1
|
Yue L, Kajino K, Kobayashi T, Sugitani Y, Sugihara M, Kakuta S, Harada N, Sasano H, Kojima M, Abe M, Lu R, Otsuji N, Orimo A, Hino O. ERC/Mesothelin Is Associated with the Formation of Microvilli on the Mesothelium and Has Limited Functional Relevance Under Physiological Conditions. Int J Mol Sci 2025; 26:4330. [PMID: 40362566 PMCID: PMC12072949 DOI: 10.3390/ijms26094330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
In adults, expressed in renal cancer (ERC)/mesothelin is exclusively expressed in the mesothelial cells lining the pleural, pericardial, and peritoneal cavities, yet its function under physiological conditions is unknown. To explore this, we studied ERC expression in wild-type (WT) mice at different developmental stages by immunohistochemistry and analyzed the ultrastructure of the mesothelium in WT and Erc-knockout (KO) mice via electron microscopy. Additionally, cardiopulmonary function in adult WT and Erc-KO mice was assessed using echocardiography and the forced oscillation technique (FOT). During embryonic development in WT mice, ERC expression was detected in the epicardium as early as embryonic day (E)12.5 but was absent in the pleura until E18.5. The timing of expression appeared to coincide with the active maturation of these organs, which implied a potential role in cardiopulmonary development. Electron microscopy revealed that microvilli on the mesothelium of Erc-KO mice were immature compared to those of WT mice. Based on these findings, we hypothesized that ERC might contribute to cardiopulmonary function; however, echocardiography and FOT did not reveal any functional differences between WT and Erc-KO mice. This suggests that ERC has limited functional relevance under physiological conditions.
Collapse
Affiliation(s)
- Liang Yue
- Department of Molecular Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (L.Y.); (T.K.); (Y.S.); (M.A.); (N.O.); (A.O.); (O.H.)
| | - Kazunori Kajino
- Department of Molecular Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (L.Y.); (T.K.); (Y.S.); (M.A.); (N.O.); (A.O.); (O.H.)
- Department of Human Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
- Department of Pathology, Juntendo University Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (L.Y.); (T.K.); (Y.S.); (M.A.); (N.O.); (A.O.); (O.H.)
| | - Yoshinobu Sugitani
- Department of Molecular Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (L.Y.); (T.K.); (Y.S.); (M.A.); (N.O.); (A.O.); (O.H.)
| | - Masami Sugihara
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
- Department of Clinical Laboratory, Juntendo University Tokyo Koto Geriatric Medical Center, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (N.H.); (H.S.)
| | - Hitoshi Sasano
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (N.H.); (H.S.)
| | - Masataka Kojima
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Masaaki Abe
- Department of Molecular Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (L.Y.); (T.K.); (Y.S.); (M.A.); (N.O.); (A.O.); (O.H.)
| | - Rong Lu
- Department of Human Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Naomi Otsuji
- Department of Molecular Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (L.Y.); (T.K.); (Y.S.); (M.A.); (N.O.); (A.O.); (O.H.)
- Department of Human Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Akira Orimo
- Department of Molecular Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (L.Y.); (T.K.); (Y.S.); (M.A.); (N.O.); (A.O.); (O.H.)
| | - Okio Hino
- Department of Molecular Pathology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (L.Y.); (T.K.); (Y.S.); (M.A.); (N.O.); (A.O.); (O.H.)
| |
Collapse
|
2
|
Tani K, Kimura D, Asano Y, Song C, Shimoda H, Minakawa M. Isogenic Transplantation of Hybrid Artificial Pleural Tissue Consisting of Rat Cells and Polyglycolic Acid Nanofiber Sheet Induces Restoration of Mesothelial Defects in Rat Model. Artif Organs 2025; 49:778-789. [PMID: 39817871 PMCID: PMC12019103 DOI: 10.1111/aor.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model. METHODS After rat lungs were harvested, pleural mesothelial cells and lung fibroblasts were cultured separately. To construct H-APLT, the cells were then coated with multiple layers of fibronectin and gelatin, followed by a single layer of mesothelial cells on top of multiple layers of fibroblasts accumulated onto a collagen-coated PGA nanofiber sheet. Left lateral thoracotomy was performed, and H-APLTs were transplanted into a rat model with pleural defects (N = 8). After 2-12 weeks of transplantation, lung resection and histological analyses were performed. RESULTS H-APLTs exhibited a pleural structure with a highly integrated mesothelial layer in vitro. After transplantation, all eight rats survived until sacrifice. At 12 weeks post-transplantation, the mesothelial layer on the lung surface was observed to be without defects with no intrathoracic adhesions detected. CONCLUSION Successful isogenic engraftment of H-APLTs was achieved in a rat model of pleural defects. The combination of accumulated fibroblasts and collagen-coated PGA nanofiber sheets contributed to the maintenance of the mesothelial layer's structure and function, potentially preventing air leaks and intrathoracic adhesions.
Collapse
Affiliation(s)
- Kengo Tani
- Department of Thoracic and Cardiovascular SurgeryHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Daisuke Kimura
- Department of Thoracic and Cardiovascular SurgeryHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and HistologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Cheng‐Yang Song
- Department of Thoracic and Cardiovascular SurgeryHirosaki University Graduate School of MedicineHirosakiAomoriJapan
- Department of Thoracic SurgeryFourth Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and HistologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
- Department of Anatomical ScienceHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Masahito Minakawa
- Department of Thoracic and Cardiovascular SurgeryHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| |
Collapse
|
3
|
Al-Qaysi S. The utilization of the k-means clustering for cancer cell detection and classification with serous effusion. Biomed Phys Eng Express 2025; 11:035017. [PMID: 40199332 DOI: 10.1088/2057-1976/adca3e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Cytological analysis of serous effusion specimens is essential for cancer diagnosis. In this work, we analyzed three-dimensional (3D) morphologic features by clustering to discriminate between malignant and nonmalignant cells in serous effusion specimens collected from 10 patients with pleural and peritoneal effusion accumulation symptoms. After the nuclei and mitochondria were fluorescently labeled, we obtained confocal image stack data and conducted 3D reconstruction and morphological feature parameter computation. Confocal images were segmented, interpolated, and reconstructed. Quantitative comparison across cell types has been made by 27 morphological features of volume and surface linked to the cell, nucleus, and mitochondria. We used an unsupervised machine learning method ofk-meansclustering to separate the cell distribution objectively and effectively in the 3D parameter space of the cell morphology features. The statistical significance of the differences was examined on morphological features among the three cell clusters. The clustering results were also analyzed against those of cytopathological examinations performed by collaborative pathologist on specimens collected from the same patients. These results showed that 3D morphologic features allow clustering of the effusion cells in the space of these parameters and may help produce new ways to quickly profile cells for cancer diagnosis in clinical settings. By incorporating these techniques into clinical practice, healthcare professionals may be able to more effectively detect and treat cancers in patients.
Collapse
Affiliation(s)
- Safaa Al-Qaysi
- Department of Physics, East Carolina University, Greenville, NC, 27858, United States of America
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
4
|
Dong SF, Shi XY, Wu XZ, Yi FS. IFN-γ Induces Pleural Mesothelial Cells to Recruit Immune Cells via CXCL10-CXCR3 Axis in a Mouse Pleurisy Model. J Inflamm Res 2025; 18:2521-2530. [PMID: 39995824 PMCID: PMC11849421 DOI: 10.2147/jir.s496037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Background Pleural mesothelial cells (PMCs) form the entire surface of the pleural cavity and interact with microorganisms in the thorax. Although PMCs are known to exert multiple immune functions, their role in pleurisy remains unclear. Methods Pleurisy model was induced by intrapleural injection of Mycobacterium bovis bacillus Calmette-Guerin (BCG) into wild-type (WT) C57BL/6 mice. The pleural cavity was washed with Phosphate Buffered Saline (PBS) to get the immune cells. Flow cytometry was performed to identify the characteristics of the target cells. Results We found that IFN-γ prompts PMCs to act a summon role for the recruitment of inflammatory cells in pleurisy model. Our data showed that CD4+ T cells were the main producer of IFN-γ in the pleurisy model, and IFN-γ stimulated PMCs to recruit immune cells into the pleural cavity through the CXCL10-CXCR3 axis. In addition, IFN-γ can reshape PMCs to display macrophage-like polarization. These results revealed some new immune roles of PMCs in pleurisy. Conclusion In a mouse model of pleurisy, IFN-γ, which is mainly derived from CD4+ T cells, promoted PMCs to recruit of immune cells into the pleural cavity and exhibited macrophage-like polarization.
Collapse
Affiliation(s)
- Shu-Feng Dong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xin-Yu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Xiu-Zhi Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| |
Collapse
|
5
|
Hausburg MA, Banton KL, Cassidy CD, Madayag RM, Palacio CH, Williams JS, Bar-Or R, Ryznar RJ, Bar-Or D. Mesothelial cell responses to acute appendicitis or small bowel obstruction reactive ascites: Insights into immunoregulation of abdominal adhesion. PLoS One 2025; 20:e0317056. [PMID: 39775680 PMCID: PMC11709316 DOI: 10.1371/journal.pone.0317056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Previous abdominal surgery (PAS) increases risk of small bowel obstruction (SBO) due to adhesions, and appendectomy (appy) is an independent risk factor for abdominal adhesion-related complications. Peritoneal inflammation, e.g., acute appendicitis (AA), causes formation of reactive ascitic fluid (rA) that activates peritoneum surface mesothelial cells (MCs) to form adhesions. Pathologic adhesions may arise if restoration of MC-regulated fibrinolysis and secretion of glycocalyx (GCX) are disrupted. Proteins affecting these processes may originate from peritoneal rA. This is a prospective observational IRB-approved study at three Level 1 trauma centers where rA is collected prior to surgical intervention for non-perforated AA or adhesiolysis for SBO. Samples from 48 appy and 15 SBO patients were used to treat human MCs and subjected to quantification of 85 inflammatory mediators. Results were compared between patients with surgically naïve abdomens (naïve) and patients with >1 PAS. Select rA caused MCs to form clusters of fibroblastic cells, extracellular matrix fibers (FIB), and secretion of GCX. PAS and naïve patient rA fluids were clustered into "fiber-GCX" (FIB-GCX) groups: highFIB-highGCX, highFIB-lowGCX, noFIB-highGCX, noFIB-lowGCX, and noFIB-noGCX. Between groups, 26 analytes were differentially abundant including innate immune response, wound healing, and mucosal defense proteins. Factors that contributed to the differences between groups were rA-induced highFIB and history of PAS. Overall, PAS patient rA showed a muted immune response compared to rA from naïve patients. Our data suggest that abdominal surgery may negatively impact future immune responses in the abdomen. Further, quantifying immunomodulators in peritoneal rA may lead to the development a personalized approach to post-surgical adhesion treatment and prevention.
Collapse
Affiliation(s)
- Melissa A. Hausburg
- Trauma Research, Swedish Medical Center, Englewood, Colorado, United States of America
- Trauma Research, Wesley Medical Center, Wichita, Kansas, United States of America
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Research, South Texas Health System McAllen, McAllen, Texas, United States of America
| | - Kaysie L. Banton
- Trauma Services, Swedish Medical Center, Englewood, Colorado, United States of America
| | | | - Robert M. Madayag
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Services, St. Anthony Hospital, Lakewood, Colorado, United States of America
| | - Carlos H. Palacio
- Trauma Services, South Texas Health System McAllen, McAllen, Texas, United States of America
| | - Jason S. Williams
- Trauma Research, Swedish Medical Center, Englewood, Colorado, United States of America
- Trauma Research, Wesley Medical Center, Wichita, Kansas, United States of America
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Research, South Texas Health System McAllen, McAllen, Texas, United States of America
| | - Raphael Bar-Or
- Trauma Research, Swedish Medical Center, Englewood, Colorado, United States of America
- Trauma Research, Wesley Medical Center, Wichita, Kansas, United States of America
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Research, South Texas Health System McAllen, McAllen, Texas, United States of America
| | - Rebecca J. Ryznar
- Department of Molecular Biology, Rocky Vista University, Parker, Colorado, United States of America
| | - David Bar-Or
- Trauma Research, Swedish Medical Center, Englewood, Colorado, United States of America
- Trauma Research, Wesley Medical Center, Wichita, Kansas, United States of America
- Trauma Services, Lutheran Hospital, Wheat Ridge, Colorado, United States of America
- Trauma Research, South Texas Health System McAllen, McAllen, Texas, United States of America
| |
Collapse
|
6
|
Souza VDOE, Taboada TB, Dos Santos Ramalho B, Pires GN, Da Costa TP, El-Cheikh MC, Carneiro K, Martinez AMB. Valproic acid ameliorates morpho-dysfunctional effects triggered by Ischiatic nerve crush injury-induced by compression model in mice: Nerve regeneration and immune-modulatory pathway. Brain Res Bull 2025; 220:111140. [PMID: 39612954 DOI: 10.1016/j.brainresbull.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Peripheral nerve injuries are extremely severe and may lead to permanent disability, despite the regenerative capacity of the peripheral nervous system (PNS). To date, there is no established pharmacological therapy capable of predicting functional recovery and alleviation of trauma-related symptoms such as neuropathic pain, inflammation and weakness, which are the main targets for current therapies. In this work we provide new evidence for a therapeutic use of valproic acid (VPA) upon ischiatic nerve injury. Ischiatic nerve-injured mice treated with VPA after lesion, displayed an improvement in pain and motor function associated with an increase in the number of myelinated nerve fibers, and exhibited a more organized microenvironment during regeneration. In addition, VPA treatment also promoted an immunomodulatory capacity, leading to a significant enhancement of neutrophils in the peritoneal cavity, suggesting its role on the sensory and motor recovery after ischiatic nerve injury. This highlights the physiological role of VPA during ischiatic nerve regeneration and contributes to the characterization of innovative pharmacological epigenetic therapy capable of accelerating peripheral nerve regeneration with critical impacts on the clinical practice.
Collapse
Affiliation(s)
- Viviane de Oliveira E Souza
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Neurodegeneração e Reparo, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Tiago Bastos Taboada
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Bruna Dos Santos Ramalho
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Greice Nascimento Pires
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Thayse Pinheiro Da Costa
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Neurodegeneração e Reparo, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Proliferação e Diferenciação Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcia Cury El-Cheikh
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Proliferação e Diferenciação Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Katia Carneiro
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Proliferação e Diferenciação Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Neurodegeneração e Reparo, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Diao X, Zhan C, Ye H, Wu H, Yi C, Lin J, Mao H, Chen W, Yang X. Single-cell transcriptomic reveals the peritoneal microenvironmental change in long-term peritoneal dialysis patients with ultrafiltration failure. iScience 2024; 27:111383. [PMID: 39687014 PMCID: PMC11647153 DOI: 10.1016/j.isci.2024.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
The microenvironmental changes in peritoneal dialysis effluent (PDE) after long-term vintage (LV) of PD in patients with ultrafiltration failure (LV_UF) are unclear. Single-cell sequencing revealed that peritoneal neutrophils were elevated in LV_UF patients, while MRC1-macrophage subcluster decreased compared with PD patients with short vintage (SV) and LV without ultrafiltration failure (LV_NOT_UF). Compared with the LV_NOT_UF group, the upregulated differentially expressed genes (DEGs) of monocytes/macrophages in the LV_UF group were involved in inflammatory response and EMT progress. LV_UF patients had a higher proportion of epithelial-like mesothelial cells (E-MCs), which were characterized by autophagy activation, inflammation, and upregulation of neutrophil- and autophagy-related DEGs compared to the LV_NOT_UF group. Additionally, mesenchymal-like MCs and AQP1 expression were reduced in the LV_UF group compared with the other groups. Both neutrophils and monocytes/macrophages interacted with MCs. Our study provides insights into the roles of peritoneal mesothelial cells and inflammatory cells in PD patients with UF.
Collapse
Affiliation(s)
- Xiangwen Diao
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Cuixia Zhan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Haishan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Chunyan Yi
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Jianxiong Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| |
Collapse
|
8
|
Ziemann C, Schulz F, Koch C, Solvang M, Bitsch A. Methodological steps forward in toxicological in vitro screening of mineral wools in primary rat alveolar macrophages and normal rat mesothelial NRM2 cells. Arch Toxicol 2024; 98:3949-3971. [PMID: 39261308 PMCID: PMC11496320 DOI: 10.1007/s00204-024-03855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Man-made vitreous fibers (MMVF) comprise diverse materials for thermal and acoustic insulation, including stone wool. Depending on dimension, durability, and dose, MMVF might induce adverse health effects. Therefore, early predictive in vitro (geno)toxicity screening of new MMVF is highly desired to ensure safety for exposed workers and consumers. Here, we investigated, as a starting point, critical in vitro screening determinants and pitfalls using primary rat alveolar macrophages (AM) and normal rat mesothelial cells (NRM2). A stone wool fiber (RIF56008) served as an exemplary MMVF (fibrous vs. ground to estimate impact of fiber shape) and long amosite (asbestos) as insoluble fiber reference. Materials were comprehensively characterized, and in vivo-relevant in vitro concentrations defined, based on different approaches (low to supposed overload: 0.5, 5 and 50 µg/cm2). After 4-48 h of incubation, certain readouts were analyzed and material uptake was investigated by light and fluorescence-coupled darkfield microscopy. DNA-strand break induction was not morphology-dependent and nearly absent in both cell types. However, NRM2 demonstrated material-, morphology- and concentration-dependent membrane damage, CINC-1 release, reduction in cell count, and induction of binucleated cells (asbestos > RIF56008 > RIF56008 ground). In contrast to NRM2, asbestos was nearly inactive in AM, with CINC-1 release solely induced by RIF56008. In conclusion, to define an MMVF-adapted, predictive in vitro (geno)toxicity screening tool, references, endpoints, and concentrations should be carefully chosen, based on in vivo relevance, and sensitivity and specificity of the chosen cell model. Next, further endpoints should be evaluated, ideally with validation by in vivo data regarding their predictivity.
Collapse
Affiliation(s)
- Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625, Hannover, Germany.
| | - Florian Schulz
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625, Hannover, Germany
| | - Christoph Koch
- Technical and Environmental Chemistry, Ernst-Abbe-University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
| | - Mette Solvang
- ROCKWOOL A/S, Group Research and Development, Hovedgaden 584, 2640, Hedehusene, Denmark
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625, Hannover, Germany
| |
Collapse
|
9
|
Mascaro N, Aboelnasr LS, Masood M, Yague E, Moran L, El-Bahrawy M. Exploring the histogenesis of STK11 adnexal tumour using electron microscopy. Virchows Arch 2024; 485:683-690. [PMID: 38376618 PMCID: PMC11522184 DOI: 10.1007/s00428-024-03763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
STK11 adnexal tumour is a recently described female genital tract tumour, usually identified in a paratubal location, often associated with Peutz-Jeghers syndrome (PJS) and with STK11 gene alterations identified in most of the cases. Morphologically, this tumour is composed of cells arranged in a variety of patterns, including cords, trabeculae, tubules and cystic and acinar structures. The cells are only moderately pleomorphic and mitotic activity is variable. As tumour cells express epithelial, sex cord stromal and mesothelial markers, STK11 adnexal tumour may be of sex cord stromal, epithelial or mesothelial origin; a Wolffian origin has also been suggested. We report the ultrastructural features of two STK11 adnexal tumours and compare their ultrastructural features with those of other sex cord stromal tumours, a granulosa cell tumour cell line, as well as the known ultrastructural features of epithelial, mesothelial and Wolffian cells. On ultrastructural examination, two STK11 adnexal tumours showed an admixture of elongated cells with regular elongated nuclei and polygonal cells with nuclei showing markedly irregular outlines and prominent nucleoli. Extracellular collagen fibres were identified. These are common ultrastructural features of sex cord stromal tumours, principally sex cord tumour with annular tubules; no ultrastructural features of epithelial, mesothelial or Wolffian cells were found. These findings in conjunction with the shared clinical and genetic association with PJS and shared molecular changes in STK11 gene suggest that STK11 adnexal tumour represents a poorly differentiated sex cord tumour.
Collapse
Affiliation(s)
- Nuria Mascaro
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0NN, UK
| | - Lamia Sabry Aboelnasr
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0NN, UK
| | - Motasim Masood
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0NN, UK
| | - Ernesto Yague
- Department of Cancer and Surgery, Imperial College London, London, UK
| | - Linda Moran
- Electron Microscopy Unit, Imperial College Healthcare NHS Trust, London, UK
| | - Mona El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0NN, UK.
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
10
|
Hryn V, Maksymenko O, Stupak D. Morphological differences between the lesser and the greater omenta in albino rats. Ann Anat 2024; 256:152299. [PMID: 38971449 DOI: 10.1016/j.aanat.2024.152299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Publications report that all mammals have two omenta, namely, lesser omentum and greater omentum. Basically, these organs, which share the same name except for the adjective "lesser" or "greater," should not differ from each other. However, no clear description of the structure of the lesser omentum, as well as comparative morphological analysis between the lesser and greater omenta have been found in the literature, which necessitates a thorough investigation. Therefore, the aim of our study was to analyze the morphofunctional differences between the greater and lesser omenta in albino rats. METHOD The experiment involved 20 mature male albino rats, weighing 298,28±7,36 grams. The material for our study were preparations of lesser and greater omenta, fixed in 10 % of neutral buffered formalin. Paraffin sections were stained with hematoxylin-eosin and Van Gieson stain. RESULTS The findings of the study showed that the greater omentum in albino rats, unlike other derivatives of the omentum (ligaments and mesenteries), represents a free extension (mostly from the greater curvature of the stomach), in the form of an "apron," into a specific depth of the peritoneal cavity, duplicating the serous membrane. This duplication is characterized by the composition of two structurally interdependent formations. These include vascular-fatty arcades, associated with lymphoid nodules known as milky spots, and binding serous-reticular membranes. The findings of the study of the lesser omentum have established that in all cases it is located beneath the liver and becomes visualized only after hepatolifting. It is presented in the form of two ligaments: hepatoduodenal and hepatogastric, which contain two main structured formations, which we called vascular-fatty spurs, between these spurs, serous-reticular membranes are located. CONCLUSION despite having similar names, the lesser omentum, a derivative of the peritoneum, is fundamentally different. As it is well known, the lesser omentum is represented by ligaments that extend from the liver hilus to the lesser curvature of the stomach and the duodenum. Due to this arrangement, the lesser omentum lacks the mobile activity characteristic of the greater omentum, which plays a crucial role in rapid response to damage in the gastrointestinal tract. Despite sharing the same names, both formations differ in shape, morphological structure, development and function.
Collapse
Affiliation(s)
- Volodymyr Hryn
- Poltava State Medical University, Department of Human Anatomy, Shevchenko str. 23, Poltava 36011, Ukraine
| | - Oleksandr Maksymenko
- Poltava State Medical University, Department of Human Anatomy, Shevchenko str. 23, Poltava 36011, Ukraine.
| | - Dmytro Stupak
- Poltava State Medical University, Department of Human Anatomy, Shevchenko str. 23, Poltava 36011, Ukraine
| |
Collapse
|
11
|
Taniguchi T, Mogi K, Tomita H, Okada H, Mori K, Imaizumi Y, Ichihashi K, Okubo T, Niwa A, Kanayma T, Yamakita Y, Suzuki A, Sugie S, Yoshihara M, Hara A. Sugar-binding profiles of the mesothelial glycocalyx in frozen tissues of mice revealed by lectin staining. Pathol Res Pract 2024; 262:155538. [PMID: 39191196 DOI: 10.1016/j.prp.2024.155538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
The mesothelium is a non-adhesive protective surface that lines the serosal cavities and organs within the body. The glycocalyx is a complex structure that coats the outer layer of the mesothelium. However, due to the limitations of conventional fixation techniques, studies on glycans are limited. In this study, lectin staining of frozen tissues was performed to investigate the diversity of glycans in the glycocalyx of mesothelial cells in mice. Datura stramonium lectin (DSL), which recognizes lactosamine and binds to Galectin-3 and -1, was broadly bound to the mesothelial cells of the visceral and parietal peritoneum but not to the pancreas, liver, intestine, or heart. Furthermore, human mesothelial cells in the omentum and parietal peritoneum were positive for DSL. Erythrina cristagalli lectin binding was specific to mesothelial cells in the parietal peritoneum, that is, the pleura, diaphragm, and peritoneum. Intriguingly, surface sialylation, the key element in reducing peritoneal dissemination and implantation, and promoting ascites formation by ovarian carcinoma cells, was much higher in the parietal peritoneum than in the omentum. These findings revealed slight differences in the glycans of mesothelial cells of different organs, which may be related to clinical diseases. These results also suggest that there may be differences in the functions of parietal and visceral mesothelial cells.
Collapse
Affiliation(s)
- Toshiaki Taniguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazumasa Mogi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Medical Genomics Center, Nagoya University Hospital, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Hideshi Okada
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan; Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takafumi Okubo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Kanayma
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshihiko Yamakita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
12
|
Govindaraju DT, Kao HH, Chien YM, Chen JP. Composite Polycaprolactone/Gelatin Nanofiber Membrane Scaffolds for Mesothelial Cell Culture and Delivery in Mesothelium Repair. Int J Mol Sci 2024; 25:9803. [PMID: 39337295 PMCID: PMC11432067 DOI: 10.3390/ijms25189803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
To repair damaged mesothelium tissue, which lines internal organs and cavities, a tissue engineering approach with mesothelial cells seeded to a functional nanostructured scaffold is a promising approach. Therefore, this study explored the uses of electrospun nanofiber membrane scaffolds (NMSs) as scaffolds for mesothelial cell culture and transplantation. We fabricated a composite NMS through electrospinning by blending polycaprolactone (PCL) with gelatin. The addition of gelatin enhanced the membrane's hydrophilicity while maintaining its mechanical strength and promoted cell attachment. The in vitro study demonstrated enhanced adhesion of mesothelial cells to the scaffold with improved morphology and increased phenotypic expression of key marker proteins calretinin and E-cadherin in PCL/gelatin compared to pure PCL NMSs. In vivo studies in rats revealed that only cell-seeded PCL/gelatin NMS constructs fostered mesothelial healing. Implantation of these constructs leads to the regeneration of new mesothelium tissue. The neo-mesothelium is similar to native mesothelium from hematoxylin and eosin (H&E) and immunohistochemical staining. Taken together, the PCL/gelatin NMSs can be a promising scaffold for mesothelial cell attachment, proliferation, and differentiation, and the cell/scaffold construct can be used in therapeutic applications to reconstruct a mesothelium layer.
Collapse
Affiliation(s)
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yen-Miao Chien
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
13
|
Nabeta R, Kanaya A, Shimada K, Matsuura K, Yoshimura A, Oyamada T, Azakami D, Furuya T, Uchide T. Characterization of mesothelin gene expression in dogs and overexpression in canine mesotheliomas. Front Vet Sci 2024; 11:1436621. [PMID: 39315086 PMCID: PMC11417096 DOI: 10.3389/fvets.2024.1436621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Canine mesotheliomas are uncommon malignant tumors typically detected late. Minimally invasive diagnostic biomarkers would facilitate diagnosis at earlier stages, thereby improving clinical outcomes. We hypothesized that mesothelin could be used as a reliable diagnostic biomarker for canine mesotheliomas since it has been used as a cancer biomarker for human mesothelioma. We aimed to explore and characterize mesothelin gene expression in dogs and assess its use as a diagnostic biomarker for canine mesotheliomas. Materials and methods We quantified expressed canine mesothelin transcripts via reverse transcription polymerase chain reaction (RT-PCR) and sequenced them using ribonucleic acid (RNA) extracted from a canine mesothelioma cell line. After confirming mesothelin expression, we assessed its levels in major organ tissues and compared them with those in the mesothelioma tissues using quantitative PCR (qPCR). Mesothelin overexpression in mesotheliomas was detected, and we further compared its levels using qPCR between mesotheliomas and non-mesotheliomas using tumor tissues and clinical sample effusions, confirming its significance as a diagnostic biomarker for canine mesothelioma. Results Mesothelin complementary deoxyribonucleic acid (cDNA) was amplified via RT-PCR, yielding a single band of expected upon DNA electrophoresis. Sequence analyses confirmed it as a predicted canine mesothelin transcript from the genome sequence database. Comparative sequence analysis of the deduced amino acid sequence of the expressed canine mesothelin demonstrated molecular signature similarities with the human mesothelin. However, the pre-sequence of canine mesothelin lacks the mature megakaryocyte potentiating factor (MPF) portion, which is typically cleaved post-translationally with furin. Mesothelin expression was quantified via qPCR revealing low levels in the mesothelial and lung tissues, with negligible expression in the other major organs. Canine mesothelin exhibited significantly higher expression in the canine mesotheliomas than in the noncancerous tissues. Moreover, analysis of clinical samples using qPCR demonstrated markedly elevated mesothelin expression in canine mesotheliomas compared to non-mesothelioma cases. Discussion and conclusion Canine mesothelin exhibits molecular and biological characteristics akin to human mesothelin. It could serve as a vital biomarker for diagnosing canine mesotheliomas, applicable to both tissue- and effusion-based samples.
Collapse
Affiliation(s)
- Rina Nabeta
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ami Kanaya
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Small Animal Clinical Science, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Aritada Yoshimura
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tomohiro Oyamada
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncoogy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
14
|
Weber MC, Clees Z, Buck A, Fischer A, Steffani M, Wilhelm D, Martignoni M, Friess H, Rinkevich Y, Neumann PA. Role of the serosa in intestinal anastomotic healing: insights from in-depth histological analysis of human and murine anastomoses. BJS Open 2024; 8:zrae108. [PMID: 39230923 PMCID: PMC11373408 DOI: 10.1093/bjsopen/zrae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Anastomotic leakage following colorectal surgery remains a significant complication despite advances in surgical techniques. Recent findings on serosal injury repair in coelomic cavities, such as the peritoneum, challenge the current understanding of the cellular origins and mechanisms underlying intestinal anastomotic healing. Understanding the contribution of each layer of the intestinal wall during anastomotic healing is needed to find new therapeutic strategies to prevent anastomotic leakage. The aim of this experimental study was to investigate the role of the serosal layer of the intestinal wall in anastomotic healing. MATERIALS AND METHODS Comprehensive histologic analysis of human and murine anastomoses was performed to elucidate histologic changes in the different intestinal layers during anastomotic healing. In vivo staining of the extracellular matrix (ECM) in the serosal layer was performed using a fluorophore-conjugated N-hydroxysuccinimide-ester before anastomosis surgery in a murine model. RESULTS Histological examination of both human and murine anastomoses revealed that closure of the serosal layer occurred first during the healing process. In vivo serosal ECM staining demonstrated that a significant portion of the newly formed ECM within the anastomosis was indeed deposited onto the serosal layer. Furthermore, mesenchymal cells within the anastomotic scar were positive for mesothelial cell markers, podoplanin and Wilms tumour protein. CONCLUSIONS In this experimental study, the results suggest that serosal scar formation is an important mechanism for anastomotic integrity in intestinal anastomoses. Mesothelial cells may significantly contribute to scar formation during anastomotic healing through epithelial-to-mesenchymal transition, potentially suggesting a novel therapeutic target to prevent anastomotic leakage by enhancing physiological healing processes.
Collapse
Affiliation(s)
- Marie-Christin Weber
- Department of Surgery, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Zoé Clees
- Department of Surgery, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Annalisa Buck
- Department of Surgery, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Adrian Fischer
- Institute of Regenerative Biology and Medicine, Helmholtz Munich, Munich, Germany
| | - Marcella Steffani
- Department of Surgery, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Dirk Wilhelm
- Department of Surgery, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Marc Martignoni
- Department of Surgery, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Munich, Munich, Germany
| | - Philipp-Alexander Neumann
- Department of Surgery, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Munich, Germany
| |
Collapse
|
15
|
Gonçalves JD, Dias JH, Machado-Neves M, Vergani GB, Ahmadi B, Pereira Batista RIT, Souza-Fabjan JMG, Oliveira MEF, Bartlewski PM, da Fonseca JF. Transcervical uterine flushing and embryo transfer in sheep: Morphophysiological basis for approaches currently used, major challenges, potential improvements, and new directions (alas, including some old ideas). Reprod Biol 2024; 24:100920. [PMID: 38970979 DOI: 10.1016/j.repbio.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
At present, the success of non-surgical embryo recovery (NSER) and transfer (NSET) hinges upon the cervical passage of catheters, but penetration of the uterine cervix in ewes is problematic due to its anatomical structure (i.e., long and narrow cervical lumen with misaligned folds and rings). It is a major obstacle limiting the widespread application of NSER and NSET in sheep. While initial attempts to traverse the uterine cervix focused on adapting or re-designing insemination catheters, more recent studies demonstrated that cervical relaxation protocols were instrumental for transcervical penetration in the ewe. An application of such protocols more than tripled cervical penetration rates (currently at 90-95 %) in sheep of different breeds (e.g., Dorper, Lacaune, Santa Inês, crossbred, and indigenous Brazilian breeds) and ages/parity. There is now sufficient evidence to suggest that even repeatedly performed cervical passages do not adversely affect overall health and reproductive function of ewes. Despite these improvements, appropriate selection of donors and recipients remains one of the most important requirements for maintaining high success rates of NSER and NSET, respectively. Non-surgical ovine embryo recovery has gradually become a commercially viable method as even though the procedure still cannot be performed by untrained individuals, it is inexpensive, yields satisfactory results, and complies with current public expectations of animal welfare standards. This article reviews critical morphophysiological aspects of transcervical embryo flushing and transfer, and the prospect of both techniques to replace surgical methods for multiple ovulation and embryo transfer (MOET) programs in sheep. We have also discussed some potential pharmacological and technical developments in the field of non-invasive embryo recovery and deposition.
Collapse
Affiliation(s)
- Joedson Dantas Gonçalves
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Jenniffer Hauschildt Dias
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Mariana Machado-Neves
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Gabriel Brun Vergani
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Bahareh Ahmadi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | - Maria Emilia Franco Oliveira
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Pawel Mieczyslaw Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
16
|
del Giudice G, Serra A, Pavel A, Torres Maia M, Saarimäki LA, Fratello M, Federico A, Alenius H, Fadeel B, Greco D. A Network Toxicology Approach for Mechanistic Modelling of Nanomaterial Hazard and Adverse Outcomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400389. [PMID: 38923832 PMCID: PMC11348149 DOI: 10.1002/advs.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Indexed: 06/28/2024]
Abstract
Hazard assessment is the first step in evaluating the potential adverse effects of chemicals. Traditionally, toxicological assessment has focused on the exposure, overlooking the impact of the exposed system on the observed toxicity. However, systems toxicology emphasizes how system properties significantly contribute to the observed response. Hence, systems theory states that interactions store more information than individual elements, leading to the adoption of network based models to represent complex systems in many fields of life sciences. Here, they develop a network-based approach to characterize toxicological responses in the context of a biological system, inferring biological system specific networks. They directly link molecular alterations to the adverse outcome pathway (AOP) framework, establishing direct connections between omics data and toxicologically relevant phenotypic events. They apply this framework to a dataset including 31 engineered nanomaterials with different physicochemical properties in two different in vitro and one in vivo models and demonstrate how the biological system is the driving force of the observed response. This work highlights the potential of network-based methods to significantly improve their understanding of toxicological mechanisms from a systems biology perspective and provides relevant considerations and future data-driven approaches for the hazard assessment of nanomaterials and other advanced materials.
Collapse
Affiliation(s)
- Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
| | - Angela Serra
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
- Tampere Institute for Advanced StudyTampere UniversityTampere33100Finland
| | - Alisa Pavel
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Marcella Torres Maia
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
| | - Michele Fratello
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
| | - Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
- Tampere Institute for Advanced StudyTampere UniversityTampere33100Finland
| | - Harri Alenius
- Human Microbiome Research Program (HUMI)University of HelsinkiHelsinki00014Finland
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Bengt Fadeel
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health TechnologyTampere UniversityTampere33520Finland
- Division of Pharmaceutical Biosciences, Faculty of PharmacyUniversity of HelsinkiHelsinki00790Finland
- Tampere Institute for Advanced StudyTampere UniversityTampere33100Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| |
Collapse
|
17
|
Vikranth T, Dale T, Forsyth NR. Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering. J Tissue Eng Regen Med 2024; 2024:9940673. [PMID: 40225750 PMCID: PMC11918256 DOI: 10.1155/2024/9940673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 04/15/2025]
Abstract
Persistent air leaks caused by thoracic surgery, physical trauma, or spontaneous pneumothoraces are a cause of patient morbidity with need for extended chest tube durations and surgical interventions. Current treatment measures involve mechanical closure of air leaks in the compromised pleura. Organ and membrane decellularisation offers a broad range of biomimetic scaffolds of allogeneic and xenogeneic origins, exhibiting innate tissue-specific characteristics. We explored a physicochemical method for decellularising porcine pleural membranes (PPM) as potential tissue-engineered surrogates for lung tissue repair. Decellularised PPM (dPPM) was characterised with histology, quantitative assays, mechanical testing, and sterility evaluation. Cytotoxicity and recellularisation assays assessed biocompatibility of decellularised PPM (dPPM). Haematoxylin and Eosin (H&E) staining showed an evident reduction in stained nuclei in the dPPM, confirmed with nuclear staining and analysis ( ∗∗∗∗ p < 0.0001). Sulphated glycosaminoglycans (sGAG) and collagen histology demonstrated minimal disruption to the gross structural assembly of core extracellular matrix (ECM) in dPPM. Confocal imaging demonstrated realignment of ECM fibres in dPPM against native control. Quantitative analysis defined a significant change in the angular distribution ( ∗∗∗∗ p < 0.0001) and coherence ( ∗∗∗ p < 0.001) of fibre orientations in dPPM versus native ECM. DNA quantification indicated ≥85% reduction in native nuclear dsDNA in dPPM ( ∗∗ p < 0.01). Collagen and sGAG quantification indicated reductions of both ( ∗∗ p < 0.01). dPPM displayed increased membrane thickness ( ∗∗∗ p < 0.001). However, Young's modulus (459.67 ± 10.36 kPa) and ultimate tensile strength (4036.22 ± 155.1 kPa) of dPPM were comparable with those of native controls at (465.82 ± 10.51 kPa) and (3912.9 ± 247.42 kPa), respectively. In vitro cytotoxicity and scaffold biocompatibility assays demonstrated robust human mesothelial cell line (MeT-5A) attachment and viability. DNA quantification in reseeded dPPM with MeT-5A cells exhibited significant increase in DNA content at day 7 ( ∗∗ p < 0.01) and day 15 ( ∗∗∗∗ p < 0.0001) against unseeded dPPM. Here, we define a decellularisation protocol for porcine pleura that represents a step forward in their potential tissue engineering applications as bioscaffolds.
Collapse
Affiliation(s)
| | - Tina Dale
- School of Pharmacy and BioengineeringGuy Hilton Research CentreKeele University, Keele, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and BioengineeringGuy Hilton Research CentreKeele University, Keele, UK
| |
Collapse
|
18
|
Yin Y, Cui Q, Zhao J, Wu Q, Sun Q, Wang HQ, Yang W. Integrated Bioinformatics and Machine Learning Analysis Identify ACADL as a Potent Biomarker of Reactive Mesothelial Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1294-1305. [PMID: 38657836 DOI: 10.1016/j.ajpath.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Mesothelial cells with reactive hyperplasia are difficult to distinguish from malignant mesothelioma cells based on cell morphology. This study aimed to identify and validate potential biomarkers that distinguish mesothelial cells from mesothelioma cells through machine learning combined with immunohistochemistry. It integrated the gene expression matrix from three Gene Expression Omnibus data sets (GSE2549, GSE12345, and GSE51024) to analyze the differently expressed genes between normal and mesothelioma tissues. Then, three machine learning algorithms, least absolute shrinkage and selection operator, support vector machine recursive feature elimination, and random forest were used to screen and obtain four shared candidate markers, including ACADL, EMP2, GPD1L, and HMMR. The receiver operating characteristic curve analysis showed that the area under the curve for distinguishing normal mesothelial cells from mesothelioma was 0.976, 0.943, 0.962, and 0.956, respectively. The expression and diagnostic performance of these candidate genes were validated in two additional independent data sets (GSE42977 and GSE112154), indicating that the performances of ACADL, GPD1L, and HMMR were consistent between the training and validation data sets. Finally, the optimal candidate marker ACADL was verified by immunohistochemistry assay. Acyl-CoA dehydrogenase long chain (ACADL) was stained strongly in mesothelial cells, especially for reactive hyperplasic mesothelial cells, but was negative in malignant mesothelioma cells. Therefore, ACADL has the potential to be used as a specific marker of reactive hyperplasic mesothelial cells in the differential diagnosis of mesothelioma.
Collapse
Affiliation(s)
- Yige Yin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qianwen Cui
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Jiarong Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Qiang Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiuyan Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Medical Pathology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Hong-Qiang Wang
- Biological Molecular Information System Laboratory, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wulin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China.
| |
Collapse
|
19
|
Wang X, Bai L, Kong L, Guo Z. Advances in circulating tumor cells for early detection, prognosis and metastasis reduction in lung cancer. Front Oncol 2024; 14:1411731. [PMID: 38974237 PMCID: PMC11224453 DOI: 10.3389/fonc.2024.1411731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Globally, lung cancer stands as the leading type of cancer in terms of incidence and is the major source of mortality attributed to cancer. We have outlined the molecular biomarkers for lung cancer that are available clinically. Circulating tumor cells (CTCs) spread from the original location, circulate in the bloodstream, extravasate, and metastasize, forming secondary tumors by invading and establishing a favorable environment. CTC analysis is considered a common liquid biopsy method for lung cancer. We have enumerated both in vivo and ex vivo techniques for CTC separation and enrichment, examined the advantages and limitations of these methods, and also discussed the detection of CTCs in other bodily fluids. We have evaluated the value of CTCs, as well as CTCs in conjunction with other biomarkers, for their utility in the early detection and prognostic assessment of patients with lung cancer. CTCs engage with diverse cells of the metastatic process, interfering with the interaction between CTCs and various cells in metastasis, potentially halting metastasis and enhancing patient prognosis.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Pathology and Pathophysiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| | - Lu Bai
- Department of Pathology and Pathophysiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| | - Linghui Kong
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| | - Zhijuan Guo
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
20
|
Pinezich MR, Mir M, Graney PL, Tavakol DN, Chen J, Hudock M, Gavaudan O, Chen P, Kaslow SR, Reimer JA, Van Hassel J, Guenthart BA, O’Neill JD, Bacchetta M, Kim J, Vunjak-Novakovic G. Lung-Mimetic Hydrofoam Sealant to Treat Pulmonary Air Leak. Adv Healthc Mater 2024; 13:e2303026. [PMID: 38279961 PMCID: PMC11102335 DOI: 10.1002/adhm.202303026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/22/2023] [Indexed: 01/29/2024]
Abstract
Pulmonary air leak is the most common complication of lung surgery, contributing to post-operative morbidity in up to 60% of patients; yet, there is no reliable treatment. Available surgical sealants do not match the demanding deformation mechanics of lung tissue; and therefore, fail to seal air leak. To address this therapeutic gap, a sealant with structural and mechanical similarity to subpleural lung is designed, developed, and systematically evaluated. This "lung-mimetic" sealant is a hydrofoam material that has alveolar-like porous ultrastructure, lung-like viscoelastic properties (adhesive, compressive, tensile), and lung extracellular matrix-derived signals (matrikines) to support tissue repair. In biocompatibility testing, the lung-mimetic sealant shows minimal cytotoxicity and immunogenicity in vitro. Human primary monocytes exposed to sealant matrikines in vitro upregulate key genes (MARCO, PDGFB, VEGF) known to correlate with pleural wound healing and tissue repair in vivo. In rat and swine models of pulmonary air leak, this lung-mimetic sealant rapidly seals air leak and restores baseline lung mechanics. Altogether, these data indicate that the lung-mimetic sealant can effectively seal pulmonary air leak and promote a favorable cellular response in vitro.
Collapse
Affiliation(s)
| | - Mohammad Mir
- Stevens Institute of Technology, Department of Biomedical Engineering
| | | | | | - Jiawen Chen
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Maria Hudock
- Columbia University, Department of Biomedical Engineering
| | | | - Panpan Chen
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Sarah R. Kaslow
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Jonathan A. Reimer
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Julie Van Hassel
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | | | - John D. O’Neill
- State University of New York Downstate Medical Center, Department of Cell Biology
| | - Matthew Bacchetta
- Vanderbilt University Medical Center, Department of Thoracic Surgery
- Vanderbilt University, Department of Biomedical Engineering
| | - Jinho Kim
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Gordana Vunjak-Novakovic
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Medicine
| |
Collapse
|
21
|
Mazzinari G, Rovira L, Albers-Warlé KI, Warlé MC, Argente-Navarro P, Flor B, Diaz-Cambronero O. Underneath Images and Robots, Looking Deeper into the Pneumoperitoneum: A Narrative Review. J Clin Med 2024; 13:1080. [PMID: 38398395 PMCID: PMC10889570 DOI: 10.3390/jcm13041080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Laparoscopy offers numerous advantages over open procedures, minimizing trauma, reducing pain, accelerating recovery, and shortening hospital stays. Despite other technical advancements, pneumoperitoneum insufflation has received little attention, barely evolving since its inception. We explore the impact of pneumoperitoneum on patient outcomes and advocate for a minimally invasive approach that prioritizes peritoneal homeostasis. The nonlinear relationship between intra-abdominal pressure (IAP) and intra-abdominal volume (IAV) is discussed, emphasizing IAP titration to balance physiological effects and surgical workspace. Maintaining IAP below 10 mmHg is generally recommended, but factors such as patient positioning and surgical complexity must be considered. The depth of neuromuscular blockade (NMB) is explored as another variable affecting laparoscopic conditions. While deep NMB appears favorable for surgical stillness, achieving a balance between IAP and NMB depth is crucial. Temperature and humidity management during pneumoperitoneum are crucial for patient safety and optical field quality. Despite the debate over the significance of temperature drop, humidification and the warming of insufflated gas offer benefits in peritoneal homeostasis and visual clarity. In conclusion, there is potential for a paradigm shift in pneumoperitoneum management, with dynamic IAP adjustments and careful control of insufflated gas temperature and humidity to preserve peritoneal homeostasis and improve patient outcomes in minimally invasive surgery.
Collapse
Affiliation(s)
- Guido Mazzinari
- Perioperative Medicine Research Group, Health Research Institute la Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (P.A.-N.); (O.D.-C.)
- Department of Anesthesiology, La Fe University Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
- Department of Statistics and Operational Research, University of Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain
| | - Lucas Rovira
- Department of Anesthesiology, Consorcio Hospital General Universitario de Valencia, Av. de les Tres Creus, 2, L’Olivereta, 46014 València, Spain; (L.R.); (B.F.)
| | - Kim I. Albers-Warlé
- Department of Colorectal Surgery, La Fe University Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Department of Anesthesiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Michiel C. Warlé
- Departments of Surgery, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands;
| | - Pilar Argente-Navarro
- Perioperative Medicine Research Group, Health Research Institute la Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (P.A.-N.); (O.D.-C.)
| | - Blas Flor
- Department of Anesthesiology, Consorcio Hospital General Universitario de Valencia, Av. de les Tres Creus, 2, L’Olivereta, 46014 València, Spain; (L.R.); (B.F.)
| | - Oscar Diaz-Cambronero
- Perioperative Medicine Research Group, Health Research Institute la Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain; (P.A.-N.); (O.D.-C.)
- Department of Anesthesiology, La Fe University Hospital, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
22
|
Franchi M, Piperigkou Z, Mastronikolis NS, Karamanos N. Extracellular matrix biomechanical roles and adaptation in health and disease. FEBS J 2024; 291:430-440. [PMID: 37612040 DOI: 10.1111/febs.16938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Extracellular matrices (ECMs) are dynamic 3D macromolecular networks that exhibit structural characteristics and composition specific to different tissues, serving various biomechanical and regulatory functions. The interactions between ECM macromolecules such as collagen, elastin, glycosaminoglycans (GAGs), proteoglycans (PGs), fibronectin, and laminin, along with matrix effectors and water, contribute to the unique cellular and tissue functional properties during organ development, tissue homoeostasis, remodeling, disease development, and progression. Cells adapt to environmental changes by adjusting the composition and array of ECM components. ECMs, forming the 3D bioscaffolds of our body, provide mechanical support for tissues and organs and respond to the environmental variables influencing growth and final adult body shape in mammals. Different cell types display distinct adaptations to the respective ECM environments. ECMs regulate biological processes by controlling the diffusion of infections and inflammations, sensing and adapting to external stimuli and gravity from the surrounding habitat, and, in the context of cancer, interplaying with and regulating cancer cell invasion and drug resistance. Alterations in the ECM composition in pathological conditions drive adaptive responses of cells and could therefore result in abnormal cell behavior and tissue dysfunction. Understanding the biomechanical functionality, adaptation, and roles of distinct ECMs is essential for research on various pathologies, including cancer progression and multidrug resistance, which is of crucial importance for developing targeted therapies. In this Viewpoint article, we critically present and discuss specific biomechanical functions of ECMs and regulatory adaptation mechanisms in both health and disease, with a particular focus on cancer progression.
Collapse
Affiliation(s)
- Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Zoi Piperigkou
- Department of Chemistry, Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Nicholas S Mastronikolis
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Patras, Greece
| | - Nikos Karamanos
- Department of Chemistry, Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
23
|
Gostomczyk K, Marsool MDM, Tayyab H, Pandey A, Borowczak J, Macome F, Chacon J, Dave T, Maniewski M, Szylberg Ł. Targeting circulating tumor cells to prevent metastases. Hum Cell 2024; 37:101-120. [PMID: 37874534 PMCID: PMC10764589 DOI: 10.1007/s13577-023-00992-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor, enter the bloodstream or body fluids, and spread to other body parts, leading to metastasis. Their presence and characteristics have been linked to cancer progression and poor prognosis in different types of cancer. Analyzing CTCs can offer valuable information about tumors' genetic and molecular diversity, which is crucial for personalized therapy. Epithelial-mesenchymal transition (EMT) and the reverse process, mesenchymal-epithelial transition (MET), play a significant role in generating and disseminating CTCs. Certain proteins, such as EpCAM, vimentin, CD44, and TGM2, are vital in regulating EMT and MET and could be potential targets for therapies to prevent metastasis and serve as detection markers. Several devices, methods, and protocols have been developed for detecting CTCs with various applications. CTCs interact with different components of the tumor microenvironment. The interactions between CTCs and tumor-associated macrophages promote local inflammation and allow the cancer cells to evade the immune system, facilitating their attachment and invasion of distant metastatic sites. Consequently, targeting and eliminating CTCs hold promise in preventing metastasis and improving patient outcomes. Various approaches are being explored to reduce the volume of CTCs. By investigating and discussing targeted therapies, new insights can be gained into their potential effectiveness in inhibiting the spread of CTCs and thereby reducing metastasis. The development of such treatments offers great potential for enhancing patient outcomes and halting disease progression.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland.
- University Hospital No. 2 Im. Dr Jan Biziel, Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | | | | | | | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Facundo Macome
- Universidad del Norte Santo Tomás de Aquino, San Miquel de Tucuman, Argentina
| | - Jose Chacon
- American University of Integrative Sciences, Cole Bay, Saint Martin, Barbados
| | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Chair of Pathology, Dr Jan Biziel Memorial University Hospital No. 2, Bydgoszcz, Poland
| |
Collapse
|
24
|
Lewis CR, Dadgar N, Yellin SA, Donnenberg VS, Donnenberg AD, Bartlett DL, Allen CJ, Wagner PL. Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment. Cancers (Basel) 2023; 15:5107. [PMID: 37894473 PMCID: PMC10605802 DOI: 10.3390/cancers15205107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Peritoneal carcinomatosis originating from gastric/gastroesophageal junction cancer (GC-PC) occurs in a defined subset of gastric cancer patients with unique clinical, pathologic, molecular and immunologic characteristics that create significant obstacles to effective treatment with modern therapy. Although systemic chemo- and immuno- therapy have yielded disappointing results in GC-PC, recent advances in the characterization of GC-PC and peritoneal immune biology present new opportunities for targeted therapeutics. In this review article, we discuss the distinct properties of GC-PC and the peritoneal immune environment as they pertain to current and investigative treatment strategies. We discuss pre-clinical studies and clinical trials relevant to the modulation of the peritoneal environment as a therapeutic intervention in GC-PC. Finally, we present a road map for future combinatorial strategies based on the conception of the peritoneal cavity as a bioreactor. Within this isolated compartment, prevailing immunosuppressive conditions can be altered through regional interventions toward an adaptive phenotype that would support the effectiveness of regionally delivered cellular therapy products. It is hoped that novel combination strategies would promote efficacy not only in the sequestered peritoneal environment, but also via migration into the circulation of tumor-reactive lymphocytes to produce durable systemic disease control, thereby improving oncologic outcome and quality of life in patients with GC-PC.
Collapse
Affiliation(s)
- Catherine R. Lewis
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Neda Dadgar
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Samuel A. Yellin
- Department of Surgery, Lehigh Valley Health Network, Allentown, PA 18101, USA;
| | - Vera S. Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Hillman Cancer Centers, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Albert D. Donnenberg
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - David L. Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Casey J. Allen
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Patrick L. Wagner
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| |
Collapse
|
25
|
Koukorava C, Ward K, Ahmed K, Almaghrabi S, Dauleh S, Pereira SM, Taylor A, Haddrick M, Cross MJ, Wilm B. Mesothelial Cells Exhibit Characteristics of Perivascular Cells in an In Vitro Angiogenesis Assay. Cells 2023; 12:2436. [PMID: 37887280 PMCID: PMC10605208 DOI: 10.3390/cells12202436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Mesothelial cells have been shown to have remarkable plasticity towards mesenchymal cell types during development and in disease situations. Here, we have characterized the potential of mesothelial cells to undergo changes toward perivascular cells using an in vitro angiogenesis assay. We demonstrate that GFP-labeled mesothelial cells (GFP-MCs) aligned closely and specifically with endothelial networks formed when human dermal microvascular endothelial cells (HDMECs) were cultured in the presence of VEGF-A165 on normal human dermal fibroblasts (NHDFs) for a 7-day period. The co-culture with GFP-MCs had a positive effect on branch point formation indicating that the cells supported endothelial tube formation. We interrogated the molecular response of the GFP-MCs to the angiogenic co-culture by qRT-PCR and found that the pericyte marker Ng2 was upregulated when the cells were co-cultured with HDMECs on NHDFs, indicating a change towards a perivascular phenotype. When GFP-MCs were cultured on the NHDF feeder layer, they upregulated the epithelial-mesenchymal transition marker Zeb1 and lost their circularity while increasing their size, indicating a change to a more migratory cell type. We analyzed the pericyte-like behavior of the GFP-MCs in a 3D cardiac microtissue (spheroid) with cardiomyocytes, cardiac fibroblasts and cardiac endothelial cells where the mesothelial cells showed alignment with the endothelial cells. These results indicate that mesothelial cells have the potential to adopt a perivascular phenotype and associate with endothelial cells to potentially support angiogenesis.
Collapse
Affiliation(s)
- Chrysa Koukorava
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Kelly Ward
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Shrouq Almaghrabi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Sumaya Dauleh
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Sofia M. Pereira
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
26
|
Ries A, Slany A, Pirker C, Mader JC, Mejri D, Mohr T, Schelch K, Flehberger D, Maach N, Hashim M, Hoda MA, Dome B, Krupitza G, Berger W, Gerner C, Holzmann K, Grusch M. Primary and hTERT-Transduced Mesothelioma-Associated Fibroblasts but Not Primary or hTERT-Transduced Mesothelial Cells Stimulate Growth of Human Mesothelioma Cells. Cells 2023; 12:2006. [PMID: 37566084 PMCID: PMC10417280 DOI: 10.3390/cells12152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Pleural mesothelioma (PM) is an aggressive malignancy that develops in a unique tumor microenvironment (TME). However, cell models for studying the TME in PM are still limited. Here, we have generated and characterized novel human telomerase reverse transcriptase (hTERT)-transduced mesothelial cell and mesothelioma-associated fibroblast (Meso-CAF) models and investigated their impact on PM cell growth. Pleural mesothelial cells and Meso-CAFs were isolated from tissue of pneumothorax and PM patients, respectively. Stable expression of hTERT was induced by retroviral transduction. Primary and hTERT-transduced cells were compared with respect to doubling times, hTERT expression and activity levels, telomere lengths, proteomes, and the impact of conditioned media (CM) on PM cell growth. All transduced derivatives exhibited elevated hTERT expression and activity, and increased mean telomere lengths. Cell morphology remained unchanged, and the proteomes were similar to the corresponding primary cells. Of note, the CM of primary and hTERT-transduced Meso-CAFs stimulated PM cell growth to the same extent, while CM derived from mesothelial cells had no stimulating effect, irrespective of hTERT expression. In conclusion, all new hTERT-transduced cell models closely resemble their primary counterparts and, hence, represent valuable tools to investigate cellular interactions within the TME of PM.
Collapse
Affiliation(s)
- Alexander Ries
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Astrid Slany
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Johanna C. Mader
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Doris Mejri
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Waehringer Guertel 38, 1090 Vienna, Austria
- ScienceConsult—DI Thomas Mohr KG, Enzianweg 10a, 2353 Guntramsdorf, Austria
| | - Karin Schelch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Daniela Flehberger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Nadine Maach
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Muhammad Hashim
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
| | - Balazs Dome
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (M.A.H.); (B.D.)
- National Korányi Institute of Pulmonology, Korányi Frigyes u. 1, 1122 Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Rath Gyorgy u. 7-9, 1122 Budapest, Hungary
- Department of Translational Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; (A.S.); (J.C.M.); (C.G.)
| | - Klaus Holzmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria; (A.R.); (C.P.); (D.M.); (T.M.); (K.S.); (D.F.); (N.M.); (M.H.); (W.B.); (K.H.)
| |
Collapse
|
27
|
Isidoro CA, Deniset JF. Pericardial Immune Cells and Their Evolving Role in Cardiovascular Pathophysiology. Can J Cardiol 2023; 39:1078-1089. [PMID: 37270165 DOI: 10.1016/j.cjca.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
The pericardium plays several homeostatic roles to support and maintain everyday cardiac function. Recent advances in techniques and experimental models have allowed for further exploration into the cellular contents of the pericardium itself. Of particular interest are the various immune cell populations present in the space within the pericardial fluid and fat. In contrast to immune cells of the comparable pleura, peritoneum and heart, pericardial immune cells appear to be distinct in their function and phenotype. Specifically, recent work has suggested these cells play critical roles in an array of pathophysiological conditions including myocardial infarction, pericarditis, and post-cardiac surgery complications. In this review, we spotlight the pericardial immune cells currently identified in mice and humans, the pathophysiological role of these cells, and the clinical significance of the immunocardiology axis in cardiovascular health.
Collapse
Affiliation(s)
- Carmina Albertine Isidoro
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada; Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
28
|
Chauvin M, Meinsohn MC, Dasari S, May P, Iyer S, Nguyen NMP, Oliva E, Lucchini Z, Nagykery N, Kashiwagi A, Mishra R, Maser R, Wells J, Bult CJ, Mitra AK, Donahoe PK, Pépin D. Cancer-associated mesothelial cells are regulated by the anti-Müllerian hormone axis. Cell Rep 2023; 42:112730. [PMID: 37453057 DOI: 10.1016/j.celrep.2023.112730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer-associated mesothelial cells (CAMCs) in the tumor microenvironment are thought to promote growth and immune evasion. We find that, in mouse and human ovarian tumors, cancer cells express anti-Müllerian hormone (AMH) while CAMCs express its receptor AMHR2, suggesting a paracrine axis. Factors secreted by cancer cells induce AMHR2 expression during their reprogramming into CAMCs in mouse and human in vitro models. Overexpression of AMHR2 in the Met5a mesothelial cell line is sufficient to induce expression of immunosuppressive cytokines and growth factors that stimulate ovarian cancer cell growth in an AMH-dependent way. Finally, syngeneic cancer cells implanted in transgenic mice with Amhr2-/- CAMCs grow significantly slower than in wild-type hosts. The cytokine profile of Amhr2-/- tumor-bearing mice is altered and their tumors express less immune checkpoint markers programmed-cell-death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4). Taken together, these data suggest that the AMH/AMHR2 axis plays a critical role in regulating the pro-tumoral function of CAMCs in ovarian cancer.
Collapse
Affiliation(s)
- M Chauvin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - M-C Meinsohn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - S Dasari
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
| | - P May
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - S Iyer
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - N M P Nguyen
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - E Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Z Lucchini
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - N Nagykery
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - A Kashiwagi
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - R Mishra
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - R Maser
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, USA
| | - J Wells
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, USA
| | - C J Bult
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, USA
| | - A K Mitra
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - D Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA; Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
29
|
de la O S, Yao X, Chang S, Liu Z, Sneddon JB. Single-cell chromatin accessibility of developing murine pancreas identifies cell state-specific gene regulatory programs. Mol Metab 2023; 73:101735. [PMID: 37178817 PMCID: PMC10230264 DOI: 10.1016/j.molmet.2023.101735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Numerous studies have characterized the existence of cell subtypes, along with their corresponding transcriptional profiles, within the developing mouse pancreas. The upstream mechanisms that initiate and maintain gene expression programs across cell states, however, remain largely unknown. Here, we generate single-nucleus ATAC-Sequencing data of developing murine pancreas and perform an integrated, multi-omic analysis of both chromatin accessibility and RNA expression to describe the chromatin landscape of the developing pancreas at both E14.5 and E17.5 at single-cell resolution. We identify candidate transcription factors regulating cell fate and construct gene regulatory networks of active transcription factor binding to regulatory regions of downstream target genes. This work serves as a valuable resource for the field of pancreatic biology in general and contributes to our understanding of lineage plasticity among endocrine cell types. In addition, these data identify which epigenetic states should be represented in the differentiation of stem cells to the pancreatic beta cell fate to best recapitulate in vitro the gene regulatory networks that are critical for progression along the beta cell lineage in vivo.
Collapse
Affiliation(s)
- Sean de la O
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Xinkai Yao
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sean Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Zhe Liu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Julie B Sneddon
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
30
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
31
|
Wang YL, Zhang HX, Chen YQ, Yang LL, Li ZJ, Zhao M, Li WL, Bian YY, Zeng L. Research on Mechanisms of Chinese Medicines in Prevention and Treatment of Postoperative Adhesion. Chin J Integr Med 2023; 29:556-565. [PMID: 37052766 DOI: 10.1007/s11655-023-3735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 04/14/2023]
Abstract
Postoperative adhesion (PA) is currently one of the most unpleasant complications following surgical procedures. Researchers have developed several new strategies to alleviate the formation of PA to a great extent, but so far, no single measure or treatment can meet the expectations and requirements of clinical patients needing complete PA prevention. Chinese medicine (CM) has been widely used for thousands of years based on its remarkable efficacy and indispensable advantages CM treatments are gradually being accepted by modern medicine. Therefore, this review summarizes the formating process of PA and the efficacy and action mechanism of CM treatments, including their pharmacological effects, therapeutic mechanisms and advantages in PA prevention. We aim to improve the understanding of clinicians and researchers on CM prevention in the development of PA and promote the in-depth development and industrialization process of related drugs.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Xiang Zhang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Qi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Li Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zheng-Jun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Lin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao-Yao Bian
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Second Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
32
|
Bajwa P, Kordylewicz K, Bilecz A, Lastra RR, Wroblewski K, Rinkevich Y, Lengyel E, Kenny HA. Cancer-associated mesothelial cell-derived ANGPTL4 and STC1 promote the early steps of ovarian cancer metastasis. JCI Insight 2023; 8:e163019. [PMID: 36795484 PMCID: PMC10070116 DOI: 10.1172/jci.insight.163019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Ovarian cancer (OvCa) preferentially metastasizes in association with mesothelial cell-lined surfaces. We sought to determine if mesothelial cells are required for OvCa metastasis and detect alterations in mesothelial cell gene expression and cytokine secretion upon interaction with OvCa cells. Using omental samples from patients with high-grade serous OvCa and mouse models with Wt1-driven GFP-expressing mesothelial cells, we validated the intratumoral localization of mesothelial cells during human and mouse OvCa omental metastasis. Removing mesothelial cells ex vivo from human and mouse omenta or in vivo using diphtheria toxin-mediated ablation in Msln-Cre mice significantly inhibited OvCa cell adhesion and colonization. Human ascites induced angiopoietin-like 4 (ANGPTL4) and stanniocalcin 1 (STC1) expression and secretion by mesothelial cells. Inhibition of STC1 or ANGPTL4 via RNAi obstructed OvCa cell-induced mesothelial cell to mesenchymal transition while inhibition of ANGPTL4 alone obstructed OvCa cell-induced mesothelial cell migration and glycolysis. Inhibition of mesothelial cell ANGPTL4 secretion via RNAi prevented mesothelial cell-induced monocyte migration, endothelial cell vessel formation, and OvCa cell adhesion, migration, and proliferation. In contrast, inhibition of mesothelial cell STC1 secretion via RNAi prevented mesothelial cell-induced endothelial cell vessel formation and OvCa cell adhesion, migration, proliferation, and invasion. Additionally, blocking ANPTL4 function with Abs reduced the ex vivo colonization of 3 different OvCa cell lines on human omental tissue explants and in vivo colonization of ID8p53-/-Brca2-/- cells on mouse omenta. These findings indicate that mesothelial cells are important to the initial stages of OvCa metastasis and that the crosstalk between mesothelial cells and the tumor microenvironment promotes OvCa metastasis through the secretion of ANGPTL4.
Collapse
Affiliation(s)
- Preety Bajwa
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology
| | | | - Agnes Bilecz
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology
- Department of Pathology, and
| | | | - Kristen Wroblewski
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology
| | - Hilary A. Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology
| |
Collapse
|
33
|
Michael CW, Bedrossian CCWM, Sadri N, Klebe S. The cytological features of effusions with mesothelioma in situ: A report of 9 cases. Diagn Cytopathol 2023; 51:374-388. [PMID: 36942732 DOI: 10.1002/dc.25129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The diagnosis of mesothelioma in situ (MIS) is now accepted by the WHO as a pre-invasive neoplastic mesothelial proliferation and considered a diagnosis based on histologic evaluation only. Although the definition of MIS includes recurrent effusions, little is known about the cytologic features of such effusions. Since mesothelioma is usually diagnosed at an advanced stage and has a poor prognosis, early detection of a neoplastic mesothelial population in such effusions can potentially have a positive impact on the management of such a dire disease. MATERIALS AND METHODS We reviewed a total of 18 pleural effusions from nine patients with recurrent effusions. Of these, five patients had follow-up biopsies diagnosed as MIS and the remaining four cases had negative radiology and malignant cytology proven by molecular markers (BAP1, MTAP or CDKN2A deletion) and at least 1 year follow-up with no overt mass identified by radiology. RESULTS Initial effusions may mimic reactive mesothelial hyperplasia or exhibit atypia. As effusions recur, the cellularity and atypia increase and the mesothelial proliferation becomes morphologically indistinguishable from mesothelioma. Molecular alterations diagnostic of mesothelioma can be detected in these effusions, even in the initial-benign/reactive appearing ones. The cellularity and atypia detected in such effusions surpassed those noted on the biopsies, raising questions regarding the cause of such discrepancy. CONCLUSION The diagnosis of MIS can be suspected based on malignant effusion cytology supported by molecular alterations. We propose that the proliferation of neoplastic mesothelial clones represent a clinically silent "liquid phase MIS stage" corresponding to in situ stage in other organs.
Collapse
Affiliation(s)
- Claire W Michael
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University, USA
| | | | - Navid Sadri
- Department of Molecular Diagnostics, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sonja Klebe
- Department of Pathology, Flinders University and SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
34
|
A 3D multi-cellular tissue model of the human omentum to study the formation of ovarian cancer metastasis. Biomaterials 2023; 294:121996. [PMID: 36689832 DOI: 10.1016/j.biomaterials.2023.121996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/10/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Reliable and predictive experimental models are urgently needed to study metastatic mechanisms of ovarian cancer cells in the omentum. Although models for ovarian cancer cell adhesion and invasion were previously investigated, the lack of certain omental cell types, which influence the metastatic behavior of cancer cells, limits the application of these tissue models. Here, we describe a 3D multi-cellular human omentum tissue model, which considers the spatial arrangement of five omental cell types. Reproducible tissue models were fabricated combining permeable cell culture inserts and bioprinting technology to mimic metastatic processes of immortalized and patient-derived ovarian cancer cells. The implementation of an endothelial barrier further allowed studying the interaction between cancer and endothelial cells during hematogenous dissemination and the impact of chemotherapeutic drugs. This proof-of-concept study may serve as a platform for patient-specific investigations in personalized oncology in the future.
Collapse
|
35
|
Development of the Peritoneal Metastasis: A Review of Back-Grounds, Mechanisms, Treatments and Prospects. J Clin Med 2022; 12:jcm12010103. [PMID: 36614904 PMCID: PMC9821147 DOI: 10.3390/jcm12010103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastasis is a malignant disease which originated from several gastrointestinal and gynecological carcinomas and has been leading to a suffering condition in patients for decades. Currently, as people have gradually become more aware of the severity of peritoneal carcinomatosis, new molecular mechanisms for targeting and new treatments have been proposed. However, due to the uncertainty of influencing factors involved and a lack of a standardized procedure for this treatment, as well as a need for more clinical data for specific evaluation, more research is needed, both for preventing and treating. We aim to summarize backgrounds, mechanisms and treatments in this area and conclude limitations or new aspects for treatments.
Collapse
|
36
|
Wang X, Chen J, Homma ST, Wang Y, Smith GR, Ruf-Zamojski F, Sealfon SC, Zhou L. Diverse effector and regulatory functions of fibro/adipogenic progenitors during skeletal muscle fibrosis in muscular dystrophy. iScience 2022; 26:105775. [PMID: 36594034 PMCID: PMC9804115 DOI: 10.1016/j.isci.2022.105775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is a prominent pathological feature of skeletal muscle in Duchenne muscular dystrophy (DMD). The commonly used disease mouse model, mdx 5cv , displays progressive fibrosis in the diaphragm but not limb muscles. We use single-cell RNA sequencing to determine the cellular expression of the genes involved in extracellular matrix (ECM) production and degradation in the mdx 5cv diaphragm and quadriceps. We find that fibro/adipogenic progenitors (FAPs) are not only the primary source of ECM but also the predominant cells that express important ECM regulatory genes, including Ccn2, Ltbp4, Mmp2, Mmp14, Timp1, Timp2, and Loxs. The effector and regulatory functions are exerted by diverse FAP clusters which are different between diaphragm and quadriceps, indicating their activation by different tissue microenvironments. FAPs are more abundant in diaphragm than in quadriceps. Our findings suggest that the development of anti-fibrotic therapy for DMD should target not only the ECM production but also the pro-fibrogenic regulatory functions of FAPs.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Jianming Chen
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Sachiko T. Homma
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Yinhang Wang
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Gregory R. Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Lan Zhou
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA,Corresponding author
| |
Collapse
|
37
|
Kaya MT, Kuruca N, Kanat M, Akca FB, Gulbahar MY. Uterine Serosal Inclusion Cysts with Greater Omentum Involvement in a Cat. J Comp Pathol 2022; 199:37-42. [DOI: 10.1016/j.jcpa.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/29/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022]
|
38
|
Wang R, Guo T, Li J. Mechanisms of Peritoneal Mesothelial Cells in Peritoneal Adhesion. Biomolecules 2022; 12:1498. [PMID: 36291710 PMCID: PMC9599397 DOI: 10.3390/biom12101498] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A peritoneal adhesion (PA) is a fibrotic tissue connecting the abdominal or visceral organs to the peritoneum. The formation of PAs can induce a variety of clinical diseases. However, there is currently no effective strategy for the prevention and treatment of PAs. Damage to peritoneal mesothelial cells (PMCs) is believed to cause PAs by promoting inflammation, fibrin deposition, and fibrosis formation. In the early stages of PA formation, PMCs undergo mesothelial-mesenchymal transition and have the ability to produce an extracellular matrix. The PMCs may transdifferentiate into myofibroblasts and accelerate the formation of PAs. Therefore, the aim of this review was to understand the mechanism of action of PMCs in PAs, and to offer a theoretical foundation for the treatment and prevention of PAs.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
39
|
Ogasawara F, Higuchi T, Nishimori T, Hashida Y, Kojima K, Daibata M. Targeting
VEGF
with bevacizumab inhibits malignant effusion formation of primary human herpesvirus 8‐unrelated effusion large B‐cell lymphoma in vivo. J Cell Mol Med 2022; 26:5580-5589. [PMID: 36209502 PMCID: PMC9667516 DOI: 10.1111/jcmm.17570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Primary human herpesvirus 8 (HHV8)‐unrelated effusion large B‐cell lymphoma (ELBCL) is recognized as a new clinical entity, but its pathogenesis and therapeutic strategies remain largely unknown. We have generated two mouse models with profuse lymphomatous effusions that resemble HHV8‐unrelated ELBCL occurring in humans, by grafting the cell lines designated as Pell‐1 and Pell‐2. Using these in vivo models, we evaluated the potential role of vascular endothelial growth factor (VEGF) in the pathogenesis of HHV8‐unrelated ELBCL. Both Pell‐1 and Pell‐2 cells consistently produced very high levels of VEGF in mice, in contrast to in vitro findings of relatively low VEGF production in culture medium by HHV8‐unrelated ELBCL cells, especially Pell‐1 cells. Conversely, returning Pell‐1 cells grown in mice to culture medium markedly suppressed VEGF production to the original in vitro level. These findings suggest that the tumour microenvironment plays a role in the steady production of VEGF. We also found that the interaction between HHV8‐unrelated ELBCL cells and peritoneal mesothelial cells increased the production of VEGF in vitro. Finally, we found that bevacizumab significantly suppressed effusion formation and lymphoma cell growth in both mouse models. These results suggest that bevacizumab is a rational approach to the treatment of HHV8‐unrelated ELBCL.
Collapse
Affiliation(s)
- Fumiya Ogasawara
- Department of Microbiology and Infection Kochi Medical School, Kochi University Nankoku Japan
- Department of Hematology Kochi Medical School, Kochi University Nankoku Japan
| | - Tomonori Higuchi
- Department of Microbiology and Infection Kochi Medical School, Kochi University Nankoku Japan
| | - Tomohiro Nishimori
- Department of Microbiology and Infection Kochi Medical School, Kochi University Nankoku Japan
| | - Yumiko Hashida
- Department of Microbiology and Infection Kochi Medical School, Kochi University Nankoku Japan
| | - Kensuke Kojima
- Department of Hematology Kochi Medical School, Kochi University Nankoku Japan
| | - Masanori Daibata
- Department of Microbiology and Infection Kochi Medical School, Kochi University Nankoku Japan
| |
Collapse
|
40
|
Alamdaran SA, Vahed SH, Seyedin G. Ultrasound Changes of Postoperative Adhesion Types Over Time in Children. JOURNAL OF CHILD SCIENCE 2022. [DOI: 10.1055/s-0042-1757152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractPostoperative fibrotic band formation is a common complication that causes bowel obstruction, chronic pain, and especially reoperation problems. We tried to evaluate the ultrasound signs of different adhesions over time in children. This descriptive study was performed in children hospital of Mashhad University of Medical Sciences. Sixty-five children aged 4 months to 15 years (mean age of 7.2 ± 6.5 years) were enrolled in the study. Complete abdominal sonography using 5 to 12 MHz multifrequency probes was performed by a pediatric radiologist. The sonographic findings and data analysis were performed. In first week after surgery, the fibrinous exudates are seen as hypoechoic shadows. It has uneven thickness and usually encases the bowel loops in a circular shape. In second week, they gradually become straighter with uniform thickness. In this period, in 68% of cases, a hyperechoic line is formed in the center of hypoechoic fibrinous exudates, which is usually placed between the bowel loops (interloop fibrosis). The omentum or mesentery entrapment in the fibrinous exudates was occurred in ∼50% and 25% of these cases, respectively. In this state, echogenic omentum or mesentery was seen simultaneously with the hypoechoic fibrinous exudates. After 1 month from surgical procedure, One of the following four sonographic patterns are seen: attachment hyperechoic omentum to retroperitoneum (50%), attachment hyperechoic mesentery to anterior abdominal wall (26%), interloop fibrosis (39%), and severe hypoechoic fibrotic band (30%). Absence of visceral sliding was seen in 65 to 80% of patients. Overall, there are five morphologic patterns of adhesion on ultrasound: fibrinous exudates, interloop fibrosis, fibrotic band, fixed omentum to retroperitoneum, and fixed mesentery to abdominal wall.
Collapse
Affiliation(s)
- Seyed Ali Alamdaran
- Clinical Research Development Unit, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Golnaz Seyedin
- Surgen, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Takeda-Uchimura Y, Ikezaki M, Akama TO, Nishioka K, Ihara Y, Allain F, Nishitsuji K, Uchimura K. Complementary Role of GlcNAc6ST2 and GlcNAc6ST3 in Synthesis of CL40-Reactive Sialylated and Sulfated Glycans in the Mouse Pleural Mesothelium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144543. [PMID: 35889417 PMCID: PMC9320226 DOI: 10.3390/molecules27144543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Sialyl 6-sulfo Lewis X (6-sulfo sLeX) and its derivative sialyl 6-sulfo N-acetyllactosamine (LacNAc) are sialylated and sulfated glycans of sialomucins found in the high endothelial venules (HEVs) of secondary lymphoid organs. A component of 6-sulfo sLeX present in the core 1-extended O-linked glycans detected by the MECA-79 antibody was previously shown to exist in the lymphoid aggregate vasculature and bronchial mucosa of allergic and asthmatic lungs. The components of 6-sulfo sLeX in pulmonary tissues under physiological conditions remain to be analyzed. The CL40 antibody recognizes 6-sulfo sLeX and sialyl 6-sulfo LacNAc in O-linked and N-linked glycans, with absolute requirements for both GlcNAc-6-sulfation and sialylation. Immunostaining of normal mouse lungs with CL40 was performed and analyzed. The contribution of GlcNAc-6-O-sulfotransferases (GlcNAc6STs) to the synthesis of the CL40 epitope in the lungs was also elucidated. Here, we show that the expression of the CL40 epitope was specifically detected in the mesothelin-positive mesothelium of the pulmonary pleura. Moreover, GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5), but not GlcNAc6ST1 (encoded by Chst2) or GlcNAc6ST4 (encoded by Chst7), are required for the synthesis of CL40-positive glycans in the lung mesothelium. Furthermore, neither GlcNAc6ST2 nor GlcNAc6ST3 is sufficient for in vivo expression of the CL40 epitope in the lung mesothelium, as demonstrated by GlcNAc6ST1/3/4 triple-knock-out and GlcNAc6ST1/2/4 triple-knock-out mice. These results indicate that CL40-positive sialylated and sulfated glycans are abundant in the pleural mesothelium and are synthesized complementarily by GlcNAc6ST2 and GlcNAc6ST3, under physiological conditions in mice.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique, University of Lille, Villeneuve d’Ascq, F-59655 Lille, France; (Y.T.-U.); (F.A.)
| | - Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.); (K.N.)
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka 570-8506, Japan;
| | - Kaho Nishioka
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan;
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.); (K.N.)
| | - Fabrice Allain
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique, University of Lille, Villeneuve d’Ascq, F-59655 Lille, France; (Y.T.-U.); (F.A.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.); (K.N.)
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique, University of Lille, Villeneuve d’Ascq, F-59655 Lille, France; (Y.T.-U.); (F.A.)
- Correspondence: ; Tel.: +33-(0)-20-33-72-39
| |
Collapse
|
42
|
Substance GP-2250 as a New Therapeutic Agent for Malignant Peritoneal Mesothelioma—A 3-D In Vitro Study. Int J Mol Sci 2022; 23:ijms23137293. [PMID: 35806313 PMCID: PMC9267014 DOI: 10.3390/ijms23137293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant peritoneal mesothelioma is a rare tumor entity. Although cytoreductive surgery and hyperthermic intraperitoneal chemotherapy have increased overall survival, its prognosis remains poor. Established chemotherapeutics include mitomycin C (MMC) and cisplatin (CP), both characterized by severe side effects. GP-2250 is a novel antineoplastic agent, currently under clinical investigation. This in vitro study aims to investigate effects of GP-2250 including combinations with CP and MMC on malignant mesothelioma. JL-1 and MSTO-211H mesothelioma cell lines were treated with increasing doses of GP-2250, CP, MMC and combination therapies of GP-2250 + CP/MMC. Microscopic effects were documented, and a flow-cytometric apoptosis/necrosis assay was performed. Synergistic and antagonistic effects were analyzed by computing the combination index by Chou-Talalay. GP-2250 showed an antiadhesive effect on JL-1 and MSTO-211H spheroids. It had a dose-dependent cytotoxic effect on both monolayer and spheroid cultured cells, inducing apoptosis and necrosis. Combination treatments of GP-2250 with MMC and CP led to significant reductions of the effective doses of CP/MMC. Synergistic and additive effects were observed. GP-2250 showed promising antineoplastic effects on malignant mesothelioma cells in vitro especially in combination with CP/MMC. This forms the basis for further in vivo and clinical investigations in order to broaden treatment options.
Collapse
|
43
|
Li J, Guo T. Role of Peritoneal Mesothelial Cells in the Progression of Peritoneal Metastases. Cancers (Basel) 2022; 14:2856. [PMID: 35740521 PMCID: PMC9221366 DOI: 10.3390/cancers14122856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal metastatic cancer comprises a heterogeneous group of primary tumors that originate in the peritoneal cavity or metastasize into the peritoneal cavity from a different origin. Metastasis is a characteristic of end-stage disease, often indicative of a poor prognosis with limited treatment options. Peritoneal mesothelial cells (PMCs) are a thin layer of cells present on the surface of the peritoneum. They display differentiated characteristics in embryonic development and adults, representing the first cell layer encountering peritoneal tumors to affect their progression. PMCs have been traditionally considered a barrier to the intraperitoneal implantation and metastasis of tumors; however, recent studies indicate that PMCs can either inhibit or actively promote tumor progression through distinct mechanisms. This article presents a review of the role of PMCs in the progression of peritoneum implanted tumors, offering new ideas for therapeutic targets and related research.
Collapse
Affiliation(s)
- Junliang Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| |
Collapse
|
44
|
Ditzig Z, Wilson CM, Salas J, Serve KM. Plasminogen Binding and Activation at the Mesothelial Cell Surface Promotes Invasion through a Collagen Matrix. Int J Mol Sci 2022; 23:ijms23115984. [PMID: 35682663 PMCID: PMC9180734 DOI: 10.3390/ijms23115984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/04/2023] Open
Abstract
Plasminogen (Plg) activation to the serine protease plasmin (Pla) plays a key role in regulating wound healing and fibrotic responses, particularly when bound to cell surface receptors. Our previous work suggested that mesothelial cells bind Plg at the cell surface, though no Plg receptors were described for these cells. Since mesothelial cells contribute to injury responses, including cellular differentiation to a mesenchymal-like phenotype and extracellular matrix remodeling, we hypothesized that Plg binding would promote these responses. Here, we confirm that Plg binds to both pleural and peritoneal mesothelial cells via the lysine-binding domain present in Plg, and we demonstrate the presence of three Plg receptors on the mesothelial cell surface: α-Enolase, Annexin A2, and Plg-RKT. We further show that bound-Plg is activated to Pla on the cell surface and that activation is blocked by an inhibitor of urokinase plasminogen activator or by the presence of animal-derived FBS. Lastly, we demonstrate that Plg promotes mesothelial cell invasion through a type I collagen matrix but does not promote cellular differentiation or proliferation. These data demonstrate for the first time that mesothelial cells bind and activate Plg at the cell surface and that active Pla is involved in mesothelial cell invasion without cell differentiation.
Collapse
|
45
|
Human Omental Mesothelial Cells Impart an Immunomodulatory Landscape Impeding B- and T-Cell Activation. Int J Mol Sci 2022; 23:ijms23115924. [PMID: 35682603 PMCID: PMC9180401 DOI: 10.3390/ijms23115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Mesothelial cells form the mesothelium, a simple epithelium lining the walls of serous cavities and the surface of visceral organs. Although mesothelial cells are phenotypically well characterized, their immunoregulatory properties remain largely unknown, with only two studies reporting their capacity to inhibit T cells through TGF-β and their consumption of L-arginine by arginase-1. Whether human mesothelial cells can suppress other immune cells and possess additional leukosuppressive mechanisms, remain to be addressed to better delineate their therapeutic potential for cell therapy. Herein, we generated secretomes from omental mesothelial cells (OMC) and assess their capacity to inhibit lymphocytes proliferation, suppress activated T and B cells, as well as to modify macrophage activation markers. The secretome from mesenchymal stromal cells (MSC) served as a control of immuno-suppression. Although OMC and MSC were phenotypically divergent, their cytokine secretion patterns as well as expression of inflammatory and immunomodulary genes were similar. As such, OMC- and MSC-derived secretomes (OMC-S and MSC-S) both polarized RAW 264.7 macrophages towards a M2-like anti-inflammatory phenotype and suppressed mouse and human lymphocytes proliferation. OMC-S displayed a strong ability to suppress mouse- and human-activated CD19+/CD25+ B cells as compared to MSC-S. The lymphosuppressive activity of the OMC-S could be significantly counteracted either by SB-431542, an inhibitor of TGFβ and activin signaling pathways, or with a monoclonal antibody against the TGFβ1, β2, and β3 isoforms. A strong blockade of the OMC-S-mediated lymphosuppressive activity was achieved using L-NMMA, a specific inhibitor of nitric oxide synthase (NOS). Taken together, our results suggest that OMC are potent immunomodulators.
Collapse
|
46
|
Chaudhary N, Jayaraman A, Reinhardt C, Campbell JD, Bosmann M. A single-cell lung atlas of complement genes identifies the mesothelium and epithelium as prominent sources of extrahepatic complement proteins. Mucosal Immunol 2022; 15:927-939. [PMID: 35672453 PMCID: PMC9173662 DOI: 10.1038/s41385-022-00534-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023]
Abstract
To understand functional duality of the complement system in host defense and lung injury, a more comprehensive view of its localized production in the lung, and the impact of age on complement production are essential. Here, we explored the expression of complement genes through computational analysis of preexisting single cell RNA sequencing data from lung transcriptomes of healthy young (3 months) and old C57BL/6 mice (24 months), and humans. We characterized the distribution of 48 complement genes. Across 28 distinct immune and non-immune cell types in mice, mesothelial cells expressed the greatest number of complement genes (e.g., C1ra, C2, C3), and regulators (e.g., Serping1, Cfh). C5 was abundant in type II alveolar epithelial cells and C1q in interstitial lung macrophages. There were only moderate differences in gene expression between young and old mice. Among 57 human lung cell types, mesothelial cells showed abundant complement expression. A few differences in gene expression (e.g., FCN1, CFI, C6, C7) were also evident between mice and human lung cells. Our findings present a novel perspective on the expression patterns of complement genes in normal lungs. These findings highlight the potential functions of complement in tissue-specific homeostasis and immunity and may foster a mechanistic understanding of its role in lung health and disease.
Collapse
Affiliation(s)
- Neha Chaudhary
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Archana Jayaraman
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Joshua D Campbell
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
47
|
Lua I, Balog S, Asahina K. TAZ/WWTR1 mediates liver mesothelial-mesenchymal transition induced by stiff extracellular environment, TGF-β1, and lysophosphatidic acid. J Cell Physiol 2022; 237:2561-2573. [PMID: 35445400 DOI: 10.1002/jcp.30750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/14/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
Mesothelial cells cover the surface of the internal organs and the walls of body cavities, facilitating the movement between organs by secretion of a lubricating fluid. Upon injury, mesothelial cells undergo a mesothelial-mesenchymal transition (MMT) and give rise to myofibroblasts during organ fibrosis, including in the liver. Although transforming growth factor-β1 (TGF-β1) was shown to induce MMT, molecular and cellular mechanisms underlying MMT remain to be clarified. In the present study, we examined how the extracellular environment, soluble factors, and cell density control the phenotype of liver mesothelial cells by culturing them at different cell densities or on hydrogels of different stiffness. We found that TGF-β1 does not fully induce MMT in mesothelial cells cultured at high cell density or in the absence of fetal bovine serum. Extracellular lysophosphatidic acid (LPA) synergistically induced MMT in the presence of TGF-β1 in mesothelial cells. LPA induced nuclear localization of WW domain-containing transcription regulator1 (WWTR1/TAZ) and knockdown of Taz, which suppressed LPA-induced MMT. Mesothelial cells cultured on stiff hydrogels upregulated nuclear localization of TAZ and myofibroblastic differentiation. Knockdown of Taz suppressed MMT of mesothelial cells cultured on stiff hydrogels, but inhibition of TGF-β1 signaling failed to suppress MMT. Our data indicate that TAZ mediates MMT induced by TGF-β1, LPA, and a stiff matrix. The microenvironment of a stiff extracellular matrix is a strong inducer of MMT.
Collapse
Affiliation(s)
- Ingrid Lua
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven Balog
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kinji Asahina
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Central Research Laboratory, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
48
|
Prummel KD, Crowell HL, Nieuwenhuize S, Brombacher EC, Daetwyler S, Soneson C, Kresoja-Rakic J, Kocere A, Ronner M, Ernst A, Labbaf Z, Clouthier DE, Firulli AB, Sánchez-Iranzo H, Naganathan SR, O'Rourke R, Raz E, Mercader N, Burger A, Felley-Bosco E, Huisken J, Robinson MD, Mosimann C. Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nat Commun 2022; 13:1677. [PMID: 35354817 PMCID: PMC8967825 DOI: 10.1038/s41467-022-29311-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.
Collapse
Affiliation(s)
- Karin D Prummel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Susan Nieuwenhuize
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Eline C Brombacher
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Charlotte Soneson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Jelena Kresoja-Rakic
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Agnese Kocere
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | | | - Zahra Labbaf
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Héctor Sánchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
- Institute of Biological and Chemical System - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sundar R Naganathan
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Erez Raz
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Morgridge Institute for Research, Madison, WI, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
49
|
Wei YS, Cheng HP, Wu CH, Chang YC, Lin RW, Hsu YT, Chen YT, Lin SL, Tsai SY, Wu SC, Tsai PS. Oxidative Stress-Induced Alterations of Cellular Localization and Expression of Aquaporin 1 Lead to Defected Water Transport upon Peritoneal Fibrosis. Biomedicines 2022; 10:biomedicines10040810. [PMID: 35453560 PMCID: PMC9031283 DOI: 10.3390/biomedicines10040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Being one of the renal replacement therapies, peritoneal dialysis (PD) maintains around 15% of end-stage kidney disease patients’ lives; however, complications such as peritoneal fibrosis and ultrafiltration failure during long-term PD compromise its application. Previously, we established a sodium hypochlorite (NaClO)-induced peritoneal fibrosis porcine model, which helped to bridge the rodent model toward pre-clinical human peritoneal fibrosis research. In this study, the peritoneal equilibration test (PET) was established to evaluate instant functional changes in the peritoneum in the pig model. Similar to observations from long-term PD patients, increasing small solutes transport and loss of sodium sieving were observed. Mechanistic investigation from both in vivo and in vitro data suggested that disruption of cytoskeleton induced by excessive reactive oxygen species defected intracellular transport of aquaporin 1, this likely resulted in the disappearance of sodium sieving upon PET. Functional interference of aquaporin 1 on free water transport would result in PD failure in patients.
Collapse
Affiliation(s)
- Yu-Syuan Wei
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.W.); (H.-P.C.); (Y.-T.H.)
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.W.); (Y.-C.C.); (R.-W.L.)
| | - Hui-Ping Cheng
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.W.); (H.-P.C.); (Y.-T.H.)
| | - Ching-Ho Wu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.W.); (Y.-C.C.); (R.-W.L.)
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Chen Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.W.); (Y.-C.C.); (R.-W.L.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ruo-Wei Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.W.); (Y.-C.C.); (R.-W.L.)
| | - Yu-Ting Hsu
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.W.); (H.-P.C.); (Y.-T.H.)
| | - Yi-Ting Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (S.-L.L.)
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Shuei-Liong Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (Y.-T.C.); (S.-L.L.)
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 10002, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Su-Yi Tsai
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Shinn-Chih Wu
- Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan;
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.W.); (H.-P.C.); (Y.-T.H.)
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.W.); (Y.-C.C.); (R.-W.L.)
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence: ; Tel.: +886-(0)2-3366-1806; Fax: +886-(0)2-2366-1475
| |
Collapse
|
50
|
Peritoneal Restoration by Repurposing Vitamin D Inhibits Ovarian Cancer Dissemination via Blockade of the TGF-β1/Thrombospondin-1 Axis. Matrix Biol 2022; 109:70-90. [PMID: 35339636 DOI: 10.1016/j.matbio.2022.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/09/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Ovarian cancer (OvCa), a lethal gynecological malignancy, disseminates to the peritoneum. Mesothelial cells (MCs) act as barriers in the abdominal cavity, preventing the adhesion of cancer cells. However, in patients with OvCa, they are transformed into cancer-associated mesothelial cells (CAMs) via mesenchymal transition and form a favorable microenvironment for tumors to promote metastasis. However, attempts for restoring CAMs to their original state have been limited. Here, we investigated whether inhibition of mesenchymal transition and restoration of MCs by vitamin D suppressed the OvCa dissemination in vitro and in vivo. METHODS The effect of vitamin D on the mutual association of MCs and OvCa cells was evaluated using in vitro coculture models and in vivo using a xenograft model. RESULTS Vitamin D restored the CAMs, and thrombospondin-1 (component of the extracellular matrix that is clinically associated with poor prognosis and is highly expressed in peritoneally metastasized OvCa) was found to promote OvCa cell adhesion and proliferation. Mechanistically, TGF-β1 secreted from OvCa cells enhanced thrombospondin-1 expression in CAMs via Smad-dependent TGF-β signaling. Vitamin D inhibited mesenchymal transition in MCs and suppressed thrombospondin-1 expression via vitamin D receptor/Smad3 competition, contributing to the marked reduction in peritoneal dissemination in vivo. Importantly, vitamin D restored CAMs from a stabilized mesenchymal state to the epithelial state and normalized thrombospondin-1 expression in preclinical models that mimic cancerous peritonitis in vivo. CONCLUSIONS MCs are key players in OvCa dissemination and peritoneal restoration and normalization of thrombospondin-1 expression by vitamin D may be a novel strategy for preventing OvCa dissemination.
Collapse
|