1
|
Camilleri E, Blundell R, Baral B, Karpiński TM, Aruci E, Atrooz OM. A comprehensive review on the health benefits, phytochemicals, and enzymatic constituents for potential therapeutic and industrial applications of Turkey tail mushrooms. DISCOVER APPLIED SCIENCES 2024; 6:257. [DOI: 10.1007/s42452-024-05936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/02/2024] [Indexed: 08/23/2024]
Abstract
AbstractThis comprehensive literature review delves into the multifaceted attributes of Trametes versicolor, commonly known as turkey tail mushroom. The turkey tail mushroom stands as a noteworthy source of diverse bioactive compounds with potent health benefits. This review offers a contemporary synthesis of its phytochemical constituents and their multifaceted impacts on human health. The mushroom's intricate composition, encompassing polysaccharides, phenols, and triterpenes, underpins its remarkable therapeutic potential. Focusing on key attributes such as anti-cancer, anti-microbial, and immunomodulatory activities, this review delves into the intricate mechanisms by which the turkey tail mushroom exerts its effects. In addition, the exploration extends to the enzymatic constituents inherent in the mushroom and their industrial significance. Mechanisms of action for both phytochemicals and enzymes are studied, providing a well-rounded understanding of their roles in conferring therapeutic and industrial benefits. This synthesis of research aims to provide an up-to-date perspective on turkey tail mushrooms' versatile applications. By intertwining the exploration of health benefits and enzymatic constituents, this review offers insights into the potential of harnessing this natural resource for innovative therapeutic strategies and industrial applications. Overall, it contributes to the advancement of knowledge and utilisation of turkey tail mushrooms' diverse properties for human health and industrial progress.
Collapse
|
2
|
Bzducha-Wróbel A, Farkaš P, Bieliková S, Čížová A, Sujkowska-Rybkowska M. How do the carbon and nitrogen sources affect the synthesis of β-(1,3/1,6)-glucan, its structure and the susceptibility of Candida utilis yeast cells to immunolabelling with β-(1,3)-glucan monoclonal antibodies? Microb Cell Fact 2024; 23:28. [PMID: 38243245 PMCID: PMC10799355 DOI: 10.1186/s12934-024-02305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The need to limit antibiotic therapy due to the spreading resistance of pathogenic microorganisms to these medicinal substances stimulates research on new therapeutic agents, including the treatment and prevention of animal diseases. This is one of the goals of the European Green Deal and the Farm-To-Fork strategy. Yeast biomass with an appropriate composition and exposure of cell wall polysaccharides could constitute a functional feed additive in precision animal nutrition, naturally stimulating the immune system to fight infections. RESULTS The results of the research carried out in this study showed that the composition of Candida utilis ATCC 9950 yeast biomass differed depending on growth medium, considering especially the content of β-(1,3/1,6)-glucan, α-glucan, and trehalose. The highest β-(1,3/1,6)-glucan content was observed after cultivation in deproteinated potato juice water (DPJW) as a nitrogen source and glycerol as a carbon source. Isolation of the polysaccharide from yeast biomass confirmed the highest yield of β-(1,3/1,6)-glucan after cultivation in indicated medium. The differences in the susceptibility of β-(1,3)-glucan localized in cells to interaction with specific β-(1,3)-glucan antibody was noted depending on the culture conditions. The polymer in cells from the DPJW supplemented with glycerol and galactose were labelled with monoclonal antibodies with highest intensity, interestingly being less susceptible to such an interaction after cell multiplication in medium with glycerol as carbon source and yeast extract plus peptone as a nitrogen source. CONCLUSIONS Obtained results confirmed differences in the structure of the β-(1,3/1,6)-glucan polymers considering side-chain length and branching frequency, as well as in quantity of β-(1,3)- and β-(1,6)-chains, however, no visible relationship was observed between the structural characteristics of the isolated polymers and its susceptibility to immunolabeling in whole cells. Presumably, other outer surface components and molecules can mask, shield, protect, or hide epitopes from antibodies. β-(1,3)-Glucan was more intensely recognized by monoclonal antibody in cells with lower trehalose and glycogen content. This suggests the need to cultivate yeast biomass under appropriate conditions to fulfil possible therapeutic functions. However, our in vitro findings should be confirmed in further studies using tissue or animal models.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C Street, 02-787, Warsaw, Poland.
| | - Pavol Farkaš
- Department of Glycobiotechnology, Institute of Chemistry Slovak Academy of Sciences, Dúbravská Cesta 9, 84538, Bratislava, Slovakia.
| | - Sandra Bieliková
- Department of Glycomaterials, Institute of Chemistry Slovak Academy of Sciences, Dúbravská Cesta 9, 84538, Bratislava, Slovakia
| | - Alžbeta Čížová
- Department of Glycomaterials, Institute of Chemistry Slovak Academy of Sciences, Dúbravská Cesta 9, 84538, Bratislava, Slovakia
| | - Marzena Sujkowska-Rybkowska
- Department of Botany, Warsaw, Institute of Biology, University of Life Sciences, Nowoursynowska 159C Street, 02-787, Warsaw, Poland
| |
Collapse
|
3
|
Schiavone M, François JM, Zerbib D, Capp JP. Emerging relevance of cell wall components from non-conventional yeasts as functional ingredients for the food and feed industry. Curr Res Food Sci 2023; 7:100603. [PMID: 37840697 PMCID: PMC10568300 DOI: 10.1016/j.crfs.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Lallemand SAS, Blagnac, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), UMS INRAE/INSA/CNRS, Toulouse, France
| | - Didier Zerbib
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
4
|
Anaya EU, Amin AE, Wester MJ, Danielson ME, Michel KS, Neumann AK. Dectin-1 multimerization and signaling depends on fungal β-glucan structure and exposure. Biophys J 2023; 122:3749-3767. [PMID: 37515324 PMCID: PMC10541497 DOI: 10.1016/j.bpj.2023.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Dectin-1A is a C-type lectin innate immunoreceptor that recognizes β-(1,3;1,6)-glucan, a structural component of Candida species cell walls. β-Glucans can adopt solution structures ranging from random coil to insoluble fiber due to tertiary (helical) and quaternary structure. Fungal β-glucans of medium and high molecular weight are highly structured, but low molecular weight glucan is much less structured. Despite similar affinity for Dectin-1, the ability of glucans to induce Dectin-1A-mediated signaling correlates with degree of structure. Glucan denaturation experiments showed that glucan structure determines agonistic potential, but not receptor binding affinity. We explored the impact of glucan structure on molecular aggregation of Dectin-1A. Stimulation with glucan signaling decreased Dectin-1A diffusion coefficient. Fluorescence measurements provided direct evidence of ligation-induced Dectin-1A aggregation, which positively correlated with increasing glucan structure content. In contrast, Dectin-1A is predominantly in a low aggregation state in resting cells. Molecular aggregates formed during interaction with highly structured, agonistic glucans did not exceed relatively small (<15 nm) clusters of a few engaged receptors. Finally, we observed increased molecular aggregation of Dectin-1A at fungal particle contact sites in a manner that positively correlated with the degree of exposed glucan on the particle surface. These results indicate that Dectin-1A senses the solution conformation of β-glucans through their varying ability to drive receptor dimer/oligomer formation and activation of membrane proximal signaling events.
Collapse
Affiliation(s)
- Eduardo U Anaya
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico
| | - Akram Etemadi Amin
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico; Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico
| | - Michael J Wester
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
| | | | | | - Aaron K Neumann
- Department of Pathology, University of New Mexico, School of Medicine, Albuquerque, New Mexico.
| |
Collapse
|
5
|
Li M, Zhang H, Hu X, Liu Y, Liu Y, Song M, Wu R, Wu J. Isolation of a New Polysaccharide from Dandelion Leaves and Evaluation of Its Antioxidant, Antibacterial, and Anticancer Activities. Molecules 2022; 27:7641. [PMID: 36364468 PMCID: PMC9658512 DOI: 10.3390/molecules27217641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 07/25/2023] Open
Abstract
Dandelion, in China, has a long history as a medicinal and edible plant, and possesses high nutritional and medical value. The present study aimed to isolate a new polysaccharide (DLP-3) from dandelion leaves and to evaluate its antioxidant, antibacterial, and anticancer activities. The structure of DLP-3 was analyzed using HPLC, FT-IR, SEM, GC-MS, and NMR spectroscopy. DLP-3 mainly consisted of Man, Rha, GlcA, Glc, Gal, and Ara with molar ratios of 2.32, 0.87, 1.21, 3.84, 1.00, and 1.05, respectively, with a molecular weight of 43.2 kDa. The main linkages of DLP-3 contained (1→4)-α-d-Glc, (1→4,6)-α-d-Glc, (1→6)-α-d-Gal, (1→2)-α-d-Man, (1→4)-α-d-Man, β-l-Ara-(1→, and α-l-Rha-(1→. DLP-3 exhibited a smooth surface, purely flake-like structure, and a triple helix conformation. Moreover, DLP-3 presented obvious antioxidant and antibacterial activities in a concentration-dependent manner. DLP-3 showed significant anticancer activities by inhibiting tumor cell proliferation. These findings provide a theoretical basis for the application of DLP-3 as a natural functional active substance in functional foods.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang 110035, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| |
Collapse
|
6
|
Diniz-Lima I, da Fonseca LM, dos Reis JS, Rodrigues da Costa Santos MA, da Costa KM, do Nascimento Santos CA, Barcelos PM, Guimarães-Pinto K, Filardy AA, Freire-de-Lima ME, Decote-Ricardo D, Morrot A, Freire-de-Lima CG, Freire-de-Lima L. The Sweet Side of Fungal Infections: Structural Glycan Diversity and Its Importance for Pathogenic Adaptation. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9060037. [PMID: 35736250 PMCID: PMC9230512 DOI: 10.3390/medicines9060037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022]
Abstract
Fungal infections are the most common secondary infections in debilitated individuals in a state of chronic disease or immunosuppression. Despite this, most fungal infections are neglected, mainly due to the lower frequency of their more severe clinical forms in immunocompetent individuals with a healthy background. However, over the past few years, several cases of severe fungal infections in healthy individuals have provoked a change in the epidemiological dynamics of fungal infections around the world, both due to recurrent outbreaks in previously infrequent regions and the greater emergence of more pathogenic fungal variants affecting healthy individuals, such as in the Cryptococcus genus. Therefore, before the arrival of a scenario of prevalent severe fungal infections, it is necessary to assess more carefully what are the real reasons for the increased incidence of fungal infection globally. What are the factors that are currently contributing to this new possible epidemiological dynamic? Could these be of a structural nature? Herein, we propose a discussion based on the importance of the virulence factors of glycoconjugate composition in the adaptation of pathogenic fungal species into the current scenario of increasing severity of these infections.
Collapse
Affiliation(s)
- Israel Diniz-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Leonardo Marques da Fonseca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Jhenifer Santos dos Reis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Marcos André Rodrigues da Costa Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Kelli Monteiro da Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Carlos Antonio do Nascimento Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Pedro Marçal Barcelos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| | - Kamila Guimarães-Pinto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (K.G.-P.); (A.A.F.)
| | - Alessandra Almeida Filardy
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (K.G.-P.); (A.A.F.)
| | - Marco Edilson Freire-de-Lima
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro 23890-000, Brazil;
| | - Debora Decote-Ricardo
- Departamento de Microbiologia e Imunologia Veterinária, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro 23890-000, Brazil;
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
- Correspondence: ; Tel./Fax: +55-21-3938-6646
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (I.D.-L.); (L.M.d.F.); (J.S.d.R.); (M.A.R.d.C.S.); (K.M.d.C.); (C.A.d.N.S.); (P.M.B.); (L.F.-d.-L.)
| |
Collapse
|
7
|
Höft MA, Duvenage L, Hoving JC. Key thermally dimorphic fungal pathogens: shaping host immunity. Open Biol 2022; 12:210219. [PMID: 35259948 PMCID: PMC8905152 DOI: 10.1098/rsob.210219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/09/2022] [Indexed: 01/09/2023] Open
Abstract
Exposure to fungal pathogens from the environment is inevitable and with the number of at-risk populations increasing, the prevalence of invasive fungal infection is on the rise. An interesting group of fungal organisms known as thermally dimorphic fungi predominantly infects immunocompromised individuals. These potential pathogens are intriguing in that they survive in the environment in one form, mycelial phase, but when entering the host, they are triggered by the change in temperature to switch to a new pathogenic form. Considering the growing prevalence of infection and the need for improved diagnostic and treatment approaches, studies identifying key components of fungal recognition and the innate immune response to these pathogens will significantly contribute to our understanding of disease progression. This review focuses on key endemic dimorphic fungal pathogens that significantly contribute to disease, including Histoplasma, Coccidioides and Talaromyces species. We briefly describe their prevalence, route of infection and clinical presentation. Importantly, we have reviewed the major fungal cell wall components of these dimorphic fungi, the host pattern recognition receptors responsible for recognition and important innate immune responses supporting adaptive immunity and fungal clearance or the failure thereof.
Collapse
Affiliation(s)
- Maxine A. Höft
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - J. Claire Hoving
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa
- Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
8
|
Dietary Agaricus blazei Spent Substrate Improves Disease Resistance of Nile Tilapia (Oreochromis niloticus) against Streptococcus agalactiae In Vivo. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10010100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study evaluated the effects of the feeding of spent mushroom substrate from Agaricus blazei on Nile tilapia (Oreochromis niloticus). The safety of 0–1000 μg/mL A. blazei spent substrate water extract (ABSSE) was demonstrated in the primary hepatic and splenic macrophages and the THK cell line (a cell line with characteristics of melanomacrophages) using a cytotoxicity assay. Here, 10 μg/mL of crude ABSSE promoted the phagocytic activity of macrophages and THK cells. Stimulating ABSSE-primed THK cells with lipopolysaccharides or peptidoglycan resulted in higher expression levels of four cytokine genes (e.g., interleukinz (IL)-1β, IL-12b, IL-8 and tumor necrosis factor α (TNFα)) and one cytokine gene (TNFα), respectively. An in vitro bacterial growth inhibition assay demonstrated that ABSSE could inhibit the growth of Streptococcus agalactiae. In the first feeding trial, Nile tilapia were fed with experimental feed containing 0, 1, or 5% of A. blazei spent substrate (ABSS) for seven and fourteen days followed by bacterial challenge assay. The best result was obtained when Nile tilapia were continuously fed for seven days on a diet containing 1% ABSS, with the survival rate being higher than in groups with 0% and 5% ABSS after challenge with S. agalactiae. In the second trial, fish were fed diets supplemented with 0% or 1% ABSS for seven days, and then all the groups were given the control feed for several days prior to bacterial challenge in order to investigate the duration of the protective effect provided by ABSS. The results showed that the protective effects were sustained at day 7 after the feed was switched. Overall, spent mushroom substrate from A. blazei is a cost-effective feed additive for Nile tilapia that protects fish from S. agalactiae infection.
Collapse
|
9
|
Liao B, Ye X, Chen X, Zhou Y, Cheng L, Zhou X, Ren B. The two-component signal transduction system and its regulation in Candida albicans. Virulence 2021; 12:1884-1899. [PMID: 34233595 PMCID: PMC8274445 DOI: 10.1080/21505594.2021.1949883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Candida albicans, which can cause superficial and life-threatening systemic infections, is the most common opportunistic fungal pathogen in the human microbiome. The two-component system is one of the most important C. albicans signal transduction pathways, regulating the response to oxidative and osmotic stresses, adhesion, morphogenesis, cell wall synthesis, virulence, drug resistance, and the host-pathogen interactions. Notably, some components of this signaling pathway have not been found in the human genome, indicating that the two-component system of C. albicans can be a potential target for new antifungal agents. Here, we summarize the composition, signal transduction, and regulation of the two-component system of C. albicans to emphasize its essential roles in the pathogenesis of C. albicans and the new therapeutic target for antifungal drugs.
Collapse
Affiliation(s)
- Biaoyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Miao YB, Lin YJ, Chen KH, Luo PK, Chuang SH, Yu YT, Tai HM, Chen CT, Lin KJ, Sung HW. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104139. [PMID: 34596293 DOI: 10.1002/adma.202104139] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Targeted oral delivery of a drug via the intestinal lymphatic system (ILS) has the advantages of protecting against hepatic first-pass metabolism of the drug and improving its pharmacokinetic performance. It is also a promising route for the oral delivery of vaccines and therapeutic agents to induce mucosal immune responses and treat lymphatic diseases, respectively. This article describes the anatomical structures and physiological characteristics of the ILS, with an emphasis on enterocytes and microfold (M) cells, which are the main gateways for the transport of particulate delivery vehicles across the intestinal epithelium into the lymphatics. A comprehensive overview of recent advances in the rational engineering of particulate vehicles, along with the challenges and opportunities that they present for improving ILS drug delivery, is provided, and the mechanisms by which such vehicles target and transport through enterocytes or M cells are discussed. The use of naturally sourced materials, such as yeast microcapsules and their derived polymeric β-glucans, as novel ILS-targeting delivery vehicles is also reviewed. Such use is the focus of an emerging field of research. Their potential use in the oral delivery of nucleic acids, such as mRNA vaccines, is proposed.
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Kuan-Hung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Po-Kai Luo
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Shun-Hao Chuang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Tzu Yu
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hsien-Meng Tai
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, and Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
11
|
Li Q, Chen J, Liu J, Yu H, Zhang L, Song C, Li Y, Jiang N, Tan Q, Shang X, Gu Y. De novo Sequencing and Comparative Transcriptome Analyses Provide First Insights Into Polysaccharide Biosynthesis During Fruiting Body Development of Lentinula edodes. Front Microbiol 2021; 12:627099. [PMID: 34326817 PMCID: PMC8313990 DOI: 10.3389/fmicb.2021.627099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/31/2021] [Indexed: 11/15/2022] Open
Abstract
Polysaccharides separated from Lentinula edodes are well known for their medicinal properties. However, the precise molecular mechanisms of polysaccharide biosynthesis in L. edodes remain unclear. In this study, the fruiting bodies of L. edodes in four developmental stages with significant differences in polysaccharide yield were collected, and the characteristics of polysaccharides were studied. De novo sequencing and comparative transcriptomic analysis were performed by using high-throughput Illumina RNA-sequencing. KS1P30, KS2P30, KS3P30, and KS4P30 were obtained from the four developmental stages, respectively, by hot water extraction and 30% ethanol precipitation. These four polysaccharides had good immune activity in vitro; all of them were β-glucopyranose with a high molecular weight. Glucose was the main monosaccharide component of these polysaccharides. High-quality clean reads (57.88, 53.17, 53.28, and 47.56 million for different growth stages) and mapping ratios ranging from 84.75 to 90.11% were obtained. In total, 11,493 (96.56%) unigenes and 18,924 (97.46%) transcripts were successfully annotated in five public databases. The biosynthetic pathway and related genes of LEFP30 were mined. The molecular mechanism of LEFP30 yield change in the different developmental stages was predicted. The results provide some insights into the possible mechanisms involved in the biosynthetic pathway of this kind of polysaccharide in L. edodes fruiting bodies. They also indicate that candidate genes can be used as important resources for biotechnology and molecular breeding to regulate L. edodes fruiting body polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Qiaozhen Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jianyu Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hailong Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lujun Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chunyan Song
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ning Jiang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qi Tan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaodong Shang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Shehata AA, Basiouni S, Sting R, Akimkin V, Hoferer M, Hafez HM. Poult Enteritis and Mortality Syndrome in Turkey Poults: Causes, Diagnosis and Preventive Measures. Animals (Basel) 2021; 11:ani11072063. [PMID: 34359191 PMCID: PMC8300142 DOI: 10.3390/ani11072063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The poult enteritis and mortality syndrome (PEMS) causes severe economic losses in turkeys. Several agents were described to be associated with the PEMS; however, a specific etiological agent(s) has not been identified. The diagnosis of PEMS is still a huge challenge for several reasons: (1) no specific clinical signs or pathognomonic lesions, (2) isolation of some enteric viruses still difficult, (3) the pathogenicity of several enteric viruses in turkeys is not fully understood, (4) PEMS is an interaction between several known and might be unknown agents and (5) opportunistic microorganisms also have a role in the pathogenesis of PEMS. Both electron microscopy and molecular techniques can be used for diagnosis of PEMS and might help to discover unknown causes. Until now, no specific vaccines against enteric viruses associated with PEMS. However, biosecurity, maintaining a healthy gut and strengthening the immune system of turkey poults using probiotics, prebiotics and/or phytogenic substances are crucial factors to prevent and/or reduce losses of PEMS in turkeys. This review is a call for scientists to perform further research to investigate the real cause(s) of PEMS and to develop a preventive strategy against it. Abstract Poult enteritis and mortality syndrome (PEMS) is one of the most significant problem affecting turkeys and continues to cause severe economic losses worldwide. Although the specific causes of PEMS remains unknown, this syndrome might involve an interaction between several causative agents such as enteropathogenic viruses (coronaviruses, rotavirus, astroviruses and adenoviruses) and bacteria and protozoa. Non-infectious causes such as feed and management are also interconnected factors. However, it is difficult to determine the specific cause of enteric disorders under field conditions. Additionally, similarities of clinical signs and lesions hamper the accurate diagnosis. The purpose of the present review is to discuss in detail the main viral possible causative agents of PEMS and challenges in diagnosis and control.
Collapse
Affiliation(s)
- Awad A. Shehata
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
- Correspondence: (A.A.S.); (H.M.H.)
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt;
| | - Reinhard Sting
- Chemisches und Veterinäruntersuchungsamt Stuttgart, 70736 Fellbach, Germany; (R.S.); (V.A.)
| | - Valerij Akimkin
- Chemisches und Veterinäruntersuchungsamt Stuttgart, 70736 Fellbach, Germany; (R.S.); (V.A.)
| | - Marc Hoferer
- Chemisches und Veterinäruntersuchungsamt Freiburg, 79108 Freiburg, Germany;
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany
- Correspondence: (A.A.S.); (H.M.H.)
| |
Collapse
|
13
|
Costa LM, Muálem de Moraes Alves M, Brito LM, de Araujo Abi-Chacra E, Barbosa-Filho JM, Chavez Gutierrez SJ, Barreto HM, Aécio de Amorim Carvalho F. In vitro antileishmanial and immunomodulatory activities of the synthetic analogue riparin E. Chem Biol Interact 2021; 336:109389. [PMID: 33484715 DOI: 10.1016/j.cbi.2021.109389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Leishmaniases are infectious diseases caused by protozoa of the genus Leishmania, that may have different clinical manifestations. First line drugs used in the treatment of leishmaniosis are high costly, and are very aggressive requiring medical monitoring. Thus new therapeutic alternatives are needed and, in this context, natural products have been considered as a source of new antileishmania agents. Riparins are alkamides found in the unripe fruits of Aniba riparia. Several biological activities are described for this group of compounds, such as antimicrobial and antiparasitic potential. The objective of this work was to evaluate the anti-leishmania activity riparin E (Rip-E) in vitro, against promastigotes and internalized amastigotes of Leishmania amazonensis. Rip-E was able to inhibit promastigote cell growth (IC50 4.7 μg/ml) and to reduce the percentage of macrophages infected with amastigotes, reducing its infectivity (survival index) (IC50 1.3 μg/ml). The cytotoxicity against BALB/c murine macrophages was also assessed (CC50 50.6 μg/ml) and the selectivity index was 38.9. Rip-E also demonstrated immunomodulatory activity, evidenced by the increase of the phagocytic capacity and lysosomal activity. However, Rip-E did not affect directly the production of nitric oxide. These results suggest that Rip-E has antileishmania potential, by both its direct inhibitory effect and its ability to activate macrophages.
Collapse
Affiliation(s)
- Luciana Muratori Costa
- Laboratory for Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Lucas Moreira Brito
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Erika de Araujo Abi-Chacra
- Laboratory for Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piauí, Teresina, PI, Brazil
| | - José Maria Barbosa-Filho
- Pharmaceutical Technology Laboratory, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Stanley Juan Chavez Gutierrez
- Laboratory Chemistry of Bioactive Natural and Synthetic Products, Department of Pharmacy, Federal University of Piauí, Teresina, PI, Brazil
| | - Humberto Medeiros Barreto
- Laboratory for Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piauí, Teresina, PI, Brazil.
| | | |
Collapse
|
14
|
Angulo M, Reyes-Becerril M, Angulo C. Yarrowia lipolytica N6-glucan protects goat leukocytes against Escherichia coli by enhancing phagocytosis and immune signaling pathway genes. Microb Pathog 2021; 150:104735. [PMID: 33453314 DOI: 10.1016/j.micpath.2021.104735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Immunostimulant and protective effects of Yarrowia lipolytica glucans against important pathogens, such as Escherichia coli, have not been investigated in goats and other ruminants. This study aimed to characterize Y. lipolytica N6-glucan (Yl-glucan) and its possible role in immunological signaling pathway activation and immunoprotection against E. coli in goat leukocytes. Characterization analyses showed that Y. lipolytica content had a mix of β and α-D-glucans, molecular weight of 3301.53 kDa and low solubility after the heat treatment. The stimulation of goat leukocytes with Yl-glucan induced protection against E. coli challenge. Remarkably, Yl-glucan and E. coli interaction increased gene expression of dectin-1 and TLR-2 receptors, signaling pathway Syk/NFκB, and cytokines, such as TNF-α and IL-10. As a consequence of signaling activation, phagocytosis, and nitric oxide production enhanced killing of pathogens. Altogether, Y. lipolytica-glucan demonstrated to possess an immunoprotective potential against E. coli through innate immune response modulation in goat leukocytes.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas Del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas Del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas Del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico.
| |
Collapse
|
15
|
Gallic and Ellagic Acids Are Promising Adjuvants to Conventional Amphotericin B for the Treatment of Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2020; 64:AAC.00807-20. [PMID: 32928735 DOI: 10.1128/aac.00807-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, we demonstrated the potential associative effect of combining conventional amphotericin B (Amph B) with gallic acid (GA) and with ellagic acid (EA) in topical formulations for the treatment of cutaneous leishmaniasis in BALB/c mice. Preliminary stability tests of the formulations and in vitro drug release studies with Amph B, GA, Amph B plus GA, EA, and Amph B plus EA were carried out, as well as assessment of the in vivo treatment of BALB/c mice infected with Leishmania major After 40 days of infection, the animals were divided into 6 groups and treated twice a day for 21 days with a gel containing Amph B, GA, Amph B plus GA, EA, or Amph B plus EA, and the negative-control group was treated with the vehicle. In the animals that received treatment, there was reduction of the lesion size and reduction of the parasitic load. Histopathological analysis of the treatments with GA, EA, and combinations with Amph B showed circumscribed lesions with the presence of fibroblasts, granulation tissue, and collagen deposition, as well as the presence of activated macrophages. The formulations containing GA and EA activated macrophages in all evaluated parameters, resulting in the activation of cells of the innate immune response, which can generate healing and protection. GA and EA produced an associative effect with Amph B, which makes them promising for use with conventional Amph B in the treatment of cutaneous leishmaniasis.
Collapse
|
16
|
Zhen W, Shao Y, Wu Y, Li L, Pham VH, Abbas W, Wan Z, Guo Y, Wang Z. Dietary yeast β-glucan supplementation improves eggshell color and fertile eggs hatchability as well as enhances immune functions in breeder laying hens. Int J Biol Macromol 2020; 159:607-621. [DOI: 10.1016/j.ijbiomac.2020.05.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
|
17
|
Schiavone M, Sieczkowski N, Castex M, Trevisiol E, Dague E, François JM. AFM dendritips functionalized with molecular probes specific to cell wall polysaccharides as a tool to investigate cell surface structure and organization. Cell Surf 2020; 5:100027. [PMID: 32743143 PMCID: PMC7389267 DOI: 10.1016/j.tcsw.2019.100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Functionalisation of AFM dendritips with conA, WGA and anti-β-1,3/β-1, 6-glucan antibodies. Cell wall polysaccharides were immobilized on epoxy-activated glass slides. Specific binding of immobilized polysaccharides to functionalized dendritips. Functionalized dendritips used as a new tool to probe yeast cell surface.
The yeast cell wall is composed of mannoproteins, β-1,3/β-1, 6-glucans and chitin. Each of these components has technological properties that are relevant for industrial and medical applications. To address issues related to cell wall structure and alteration in response to stress or conditioning processes, AFM dendritips were functionalized with biomolecules that are specific for each of the wall components, which was wheat germ agglutinin (WGA) for chitin, concanavalin A (ConA) for mannans and anti-β-1,3/anti-β-1,6-glucan antibodies for β-1,3/β-1,6-glucans. Binding specificity of these biomolecules were validated using penta-N-acetylchitopentaose, α-mannans, laminarin (short β-1,3-glucan chain) and gentiobiose (2 glucose units linked in β 1→6) immobilized on epoxy glass slides. Dynamic force spectroscopy was employed to obtain kinetic and thermodynamic information on the intermolecular interaction of the binary complexes using the model of Friddle-Noy-de Yoreo. Using this model, transition state distance xt, dissociate rate koff and the lowest force (feq) required to break the intermolecular bond of the complexes were approximated. These functionalized dendritips were then used to probe the yeast cell surface treated with a bacterial protease. As expected, this treatment, which removed the outer layer of the cell wall, gave accessibility to the inner layer composed of β-glucans. Likewise, bud scars were nicely localized using AFM dendritip bearing the WGA probe. To conclude, these functionalized AFM dendritips constitute a new toolbox that can be used to investigate cell surface structure and organization in response to a wide arrays of cultures and process conditions.
Collapse
Affiliation(s)
- Marion Schiavone
- LISBP, UMR INSA-CNRS 5504 & INRA 792, F-31077 Toulouse, France.,Lallemand SAS, 19, rue des briquetiers, 31702 Blagnac, France
| | | | - Mathieu Castex
- Lallemand SAS, 19, rue des briquetiers, 31702 Blagnac, France
| | | | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | |
Collapse
|
18
|
Wang T, Dong Z, Zhou D, Sun K, Zhao Y, Wang B, Chen Y. Structure and immunostimulating activity of a galactofuranose-rich polysaccharide from the bamboo parasite medicinal fungus Shiraia bambusicola. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112833. [PMID: 32289476 DOI: 10.1016/j.jep.2020.112833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shiraia bambusicola is a parasitic fungus on the twigs of bamboos. Its relatively large stroma has high medicinal value and can treat a variety of diseases such as rheumatoid arthritis, cold stomach pain, sciatica, injuries, chronic bronchitis, and infantile. It is widely distributed in many provinces in Southern China and also is also found in Japan. AIM OF THE STUDY Medicinal fungi were important resources for bioactive polysaccharides. To explore bioactive polysaccharides from Shiraia bambusicola, a heteropolysaccharide SB2-1 was purified and obtained from S. bambusicola and its immunostimulating activity was researched. MATERIALS AND METHODS The polysaccharide from S. bambusicola was extracted and purified using enzyme assisted extraction, ethanol precipitation, anion-exchange and size-exclusion chromatography. Molecular weight of polysaccharide was estimated by high performance gel permeation chromatography. Monosaccharide compositions were determined by high performance liquid chromatography after pre-column derivatization and UV detection. Structure information was elucidated by IR spectrum, GC-MS analysis after methylation and gradual acid hydrolysis of the polysaccharide. The RAW264.7 cells were used to study the immunostimulating activity in vitro. RESULTS Physicochemical and structural analyses showed that SB2-1 was a neutral heteropolysaccharide with molecular weight at 22.2 kDa and consisted of glucose, galactose and mannose at a ratio of 2.0:1.5:1.0. The structure of SB2-1 was a branched polysaccharides composed of a mannan core and side chains consisted of glucose and galactose. The mannan core was composed of (1→2)-Manp as the main chain. Glucose with (1→4)-D-Glcp, (1→2)-D-Glcp and (1→6)-D-Glcp at different degrees of polymerization were linked at C-6 and C-3 of the (1→2)-Manp as the side chains. The galactose with the linages of (1→6)-D-Galf, →2)-D-Galf(1→ and terminal D-Galf(1→ also existed in the side chain. The study on the immunostimulating activities of SB2-1 and its core structure P-2 were investigated on RAW264.7 macrophages. The results showed that SB2-1 could activate RAW264.7 macrophage and significantly improve its phagocytic ability by neutral red uptake experiment. Meanwhile, SB2-1 increased significantly higher inducible nitric oxide synthase (iNOS) production and the productions of IL-1, IL-6, IL-12 and TNF-α. The effect of SB2-1 was better than its core structure P-2 produced by gradual acid hydrolysis, which meant the side chains played an important role in the immunostimulating activities. CONCLUSIONS The investigation demonstrated that the galactofuranose-containing mannogalactoglucan was characteristic polysaccharides in S. bambusicola and could enhance the activation of macrophages.
Collapse
Affiliation(s)
- Teng Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Zhe Dong
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Dejian Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Kunlai Sun
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Yuqin Zhao
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Bin Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| |
Collapse
|
19
|
Arthe R, Arivuoli D, Ravi V. Preparation and characterization of bioactive silk fibroin/paramylon blend films for chronic wound healing. Int J Biol Macromol 2020; 154:1324-1331. [DOI: 10.1016/j.ijbiomac.2019.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
20
|
Qi J, Yin Y, Yu W, Shen L, Xu J, Hu T. Conjugation of β-Glucan with the Hydrazone and Disulfide Linkers Markedly Improves the Immunogenicity of Zika Virus E Protein. Mol Pharm 2020; 17:1933-1944. [DOI: 10.1021/acs.molpharmaceut.0c00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Han B, Baruah K, Cox E, Vanrompay D, Bossier P. Structure-Functional Activity Relationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review. Front Immunol 2020; 11:658. [PMID: 32391005 PMCID: PMC7188827 DOI: 10.3389/fimmu.2020.00658] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
β-Glucans are a heterogeneous group of glucose polymers with a common structure comprising a main chain of β-(1,3) and/or β-(1,4)-glucopyranosyl units, along with side chains with various branches and lengths. β-Glucans initiate immune responses via immune cells, which become activated by the binding of the polymer to specific receptors. However, β-glucans from different sources also differ in their structure, conformation, physical properties, binding affinity to receptors, and thus biological functions. The mechanisms behind this are not fully understood. This mini-review provides a comprehensive and up-to-date commentary on the relationship between β-glucans' structure and function in relation to their use for immunomodulation.
Collapse
Affiliation(s)
- Biao Han
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Kartik Baruah
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.,Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
22
|
Meng Y, Lyu F, Xu X, Zhang L. Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromolecules 2020; 21:1653-1677. [PMID: 31986015 DOI: 10.1021/acs.biomac.9b01644] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides derived from renewable biomass sources are regarded as environmentally friendly and sustainable polymers. As the third most abundant biomacromolecule in nature, after proteins and nucleic acids, polysaccharides are also closely related with many different life activities. In particular, β-glucans are one of the most widely reported bioactive polysaccharides and are usually considered as biological response modifiers. Among them, β-glucans with triple-helix conformation have been the hottest and most well-researched polysaccharides at present, especially lentinan and schizophyllan, which are clinically used as cancer therapies in some Asian countries. Thus, creation of these active triple-helix polysaccharides is beneficial to the research and development of sustainable "green" biopolymers in the fields of food and life sciences. Therefore, full fundamental research of triple-helix polysaccharides is essential to discover more applications for polysaccharides. In this Review, the recent research progress of chain conformations, bioactivities, and structure-function relationships of triple-helix β-glucans is summarized. The main contents include the characterization methods of the macromolecular conformation, proof of triple helices, bioactivities, and structure-function relationships. We believe that the governments, enterprises, universities, and institutes dealing with the survival and health of human beings can expect the development of natural bioproducts in the future. Hence, a deep understanding of β-glucans with triple-helix chain conformation is necessary for application of natural medicines and biologics for a sustainable world.
Collapse
Affiliation(s)
- Yan Meng
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China.,College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fengzhi Lyu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Structural elucidation and immunomodulatory activity of a β-D-glucan prepared by freeze-thawing from Hericium erinaceus. Carbohydr Polym 2019; 222:114996. [DOI: 10.1016/j.carbpol.2019.114996] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
|
24
|
Effects of Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis on Physicochemical Characteristics and Immune Activity In Vitro of Hericium erinaceus Polysaccharides. Molecules 2019; 24:molecules24020262. [PMID: 30641994 PMCID: PMC6358873 DOI: 10.3390/molecules24020262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/04/2022] Open
Abstract
The polysaccharide is the main active substance contained in Hericium erinaceus and is commonly used in the treatment of neurasthenia, tumors, and digestive diseases. Six intracellular polysaccharide components were obtained from H. erinaceus fruiting bodies cultivated by ARTP (atmospheric and room temperature plasma) mutagenic strain (321) and the original strain (0605), respectively. This study was designed to investigate the physicochemical characteristics of these polysaccharide components and their potential immunomodulatory activities on RAW264.7 macrophages. The results showed that the yield of fruiting body cultivated by mutated strain increased by 22% and the polysaccharide content improved by 16% compared with the original one owing to ARTP mutagenesis. The molecular weight distribution and the monosaccharide compositions of polysaccharide components from H. erinaceus induced by ARTP mutagenesis were significantly different from that of the original one. The NO, IL-6, IL-10, IL-1β, and TNF-α production activities of macrophages were enhanced by stimulation of 20% ethanol precipitated polysaccharides from H. erinaceus induced by ARTP mutagenesis. These results indicated that ARTP is an efficient and practical method for high polysaccharide content breeding of the H. erinaceus strain and this provided a reference for obtaining high quality resources and healthy product development from H. erinaceus.
Collapse
|
25
|
Immunomodulatory activity of exopolysaccharide from the rhizobacterium Paenibacillus polymyxa CCM 1465. Arch Microbiol 2018; 200:1471-1480. [PMID: 30155554 DOI: 10.1007/s00203-018-1564-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
Abstract
Bacterial polysaccharides are promising stimulants of protective functions in humans and animals. We investigated the ability of exopolysaccharide from the rhizobacterium Paenibacillus polymyxa CCM 1465 to induce nonspecific resistance factors in the macroorganism. We examined in vitro the effect of the exopolysaccharide, produced with different carbon sources, on the phagocytic activity of murine macrophages, on the generation of reactive oxygen species and of enzymes (acid phosphatase and myeloperoxidase), on the proliferation of murine splenocytes, and on the synthesis of proinflammatory cytokines [interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α)] by human mononuclear cells. The exopolysaccharide promoted the phagocytosis of bacterial cells, activated metabolic processes in human and animal leukocytes, and moderately affected the production of TNF-α and IL-1β. The exopolysaccharides produced on media with glucose and sucrose differed in their effect on the immune cells, possibly owing to their different compositions, structures, and properties. The results validly indicate that the exopolysaccharide of P. polymyxa CCM 1465 promotes nonspecific immunity. Therefore, it can find application as a biologically active immunomodulatory substance.
Collapse
|
26
|
Liu Y, Tang Q, Zhang J, Xia Y, Yang Y, Wu D, Fan H, Cui SW. Triple helix conformation of β-d-glucan from Ganoderma lucidum and effect of molecular weight on its immunostimulatory activity. Int J Biol Macromol 2018; 114:1064-1070. [DOI: 10.1016/j.ijbiomac.2018.03.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 01/15/2023]
|
27
|
Camilli G, Tabouret G, Quintin J. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System. Front Immunol 2018; 9:673. [PMID: 29755450 PMCID: PMC5932370 DOI: 10.3389/fimmu.2018.00673] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 01/12/2023] Open
Abstract
β-glucan, the most abundant fungal cell wall polysaccharide, has gained much attention from the scientific community in the last few decades for its fascinating but not yet fully understood immunobiology. Study of this molecule has been motivated by its importance as a pathogen-associated molecular pattern upon fungal infection as well as by its promising clinical utility as biological response modifier for the treatment of cancer and infectious diseases. Its immune effect is attributed to the ability to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes, macrophages, neutrophils, and natural killer cells. The characteristics of the immune responses generated depend on the cell types and receptors involved. Size and biochemical composition of β-glucans isolated from different sources affect their immunomodulatory properties. The variety of studies using crude extracts of fungal cell wall rather than purified β-glucans renders data difficult to interpret. A better understanding of the mechanisms of purified fungal β-glucan recognition, downstream signaling pathways, and subsequent immune regulation activated, is, therefore, essential not only to develop new antifungal therapy but also to evaluate β-glucan as a putative anti-infective and antitumor mediator. Here, we briefly review the complexity of interactions between fungal β-glucans and mononuclear phagocytes during fungal infections. Furthermore, we discuss and present available studies suggesting how different fungal β-glucans exhibit antitumor and antimicrobial activities by modulating the biologic responses of mononuclear phagocytes, which make them potential candidates as therapeutic agents.
Collapse
Affiliation(s)
- Giorgio Camilli
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | | | - Jessica Quintin
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
28
|
Zheng X, Lu F, Xu X, Zhang L. Extended chain conformation of β-glucan and its effect on antitumor activity. J Mater Chem B 2017. [DOI: 10.1039/c7tb01324h] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extended chain conformation of β-glucan visualized by AFM, and its molecular weight- and chain conformation-dependent antitumor activity.
Collapse
Affiliation(s)
- Xing Zheng
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Fengzhi Lu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
29
|
Bakheet SA, Attia SM, Alwetaid MY, Ansari MA, Zoheir KM, Nadeem A, Al-Shabanah OA, Al-Harbi MM, Ahmad SF. β-1,3-Glucan reverses aflatoxin B1-mediated suppression of immune responses in mice. Life Sci 2016; 152:1-13. [DOI: 10.1016/j.lfs.2016.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/05/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
30
|
Cuong DV, Kim HK, Marquez J, Kim N, Ko KS, Rhee BD, Han J. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:213-20. [PMID: 26937218 PMCID: PMC4770112 DOI: 10.4196/kjpp.2016.20.2.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 12/03/2022]
Abstract
Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca2+, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca2+ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca2+ uniporter has an important regulatory role in BG-induced mast cell degranulation.
Collapse
Affiliation(s)
- Dang Van Cuong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
| | - Jubert Marquez
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
31
|
Li J, Qian W, Xu Y, Chen G, Wang G, Nie S, Shen B, Zhao Z, Liu C, Chen K. Activation of RAW 264.7 cells by a polysaccharide isolated from Antarctic bacterium Pseudoaltermonas sp. S-5. Carbohydr Polym 2015; 130:97-103. [DOI: 10.1016/j.carbpol.2015.04.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
32
|
Noss I, Ozment TR, Graves BM, Kruppa MD, Rice PJ, Williams DL. Cellular and molecular mechanisms of fungal β-(1→6)-glucan in macrophages. Innate Immun 2015. [PMID: 26209532 DOI: 10.1177/1753425915595874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last 40 yr, the majority of research on glucans has focused on β-(1→3)-glucans. Recent studies indicate that β-(1→6)-glucans may be even more potent immune modulators than β-(1→3)-glucans. Mechanisms by which β-(1→6)-glucans are recognized and modulate immunity are unknown. In this study, we examined the interaction of purified water-soluble β-(1→6)-glucans with macrophage cell lines and primary peritoneal macrophages and the cellular and molecular consequences of this interaction. Our results indicate the existence of a specific β-(1→6)-glucan receptor that internalizes the glucan ligand via a clathrin-dependent mechanism. We show that the known β-(1→3)-glucans receptors are not responsible for β-(1→6)-glucan recognition and interaction. The receptor-ligand uptake/interaction has an apparent dissociation constant (KD) of ∼ 4 µM, and was associated with phosphorylation of ERK and JNK but not IκB-α or p38. Our results indicate that macrophage interaction with β-(1→6)-glucans may lead to modulation of genes associated with anti-fungal immunity and recruitment/activation of neutrophils. In summary, we show that macrophages specifically bind and internalize β-(1→6)-glucans followed by activation of intracellular signaling and modulation of anti-fungal immune response-related gene regulation. Thus, we conclude that the interaction between innate immunity and β-(1→6)-glucans may play an important role in shaping the anti-fungal immune response.
Collapse
Affiliation(s)
- Ilka Noss
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tammy R Ozment
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Bridget M Graves
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Michael D Kruppa
- Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
33
|
Qiao W, Ji S, Zhao Y, Hu T. Conjugation of β-glucan markedly increase the immunogencity of meningococcal group Y polysaccharide conjugate vaccine. Vaccine 2015; 33:2066-72. [DOI: 10.1016/j.vaccine.2015.02.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 01/23/2023]
|
34
|
Preliminary Studies of the Immunomodulator Effect of the Bougainvillea xbuttiana Extract in a Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:479412. [PMID: 25861362 PMCID: PMC4378339 DOI: 10.1155/2015/479412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 01/29/2023]
Abstract
Bougainvillea xbuttiana is used as an analgesic in folk medicine in Mexico. The purpose of the present study was to determine the effects of the ethanolic extract from B. xbuttiana on macrophages activities. The phytochemical screening was performed for determine the presence of alkaloids, flavonoids, triterpenes, and saponins. The effects of B. xbuttiana were analyzed using the macrophages activities as determined by the H2O2 release, spreading and phagocytic index, vacuoles formation percentage, and mediators production. The viability percentage was determined in live cells after fixing and staining with crystal violet. The presence of H2O2 in macrophages was performed by using the peroxidase-phenol red solution. The cytokine production was determined by two assays, ELISA for detection of IL-6, IL-10, and IFN-γ and biological assay for TNF detection. The results showed that the Bxb extract dose-dependent manner produces (a) an increase in levels of H2O2 and spreading and vacuoles formation percentages, (b) a decrease in phagocytic index and in the amounts of TNF, IL-6, and IFN-γ, and (c) an increase significant in IL-10 and NO production. This study indicates that the ethanolic extract from Bougainvillea xbuttiana was able to activate macrophages. The combination of these results suggests that this extract has an immunomodulator effect.
Collapse
|
35
|
Fungal Cultivation and Production of Polysaccharides. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
36
|
Varricchio AM, Capasso M, Della Volpe A, Malafronte L, Mansi N, Varricchio A, Ciprandi G. Resveratrol plus carboxymethyl-β-glucan in children with recurrent respiratory infections: a preliminary and real-life experience. Ital J Pediatr 2014; 40:93. [PMID: 25416925 PMCID: PMC4245789 DOI: 10.1186/s13052-014-0093-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/11/2014] [Indexed: 10/23/2023] Open
Abstract
Background Recurrent respiratory infections (RRI), such as the presence of at least one of the following criteria: i) >6 RI per year; ii) >1 RI per month involving upper airways from September to April; iii) >3 RI involving lower airways, constitute a social problem for both their pharmaco-economic impact and the burden for the family. However, several treatment have been proposed with controversial results. Objective As resveratrol plus carboxymethyl-β-glucan is presently available as solution for aerosol, the aim of this study was to evaluate the effects of this compound, compared to saline solution, whether it is able to prevent RRI in children. Design The study was designed as real-life, randomized. Globally, 82 children (49 males, mean age 8.1 ± 2.6 years) with acute rhinopharyngitis and RRI were enrolled. Resveratrol plus carboxymethyl-β-glucan or saline isotonic solution was randomly (ratio 1:1) administered immediately after an anti-infective and anti-inflammatory 10-day treatment (tiamphenicol associated with acetylcisteine plus beclomethasone dipropionate) for the acute rhinopharyngitis. Investigated treatments lasted 20 days. Days with respiratory symptoms, fever, medication use, medical visits, and school absences were evaluated. Children were visited 30, 60, and 90 days after starting treatments. Results The active compound was able to significantly reduce the number of days with nasal obstruction (p < 0.001), rhinorrhea (p < 0.001), sneezing (p < 0.001), cough (p = 0.002), fever (p < 0.001), medication use (p < 0.001), medical visits (p < 0.001), and school absence (p < 0.001). Conclusions This preliminary and real-life study could suggest that an aerosolized solution containing resveratrol plus carboxymethyl-β-glucan might exert preventive effects in children with RRI.
Collapse
Affiliation(s)
- Alfonso Maria Varricchio
- Associazione Italiana Vie Aeree (AIVAS): Study Group on Respiratory Infections, Via P. Boselli 5, 16146, Genoa, Italy.
| | - Michele Capasso
- Associazione Italiana Vie Aeree (AIVAS): Study Group on Respiratory Infections, Via P. Boselli 5, 16146, Genoa, Italy.
| | - Antonio Della Volpe
- Associazione Italiana Vie Aeree (AIVAS): Study Group on Respiratory Infections, Via P. Boselli 5, 16146, Genoa, Italy.
| | - Luigi Malafronte
- Associazione Italiana Vie Aeree (AIVAS): Study Group on Respiratory Infections, Via P. Boselli 5, 16146, Genoa, Italy.
| | - Nicola Mansi
- Associazione Italiana Vie Aeree (AIVAS): Study Group on Respiratory Infections, Via P. Boselli 5, 16146, Genoa, Italy.
| | - Attilio Varricchio
- Associazione Italiana Vie Aeree (AIVAS): Study Group on Respiratory Infections, Via P. Boselli 5, 16146, Genoa, Italy.
| | - Giorgio Ciprandi
- Associazione Italiana Vie Aeree (AIVAS): Study Group on Respiratory Infections, Via P. Boselli 5, 16146, Genoa, Italy.
| |
Collapse
|
37
|
Ulbricht C. An Evidence-Based Systematic Review of Beta-Glucan by the Natural Standard Research Collaboration. J Diet Suppl 2014; 11:361-475. [DOI: 10.3109/09286586.2014.975066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Abstract
A wide variety of dietary supplements containing polysaccharides are being introduced on the market. One of them is Leiber Beta-S (β-1,3/1,6-D-glucan) whose immunostimulatory effects have not yet been fully evaluated, in particular in polygastric animals. The aim of this study was to evaluate the effect of this supplement on selected indicators of cellular and humoral immunity in calves. The experiment was performed on 14 calves aged 30 ± 2 days, divided into two equal groups of control and experimental animals. The feed administered to calves of the experimental group was supplemented with Leiber Beta-S at 50 mg/kg body weight, whereas control calves were administered standard farm-made feed without supplementation. Blood was sampled before the experiment (day 0) and on days 15, 30 and 60 to determine the immunity indicators (proliferative response of lipopolysaccharide- and concanavalin A-stimulated lymphocytes, respiratory burst activity, potential killing activity of phagocytes, gamma globulin concentrations, lysozyme activity, ceruloplasmin activity) and biochemical indicator (total protein concentrations). Diet supplemented with Leiber Beta-S stimulated the immune system of calves. Significant differences between the experimental and the control group were found in lysozyme and ceruloplasmin activity, gamma globulin concentrations, potential killing activity of phagocytes, proliferative response of lymphocytes (P < 0.001) and respiratory burst activity of phagocytes (P < 0.05). No differences were found in the serum total protein between the experimental and the control group. This study reports for the first time the effect of Leiber Beta-S (β-1,3/1,6-D-glucan) on selected biochemical and immunity indicators in calves.
Collapse
|
39
|
Batbayar S, Lee DH, Kim HW. Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1. Biomol Ther (Seoul) 2014; 20:433-45. [PMID: 24009832 PMCID: PMC3762275 DOI: 10.4062/biomolther.2012.20.5.433] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/19/2012] [Indexed: 01/23/2023] Open
Abstract
During the course of evolution, animals encountered the harmful effects of fungi, which are strong pathogens. Therefore, they have developed powerful mechanisms to protect themselves against these fungal invaders. β-Glucans are glucose polymers of a linear β(1,3)-glucan backbone with β(1,6)-linked side chains. The immunostimulatory and antitumor activities of β-glucans have been reported; however, their mechanisms have only begun to be elucidated. Fungal and particulate β-glucans, despite their large size, can be taken up by the M cells of Peyer's patches, and interact with macrophages or dendritic cells (DCs) and activate systemic immune responses to overcome the fungal infection. The sampled β-glucans function as pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition receptors (PRRs) on innate immune cells. Dectin-1 receptor systems have been incorporated as the PRRs of β-glucans in the innate immune cells of higher animal systems, which function on the front line against fungal infection, and have been exploited in cancer treatments to enhance systemic immune function. Dectin-1 on macrophages and DCs performs dual functions: internalization of β-glucan-containing particles and transmittance of its signals into the nucleus. This review will depict in detail how the physicochemical nature of β-glucan contributes to its immunostimulating effect in hosts and the potential uses of β-glucan by elucidating the dectin-1 signal transduction pathway. The elucidation of β-glucan and its signaling pathway will undoubtedly open a new research area on its potential therapeutic applications, including as immunostimulants for antifungal and anti-cancer regimens.
Collapse
Affiliation(s)
- Sainkhuu Batbayar
- Department of Life Sciences, BK21 Cellular Stress Team, University of Seoul, Seoul 130-743, Korea
| | | | | |
Collapse
|
40
|
Reactivity of the immunological system of rats stimulated with Biolex-Beta HP after cyclophosphamide immunosuppression. Cent Eur J Immunol 2014; 39:51-60. [PMID: 26155100 PMCID: PMC4439987 DOI: 10.5114/ceji.2014.42125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/06/2014] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to determine the stimulating effect of the Biolex-Beta HP (β-1,3/1,6-D-glucan) dietary supplement on selected parameters of specific and non-specific humoral and cellular immunity in rats immunosuppressed with cyclophosphamide. The experimental material comprised 40 Wistar rats, divided into two equal groups: control and experimental. In the course of 3 successive days, the rats from the experimental group were administered cyclophosphamide intramuscularly at a rate of 50 mg/kg BW per day. On the 8(th) day of the experiment, 10 control and 10 experimental rats were sacrificed, and total protein and γ-globulin levels, lysozyme and ceruloplasmin activity were determined in the blood serum. The proliferative response of blood lymphocytes after stimulation with lipopolysaccharide or concanavalin A, respiratory burst activity and the potential killing activity of phagocytes were determined in whole heparinised blood. Starting on the 8(th) day of the experiment, the feed of the remaining rats from the experimental and control groups was supplemented for 14 consecutive days with Biolex-Beta HP at a rate of 50 mg/kg BW per day. On day 22, arterial blood samples were collected and immune parameters were determined. The results indicate that β-1,3/1,6-D-glucan has a positive effect on the analysed parameters of non-specific cellular and humoral immunity after cyclophosphamide-induced suppression. Nevertheless, the observed effect only marked a return to the norm, as most of the analysed parameters were merely restored to their initial levels, with the exception of lysozyme activity, which considerably exceeded the level noted before immunosuppression.
Collapse
|
41
|
Antioxidant and antitumor activities of β-glucan-rich exopolysaccharides with different molecular weight from Paenibacillus polymyxa JB115. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13765-013-4252-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Fungal Cultivation and Production of Polysaccharides. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_21-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
43
|
Fungal Cultivation and Production of Polysaccharides. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_21-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0275-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Evaluation of the protective effect of Beta glucan on amikacin ototoxicity using distortion product otoacoustic emission measurements in rats. Clin Exp Otorhinolaryngol 2013; 6:1-6. [PMID: 23525870 PMCID: PMC3604263 DOI: 10.3342/ceo.2013.6.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 12/15/2022] Open
Abstract
Objectives This experimental study investigated the possible protective effect of beta glucans on amikacin ototoxicity. Methods Thirty-eight rats with normal distortion product otoacoustic emissions (DPOAEs) were divided into four groups. Group K was the control group. Group A was injected intramuscularly (i.m.) with amikacin 600 mg/kg/day between days 1-15. Group AB was given beta glucan gavage 1 mg/kg/day on days 0-15 and given amikacin 600 mg/kg/day i.m. on days 1-15. Group B was administered only beta glucan gavage, 1 mg/kg/day, on days 0-15. The DPOAEs were elicited in different frequency regions between 2,003 and 9,515 Hz, as distortion product diagrams (DPgrams), before and after the medication was administered, in all groups, on days 1, 5, 10, and 15. Results No significant changes in the DPgrams were observed in group K. In group A, significant deterioration was observed at the 8,003 and 9,515 Hz frequencies on day 10, and at the 3,991, 4,557, 5,660, 6,726, 8,003, and 9,515 Hz frequencies on day 15. For group AB, statistically significant deterioration was observed at the 2,824, 8,003, and 9,515 Hz frequencies on day 15. The results for group B showed a significant improvement of hearing at the 2,378, 2,824, 3,363, and 3,991 Hz frequencies on day 1, at the 3,363, 3,991, and 8,003 Hz frequencies on day 10, and at the 8,003 Hz frequency on day 15. Conclusion This study suggests that amikacin-induced hearing loss in rats may be limited to some extent by concomitant use of beta glucan.
Collapse
|
46
|
The effect of Beta glucan on Cisplatin ototoxicity. Indian J Otolaryngol Head Neck Surg 2013; 66:131-4. [PMID: 24822149 DOI: 10.1007/s12070-013-0623-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/25/2013] [Indexed: 01/19/2023] Open
Abstract
This study was undertaken to investigate the effect of betaglucan in ameliorating cisplatin ototoxicity. Rats were divided into four groups: cisplatin (C), cisplatin plus beta glucan (CB), beta glucan (B), and control (K). Distortion product otoacoustic emissions were elicited in 0th, 1st, and 5th days. For the group C differences were observed at 8,003 and 9,515 Hz between 0th and 5th days' measurements. In the group CB there were differences at frequencies of 3,996, 4,757, 5,660, and 6,726 Hz between 0th and 5th days' measurements. For the group B there were significant recovery in some frequencies. The observation of significant deterioration in terms of hearing in the group treated with cisplatin plus betaglucan may be suggested that depended on the increase of permeability and tissue conductance into the inner ear which may be caused by betaglucan. Further long-term follow-up studies by using different doses may clarify this matter.
Collapse
|
47
|
Effect of dietary β-glucan on growth performance, fecal microbial shedding and immunological responses after lipopolysaccharide challenge in weaned pigs. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2012.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Spano A, Barni S, Bertone V, Sciola L. Changes on lysosomal compartment during PMA-induced differentiation of THP-1 monocytic cells: Influence of type I and type IV collagens. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.48a3002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Liu Q, Xu X, Zhang L, Yu J. Interaction between polydeoxyadenylic acid and β-glucan from Lentinus edodes. Eur Polym J 2012. [DOI: 10.1016/j.eurpolymj.2012.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Firat C, Samdanci E, Erbatur S, Aytekin AH, Ak M, Turtay MG, Coban YK. β-Glucan treatment prevents progressive burn ischaemia in the zone of stasis and improves burn healing: an experimental study in rats. Burns 2012; 39:105-12. [PMID: 22469518 DOI: 10.1016/j.burns.2012.02.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/25/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
Saving the zone of stasis is one of the major goals of burn specialists. Increasing the tissue tolerance to ischaemia and inhibiting inflammation have been proposed to enable salvage of this zone. After a burn, excessive inflammation, including increased vascular permeability, local tissue oedema and neutrophil activation, causes local tissue damage by triggering vascular thrombosis and blocking capillaries, resulting in tissue ischaemia and necrosis. Oxygen radicals also contribute to tissue damage after a burn. However, macrophages play a pivotal role in the response to burn. We studied β-glucan because of its many positive systemic effects that are beneficial to burn healing, including immunomodulatory effects, antioxidant effects (free-radical scavenging activity) and effects associated with the reduction of the inflammatory response. There were four test groups in this study with eight rats in each group. Group 1 was the control group, group 2 was administered a local pomade (bacitracin+neomycin sulphate), group 3 received β-glucan (50 mg kg(-1), orally) + the local pomade and group 4 received β-glucan. Burns were created using a brass comb model. Macroscopic, histopathological and statistical assessments were performed. Samples were harvested on the 3rd, 7th and 21 days for analysis. The neutrophilic infiltration into the zone of stasis was analysed on day 3. Macrophage infiltration, fibroblast proliferation, angiogenesis and re-epithelialisation ratios in the zone of stasis were analysed on days 7 and 21. The β-glucan groups (groups 3 and 4) exhibited lower neutrophil counts on the 3rd day, and macrophage infiltration, fibroblast proliferation, angiogenesis and re-epithelialisation were very high in these groups on the 7th day. In particular, re-epithelialisation on the 21st day was significantly better in the β-glucan groups. This study demonstrated that β-glucan may prevent neutrophil-dependent tissue damage and burn-induced oxidative injury through its anti-inflammatory and antioxidant properties. We speculate that the inhibition of neutrophil activation preserves vascular patency by preventing capillary blockage. β-Glucan is also a powerful macrophage stimulator, and is therefore very effective in saving the zone of stasis.
Collapse
Affiliation(s)
- Cemal Firat
- Inonu University School of Medicine, Department of Plastic Reconstructive Surgery, Malatya, Turkey.
| | | | | | | | | | | | | |
Collapse
|