1
|
Stephenson DG. Modeling the mechanism of Ca2+ release in skeletal muscle by DHPRs easing inhibition at RyR I1-sites. J Gen Physiol 2024; 156:e202213113. [PMID: 39230559 PMCID: PMC11390858 DOI: 10.1085/jgp.202213113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/30/2023] [Accepted: 07/01/2024] [Indexed: 09/05/2024] Open
Abstract
Ca2+ release from the sarcoplasmic reticulum (SR) plays a central role in excitation-contraction coupling (ECC) in skeletal muscles. However, the mechanism by which activation of the voltage-sensors/dihydropyridine receptors (DHPRs) in the membrane of the transverse tubular system leads to activation of the Ca2+-release channels/ryanodine receptors (RyRs) in the SR is not fully understood. Recent observations showing that a very small Ca2+ leak through RyR1s in mammalian skeletal muscle can markedly raise the background [Ca2+] in the junctional space (JS) above the Ca2+ level in the bulk of the cytosol indicate that there is a diffusional barrier between the JS and the cytosol at large. Here, I use a mathematical model to explore the hypothesis that a sudden rise in Ca2+ leak through DHPR-coupled RyR1s, caused by reduced inhibition at the RyR1 Ca2+/Mg2+ inhibitory I1-sites when the associated DHPRs are activated, is sufficient to enable synchronized responses that trigger a regenerative rise of Ca2+ release that remains under voltage control. In this way, the characteristic response to Ca2+ of RyR channels is key not only for the Ca2+ release mechanism in cardiac muscle and other tissues, but also for the DHPR-dependent Ca2+ release in skeletal muscle.
Collapse
Affiliation(s)
- D. George Stephenson
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Australia
| |
Collapse
|
2
|
Li C, Willegems K, Uchański T, Pardon E, Steyaert J, Efremov RG. Rapid small-scale nanobody-assisted purification of ryanodine receptors for cryo-EM. J Biol Chem 2024; 300:107734. [PMID: 39233227 PMCID: PMC11474372 DOI: 10.1016/j.jbc.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
Ryanodine receptors (RyRs) are large Ca2+ release channels residing in the endoplasmic or sarcoplasmic reticulum membrane. Three isoforms of RyRs have been identified in mammals, the disfunction of which has been associated with a series of life-threatening diseases. The need for large amounts of native tissue or eukaryotic cell cultures limits advances in structural studies of RyRs. Here, we report a method that utilizes nanobodies to purify RyRs from only 5 mg of total protein. The purification process, from isolated membranes to cryo-EM grade protein, is achieved within 4 h on the bench, yielding protein usable for cryo-EM analysis. This is demonstrated by solving the structures of rabbit RyR1, solubilized in detergent, reconstituted into lipid nanodiscs or liposomes, and bovine RyR2 reconstituted in nanodisc, and mouse RyR2 in detergent. The reported method facilitates structural studies of RyRs directed toward drug development and is useful in cases where the amount of starting material is limited.
Collapse
Affiliation(s)
- Chenyao Li
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Katrien Willegems
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Tomasz Uchański
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Els Pardon
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Jan Steyaert
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, VUB, Brussels, Belgium.
| |
Collapse
|
3
|
Rupasinghe N, Ranasinghe P, Wanninayake L. Dilated cardiomyopathy due to hypocalcaemia: a case report. J Med Case Rep 2024; 18:204. [PMID: 38600559 PMCID: PMC11007983 DOI: 10.1186/s13256-024-04505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Hypocalcaemia is a rare, but reversible, cause of dilated cardiomyopathy causing heart failure. Several case reports have been reported on reversible cardiomyopathy secondary to hypocalcaemia. CASE PRESENTATION We report a case of 54-year-old female Sri Lankan patient who presented with shortness of breath and was diagnosed with heart failure with reduced ejection fraction due to dilated cardiomyopathy. The etiology for dilated cardiomyopathy was identified as hypocalcemic cardiomyopathy, secondary to primary hypoparathyroidism, which was successfully treated with calcium and vitamin D replacement therapy. CONCLUSION This adds to literature of this rare cause of reversible cardiomyopathy secondary to hypocalcemia reported from the South Asian region of the world. This case highlights the impact of proper treatment improving the heart failure in patients with hypocalcemic cardiomyopathy.
Collapse
Affiliation(s)
| | - Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Leonard Wanninayake
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
4
|
Abstract
Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Shintani SA. Hole behavior captured by analysis of instantaneous amplitude and phase of sarcosynced oscillations reveals wave characteristics of sarcomeric oscillations. Biochem Biophys Res Commun 2024; 691:149339. [PMID: 38039837 DOI: 10.1016/j.bbrc.2023.149339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
In this study, we performed signal analysis based on instantaneous amplitude and phase of sarcomeric oscillations, which are generated by skeletal muscle under constant calcium concentration conditions and in which sarcomeres repeatedly contract and relax autonomously. In addition to the changes in sarcomere length that have been attracting attention, we named the Z-line oscillations that partition sarcomeres sarcosynced oscillations, and analyzed their instantaneous amplitude and phase. As a result, the behavior of pairs of sarcosynced oscillations and sarcomeric oscillations, which are produced when propagating waves propagate in one direction or collide, was clearly visualized. By focusing on the behavior of the hole, which is a dip in the instantaneous amplitude accompanied by a sudden jump in the instantaneous phase in sarcosynced oscillations, we were able to discern the wave characteristics. Transient disruption occurred in the propagating waves even when they traveled in one direction. Its properties were captured by the sarcomeric defect hole (SD hole), a dip in the instantaneous amplitude accompanied by a jump in the instantaneous phase in sarcosynced oscillations. When propagating waves collide, the collision site, its persistence, movement, and disappearance process are captured as sarcomeric collision holes (SC holes) of sarcosynced oscillations. These holes are important indicators for understanding the oscillation properties of sarcomeres. In conclusion, although sarcosynced oscillations and sarcomeric oscillations are closely related, they exhibit different oscillations, and the study of the SD holes and SC holes caused by them will contribute to a detailed understanding of the muscle characteristics of sarcomeres. This finding has important implications for improving our understanding of the efficiency of muscle function and its regulatory mechanisms.
Collapse
Affiliation(s)
- Seine A Shintani
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, 487-8501, Japan; Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Aichi, 487-8501, Japan; Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, 464-8601, Japan.
| |
Collapse
|
6
|
Xu H, Van Remmen H. The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies. Skelet Muscle 2021; 11:25. [PMID: 34772465 PMCID: PMC8588740 DOI: 10.1186/s13395-021-00280-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
As a key regulator of cellular calcium homeostasis, the Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) pump acts to transport calcium ions from the cytosol back to the sarcoplasmic reticulum (SR) following muscle contraction. SERCA function is closely associated with muscle health and function, and SERCA activity is susceptible to muscle pathogenesis. For example, it has been well reported that pathological conditions associated with aging, neurodegeneration, and muscular dystrophy (MD) significantly depress SERCA function with the potential to impair intracellular calcium homeostasis and further contribute to muscle atrophy and weakness. As a result, targeting SERCA activity has attracted attention as a therapeutical method for the treatment of muscle pathologies. The interventions include activation of SERCA activity and genetic overexpression of SERCA. This review will focus on SERCA function and regulation mechanisms and describe how those mechanisms are affected under muscle pathological conditions including elevated oxidative stress induced by aging, muscle disease, or neuromuscular disorders. We also discuss the current progress and therapeutic approaches to targeting SERCA in vivo.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA. .,Oklahoma City VA Medical Center, Oklahoma City, OK, USA. .,Department of Physiology, OUHSC, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Borges FSP, Loureiro ES, Jaurretche JE, Pessoa LGA, Arruda LA, Dias PM, Navarrete AA. Performance of phytosanitary products for control of soybean caterpillar. AN ACAD BRAS CIENC 2021; 93:e20200205. [PMID: 34705937 DOI: 10.1590/0001-3765202120200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022] Open
Abstract
The present work evaluated the efficiency of applied biological control and chemical control of Chrysodeixis includens, and the management of this looper caterpillar in the field soybean crop. The experimental design was a randomized complete block design, consisting of six treatments applied only once: two different doses of Bacillus thuringiensis (Bt), 0.2 and 0.35 L ha-1; Metarhizium rileyi strain UFMS 02 (Mr), 2.0 and 5.0 kg ha-1; insecticide Flubendiamide (Fd) 20 mL ha-1; and the control. The reduction of the pest and the percentage of efficiency of the products along the development of the soybean, besides some phytotechnical parameters, were evaluated thirteen days after the application. In general, there was a decrease in the number of caterpillars after thirteen days of spraying, with the Bt treatment being 350 mL ha-1, which provided the greatest reduction in the population (96.2%) when compared to the control (6.7 %). Regarding efficiency, treatments containing biological products Bt (two doses) and Mr 5.0 kg ha-1 provided the best results: 95.88, 84.69 and 92.35%, respectively. Among the phytotechnical parameters evaluated, the biological treatments were superior to the chemical treatments in relation to the productivity and the number of pods per plant, not differing statistically among them.
Collapse
Affiliation(s)
- Fábio S P Borges
- Agência Goiana de Defesa Agropecuária/AGRODEFESA, Unidade Operacional Local de Chapadão do Céu, Rua Jacarandá, Qd 06, Lt 13, Nº 65, Leste, 75828-000 Chapadão do Céu, GO, Brazil
| | - Elisângela S Loureiro
- Universidade Federal de Mato Grosso do Sul, Campus de Chapadão do Sul, Rod. MS 306, Km 105, Caixa Postal 112, 79560-000 Chapadão do Sul, MS, Brazil
| | - Juan Esteban Jaurretche
- GRANOL INDÚSTRIA COM E EXPORTAÇÃO, Rua 113, 435, Setor Industrial, 75802-235 Jataí, GO, Brazil
| | - Luis Gustavo A Pessoa
- Agência Goiana de Defesa Agropecuária/AGRODEFESA, Unidade Operacional Local de Chapadão do Céu, Rua Jacarandá, Qd 06, Lt 13, Nº 65, Leste, 75828-000 Chapadão do Céu, GO, Brazil
| | - Lucas A Arruda
- Agência Goiana de Defesa Agropecuária/AGRODEFESA, Unidade Operacional Local de Itajá, Rua Sebastião Borges de Freitas, 240, Centro, 75815-000 Itajá, GO, Brazil
| | - Pamella M Dias
- Universidade Federal da Grande Dourados, Rod. Dourados-Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Acacio A Navarrete
- Agência Goiana de Defesa Agropecuária/AGRODEFESA, Unidade Operacional Local de Chapadão do Céu, Rua Jacarandá, Qd 06, Lt 13, Nº 65, Leste, 75828-000 Chapadão do Céu, GO, Brazil
| |
Collapse
|
8
|
Abstract
We sought to review the effects of statins on the ryanodine receptor (RyR) and on RyR-associated diseases, with an emphasis on catecholaminergic polymorphic ventricular tachycardia (CPVT). Statins can affect skeletal muscle and produce statin-associated muscle symptoms (SAMS) but have no adverse effects on cardiac muscle. These contrasting effects may be due to differences in how statins affect the skeletal (RyR1) and cardiac (RyR2) RyR. We searched PubMed to identify English language articles reporting the pathophysiology of the RyR, the effect of statins on RyR function, and on RyR-associated genetic diseases. We selected 150 articles for abstract review, 96 of which provided sufficient information to be included and were reviewed in detail. Fifteen articles highlighted the interaction of statins with the RyR. Nine identified the interaction of statins with RyR1, six addressed the interaction of statins with RyR2, 13 suggested that statins reduce ventricular arrhythmias (VA), and seven suggested that statins increase the risk of malignant hyperthermia (MH). In general, statins increase RyR1 and decrease RyR2 activity. We identified no articles examining the effect of statins on CPVT, a condition often caused by defects in RyR2. Statins appear to increase the risk of MH and decrease the risk of ventricular arrhythmia. The effect of statins on CPVT has not been directly examined, but statins' reduction in RyR2 function and their apparent reduction in VA suggest that they may be beneficial in this condition.
Collapse
Affiliation(s)
- Mohsin Haseeb
- Division of Cardiology, Loyola University Medical Center, Maywood, Illinois
| | - Paul D Thompson
- Division of Cardiology, Hartford Hospital, Hartford, Connecticut
| |
Collapse
|
9
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Dayal A, Fernández-Quintero ML, Liedl KR, Grabner M. Pore mutation N617D in the skeletal muscle DHPR blocks Ca 2+ influx due to atypical high-affinity Ca 2+ binding. eLife 2021; 10:63435. [PMID: 34061024 PMCID: PMC8184209 DOI: 10.7554/elife.63435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle excitation-contraction (EC) coupling roots in Ca2+-influx-independent inter-channel signaling between the sarcolemmal dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR1) in the sarcoplasmic reticulum. Although DHPR Ca2+ influx is irrelevant for EC coupling, its putative role in other muscle-physiological and developmental pathways was recently examined using two distinct genetically engineered mouse models carrying Ca2+ non-conducting DHPRs: DHPR(N617D) (Dayal et al., 2017) and DHPR(E1014K) (Lee et al., 2015). Surprisingly, despite complete block of DHPR Ca2+-conductance, histological, biochemical, and physiological results obtained from these two models were contradictory. Here, we characterize the permeability and selectivity properties and henceforth the mechanism of Ca2+ non-conductance of DHPR(N617). Our results reveal that only mutant DHPR(N617D) with atypical high-affinity Ca2+ pore-binding is tight for physiologically relevant monovalent cations like Na+ and K+. Consequently, we propose a molecular model of cooperativity between two ion selectivity rings formed by negatively charged residues in the DHPR pore region.
Collapse
Affiliation(s)
- Anamika Dayal
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Manfred Grabner
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021; 22:ijms22115732. [PMID: 34072258 PMCID: PMC8199188 DOI: 10.3390/ijms22115732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.
Collapse
|
12
|
Mareedu S, Million ED, Duan D, Babu GJ. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front Physiol 2021; 12:647010. [PMID: 33897454 PMCID: PMC8063049 DOI: 10.3389/fphys.2021.647010] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment. Investigations on disease-causing mechanisms offer an opportunity to identify new therapeutic targets to treat DMD. An abnormal elevation of the intracellular calcium (Cai2+) concentration in the dystrophin-deficient muscle is a major secondary event, which contributes to disease progression in DMD. Emerging studies have suggested that targeting Ca2+-handling proteins and/or mechanisms could be a promising therapeutic strategy for DMD. Here, we provide an updated overview of the mechanistic roles the sarcolemma, sarcoplasmic/endoplasmic reticulum, and mitochondria play in the abnormal and sustained elevation of Cai2+ levels and their involvement in DMD pathogenesis. We also discuss current approaches aimed at restoring Ca2+ homeostasis as potential therapies for DMD.
Collapse
Affiliation(s)
- Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Emily D Million
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States.,Department of Biomedical, Biological & Chemical Engineering, The University of Missouri, Columbia, MO, United States
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
13
|
Balderas-Villalobos J, Steele TWE, Eltit JM. Physiological and Pathological Relevance of Selective and Nonselective Ca 2+ Channels in Skeletal and Cardiac Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:225-247. [PMID: 35138617 PMCID: PMC10683374 DOI: 10.1007/978-981-16-4254-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Contraction of the striated muscle is fundamental for human existence. The action of voluntary skeletal muscle enables activities such as breathing, establishing body posture, and diverse body movements. Additionally, highly precise motion empowers communication, artistic expression, and other activities that define everyday human life. The involuntary contraction of striated muscle is the core function of the heart and is essential for blood flow. Several ion channels are important in the transduction of action potentials to cytosolic Ca2+ signals that enable muscle contraction; however, other ion channels are involved in the progression of muscle pathologies that can impair normal life or threaten it. This chapter describes types of selective and nonselective Ca2+ permeable ion channels expressed in the striated muscle, their participation in different aspects of muscle excitation and contraction, and their relevance to the progression of some pathological states.
Collapse
Affiliation(s)
- Jaime Balderas-Villalobos
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tyler W E Steele
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Zhang W, Xue F, Bu Q, Liu X. Hypocalcemic cardiomyopathy after parathyroidectomy in a patient with uremia: A case report and literature review. J Int Med Res 2020; 48:300060520942115. [PMID: 32700587 PMCID: PMC7378728 DOI: 10.1177/0300060520942115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypocalcemia is a rare, but reversible, cause of dilated cardiomyopathy. Although
cardiomyopathy may cause severe heart failure, calcium supplementation can
reverse heart failure. We report here a patient with uremia and secondary
hyperparathyroidism, who was complicated by persistent hypocalcemia and
refractory heart failure. The cardiac failure was refractory to treatment with
digitalis and diuretics, but dramatically responded to calcium therapy and
restoration of normocalcemia. As a result, the patient was eventually diagnosed
with hypocalcemic cardiomyopathy. To the best of our knowledge, this is the
first case of this disease to be reported in a patient with uremia. Findings
from our case may help clinicians to better understand hypocalcemic
cardiomyopathy. Our case might also provide new insight into long-term cardiac
complications and prognoses of patients undergoing parathyroidectomy due to
secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feng Xue
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Quandong Bu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemei Liu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Skaliczki M, Lukács B, Magyar ZÉ, Kovács T, Bárdi M, Novák S, Diszházi G, Sárközi S, Márton I, Péli-Szabó J, Jóna I, Nánási P, Almássy J. 4-chloro-orto-cresol activates ryanodine receptor more selectively and potently than 4-chloro-meta-cresol. Cell Calcium 2020; 88:102213. [PMID: 32408025 DOI: 10.1016/j.ceca.2020.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
In this study we performed the comprehensive pharmacological analysis of two stereoisomers of 4-chloro-meta-cresol (4CMC), a popular ryanodine receptor (RyR) agonist used in muscle research. Experiments investigating the Ca2+-releasing action of the isomers demonstrated that the most potent isomer was 4-chloro-orto-cresol (4COC) (EC50 = 55 ± 14 μM), although 3-chloro-para-cresol (3CPC) was more effective, as it was able to induce higher magnitude of Ca2+ flux from isolated terminal cisterna vesicles. Nevertheless, 3CPC stimulated the hydrolytic activity of the sarcoplasmic reticulum ATP-ase (SERCA) with an EC50 of 91 ± 17 μM, while 4COC affected SERCA only in the millimolar range (IC50 = 1370 ± 88 μM). IC50 of 4CMC for SERCA pump was 167 ± 8 μM, indicating that 4CMC is not a specific RyR agonist either, as it activated RyR in a similar concentration (EC50 = 121 ± 20 μM). Our data suggest that the use of 4COC might be more beneficial than 4CMC in experiments, when Ca2+ release should be triggered through RyRs without influencing SERCA activity.
Collapse
Affiliation(s)
- Mariann Skaliczki
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary; Department of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Balázs Lukács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Zsuzsanna É Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Tünde Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Miklós Bárdi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Szabolcs Novák
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Gyula Diszházi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Sándor Sárközi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - Ildikó Márton
- Department of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Judit Péli-Szabó
- Medical Imaging Department, Division of Nuclear Medicine, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - István Jóna
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Faculty of Medicine, 98. Nagyerdei krt. PO Box: 72, Debrecen 4012, Hungary
| | - Péter Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary; Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 98. Nagyerdei krt, Debrecen, Hungary.
| |
Collapse
|
16
|
Válek M, Roblová L, Raška I, Schaffelhoferová D, Paleček T. Hypocalcaemic cardiomyopathy: a description of two cases and a literature review. ESC Heart Fail 2020; 7:1291-1301. [PMID: 32243105 PMCID: PMC7261529 DOI: 10.1002/ehf2.12693] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Hypocalcaemic cardiomyopathy is a rare form of dilated cardiomyopathy. The authors here present two cases in which symptomatic dilated cardiomyopathy was the result of severe hypocalcaemia. First, we report about a 26‐year‐old woman with primary hypoparathyroidism and then about a 74‐year‐old man with secondary hypoparathyroidism following a thyroidectomy. In both cases, the left ventricular systolic function improved after calcium supplementation. In the first case, a lack of compliance led to a repeated decrease of both serum calcium level and left ventricular systolic function. The authors also present a comprehensive summary of all cases of hypocalcaemic dilated cardiomyopathy that have been described in literature to date. The mean age of the affected patients was 48.3 years, of which 62% were female patients. The most common causes of hypocalcaemic cardiomyopathy are primary hypoparathyroidism (50%) and post‐thyroidectomy hypoparathyroidism (26%). In the post‐thyroidectomy subgroup, the median time for the development of hypocalcaemic cardiomyopathy is 10 years (range: 1.5 months to 36 years). Hypocalcaemic cardiomyopathy leads to heart failure with reduced ejection fraction in 87% of patients. Generally, the most common complications of hypoparathyroidism and/or hypocalcaemia are cerebral calcifications, cognitive deficit, and cataracts. Once calcium supplementation is administered, the disease has a good prognosis and, in most individuals, a significant improvement (21%) or even normalization (74%) of the left ventricular systolic function occurs.
Collapse
Affiliation(s)
- Martin Válek
- Second Department of Medicine, Department of Cardiovascular Medicine, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Roblová
- Second Department of Medicine, Department of Cardiovascular Medicine, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivan Raška
- Third Department of Medicine, Department of Endocrinology and Metabolism, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dita Schaffelhoferová
- Department of Cardiology, Heart Center, České Budějovice Hospital, České Budějovice, Czech Republic
| | - Tomáš Paleček
- Second Department of Medicine, Department of Cardiovascular Medicine, General University Hospital in Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Effects of adrenaline on contractility and endurance of isolated mammalian soleus with different calcium concentrations. J Muscle Res Cell Motil 2019; 40:373-378. [DOI: 10.1007/s10974-019-09551-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
|
18
|
Skeletal muscle fibre swelling contributes to force depression in rats and humans: a mechanically-skinned fibre study. J Muscle Res Cell Motil 2019; 40:343-351. [PMID: 31175519 DOI: 10.1007/s10974-019-09521-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
This study investigated the effects of fibre swelling on force production in rat and human skinned muscle fibres, using osmotic compression to reverse the fibre swelling. In mechanically-skinned fibres, the sarcolemma is removed but normal excitation-contraction coupling remains functional. Force responses in mechanically-skinned fibres were examined with and without osmotic compression by polyvinylpyrrolidone 40 kDa (PVP-40) or Dextran 500 kDa (dextran). Fibre diameter increased to 116 ± 2% (mean ± SEM) when rat skinned type II fibres were immersed in the standard intracellular solution, but remained close to the in situ size when 3% (mass/volume) PVP-40 or 4% Dextran were present. Myofibrillar Ca2+ sensitivity, as indicated by pCa50 (- log10[Ca2+] at half-maximal force), was increased in 4% Dextran (0.072 ± 0.007 pCa50 shift), but was not significantly changed in 3% PVP-40. Maximum Ca2+-activated force increased slightly to 103 ± 1% and 104 ± 1% in PVP-40 and Dextran, respectively. Both tetanic and depolarization-induced force responses in rat skinned type II fibres, elicited by electrical stimulation and ion substitution respectively, were increased by ~ 10 to 15% when the fibres were returned to their normal in situ diameter by addition of PVP-40 or Dextran. Interestingly, the potentiation of these force responses in PVP-40 was appreciably greater than could be explained by potentiation of myofibrillar function alone. These results indicate that muscle fibre swelling, as can occur with intense exercise, decreases evoked force responses by reducing both the Ca2+-sensitivity of the contractile apparatus properties and Ca2+ release from the sarcoplasmic reticulum.
Collapse
|
19
|
Greco S, Cardinali B, Falcone G, Martelli F. Circular RNAs in Muscle Function and Disease. Int J Mol Sci 2018; 19:ijms19113454. [PMID: 30400273 PMCID: PMC6274904 DOI: 10.3390/ijms19113454] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of RNA produced during pre-mRNA splicing that are emerging as new members of the gene regulatory network. In addition to being spliced in a linear fashion, exons of pre-mRNAs can be circularized by use of the 3' acceptor splice site of upstream exons, leading to the formation of circular RNA species. In this way, genetic information can be re-organized, increasing gene expression potential. Expression of circRNAs is developmentally regulated, tissue and cell-type specific, and shared across eukaryotes. The importance of circRNAs in gene regulation is now beginning to be recognized and some putative functions have been assigned to them, such as the sequestration of microRNAs or proteins, the modulation of transcription, the interference with splicing, and translation of small proteins. In accordance with an important role in normal cell biology, circRNA deregulation has been reported to be associated with diseases. Recent evidence demonstrated that circRNAs are highly expressed in striated muscle tissue, both skeletal and cardiac, that is also one of the body tissue showing the highest levels of alternative splicing. Moreover, initial studies revealed altered circRNA expression in diseases involving striated muscle, suggesting important functions of these molecules in the pathogenetic mechanisms of both heart and skeletal muscle diseases. The recent findings in this field will be described and discussed.
Collapse
Affiliation(s)
- Simona Greco
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Beatrice Cardinali
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, 00015 Rome, Italy.
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, 00015 Rome, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| |
Collapse
|
20
|
Lamb GD, Stephenson DG. Measurement of force and calcium release using mechanically skinned fibers from mammalian skeletal muscle. J Appl Physiol (1985) 2018; 125:1105-1127. [DOI: 10.1152/japplphysiol.00445.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanically skinned (or “peeled”) skeletal muscle fiber technique is a highly versatile procedure that allows controlled examination of each of the steps in the excitation-contraction (EC)-coupling sequence in skeletal muscle fibers, starting with excitation/depolarization of the transverse tubular (T)-system through to Ca2+ release from sarcoplasmic reticulum (SR) and finally force development by the contractile apparatus. It can also show the overall response of the whole EC-coupling sequence together, such as in twitch and tetanic force responses. A major advantage over intact muscle fiber preparations is that it is possible to set and rapidly manipulate the “intracellular” conditions, allowing examination of the effects of key variables (e.g., intracellular pH, ATP levels, redox state, etc.) on each individual step in EC coupling. This Cores of Reproducibility in Physiology (CORP) article describes the rationale, procedures, and experimental details of the various ways in which the mechanically skinned fiber technique is used in our laboratory to examine the physiological mechanisms controlling Ca2+ release and contraction in skeletal muscle fibers and the aberrations and dysfunction occurring with exercise and disease.
Collapse
Affiliation(s)
- Graham D. Lamb
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - D. George Stephenson
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Niu J, Yang W, Yue DT, Inoue T, Ben-Johny M. Duplex signaling by CaM and Stac3 enhances Ca V1.1 function and provides insights into congenital myopathy. J Gen Physiol 2018; 150:1145-1161. [PMID: 29950399 PMCID: PMC6080896 DOI: 10.1085/jgp.201812005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023] Open
Abstract
CaV1.1 is essential for skeletal muscle excitation-contraction coupling. Its functional expression is tuned by numerous regulatory proteins, yet underlying modulatory mechanisms remain ambiguous as CaV1.1 fails to function in heterologous systems. In this study, by dissecting channel trafficking versus gating, we evaluated the requirements for functional CaV1.1 in heterologous systems. Although coexpression of the auxiliary β subunit is sufficient for surface-membrane localization, this baseline trafficking is weak, and channels elicit a diminished open probability. The regulatory proteins calmodulin and stac3 independently enhance channel trafficking and gating via their interaction with the CaV1.1 carboxy terminus. Myopathic stac3 mutations weaken channel binding and diminish trafficking. Our findings demonstrate that multiple regulatory proteins orchestrate CaV1.1 function via duplex mechanisms. Our work also furnishes insights into the pathophysiology of stac3-associated congenital myopathy and reveals novel avenues for pharmacological intervention.
Collapse
Affiliation(s)
- Jacqueline Niu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Wanjun Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | | | - Takanari Inoue
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY
| |
Collapse
|
22
|
Laver DR. Regulation of the RyR channel gating by Ca 2+ and Mg 2. Biophys Rev 2018; 10:1087-1095. [PMID: 29926426 PMCID: PMC6082316 DOI: 10.1007/s12551-018-0433-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
Ryanodine receptors (RyRs) are the Ca2+ release channels in the sarcoplasmic reticulum in striated muscle which play an important role in excitation-contraction coupling and cardiac pacemaking. Single channel recordings have revealed a wealth of information about ligand regulation of RyRs from mammalian skeletal and cardiac muscle (RyR1 and RyR2, respectively). RyR subunit has a Ca2+ activation site located in the luminal and cytoplasmic domains of the RyR. These sites synergistically feed into a common gating mechanism for channel activation by luminal and cytoplasmic Ca2+. RyRs also possess two inhibitory sites in their cytoplasmic domains with Ca2+ affinities of the order of 1 μM and 1 mM. Magnesium competes with Ca2+ at these sites to inhibit RyRs and this plays an important role in modulating their Ca2+-dependent activity in muscle. This review focuses on how these sites lead to RyR modulation by Ca2+ and Mg2+ and how these mechanisms control Ca2+ release in excitation-contraction coupling and cardiac pacemaking.
Collapse
Affiliation(s)
- Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
23
|
De Oliveira PFA, Durigan JLQ, Modesto KAG, Bottaro M, Babault N. Neuromuscular fatigue after low- and medium-frequency electrical stimulation in healthy adults. Muscle Nerve 2018; 58:293-299. [PMID: 29687898 DOI: 10.1002/mus.26143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2018] [Indexed: 11/10/2022]
Abstract
INTRODUCTION In this study we investigated fatigue origins induced by low-frequency pulsed current (PC) and medium-frequency current (MF) neuromuscular electrical stimulation (NMES) after a clinical-like session. METHODS Eleven healthy men randomly underwent 2 NMES sessions, PC and MF, on quadriceps muscle (15-minute duration, 6 seconds on and 18 seconds off). Maximal voluntary contraction (MVC), central activation ratio (CAR), vastus lateralis electromyographic activity (EMG), and evoked contractile properties were determined before and after the sessions. Evoked torque and discomfort during the sessions were also measured. RESULTS Both currents produced decreases in MVC, EMG, and evoked contractile properties after the sessions. No difference was found between currents for all variables (P > 0.05). Evoked torque during sessions decreased (P < 0.05). No difference was observed in mean evoked torque and discomfort (P > 0.05). DISCUSSION Both currents induced similar neuromuscular fatigue. Clinicians can choose either PC or MF and expect similar treatment effects when the goal is to generate gains in muscle strength. Muscle Nerve 58: 293-299, 2018.
Collapse
Affiliation(s)
- Pedro Ferreira Alves De Oliveira
- Federal Institute of Brasília, Brasília, Federal District, 72015-606, Brazil.,College of Physical Education, University of Brasília, Brasília, Federal District, Brazil
| | - João Luiz Quagliotti Durigan
- College of Physiotherapy, University of Brasília, Brasília, Federal District, Brazil.,College of Physical Education, University of Brasília, Brasília, Federal District, Brazil
| | | | - Martim Bottaro
- College of Physical Education, University of Brasília, Brasília, Federal District, Brazil
| | - Nicolas Babault
- Centre d'Expertise de la Performance, CAPS, U1093 INSERM, Université de Bourgogne, Faculté des Sciences du Sport, Dijon, Bourgogne, France
| |
Collapse
|
24
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
25
|
Hijikata Y, Katsuno M, Suzuki K, Hashizume A, Araki A, Yamada S, Inagaki T, Ito D, Hirakawa A, Kinoshita F, Gosho M, Sobue G. Treatment with Creatine Monohydrate in Spinal and Bulbar Muscular Atrophy: Protocol for a Randomized, Double-Blind, Placebo-Controlled Trial. JMIR Res Protoc 2018; 7:e69. [PMID: 29506970 PMCID: PMC5859194 DOI: 10.2196/resprot.8655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/26/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background Although spinal and bulbar muscular atrophy (SBMA) has been classified as a motor neuron disease, several reports have indicated the primary involvement of skeletal muscle in the pathogenesis of this devastating disease. Recent studies reported decreased intramuscular creatine levels in skeletal muscles in both patients with SBMA and transgenic mouse models of SBMA, which appears to contribute to muscle weakness. Objective The present study aimed to examine the efficacy and safety of oral creatine supplementation to improve motor function in patients with SBMA. Methods A randomized, double-blind, placebo-controlled, three-armed clinical trial was conducted to assess the safety and efficacy of creatine therapy in patients with SBMA. Patients with SBMA eligible for this study were assigned randomly in a 1:1:1 ratio to each group of placebo, 10 g, or 15 g daily dose of creatine monohydrate in a double-blind fashion. Participants took creatine or placebo orally 3 times a day for 8 weeks. Outcome measurements were results of neurological assessments, examinations, and questionnaires collected at baseline and at weeks 4, 8, and 16 after a washout period. The primary endpoint was the change in handgrip strength values from baseline to week 8. The secondary endpoints included the following: results of maximum voluntary isometric contraction tests of extremities; tongue pressure; results of the 15-foot timed walk test and the rise from bed test; modified quantitative myasthenia gravis score; respiratory function test results; activities of daily living assessed with the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale and the Spinal and Bulbar Muscular Atrophy Functional Rating Scale; skeletal muscle mass measured with dual-energy X-ray absorptiometry; urinary 8-hydroxydeoxyguanosine levels; and questionnaires examining the quality of life, swallowing function, and fatigue. Results Participant enrollment in the trial started from June 2014 and follow-up was completed in July 2015. The study is currently being analyzed. Conclusions This is the first clinical trial evaluating creatine therapy in SBMA. Given that creatine serves as an energy source in skeletal muscles, recovery of intramuscular creatine concentration is expected to improve muscle strength. Trial Registration University Hospital Medical Information Network Clinical Trials Registry UMIN000012503; https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000014611 (Archived by WebCite at http://www.webcitation.org/6xOlbPkg3).
Collapse
Affiliation(s)
- Yasuhiro Hijikata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Innovation Center for Clinical Research, National Center for Geriatnics and Gerontology, Obu, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Amane Araki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonori Inagaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Biostatistics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumie Kinoshita
- Biostatistics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Gosho
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
Cheng AJ, Place N, Westerblad H. Molecular Basis for Exercise-Induced Fatigue: The Importance of Strictly Controlled Cellular Ca 2+ Handling. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029710. [PMID: 28432118 DOI: 10.1101/cshperspect.a029710] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The contractile function of skeletal muscle declines during intense or prolonged physical exercise, that is, fatigue develops. Skeletal muscle fibers fatigue acutely during highly intense exercise when they have to rely on anaerobic metabolism. Early stages of fatigue involve impaired myofibrillar function, whereas decreased Ca2+ release from the sarcoplasmic reticulum (SR) becomes more important in later stages. SR Ca2+ release can also become reduced with more prolonged, lower intensity exercise, and it is then related to glycogen depletion. Increased reactive oxygen/nitrogen species can cause long-lasting impairments in SR Ca2+ release resulting in a prolonged force depression after exercise. In this article, we discuss molecular and cellular mechanisms of the above fatigue-induced changes, with special focus on multiple mechanisms to decrease SR Ca2+ release to avoid energy depletion and preserve muscle fiber integrity. We also discuss fatigue-related effects of exercise-induced Ca2+ fluxes over the sarcolemma and between the cytoplasm and mitochondria.
Collapse
Affiliation(s)
- Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nicolas Place
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
27
|
Lainé J, Skoglund G, Fournier E, Tabti N. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes. Skelet Muscle 2018; 8:1. [PMID: 29304851 PMCID: PMC5756430 DOI: 10.1186/s13395-017-0147-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/08/2017] [Indexed: 01/25/2023] Open
Abstract
Background Human induced pluripotent stem cells-derived myogenic progenitors develop functional and ultrastructural features typical of skeletal muscle when differentiated in culture. Besides disease-modeling, such a system can be used to clarify basic aspects of human skeletal muscle development. In the present study, we focus on the development of the excitation-contraction (E-C) coupling, a process that is essential both in muscle physiology and as a tool to differentiate between the skeletal and cardiac muscle. The occurrence and maturation of E-C coupling structures (Sarcoplasmic Reticulum-Transverse Tubule (SR-TT) junctions), key molecular components, and Ca2+ signaling were examined, along with myofibrillogenesis. Methods Pax7+-myogenic progenitors were differentiated in culture, and developmental changes were examined from a few days up to several weeks. Ion channels directly involved in the skeletal muscle E-C coupling (RyR1 and Cav1.1 voltage-gated Ca2+ channels) were labeled using indirect immunofluorescence. Ultrastructural changes of differentiating cells were visualized by transmission electron microscopy. On the functional side, depolarization-induced intracellular Ca2+ transients mediating E-C coupling were recorded using Fura-2 ratiometric Ca2+ imaging, and myocyte contraction was captured by digital photomicrography. Results We show that the E-C coupling machinery occurs and operates within a few days post-differentiation, as soon as the myofilaments align. However, Ca2+ transients become effective in triggering myocyte contraction after 1 week of differentiation, when nascent myofibrils show alternate A-I bands. At later stages, myofibrils become fully organized into adult-like sarcomeres but SR-TT junctions do not reach their triadic structure and typical A-I location. This is mirrored by the absence of cross-striated distribution pattern of both RyR1 and Cav1.1 channels. Conclusions The E-C coupling machinery occurs and operates within the first week of muscle cells differentiation. However, while early development of SR-TT junctions is coordinated with that of nascent myofibrils, their respective maturation is not. Formation of typical triads requires other factors/conditions, and this should be taken into account when using in-vitro models to explore skeletal muscle diseases, especially those affecting E-C coupling. Electronic supplementary material The online version of this article (10.1186/s13395-017-0147-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeanne Lainé
- Département de Physiologie, Faculté de Médecine Pierre & Marie Curie site Pitié-Salpêtrière, UPMC, 91, Bd de l'Hôpital, 75013, Paris, France
| | - Gunnar Skoglund
- Département de Physiologie, Faculté de Médecine Pierre & Marie Curie site Pitié-Salpêtrière, UPMC, 91, Bd de l'Hôpital, 75013, Paris, France
| | - Emmanuel Fournier
- Département de Physiologie, Faculté de Médecine Pierre & Marie Curie site Pitié-Salpêtrière, UPMC, 91, Bd de l'Hôpital, 75013, Paris, France
| | - Nacira Tabti
- Département de Physiologie, Faculté de Médecine Pierre & Marie Curie site Pitié-Salpêtrière, UPMC, 91, Bd de l'Hôpital, 75013, Paris, France. .,UPEC, Créteil, France.
| |
Collapse
|
28
|
Blondin DP, Haman F. Shivering and nonshivering thermogenesis in skeletal muscles. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:153-173. [PMID: 30454588 DOI: 10.1016/b978-0-444-63912-7.00010-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans have inherited complex neural circuits which drive behavioral, somatic, and autonomic thermoregulatory responses to defend their body temperature. While they are well adapted to dissipate heat in warm climates, they have a reduced capacity to preserve it in cold environments. Consequently, heat production is critical to defending their core temperature. As in other large mammals, skeletal muscles are the primary source of heat production recruited in cold-exposed humans. This is achieved voluntarily in the form of contractions from exercising muscles or involuntarily in the form of contractions from shivering muscles and the recruitment of nonshivering mechanisms. This review describes our current understanding of shivering and nonshivering thermogenesis in skeletal muscles, from the neural circuitry driving their recruitment to the metabolic substrates that fuel them. The presence of these heat-producing mechanisms can be measured in vivo by combining indirect respiratory calorimetry with electromyography or biomedical imaging modalities. Indeed, much of what is known regarding shivering in humans and other animal models stems from studies performed using these methods combined with in situ and in vivo neurologic techniques. More recent investigations have focused on understanding the metabolic processes that produce the heat from both contracting and noncontracting mechanisms. With the growing interest in the potential therapeutic benefits of shivering and nonshivering skeletal muscle to counter the effects of neuromuscular, cardiovascular, and metabolic diseases, we expect this field to continue its growth in the coming years.
Collapse
Affiliation(s)
- Denis P Blondin
- Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada.
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Dayal A, Schrötter K, Pan Y, Föhr K, Melzer W, Grabner M. The Ca 2+ influx through the mammalian skeletal muscle dihydropyridine receptor is irrelevant for muscle performance. Nat Commun 2017; 8:475. [PMID: 28883413 PMCID: PMC5589907 DOI: 10.1038/s41467-017-00629-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle excitation-contraction (EC) coupling is initiated by sarcolemmal depolarization, which is translated into a conformational change of the dihydropyridine receptor (DHPR), which in turn activates sarcoplasmic reticulum (SR) Ca2+ release to trigger muscle contraction. During EC coupling, the mammalian DHPR embraces functional duality, as voltage sensor and L-type Ca2+ channel. Although its unique role as voltage sensor for conformational EC coupling is firmly established, the conventional function as Ca2+ channel is still enigmatic. Here we show that Ca2+ influx via DHPR is not necessary for muscle performance by generating a knock-in mouse where DHPR-mediated Ca2+ influx is eliminated. Homozygous knock-in mice display SR Ca2+ release, locomotor activity, motor coordination, muscle strength and susceptibility to fatigue comparable to wild-type controls, without any compensatory regulation of multiple key proteins of the EC coupling machinery and Ca2+ homeostasis. These findings support the hypothesis that the DHPR-mediated Ca2+ influx in mammalian skeletal muscle is an evolutionary remnant.In mammalian skeletal muscle, the DHPR functions as a voltage sensor to trigger muscle contraction and as a Ca2+ channel. Here the authors show that mice where Ca2+ influx through the DHPR is eliminated display no difference in skeletal muscle function, suggesting that the Ca2+ influx through this channel is vestigial.
Collapse
Affiliation(s)
- Anamika Dayal
- Division of Biochemical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Kai Schrötter
- Division of Biochemical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Yuan Pan
- Institute of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Karl Föhr
- Department of Anaesthesiology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Werner Melzer
- Institute of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Manfred Grabner
- Division of Biochemical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| |
Collapse
|
30
|
Reddish FN, Miller CL, Gorkhali R, Yang JJ. Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases. Int J Mol Sci 2017; 18:E1024. [PMID: 28489021 PMCID: PMC5454937 DOI: 10.3390/ijms18051024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022] Open
Abstract
The flow of intracellular calcium (Ca2+) is critical for the activation and regulation of important biological events that are required in living organisms. As the major Ca2+ repositories inside the cell, the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of muscle cells are central in maintaining and amplifying the intracellular Ca2+ signal. The morphology of these organelles, along with the distribution of key calcium-binding proteins (CaBPs), regulatory proteins, pumps, and receptors fundamentally impact the local and global differences in Ca2+ release kinetics. In this review, we will discuss the structural and morphological differences between the ER and SR and how they influence localized Ca2+ release, related diseases, and the need for targeted genetically encoded calcium indicators (GECIs) to study these events.
Collapse
Affiliation(s)
- Florence N Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Cassandra L Miller
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Rakshya Gorkhali
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
31
|
Antigny F, Sabourin J, Saüc S, Bernheim L, Koenig S, Frieden M. TRPC1 and TRPC4 channels functionally interact with STIM1L to promote myogenesis and maintain fast repetitive Ca 2+ release in human myotubes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:806-813. [PMID: 28185894 DOI: 10.1016/j.bbamcr.2017.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/25/2017] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
Abstract
STIM1 and Orai1 are essential players of store-operated Ca2+ entry (SOCE) in human skeletal muscle cells and are required for adult muscle differentiation. Besides these two proteins, TRPC (transient receptor potential canonical) channels and STIM1L (a longer STIM1 isoform) are also present on muscle cells. In the present study, we assessed the role of TRPC1, TRPC4 and STIM1L in SOCE, in the maintenance of repetitive Ca2+ transients and in muscle differentiation. Knockdown of TRPC1 and TRPC4 reduced SOCE by about 50% and significantly delayed the onset of Ca2+ entry, both effects similar to STIM1L invalidation. Upon store depletion, TRPC1 and TRPC4 appeared to interact preferentially with STIM1L compared to STIM1. STIM1L invalidation affected myoblast differentiation, with the formation of smaller myotubes, an effect similar to what we reported for TRPC1 and TRPC4 knockdown. On the contrary, the overexpression of STIM1L leads to the formation of larger myotubes. All together, these data strongly suggest that STIM1L and TRPC1/4 are working together in myotubes to ensure efficient store refilling and a proper differentiation program.
Collapse
Affiliation(s)
- Fabrice Antigny
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jessica Sabourin
- Inserm UMR S1180, Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sophie Saüc
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland; Department of Cell Physiology and Metabolism, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Stéphane Koenig
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
32
|
Kubasov IV, Arutyunyan RS, Matrosova EV, Kubasov II. Properties of intratetanic individual contractile responses in rat slow skeletal muscles during modulation of sarcoplasmic reticulum Ca2+ release. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s002209301605006957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Pant M, Bal NC, Periasamy M. Sarcolipin: A Key Thermogenic and Metabolic Regulator in Skeletal Muscle. Trends Endocrinol Metab 2016; 27:881-892. [PMID: 27637585 PMCID: PMC5424604 DOI: 10.1016/j.tem.2016.08.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Skeletal muscle constitutes ∼40% of body mass and has the capacity to play a major role as thermogenic, metabolic, and endocrine organ. In addition to shivering, muscle also contributes to nonshivering thermogenesis via futile sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity. Sarcolipin (SLN), a regulator of SERCA activity in muscle, plays an important role in regulating muscle thermogenesis and metabolism. Uncoupling of SERCA by SLN increases ATP hydrolysis and heat production, and contributes to temperature homeostasis. SLN also affects whole-body metabolism and weight gain in mice, and is upregulated in various muscle diseases including muscular dystrophy, suggesting a role for SLN during increased metabolic demand. In this review we also highlight the physiological roles of skeletal muscle beyond contraction.
Collapse
Affiliation(s)
- Meghna Pant
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Naresh C Bal
- Sanford Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA; School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA; Sanford Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA.
| |
Collapse
|
34
|
Hijikata Y, Katsuno M, Suzuki K, Hashizume A, Araki A, Yamada S, Inagaki T, Iida M, Noda S, Nakanishi H, Banno H, Mano T, Hirakawa A, Adachi H, Watanabe H, Yamamoto M, Sobue G. Impaired muscle uptake of creatine in spinal and bulbar muscular atrophy. Ann Clin Transl Neurol 2016; 3:537-46. [PMID: 27386502 PMCID: PMC4931718 DOI: 10.1002/acn3.324] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/22/2016] [Accepted: 05/26/2016] [Indexed: 11/28/2022] Open
Abstract
Objective The aim of this study was to explore the pathomechanism underlying the reduction of serum creatinine (Cr) concentrations in spinal and bulbar muscular atrophy (SBMA). Methods We evaluated blood chemistries, motor function, and muscle mass measured by dual‐energy X‐ray absorptiometry in male subjects with SBMA (n = 65), amyotrophic lateral sclerosis (ALS; n = 27), and healthy controls (n = 25). We also examined the intramuscular concentrations of creatine, a precursor of Cr, as well as the protein and mRNA expression levels of the creatine transporter (SLC6A8) in autopsy specimens derived from subjects who had SBMA and ALS and disease controls. Furthermore, we measured the mRNA expression levels of SLC6A8 in cultured muscle cells (C2C12) transfected with the polyglutamine‐expanded androgen receptor (AR‐97Q). Results Serum Cr concentrations were significantly lower in subjects with SBMA than in those with ALS (P < 0.001), despite similar muscle mass values. Intramuscular creatine concentrations were also lower in with the autopsied specimen of SBMA subjects than in those with ALS subjects (P = 0.018). Moreover, the protein and mRNA expression levels of muscle SLC6A8 were suppressed in subjects with SBMA. The mRNA levels of SLC6A8 were also suppressed in C2C12 cells bearing AR‐97Q. Interpretation These results suggest that low serum Cr concentration in subjects with SBMA is caused by impaired muscle uptake of creatine in addition to being caused by neurogenic atrophy. Given that creatine serves as an energy source in skeletal muscle, increasing muscle creatine uptake is a possible therapeutic approach for treating SBMA.
Collapse
Affiliation(s)
- Yasuhiro Hijikata
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Masahisa Katsuno
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Keisuke Suzuki
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan; Innovation Center for Clinical Research National Center for Geriatrics and Gerontology Obu Japan
| | - Atsushi Hashizume
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Amane Araki
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Shinichiro Yamada
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Tomonori Inagaki
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Madoka Iida
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Seiya Noda
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hirotaka Nakanishi
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Haruhiko Banno
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan; Institute for Advanced Research Nagoya University Nagoya Japan
| | - Tomoo Mano
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Akihiro Hirakawa
- Biostatistics Section, Center for Advanced Medicine and Clinical Research Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hiroaki Adachi
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan; Department of Neurology University of Occupational and Environmental Health School of Medicine Kitakyushu Japan
| | - Hirohisa Watanabe
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Masahiko Yamamoto
- Department of Speech Pathology and Audiology Aichi-Gakuin University School of Health Science Nisshin Japan
| | - Gen Sobue
- Department of Neurology Nagoya University Graduate School of Medicine Nagoya Japan; Research Division of Dementia and Neurodegenerative Disease Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
35
|
Kubasov IV, Arutyunyan RS, Matrosova EV. Transformation of individual contractile responses during tetanus in rat fast and slow skeletal muscles. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Abstract
By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| |
Collapse
|
37
|
Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci Rep 2015; 5:8317. [PMID: 25661648 PMCID: PMC4650824 DOI: 10.1038/srep08317] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/14/2015] [Indexed: 12/30/2022] Open
Abstract
Myoblasts can be differentiated into multinucleated myotubes, which provide a well-established and reproducible muscle cell model for skeletal myogenesis in vitro. However, under conventional differentiation conditions, each myotube rarely exhibits robust contraction as well as sarcomere arrangement. Here, we applied trains of optical stimulation (OS) to C2C12 myotubes, which were genetically engineered to express a channelrhodopsin variant, channelrhodopsin-green receiver (ChRGR), to investigate whether membrane depolarization facilitates the maturation of myotubes. We found that light pulses induced membrane depolarization and evoked action potentials in ChRGR-expressing myotubes. Regular alignments of sarcomeric proteins were patterned periodically after OS training. In contrast, untrained control myotubes rarely exhibited the striated patterns. OS-trained and untrained myotubes also differed in terms of their resting potential. OS training significantly increased the number of contractile myotubes. Treatment with nifedipine during OS training significantly decreased the fraction of contractile myotubes, whereas tetrodotoxin was less effective. These results suggest that oscillations of membrane potential and intracellular Ca2+ accompanied by OS promoted sarcomere assembly and the development of contractility during the myogenic process. These results also suggest that optogenetic techniques could be used to manipulate the activity-dependent process during myogenic development.
Collapse
|
38
|
Jung YJ, Kim SE, Hong JY, Lee JH, Park DG, Han KR, Oh DJ. Reversible dilated cardiomyopathy caused by idiopathic hypoparathyroidism. Korean J Intern Med 2013; 28:605-8. [PMID: 24009458 PMCID: PMC3759768 DOI: 10.3904/kjim.2013.28.5.605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/03/2012] [Accepted: 06/22/2012] [Indexed: 11/27/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is usually an idiopathic disease with a poor prognosis. Hypocalcemia is a rare and reversible cause of DCM. Here, we report a 50-year-old female with DCM, induced by idiopathic hypoparathyroidism, that improved after treatment with calcium.
Collapse
Affiliation(s)
- Youn Joo Jung
- Division of Cardiology, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Sung Eun Kim
- Division of Cardiology, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Ji Yeon Hong
- Division of Cardiology, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Jun Hee Lee
- Division of Cardiology, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Dae Gyun Park
- Division of Cardiology, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Kyoo Rok Han
- Division of Cardiology, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Dong Jin Oh
- Division of Cardiology, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| |
Collapse
|
39
|
Amador FJ, Stathopulos PB, Enomoto M, Ikura M. Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J 2013; 280:5456-70. [PMID: 23413940 DOI: 10.1111/febs.12194] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Ryanodine receptors (RyRs) are the largest known ion channels. They are Ca(2+) release channels found primarily on the sarcoplasmic reticulum of myocytes. Several hundred mutations in RyRs are associated with skeletal or cardiomyocyte disease in humans. Many of these mutations can now be mapped onto the high resolution structures of individual RyR domains and on full-length tetrameric cryo-electron microscopy structures. A closely related Ca(2+) release channel, the inositol 1,4,5-trisphospate receptor (IP3 R), shows a conserved structural architecture at the N-terminus, suggesting that both channels evolved from an ancestral unicellular RyR/IP3 R. The functional insights provided by recent structural studies for both channels will aid in the development of rationale treatments for a myriad of Ca(2+)-signaled malignancies.
Collapse
Affiliation(s)
- Fernando J Amador
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | |
Collapse
|
40
|
Hernández A, Schiffer TA, Ivarsson N, Cheng AJ, Bruton JD, Lundberg JO, Weitzberg E, Westerblad H. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle. J Physiol 2012; 590:3575-83. [PMID: 22687611 DOI: 10.1113/jphysiol.2012.232777] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.
Collapse
Affiliation(s)
- Andrés Hernández
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ballane GT, Sfeir JG, Dakik HA, Brown EM, El-Hajj Fuleihan G. Use of recombinant human parathyroid hormone in hypocalcemic cardiomyopathy. Eur J Endocrinol 2012; 166:1113-20. [PMID: 22430263 DOI: 10.1530/eje-11-1094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypocalcemia secondary to hypoparathyroidism is a rare cause of congestive heart failure. However, its early recognition and treatment lead to significant improvement in cardiac function. We report a middle-aged woman presenting with symptoms of heart failure with a serum calcium level of 3.7 mg/dl and a serum inorganic phosphate level of 17.6 mg/dl 22 years after subtotal thyroidectomy. Besides calcium and calcitriol supplementation, she was the first patient with severe hypocalcemic cardiomyopathy to be given off-label recombinant human parathyroid hormone (PTH) because of an elevated serum calcium-phosphate product. We discuss the management and outcome of the patient and then present a brief review of similar previously reported cases. We also describe the pivotal role of calcium ion and the potential role of PTH in maintaining myocardial contractility, effective natriuresis, and possible pathogenic mechanisms contributing to heart failure secondary to hypocalcemia and hypoparathyroidism.
Collapse
Affiliation(s)
- Ghada T Ballane
- Division of Endocrinology and Metabolism, American University of Beirut Medical Center, Beirut, Riad El Solh, Lebanon
| | | | | | | | | |
Collapse
|
42
|
MacIntosh BR, Holash RJ, Renaud JM. Skeletal muscle fatigue--regulation of excitation-contraction coupling to avoid metabolic catastrophe. J Cell Sci 2012; 125:2105-14. [PMID: 22627029 DOI: 10.1242/jcs.093674] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP provides the energy in our muscles to generate force, through its use by myosin ATPases, and helps to terminate contraction by pumping Ca(2+) back into the sarcoplasmic reticulum, achieved by Ca(2+) ATPase. The capacity to use ATP through these mechanisms is sufficiently high enough so that muscles could quickly deplete ATP. However, this potentially catastrophic depletion is avoided. It has been proposed that ATP is preserved not only by the control of metabolic pathways providing ATP but also by the regulation of the processes that use ATP. Considering that contraction (i.e. myosin ATPase activity) is triggered by release of Ca(2+), the use of ATP can be attenuated by decreasing Ca(2+) release within each cell. A lower level of Ca(2+) release can be accomplished by control of membrane potential and by direct regulation of the ryanodine receptor (RyR, the Ca(2+) release channel in the terminal cisternae). These highly redundant control mechanisms provide an effective means by which ATP can be preserved at the cellular level, avoiding metabolic catastrophe. This Commentary will review some of the known mechanisms by which this regulation of Ca(2+) release and contractile response is achieved, demonstrating that skeletal muscle fatigue is a consequence of attenuation of contractile activation; a process that allows avoidance of metabolic catastrophe.
Collapse
Affiliation(s)
- Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | | | | |
Collapse
|
43
|
Huang CLH, Pedersen TH, Fraser JA. Reciprocal dihydropyridine and ryanodine receptor interactions in skeletal muscle activation. J Muscle Res Cell Motil 2011; 32:171-202. [PMID: 21993921 DOI: 10.1007/s10974-011-9262-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 09/12/2011] [Indexed: 11/25/2022]
Abstract
Dihydropyridine (DHPR) and ryanodine receptors (RyRs) are central to transduction of transverse (T) tubular membrane depolarisation initiated by surface action potentials into release of sarcoplasmic reticular (SR) Ca2+ in skeletal muscle excitation-contraction coupling. Electronmicroscopic methods demonstrate an orderly positioning of such tubular DHPRs relative to RyRs in the SR at triad junctions where their membranes come into close proximity. Biochemical and genetic studies associated expression of specific, DHPR and RyR, isoforms with the particular excitation-contraction coupling processes and related elementary Ca2+ release events found respectively in skeletal and cardiac muscle. Physiological studies of intramembrane charge movements potentially related to voltage triggering of Ca2+ release demonstrated a particular qγ charging species identifiable with DHPRs through its T-tubular localization, pharmacological properties, and steep voltage-dependence paralleling Ca2+ release. Its nonlinear kinetics implicated highly co-operative conformational events in its transitions in response to voltage change. The effects of DHPR and RyR agonists and antagonists upon this intramembrane charge in turn implicated reciprocal rather than merely unidirectional DHPR-RyR interactions in these complex reactions. Thus, following membrane potential depolarization, an orthograde qγ-DHPR-RyR signaling likely initiates conformational alterations in the RyR with which it makes contact. The latter changes could then retrogradely promote further qγ-DHPR transitions through reciprocal co-operative allosteric interactions between receptors. These would relieve the resting constraints on both further, delayed, nonlinear qγ-DHPR charge transfers and on RyR-mediated Ca2+ release. They would also explain the more rapid charging and recovery qγ transients following larger depolarizations and membrane potential repolarization to the resting level.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory, Department of Biochemistry, University of Cambridge, Cambridge, CB2 3EG, UK.
| | | | | |
Collapse
|
44
|
Darbellay B, Arnaudeau S, Bader CR, Konig S, Bernheim L. STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. ACTA ACUST UNITED AC 2011; 194:335-46. [PMID: 21788372 PMCID: PMC3144404 DOI: 10.1083/jcb.201012157] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A newly identified splice variant of STIM1 called STIM1L forms constitutive clusters that interact with actin and Orai1 and allows fast repetitive Ca2+ release. Cytosolic Ca2+ signals encoded by repetitive Ca2+ releases rely on two processes to refill Ca2+ stores: Ca2+ reuptake from the cytosol and activation of a Ca2+ influx via store-operated Ca2+ entry (SOCE). However, SOCE activation is a slow process. It is delayed by >30 s after store depletion because stromal interaction molecule 1 (STIM1), the Ca2+ sensor of the intracellular stores, must form clusters and migrate to the membrane before being able to open Orai1, the plasma membrane Ca2+ channel. In this paper, we identify a new protein, STIM1L, that colocalizes with Orai1 Ca2+ channels and interacts with actin to form permanent clusters. This property allowed the immediate activation of SOCE, a characteristic required for generating repetitive Ca2+ signals with frequencies within seconds such as those frequently observed in excitable cells. STIM1L was expressed in several mammalian tissues, suggesting that many cell types rely on this Ca2+ sensor for their Ca2+ homeostasis and intracellular signaling.
Collapse
Affiliation(s)
- Basile Darbellay
- Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
45
|
Hupkes M, Jonsson MKB, Scheenen WJ, van Rotterdam W, Sotoca AM, van Someren EP, van der Heyden MAG, van Veen TA, van Ravestein-van Os RI, Bauerschmidt S, Piek E, Ypey DL, van Zoelen EJ, Dechering KJ. Epigenetics: DNA demethylation promotes skeletal myotube maturation. FASEB J 2011; 25:3861-72. [PMID: 21795504 DOI: 10.1096/fj.11-186122] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mesenchymal progenitor cells can be differentiated in vitro into myotubes that exhibit many characteristic features of primary mammalian skeletal muscle fibers. However, in general, they do not show the functional excitation-contraction coupling or the striated sarcomere arrangement typical of mature myofibers. Epigenetic modifications have been shown to play a key role in regulating the progressional changes in transcription necessary for muscle differentiation. In this study, we demonstrate that treatment of murine C2C12 mesenchymal progenitor cells with 10 μM of the DNA methylation inhibitor 5-azacytidine (5AC) promotes myogenesis, resulting in myotubes with enhanced maturity as compared to untreated myotubes. Specifically, 5AC treatment resulted in the up-regulation of muscle genes at the myoblast stage, while at later stages nearly 50% of the 5AC-treated myotubes displayed a mature, well-defined sarcomere organization, as well as spontaneous contractions that coincided with action potentials and intracellular calcium transients. Both the percentage of striated myotubes and their contractile activity could be inhibited by 20 nM TTX, 10 μM ryanodine, and 100 μM nifedipine, suggesting that action potential-induced calcium transients are responsible for these characteristics. Our data suggest that genomic demethylation induced by 5AC overcomes an epigenetic barrier that prevents untreated C2C12 myotubes from reaching full maturity.
Collapse
Affiliation(s)
- Marlinda Hupkes
- Department of Cell and Applied Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kinoshita S, Katsumi E, Yamamoto H, Takeuchi K, Watabe S. Molecular and functional analyses of aspolin, a fish-specific protein extremely rich in aspartic acid. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:517-526. [PMID: 20878432 DOI: 10.1007/s10126-010-9322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/07/2010] [Indexed: 05/29/2023]
Abstract
Aspolin is a muscular protein having unique structural characteristics where the most part of its primary structure is occupied by aspartic acid. Aspolin has been found exceptionally in fish muscle, suggesting its specific role in this tissue. However, biological functions of aspolin have remained unknown. In the present study, we cloned full-length cDNAs encoding zebrafish Danio rerio aspolins 1 and 2, revealed their genomic organization, and examined in vivo function using knockdown techniques. Genomic analysis clearly showed that aspolin is a paralog of the histidine-rich calcium binding protein gene, which encodes a calcium binding protein in sarcoplasmic reticulum (SR). Expression analysis showed that the transcripts and their translated products, aspolins 1 and 2, are distributed in myotomal skeletal muscle, but not in cardiac muscle. Injection of antisense morpholino oligo targeting both aspolins 1 and 2 increased the mRNA levels of calsequestrin 1, another calcium binding protein in SR. These lines of evidence suggest that aspolins regulate calcium concentrations in SR.
Collapse
Affiliation(s)
- Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
47
|
Anttila K, Jokikokko E, Erkinaro J, Järvilehto M, Mänttäri S. Effects of training on functional variables of muscles in reared Atlantic salmon Salmo salar smolts: connection to downstream migration pattern. JOURNAL OF FISH BIOLOGY 2011; 78:552-566. [PMID: 21284634 DOI: 10.1111/j.1095-8649.2010.02871.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The relative amount of muscle contraction regulating dihydropyridine and ryanodine receptors in the swimming muscles of trained reared Atlantic salmon Salmo salar smolts was compared with those of untrained and wild smolts. After an optimized 2 week training period, i.e. swimming with a velocity of 1·5 body lengths per second for 6 h per day, the level of both receptors was significantly higher in the muscles of trained S. salar than in the untrained ones before they were released into the natural environment. This difference persisted after downstream migration in the river. The highest level of receptors was observed in wild S. salar. Swimming performance was also higher in trained fish compared to untrained ones. Furthermore, swimming performance was positively associated with the level of receptors in both red and white muscle types. Downstream migration after release into the wild was significantly slower in trained smolts than in untrained fish. This indicates that trained smolts were most probably swimming harder against the current in the river than untrained smolts. The possible advantages for a slower migration in the river are discussed. This study shows that the prerequisites for effective contraction of the swimming muscles are better met in trained S. salar compared to untrained fish, and the muscles of trained smolts more closely resemble those of wild smolts. The results also imply that the capacity of untrained, reared smolts to swim against the current is not equal to that of their trained or wild counterparts which affects the downstream migration pattern of S. salar smolts.
Collapse
Affiliation(s)
- K Anttila
- Department of Biology, University of Oulu, Oulun yliopisto, Finland
| | | | | | | | | |
Collapse
|
48
|
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010; 2:a003996. [PMID: 20961976 DOI: 10.1101/cshperspect.a003996] [Citation(s) in RCA: 574] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with and are regulated by phosphorylation, redox modifications, and a variety of small proteins and ions. Most RyR channel modulators interact with the large cytoplasmic domain whereas the carboxy-terminal portion of the protein forms the ion-conducting pore. Mutations in RyR2 are associated with human disorders such as catecholaminergic polymorphic ventricular tachycardia whereas mutations in RyR1 underlie diseases such as central core disease and malignant hyperthermia. This chapter examines the current concepts of the structure, function and regulation of RyRs and assesses the current state of understanding of their roles in associated disorders.
Collapse
Affiliation(s)
- Johanna T Lanner
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas 77030,USA
| | | | | | | |
Collapse
|
49
|
Solzbach U, Kitterer HR, Haas H. Reversible congestive heart failure in severe hypocalcemia. Herz 2010; 35:507-10. [DOI: 10.1007/s00059-010-3374-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Khaleel Basha S, Govindaraju K, Manikandan R, Ahn JS, Bae EY, Singaravelu G. Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf B Biointerfaces 2010; 75:405-9. [DOI: 10.1016/j.colsurfb.2009.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/03/2009] [Accepted: 09/09/2009] [Indexed: 11/30/2022]
|