential regulation of RNF8-mediated Lys48- and Lys63-based poly-ubiquitylation. Nucleic Acids Res 2011; 40:196-205. [PMID: 21911360 PMCID: PMC3245915 DOI: 10.1093/nar/gkr655] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pairing of a given E3 ubiquitin ligase with different E2s allows synthesis of ubiquitin conjugates of different topologies. While this phenomenon contributes to functional diversity, it remains largely unknown how a single E3 ubiquitin ligase recognizes multiple E2s, and whether identical structural requirements determine their respective interactions. The E3 ubiquitin ligase RNF8 that plays a critically important role in transducing DNA damage signals, interacts with E2s UBCH8 and UBC13, and catalyzes both K48- and K63-linked ubiquitin chains. Interestingly, we report here that a single-point mutation (I405A) on the RNF8 polypeptide uncouples its ability in catalyzing K48- and K63-linked ubiquitin chain formation. Accordingly, while RNF8 interacted with E2s UBCH8 and UBC13, its I405A mutation selectively disrupted its functional interaction with UBCH8, and impaired K48-based poly-ubiquitylation reactions. In contrast, RNF8 I405A preserved its interaction with UBC13, synthesized K63-linked ubiquitin chains, and assembled BRCA1 and 53BP1 at sites of DNA breaks. Together, our data suggest that RNF8 regulates K48- and K63-linked poly-ubiquitylation via differential RING-dependent interactions with its E2s UBCH8 and UBC13, respectively.
Collapse
Affiliation(s)
- Gabriel Tsz-Mei Lok
- Genome Stability Research Laboratory, The University of Hong Kong, L1, Laboratory Block, 21 Sassoon Road, Hong Kong SAR
| | | | | | | | | | | | | |
Collapse
|
33
|
Wu J, Chen Y, Lu LY, Wu Y, Paulsen MT, Ljungman M, Ferguson DO, Yu X. Chfr and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol 2011; 18:761-8. [PMID: 21706008 PMCID: PMC3130800 DOI: 10.1038/nsmb.2078] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 04/20/2011] [Indexed: 12/29/2022]
Abstract
Protein ubiquitination is a critical component of the DNA damage response. To study the mechanism of the DNA damage-induced ubiquitination pathway, we analyzed the impact of the loss of two E3 ubiquitin ligases, RNF8 and Chfr. Interestingly, DNA damage-induced ATM activation is suppressed in RNF8 and Chfr double-deficient (DKO) cells, and DKO mice develop thymic lymphomas that are nearly diploid but harbor clonal chromosome translocations. Moreover, DKO mice and cells are hypersensitive to ionizing radiation. We show evidence that RNF8 and Chfr synergistically regulate histone ubiquitination to control histone H4K16 acetylation through MRG15-dependent acetyltransferase complexes. Through these complexes, RNF8 and CHFR affect chromatin relaxation and modulate ATM activation and DNA damage response pathways. Collectively, our findings demonstrate that two chromatin remodeling factors, RNF8 and Chfr, function together to activate ATM and maintain genomic stability in vivo.
Collapse
Affiliation(s)
- Jiaxue Wu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yoshioka T, Kimura M, Saio M, Era S, Okano Y. Plk1 is negatively regulated by RNF8. Biochem Biophys Res Commun 2011; 410:57-61. [PMID: 21635870 DOI: 10.1016/j.bbrc.2011.05.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 11/26/2022]
Abstract
RNF8 is a nuclear protein having an N-terminal forkhead-associated (FHA) domain and a C-terminal RING-finger (RF) domain. Depletion of RNF8 caused cell growth inhibition and cell cycle arrest at not only S but also G2/M phases. In addition, cell death was frequently observed in RNF8-depleted cells. Analyses of time-lapse microscopy revealed that the cells died in mitosis and interphase. To elucidate the RNF8 function in M phase, the Plk1 content in RNF8-depleted cells was examined. The amount of RNF8 decreased time-dependently, whereas Plk1 reciprocally increased by transfection of RNF8 siRNA. Protein contents of RNF8 and Plk1 among various cell lines were also compared. RNF8 in normal cell lines was much higher than that in many cancer cell lines. Conversely, Plk1 in normal cell lines was lower than in cancer cell lines. These results suggest that RNF8 is downregulated in many cancer cells and inversely correlated with Plk1.
Collapse
Affiliation(s)
- Takashi Yoshioka
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | |
Collapse
|
35
|
Ma T, Keller JA, Yu X. RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta Biochim Biophys Sin (Shanghai) 2011; 43:339-45. [PMID: 21444325 DOI: 10.1093/abbs/gmr016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Histone ubiquitination regulates the chromatin structure that is important for many biological processes. Recently, ubiquitination of histones was observed during the DNA damage response (DDR), and this modification is controlled by really interesting new gene (RING) domain E3 ligase, RNF8. Together with the E2 conjugating enzyme UBC13, RNF8 catalyzes ubiquitination of the histones H2A and H2AX during the DDR, thus facilitating downstream recruitment of DDR factors, such as p53 binding protein 1 (53BP1) and breast cancer type 1 susceptibility protein (BRCA1), to the damage site. Accordingly, the RNF8 knockout mice display phenotypes associated with failed DDR, including hypersensitivity to ionizing radiation, V(D)J recombination deficiency, and a predisposition to cancer. In addition to the DDR phenotypes, RNF8 knockout mice fail to generate mature sperm during spermatogenesis, resulting in male sterility. The RNF8 knockout mice also have a drastic reduction in histone ubiquitination in the testes. These findings indicate that the role of histone ubiquitination during chromatin remodeling in two different biological events could be linked by an RNF8-dependent mechanism. Here, we review the molecular mechanism of RNF8-dependent histone ubiquitination both in DDR and spermatogenesis.
Collapse
Affiliation(s)
- Teng Ma
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | |
Collapse
|
36
|
Matsunami M, Yoshioka T, Minoura T, Okano Y, Muto Y. Evolutionary features and intracellular behavior of the PRTB protein. Biochem Genet 2011; 49:458-73. [PMID: 21274613 DOI: 10.1007/s10528-011-9422-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/21/2010] [Indexed: 11/28/2022]
Abstract
Human PRTB encodes a proline-rich protein of 168 amino acids (PRTB). We analyzed the evolutionary patterns of PRTB from various vertebrate species. Maximum likelihood analyses indicated that while mammalian PRTB has been very well conserved and underwent a significantly slower rate of evolution, only the branch leading to fish PRTB has undergone adaptive evolution. We generated several mutant PRTBs fused to the GFP variant, Venus, and found that the degradation of PRTB was enhanced by the transfection of an E2, UbcH5. Since mutation of the K153 site in PRTB was refractory to its degradation, proteolysis was suggested to be mediated by ubiquitination of K153. The subcellular localization of PRTB was also investigated, which showed that mutation of the K4 site completely prevented the nuclear localization of this protein. Together, these results suggest that Lys residues might play important roles in regulating the intracellular dynamics of the PRTB protein.
Collapse
Affiliation(s)
- Miki Matsunami
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | | | | | | | | |
Collapse
|
37
|
Paliouras M, Zaman N, Lumbroso R, Kapogeorgakis L, Beitel LK, Wang E, Trifiro M. Dynamic rewiring of the androgen receptor protein interaction network correlates with prostate cancer clinical outcomes. Integr Biol (Camb) 2011; 3:1020-32. [DOI: 10.1039/c1ib00038a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Bekker-Jensen S, Mailand N. Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst) 2010; 9:1219-28. [PMID: 21035408 DOI: 10.1016/j.dnarep.2010.09.010] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2010] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks of the cellular response to DSBs is the accumulation and local concentration of a plethora of DNA damage signaling and repair proteins in the vicinity of the lesion, initiated by ATM-mediated phosphorylation of H2AX (γ-H2AX) and culminating in the generation of distinct nuclear compartments, so-called Ionizing Radiation-Induced Foci (IRIF). The assembly of proteins at the DSB-flanking chromatin occurs in a highly ordered and strictly hierarchical fashion. To a large extent, this is achieved by regulation of protein-protein interactions triggered by a variety of post-translational modifications including phosphorylation, ubiquitylation, SUMOylation, and acetylation. Over the last decade, insight into the identity of proteins residing in IRIF and the molecular underpinnings of their retention at these structures has been vastly expanded. Despite such advances, however, our understanding of the biological relevance of such DNA repair foci still remains limited. In this review, we focus on recent discoveries on the mechanisms that govern the formation of IRIF, and discuss the implications of such findings in light of our understanding of the physiological importance of these structures.
Collapse
Affiliation(s)
- Simon Bekker-Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
39
|
Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J, Panier S, Everett RD, Stewart GS, Durocher D, Weitzman MD. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 2010; 29:943-55. [PMID: 20075863 PMCID: PMC2837166 DOI: 10.1038/emboj.2009.400] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/10/2009] [Indexed: 12/18/2022] Open
Abstract
The ICP0 protein of herpes simplex virus type 1 is an E3 ubiquitin ligase and transactivator required for the efficient switch between latent and lytic infection. As DNA damaging treatments are known to reactivate latent virus, we wished to explore whether ICP0 modulates the cellular response to DNA damage. We report that ICP0 prevents accumulation of repair factors at cellular damage sites, acting between recruitment of the mediator proteins Mdc1 and 53BP1. We identify RNF8 and RNF168, cellular histone ubiquitin ligases responsible for anchoring repair factors at sites of damage, as new targets for ICP0-mediated degradation. By targeting these ligases, ICP0 expression results in loss of ubiquitinated forms of H2A, mobilization of DNA repair proteins and enhanced viral fitness. Our study raises the possibility that the ICP0-mediated control of histone ubiquitination may link DNA repair, relief of transcriptional repression, and activation of latent viral genomes.
Collapse
Affiliation(s)
- Caroline E Lilley
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mira S Chaurushiya
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Graduate Program, Division of Biology, University of California, San Diego, CA, USA
| | - Chris Boutell
- MRC Virology Unit, University of Glasgow, Glasgow, Scotland, UK
| | - Sebastien Landry
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Junghae Suh
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Stephanie Panier
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Roger D Everett
- MRC Virology Unit, University of Glasgow, Glasgow, Scotland, UK
| | - Grant S Stewart
- CRUK Institute for Cancer Studies, Birmingham University, Birmingham, UK
| | - Daniel Durocher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
40
|
Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 2010; 18:371-84. [PMID: 20153262 DOI: 10.1016/j.devcel.2010.01.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/25/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at postmeiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI) but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal.
Collapse
Affiliation(s)
- Lin-Yu Lu
- Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 1520, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
41
|
HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol 2009; 12:80-6; sup pp 1-12. [PMID: 20023648 DOI: 10.1038/ncb2008] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 11/30/2009] [Indexed: 01/16/2023]
Abstract
Regulatory ubiquitylation is emerging as an important mechanism to protect genome integrity in cells exposed to DNA damage. However, the spectrum of known ubiquitin regulators of the DNA damage response (DDR) is limited and their functional interplay is poorly understood. Here, we identify HERC2 as a factor that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. In response to ionising radiation (IR), HERC2 forms a complex with RNF8, a ubiquitin ligase involved in the DDR. The HERC2-RNF8 interaction requires IR-inducible phosphorylation of HERC2 at Thr 4827, which in turn binds to the forkhead-associated (FHA) domain of RNF8. Mechanistically, we provide evidence that HERC2 facilitates assembly of the ubiquitin-conjugating enzyme Ubc13 with RNF8, thereby promoting DNA damage-induced formation of Lys 63-linked ubiquitin chains. We also show that HERC2 interacts with, and maintains the levels of, RNF168, another ubiquitin ligase operating downstream of RNF8 (Refs 7, 8). Consequently, knockdown of HERC2 abrogates ubiquitin-dependent retention of repair factors such as 53BP1, RAP80 and BRCA1. Together with the increased radiosensitivity of HERC2-depleted cells, these results uncover a regulatory layer in the orchestration of protein interactions on damaged chromosomes and they underscore the role of ubiquitin-mediated signalling in genome maintenance.
Collapse
|
42
|
Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 2009; 7:e1000238. [PMID: 19901979 PMCID: PMC2766070 DOI: 10.1371/journal.pbio.1000238] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 09/29/2009] [Indexed: 01/23/2023] Open
Abstract
A specific microRNA reduces the synthesis of hundreds of proteins via concordant effects on the abundance and translation of the mRNAs that encode them. MicroRNAs (miRNAs) regulate gene expression posttranscriptionally by interfering with a target mRNA's translation, stability, or both. We sought to dissect the respective contributions of translational inhibition and mRNA decay to microRNA regulation. We identified direct targets of a specific miRNA, miR-124, by virtue of their association with Argonaute proteins, core components of miRNA effector complexes, in response to miR-124 transfection in human tissue culture cells. In parallel, we assessed mRNA levels and obtained translation profiles using a novel global approach to analyze polysomes separated on sucrose gradients. Analysis of translation profiles for ∼8,000 genes in these proliferative human cells revealed that basic features of translation are similar to those previously observed in rapidly growing Saccharomyces cerevisiae. For ∼600 mRNAs specifically recruited to Argonaute proteins by miR-124, we found reductions in both the mRNA abundance and inferred translation rate spanning a large dynamic range. The changes in mRNA levels of these miR-124 targets were larger than the changes in translation, with average decreases of 35% and 12%, respectively. Further, there was no identifiable subgroup of mRNA targets for which the translational response was dominant. Both ribosome occupancy (the fraction of a given gene's transcripts associated with ribosomes) and ribosome density (the average number of ribosomes bound per unit length of coding sequence) were selectively reduced for hundreds of miR-124 targets by the presence of miR-124. Changes in protein abundance inferred from the observed changes in mRNA abundance and translation profiles closely matched changes directly determined by Western analysis for 11 of 12 proteins, suggesting that our assays captured most of miR-124–mediated regulation. These results suggest that miRNAs inhibit translation initiation or stimulate ribosome drop-off preferentially near the start site and are not consistent with inhibition of polypeptide elongation, or nascent polypeptide degradation contributing significantly to miRNA-mediated regulation in proliferating HEK293T cells. The observation of concordant changes in mRNA abundance and translational rate for hundreds of miR-124 targets is consistent with a functional link between these two regulatory outcomes of miRNA targeting, and the well-documented interrelationship between translation and mRNA decay. The human genome contains directions to regulate the timing and magnitude of expression of its thousands of genes. MicroRNAs are important regulatory RNAs that tune the expression levels of tens to hundreds of specific genes by pairing to complimentary stretches in the messenger RNAs from these genes, thereby reducing their stability and their translation into protein. Although the importance of microRNAs is appreciated, little is known about the relative contributions of degradation or repression of translation of the cognate mRNAs to the overall effects on protein synthesis, or the links between these two regulatory mechanisms. We devised a simple, economical method to systematically measure mRNA translation profiles, then applied this method, in combination with gene expression analysis, to measure the effects of the human microRNA miR-124 on the abundance and apparent translation rate of its mRNA targets. We found that for the ∼600 mRNA targets of miR-124 that were identified by their association with microRNA effector complexes, around three quarters of the reduction in estimated protein synthesis was explained by changes in mRNA abundance. Although the apparent changes in translation efficiencies of the targeted mRNAs were smaller in magnitude, they were highly correlated with changes in the abundance of those RNAs, suggesting a functional link between microRNA-mediated repression of translation and mRNA decay.
Collapse
Affiliation(s)
- David G Hendrickson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Marteijn JA, Bekker-Jensen S, Mailand N, Lans H, Schwertman P, Gourdin AM, Dantuma NP, Lukas J, Vermeulen W. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. ACTA ACUST UNITED AC 2009; 186:835-47. [PMID: 19797077 PMCID: PMC2753161 DOI: 10.1083/jcb.200902150] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The epigenetic mark indicative of DNA UV damage or double-strand breaks is achieved via a common pathway regardless of the cause of damage. Chromatin modifications are an important component of the of DNA damage response (DDR) network that safeguard genomic integrity. Recently, we demonstrated nucleotide excision repair (NER)–dependent histone H2A ubiquitination at sites of ultraviolet (UV)-induced DNA damage. In this study, we show a sustained H2A ubiquitination at damaged DNA, which requires dynamic ubiquitination by Ubc13 and RNF8. Depletion of these enzymes causes UV hypersensitivity without affecting NER, which is indicative of a function for Ubc13 and RNF8 in the downstream UV–DDR. RNF8 is targeted to damaged DNA through an interaction with the double-strand break (DSB)–DDR scaffold protein MDC1, establishing a novel function for MDC1. RNF8 is recruited to sites of UV damage in a cell cycle–independent fashion that requires NER-generated, single-stranded repair intermediates and ataxia telangiectasia–mutated and Rad3-related protein. Our results reveal a conserved pathway of DNA damage–induced H2A ubiquitination for both DSBs and UV lesions, including the recruitment of 53BP1 and Brca1. Although both lesions are processed by independent repair pathways and trigger signaling responses by distinct kinases, they eventually generate the same epigenetic mark, possibly functioning in DNA damage signal amplification.
Collapse
Affiliation(s)
- Jurgen A Marteijn
- Department of Genetics, Center for Biomedical Genetics, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yoshimoto N, Tatematsu K, Okajima T, Tanizawa K, Kuroda S. Accumulation of polyubiquitinated proteins by overexpression of RBCC protein interacting with protein kinase C2, a splice variant of ubiquitin ligase RBCC protein interacting with protein kinase C1. FEBS J 2009; 276:6375-85. [DOI: 10.1111/j.1742-4658.2009.07350.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Jaworski T. Degradation and beyond: control of androgen receptor activity by the proteasome system. Cell Mol Biol Lett 2009; 11:109-31. [PMID: 16847754 PMCID: PMC6275697 DOI: 10.2478/s11658-006-0011-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 01/31/2006] [Indexed: 12/29/2022] Open
Abstract
The androgen receptor (AR) is a transcription factor belonging to the family of nuclear receptors which mediates the action of androgens in the development of urogenital structures. AR expression is regulated post-translationally by the ubiquitin/proteasome system. This regulation involves more complex mechanisms than typical degradation. The ubiquitin/proteasome system may regulate AR via mechanisms that do not engage in receptor turnover. Given the critical role of AR in sexual development, this complex regulation is especially important. Deregulation of AR signalling may be a causal factor in prostate cancer development. AR is the main target in prostate cancer therapies. Due to the critical role of the ubiquitin/proteasome system in AR regulation, current research suggests that targeting AR degradation is a promising approach.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
46
|
Xu K, Shimelis H, Linn DE, Jiang R, Yang X, Sun F, Guo Z, Chen H, Li W, Chen H, Kong X, Melamed J, Fang S, Xiao Z, Veenstra TD, Qiu Y. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell 2009; 15:270-82. [PMID: 19345326 PMCID: PMC2848969 DOI: 10.1016/j.ccr.2009.02.021] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/08/2008] [Accepted: 02/23/2009] [Indexed: 01/16/2023]
Abstract
The androgen receptor (AR) plays a critical role in prostate cancer. We have identified a ubiquitin E3 ligase, RNF6, as an AR-associated protein in a proteomic screen. RNF6 induces AR ubiquitination and promotes AR transcriptional activity. Specific knockdown of RNF6 or mutation of RNF6-induced ubiquitination acceptor sites on AR selectively alters expression of a subset of AR target genes and diminishes recruitment of AR and its coactivators to androgen-responsive elements present in the regulatory region of these genes. Furthermore, RNF6 is overexpressed in hormone-refractory human prostate cancer tissues and required for prostate cancer cell growth under androgen-depleted conditions. Our data suggest that RNF6-induced ubiquitination may regulate AR transcriptional activity and specificity through modulating cofactor recruitment.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Hermela Shimelis
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Douglas E. Linn
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Richeng Jiang
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xi Yang
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Feng Sun
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Zhiyong Guo
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Hege Chen
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Wei Li
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Hegang Chen
- Department of Epidemiology & Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiangtian Kong
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Shengyun Fang
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Zhen Xiao
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702
| | - Yun Qiu
- Department of Pharmacology & Experimental Therapeutics and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
47
|
The ubiquitin ligase Triad1 inhibits myelopoiesis through UbcH7 and Ubc13 interacting domains. Leukemia 2009; 23:1480-9. [DOI: 10.1038/leu.2009.57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Scheper J, Oliva B, Villà-Freixa J, Thomson TM. Analysis of electrostatic contributions to the selectivity of interactions between RING-finger domains and ubiquitin-conjugating enzymes. Proteins 2009; 74:92-103. [PMID: 18615712 DOI: 10.1002/prot.22120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The zinc-coordinated protein motifs known as RING-finger domains, present on a class of ubiquitin ligases (E3's), recruit ubiquitin-conjugating enzymes (E2s), tethering them to substrate proteins for covalent modification with ubiquitin. Each RING-finger domain can recruit different E2s, and these interactions are frequently selective, in that certain RING-finger domains associate preferentially with certain E2s. This selectivity acquires particular biological relevance when the recruited E2s exert specialized functions. We have explored the determinants that specify the presence or absence of experimentally detectable interaction between two RING-finger domains, those on RNF11 and RNF103, and two E2s, UBC13, a specialized E2 that catalyzes ubiquitin chain elongation through Lys63 of ubiquitin, and UbcH7, which mediates polyubiquitylation through Lys48. Through the iterative use of computational predictive tools and experimental validations, we have found that these interactions and their selectivity are partly governed by the combinations of electrostatic interactions linking specific residues of the contact interfaces. Our analysis also predicts that the main determinants of selectivity of these interactions reside on the RING-finger domains, rather than on the E2s. The application of some of these rules of interaction selectivity has permitted us to experimentally manipulate the selectivity of interaction of the RING-finger domain-E2 pairs under study.
Collapse
Affiliation(s)
- Johanna Scheper
- Department of Molecular and Cell Biology, Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | |
Collapse
|
49
|
Brooks L, Heimsath EG, Loring GL, Brenner C. FHA-RING ubiquitin ligases in cell division cycle control. Cell Mol Life Sci 2008; 65:3458-66. [PMID: 18597043 PMCID: PMC2588411 DOI: 10.1007/s00018-008-8220-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Despite the common occurrence of forkhead associated (FHA) phosphopeptide-binding domains and really interesting new gene (RING) E3 ubiquitin ligase domains, gene products containing both an N-terminal FHA domain and C-terminal RING domain constitute a highly distinctive intersection. Characterized FHA-RING ligases include the two vertebrate proteins, Checkpoint with FHA and RING (Chfr) and RING finger 8 (Rnf8), as well as three fungal proteins, Defective in mitosis (Dma1), Chf1 and Chf2. These FHA-RING ligases play roles in negative regulation of the cell division cycle, apparently by coupling protein phosphorylation events to specific ubiquitylation of target proteins. Here, the available data on upstream and downstream regulation of and by FHA-RING ligases are reviewed.
Collapse
Affiliation(s)
- L. Brooks
- Departments of Genetics and Biochemistry and Norris Cotton Cancer Center, Dartmouth Medical School, Rubin 733–HB7937, Lebanon, NH 03756 USA
| | - E. G. Heimsath
- Departments of Genetics and Biochemistry and Norris Cotton Cancer Center, Dartmouth Medical School, Rubin 733–HB7937, Lebanon, NH 03756 USA
| | | | - C. Brenner
- Departments of Genetics and Biochemistry and Norris Cotton Cancer Center, Dartmouth Medical School, Rubin 733–HB7937, Lebanon, NH 03756 USA
| |
Collapse
|
50
|
Yan J, Jetten AM. RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites. Cancer Lett 2008; 271:179-90. [PMID: 18550271 DOI: 10.1016/j.canlet.2008.04.046] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 03/18/2008] [Accepted: 04/28/2008] [Indexed: 11/27/2022]
Abstract
Chromosomal double-strand breaks (DSBs) in eukaryotes provoke a rapid, extensive modification in chromatin flanking the breaks. The DNA damage response (DDR) coordinates activation of cell cycle checkpoints, apoptosis, and DNA repair networks, to ensure accurate repair and genomic integrity. The checkpoint kinase ATM plays a critical role in the initiation of DDR in response to DSBs. The early ATM-mediated phosphorylation of the histone variant H2AX proteins near DSBs leads to the subsequent binding of MDC1, which functions as a scaffold for the recruitment and assembly of many DDR mediators and effectors, including BRCA1. Recent studies have provided new insights into the mechanism by which BRCA1 and associated proteins are recruited to DNA damage foci and revealed key roles for the receptor-associated protein 80 (RAP80) and the E3 ligase RNF8 in this process. RAP80 is an ubiquitin-interaction motif (UIM) containing protein that is associated with a BRCA1/BARD1 complex through its interaction with CCDC98 (Abraxas). The UIMs of RAP80 are critical for targeting this protein complex to DSB sites. Additional studies revealed that after binding gamma-H2AX, ATM-phosphorylated MDC1 is recognized by the FHA domain of RNF8, which subsequently binds the E2 conjugating enzyme UBC13. This complex catalyzes K63-linked polyubiquitination of histones H2A and gamma-H2AX, which are then recognized by the UIMs of RAP80, thereby facilitating the recruitment of the BRCA1/BARD1/CCDC98/RAP80 protein complex to DSB sites. Depletion of RAP80 or RNF8 impairs the translocation of BRCA1 to DNA damage sites and results in defective cell cycle checkpoint control and DSB repair. In this review, we discuss this cascade of protein phosphorylation and ubiquitination and the role it plays in the control of cellular responses to genotoxic stress by regulating the interactions, localization, and function of DDR proteins.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | | |
Collapse
|