1
|
Chloroform Extract of Artemisia annua L. Relaxes Mouse Airway Smooth Muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9870414. [PMID: 29259649 PMCID: PMC5702405 DOI: 10.1155/2017/9870414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 11/18/2022]
Abstract
Artemisia annua L. belongs to the Asteraceae family, which is indigenous to China. It has valuable pharmacological properties, such as antimalarial, anti-inflammatory, and anticancer properties. However, whether it possesses antiasthma properties is unknown. In the current study, chloroform extract of Artemisia annua L. (CEAA) was prepared, and we found that CEAA completely eliminated acetylcholine (ACh) or high K+-elicited (80 mM) contractions of mouse tracheal rings (TRs). Patch-clamp technique and ion channel blockers were employed to explore the underlying mechanisms of the relaxant effect of CEAA. In whole-cell current recording, CEAA almost fully abolished voltage-dependent Ca2+ channel (VDCC) currents and markedly enhanced large conductance Ca2+-activated K+ (BK) channel currents on airway smooth muscle cells (ASMCs). In single channel current recording, CEAA increased the opening probability but had no effect on the single channel conductance of BK channels. However, under paxilline-preincubated (a selective BK channel blocker) conditions, CEAA only slightly increased BK channel currents. These results indicate that CEAA may contain active components with potent antiasthma activity. The abolished VDCCs by CEAA may mainly contribute to the underlying mechanism through which it acts as an effective antiasthmatic compound, but the enhanced BK currents might play a less important role in the antiasthmatic effects.
Collapse
|
2
|
Hannan JL, Powers SA, Wang VM, Castiglione F, Hedlund P, Bivalacqua TJ. Impaired contraction and decreased detrusor innervation in a female rat model of pelvic neuropraxia. Int Urogynecol J 2016; 28:1049-1056. [PMID: 27987021 DOI: 10.1007/s00192-016-3223-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/21/2016] [Indexed: 01/23/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Bilateral pelvic nerve injury (BPNI) is a model of post-radical hysterectomy neuropraxia, a common sequela. This study assessed the time course of changes to detrusor autonomic innervation, smooth muscle (SM) content and cholinergic-mediated contraction post-BPNI. METHODS Female Sprague-Dawley rats underwent BPNI or sham surgery and were evaluated 3, 7, 14, and 30 days post-BPNI (n = 8/group). Electrical field-stimulated (EFS) and carbachol-induced contractions were measured. Gene expression was assessed by qPCR for muscarinic receptor types 2 (M2) and 3 (M3), collagen type 1α1 and 3α1, and SM actin. Western blots measured M2 and M3 protein expression. Bladder sections were stained with Masson's trichrome for SM content and immunofluorescence staining for nerve terminals expressing vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), and neuronal nitric oxide synthase (nNOS). RESULTS Bilateral pelvic nerve injury caused larger bladders with less SM content and increased collagen type 1α1 and 3α1 gene expression. At early time points, cholinergic-mediated contraction increased, whereas EFS-mediated contraction decreased and returned to baseline by 30 days. Protein and gene expression of M3 was decreased 3 and 7 days post-BPNI, whereas M2 was unchanged. TH nerve terminals surrounding the detrusor decreased in all BPNI groups, whereas VAChT and nNOS terminals decreased 14 and 30 days post-BPNI. CONCLUSIONS Bilateral pelvic nerve injury increased bladder size, impaired contractility, and decreased SM and autonomic innervation. Therapeutic strategies preventing nerve injury-mediated decline in neuronal input and SM content may prevent the development of a neurogenic bladder and improve quality of life after invasive pelvic surgery.
Collapse
Affiliation(s)
- Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mail Stop 634, Greenville, NC, 27834-4354, USA. .,The James Buchanan Brady Urological Institute, and Department of Urology, The Johns Hopkins School of Medicine, 600 North Wolfe Street, Marburg 420, Baltimore, MD, 21287, USA.
| | - Shelby A Powers
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mail Stop 634, Greenville, NC, 27834-4354, USA
| | - Vinson M Wang
- The James Buchanan Brady Urological Institute, and Department of Urology, The Johns Hopkins School of Medicine, 600 North Wolfe Street, Marburg 420, Baltimore, MD, 21287, USA
| | - Fabio Castiglione
- Unit of Urology, Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.,Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Petter Hedlund
- Unit of Urology, Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Clinical and Experimental Pharmacology, Lund University, Lund, Sweden
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute, and Department of Urology, The Johns Hopkins School of Medicine, 600 North Wolfe Street, Marburg 420, Baltimore, MD, 21287, USA
| |
Collapse
|
3
|
Zhu Z, Tang J, Zhou X, Xiang S, Zhu X, Li N, Shi R, Zhong Y, Zhang L, Sun M, Xu Z. Roles of ion channels in regulation of acetylcholine-mediated vasoconstrictions in umbilical cords of rabbit/rats. Reprod Toxicol 2016; 65:95-103. [PMID: 27421582 DOI: 10.1016/j.reprotox.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022]
Abstract
We recently demonstrated that acetylcholine (ACh) produced reliable vasoconstrictions in the umbilical cords. This study investigated the possible mechanisms with different antagonists. ACh-mediated vasoconstrictions were decreased by voltage-operated calcium (Ca2+) channels antagonist nifedipine or inositol-1,4,5-trisphosphate-mediated Ca2+ release antagonist 2-aminoethyl diphenylborinate, indicating that both extracellular and intracellular calcium modulated the ACh-stimulated umbilical contraction. Intracellular Ca2+ concentrations were increased simultaneously with vasoconstrictions by ACh in the umbilical vessels. Inhibiting large-conductance calcium-dependent potassium (BK) channels enhanced ACh-mediated contraction, whereas inhibiting voltage dependent potassium (K+), inward rectifier K+ and ATP-sensitive K+ channels had no effects. Incubation with specific K+ channel inhibitors showed that ACh suppressed BK currents rather than 4-aminopyridine-sensitive K+ channels currents. The results suggested that blood vessels in umbilical cords had special characteristics in response to cholinergic signals. ACh-stimulated umbilical vasoconstrictions were mediated via muscarinic receptor subtype 1/3-protein kinase C/cyclooxygenase-BK channel pathways.
Collapse
Affiliation(s)
- Zhoufeng Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiuwen Zhou
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Sharon Xiang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaolin Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Na Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ruixiu Shi
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuan Zhong
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lubo Zhang
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Zhice Xu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
4
|
Parajuli SP, Zheng YM, Levin R, Wang YX. Big-conductance Ca 2+-activated K + channels in physiological and pathophysiological urinary bladder smooth muscle cells. Channels (Austin) 2016; 10:355-364. [PMID: 27101440 DOI: 10.1080/19336950.2016.1180488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions.
Collapse
Affiliation(s)
- Shankar P Parajuli
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Yun-Min Zheng
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Robert Levin
- b Stratton VA Medical Center , Albany , NY , USA
| | - Yong-Xiao Wang
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| |
Collapse
|
5
|
Fukasaku M, Kimura J, Yamaguchi O. Swelling-activated and arachidonic acid-induced currents are TREK-1 in rat bladder smooth muscle cells. Fukushima J Med Sci 2016; 62:18-26. [PMID: 26911303 DOI: 10.5387/fms.2015-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using the perforated patch voltage clamp, we investigated swelling-activated ionic channels (SACs) in rat urinary bladder smooth muscle cells. Hypo-osmotic (60%) bath solution increased a membrane current which was inhibited by the SAC inhibitor, gadolinium. The reversal potential of the hypotonicity-induced current shifted in the positive direction by increasing external K(+) concentration. The hypotonicity-induced current was inhibited by extracellular acidic pH, phorbol ester and forskolin. These pharmacological properties are identical to those of arachidonic acid-induced current present in these cells, suggesting the presence of TREK-1, a four-transmembrane two pore domain K(+) channel. Using RT-PCR we screened rat bladder smooth muscles and cerebellum for expression of TREK-1, TREK-2 and TRAAK mRNAs. Only TREK-1 mRNA was expressed in the bladder, while all three were expressed in the cerebellum. We conclude that a mechanosensitive K(+) channel is present in rat bladder myocytes, which is activated by arachidonic acid and most likely is TREK-1. This K(+) channel may have an important role in the regulation of bladder smooth muscle tone during urine storage.
Collapse
|
6
|
Ehrhardt A, Wang B, Yung AC, Wang Y, Kozlowski P, van Breemen C, Schrader JW. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras. PLoS One 2015; 10:e0141493. [PMID: 26516777 PMCID: PMC4627820 DOI: 10.1371/journal.pone.0141493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022] Open
Abstract
Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly ‘layered’ with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice.
Collapse
MESH Headings
- Acetylcholine/physiology
- Aging/genetics
- Aging/physiology
- Animals
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monomeric GTP-Binding Proteins/deficiency
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/physiology
- Muscle Contraction
- Muscle, Smooth/metabolism
- Phenotype
- Proteinuria/genetics
- Proteinuria/physiopathology
- RNA, Messenger/biosynthesis
- Receptor, Muscarinic M2/biosynthesis
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/physiology
- Receptor, Muscarinic M3/biosynthesis
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Sex Characteristics
- Urinary Bladder/metabolism
- Urinary Bladder/pathology
- Urinary Bladder, Overactive/genetics
- Urinary Bladder, Overactive/physiopathology
- Urinary Incontinence/genetics
- Urinary Incontinence/physiopathology
- Urinary Retention/genetics
- Urinary Retention/physiopathology
- Urination/physiology
- ras Proteins
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Bin Wang
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Andrew C. Yung
- The University of British Columbia MRI Research Centre, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Yanni Wang
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- The University of British Columbia MRI Research Centre, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
- The University of British Columbia, Departments of Radiology and Urologic Sciences, 818 West 10th Ave., Vancouver, British Columbia, Canada
| | - Cornelis van Breemen
- The University of British Columbia, Department of Pharmacology and Therapeutics, 2176 Health Sciences Mall, Vancouver, British Columbia, Canada
| | - John W. Schrader
- The Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
7
|
Comparative functional selectivity of imidafenacin and propiverine, antimuscarinic agents, for the urinary bladder over colon in conscious rats. Naunyn Schmiedebergs Arch Pharmacol 2015. [DOI: 10.1007/s00210-015-1155-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol 2014; 307:R571-84. [PMID: 24990859 DOI: 10.1152/ajpregu.00142.2014] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca(2+)-activated K(+) (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in UBSM and is arguably the most important physiologically relevant K(+) channel that regulates UBSM function. Its significance arises from the fact that the BK channel is the only K(+) channel that is activated by increases in both voltage and intracellular Ca(2+). The BK channels control UBSM excitability and contractility by maintaining the resting membrane potential and shaping the repolarization phase of the spontaneous action potentials that determine UBSM spontaneous rhythmic contractility. In UBSM, these channels have complex regulatory mechanisms involving integrated intracellular Ca(2+) signals, protein kinases, phosphodiesterases, and close functional interactions with muscarinic and β-adrenergic receptors. BK channel dysfunction is implicated in some forms of bladder pathologies, such as detrusor overactivity, and related overactive bladder. This review article summarizes the current state of knowledge of the functional role of UBSM BK channels under normal and pathophysiological conditions and provides new insight toward the BK channels as targets for pharmacological or genetic control of UBSM function. Modulation of UBSM BK channels can occur by directly or indirectly targeting their regulatory mechanisms, which has the potential to provide novel therapeutic approaches for bladder dysfunction, such as overactive bladder and detrusor underactivity.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
9
|
Parajuli SP, Hristov KL, Cheng Q, Malysz J, Rovner ES, Petkov GV. Functional link between muscarinic receptors and large-conductance Ca2+ -activated K+ channels in freshly isolated human detrusor smooth muscle cells. Pflugers Arch 2014; 467:665-75. [PMID: 24867682 DOI: 10.1007/s00424-014-1537-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/25/2014] [Accepted: 05/13/2014] [Indexed: 01/25/2023]
Abstract
Activation of muscarinic acetylcholine receptors (mAChRs) constitutes the primary mechanism for enhancing excitability and contractility of human detrusor smooth muscle (DSM). Since the large-conductance Ca(2+)-activated K(+) (KCa1.1) channels are key regulators of human DSM function, we investigated whether mAChR activation increases human DSM excitability by inhibiting KCa1.1 channels. We used the mAChR agonist, carbachol, to determine the changes in KCa1.1 channel activity upon mAChR activation in freshly isolated human DSM cells obtained from open bladder surgeries using the perforated whole cell and single KCa1.1 channel patch-clamp recordings. Human DSM cells were collected from 29 patients (23 males and 6 females, average age of 65.9 ± 1.5 years). Carbachol inhibited the amplitude and frequency of KCa1.1 channel-mediated spontaneous transient outward currents and spontaneous transient hyperpolarizations, which are triggered by the release of Ca(2+) from ryanodine receptors. Carbachol also caused membrane potential depolarization, which was not observed in the presence of iberiotoxin, a KCa1.1 channel inhibitor, indicating the critical role of the KCa1.1 channels. The potential direct carbachol effects on KCa1.1 channels were examined under conditions of removing the major cellular Ca(2+) sources for KCa1.1 channel activation with pharmacological inhibitors (thapsigargin, ryanodine, and nifedipine). In the presence of these inhibitors, carbachol did not affect the single KCa1.1 channel open probability and mean KCa1.1 channel conductance (cell-attached configuration) or depolarization-induced whole cell steady-state KCa1.1 currents. The data support the concept that mAChR activation triggers indirect functional KCa1.1 channel inhibition mediated by intracellular Ca(2+), thus increasing the excitability in human DSM cells.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter St, Columbia, SC, 29208, USA
| | | | | | | | | | | |
Collapse
|
10
|
Parajuli SP, Petkov GV. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells. Am J Physiol Cell Physiol 2013; 305:C207-14. [PMID: 23703523 DOI: 10.1152/ajpcell.00113.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Large conductance voltage- and Ca(2+)-activated K(+) (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca(2+) for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca(2+). In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
11
|
Ochodnicky P, Uvelius B, Andersson KE, Michel MC. Autonomic nervous control of the urinary bladder. Acta Physiol (Oxf) 2013; 207:16-33. [PMID: 23033838 DOI: 10.1111/apha.12010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/28/2011] [Accepted: 09/10/2012] [Indexed: 01/25/2023]
Abstract
The autonomic nervous system plays an important role in the regulation of the urinary bladder function. Under physiological circumstances, noradrenaline, acting mainly on β(3) -adrenoceptors in the detrusor and on α(1) (A) -adrenoceptors in the bladder outflow tract, promotes urine storage, whereas neuronally released acetylcholine acting mainly on M(3) receptors promotes bladder emptying. Under pathophysiological conditions, however, this system may change in several ways. Firstly, there may be plasticity at the levels of innervation and receptor expression and function. Secondly, non-neuronal acetylcholine synthesis and release from the urothelium may occur during the storage phase, leading to a concomitant exposure of detrusor smooth muscle, urothelium and afferent nerves to acetylcholine and noradrenaline. This can cause interactions between the adrenergic and cholinergic system, which have been studied mostly at the post-junctional smooth muscle level until now. The implications of such plasticity are being discussed.
Collapse
Affiliation(s)
- P. Ochodnicky
- Department of Pharmacology & Pharmacotherapy; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - B. Uvelius
- Department of Urology; Skane University Hospital; Malmö; Sweden
| | - K.-E. Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem; NC; USA
| | - M. C. Michel
- Department of Pharmacology; Johannes Gutenberg University; Mainz; Germany
| |
Collapse
|
12
|
Abstract
Muscarinic agonists and antagonists are used to treat a handful of gastrointestinal (GI) conditions associated with impaired salivary secretion or altered motility of GI smooth muscle. With regard to exocrine secretion, the major muscarinic receptor expressed in salivary, gastric, and pancreatic glands is the M₃ with a small contribution of the M₁ receptor. In GI smooth muscle, the major muscarinic receptors expressed are the M₂ and M₃ with the M₂ outnumbering the M₃ by a ratio of at least four to one. The antagonism of both smooth muscle contraction and exocrine secretion is usually consistent with an M₃ receptor mechanism despite the major presence of the M₂ receptor in smooth muscle. These results are consistent with the conditional role of the M₂ receptor in smooth muscle. That is, the contractile role of the M₂ receptor depends on that of the M₃ so that antagonism of the M₃ receptor eliminates the response of the M₂. The physiological roles of muscarinic receptors in the GI tract are consistent with their known signaling mechanisms. Some so-called tissue-selective M₃ antagonists may owe their selectivity to a highly potent interaction with a nonmuscarinic receptor target.
Collapse
|
13
|
Vahabi B, Lawson K, McKay NG, Sellers DJ. Phasic activity of urinary bladder smooth muscle in the streptozotocin-induced diabetic rat: effect of potassium channel modulators. Eur J Pharmacol 2011; 660:431-437. [PMID: 21497590 DOI: 10.1016/j.ejphar.2011.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/09/2011] [Accepted: 03/28/2011] [Indexed: 02/07/2023]
Abstract
Increased phasic activity in the bladder smooth muscle of animal models and patients with detrusor overactivity has been suggested to underlie the pathophysiology of overactive bladder. Potassium (K+) channels are key regulators of bladder smooth muscle tone and thus may play a role in this altered phasic activity. In this study the effects of K+ channel modulators on the phasic activity of bladder strips from the streptozotocin-induced diabetic rat model of bladder dysfunction were investigated. Bladder strips from rats 1 week following streptozotocin administration and age-matched controls were mounted in tissue baths at 37 °C and the effects of K+ channel modulators on resting basal tension or phasic activity induced by a low concentration of carbachol (0.5 μM) were investigated. Activation of BKCa channels by NS1619 had a minor inhibitory effect on carbachol-induced phasic activity of bladder strips from control and diabetic rats, and significantly inhibited amplitude only at 30 μM. Activation of KATP channels by cromakalim inhibited the frequency of carbachol-induced phasic activity of bladder strips, although strips from diabetic rats showed a trend towards being less sensitive to cromakalim. The BKCa channel blocker iberiotoxin was able to induce phasic activity in resting tissues, with diabetic bladder strips demonstrating significantly enhanced phasic activity compared to controls. In contrast, inhibition of SKCa and KATP channels did not induce phasic activity in resting tissues. In conclusion, responses of diabetic rat bladder to BKCa and KATP channel modulators are altered, suggesting altered function and/or expression of channels which may contribute to bladder dysfunction in this model.
Collapse
Affiliation(s)
- Bahareh Vahabi
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | | | | | | |
Collapse
|
14
|
Andersson KE. Antimuscarinic Mechanisms and the Overactive Detrusor: An Update. Eur Urol 2011; 59:377-86. [DOI: 10.1016/j.eururo.2010.11.040] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
|
15
|
Abstract
Muscarinic receptors comprise five cloned subtypes, encoded by five distinct genes, which correspond to pharmacologically defined receptors (M(1)-M(5)). They belong to the family of G-protein-coupled receptors and couple differentially to the G-proteins. Preferentially, the inhibitory muscarinic M(2) and M(4) receptors couple to G(i/o), whereas the excitatory muscarinic M(1), M(3), and M(5) receptors preferentially couple to G(q/11). In general, muscarinic M(1), M(3), and M(5) receptors increase intracellular calcium by mobilizing phosphoinositides that generate inositol 1,4,5-trisphosphate (InsP3) and 1,2-diacylglycerol (DAG), whereas M(2) and M(4) receptors are negatively coupled to adenylyl cyclase. Muscarinic receptors are distributed to all parts of the lower urinary tract. The clinical use of antimuscarinic drugs in the treatment of detrusor overactivity and the overactive bladder syndrome has focused interest on the muscarinic receptors not only of the detrusor, but also of other components of the bladder wall, and these have been widely studied. However, the muscarinic receptors in the urethra, prostate, and ureter, and the effects they mediate in the normal state and in different urinary tract pathologies, have so far not been well characterized. In this review, the expression of and the functional effects mediated by muscarinic receptors in the bladder, urethra, prostate, and ureters, under normal conditions and in different pathologies, are discussed.
Collapse
|
16
|
Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:441-54. [PMID: 20349044 PMCID: PMC2862252 DOI: 10.1007/s00210-010-0509-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/25/2010] [Indexed: 10/29/2022]
Abstract
We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg(-1)) 2-24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC(50) value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 microM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M(2) function is enhanced following streptozotocin treatment.
Collapse
|
17
|
Kitazawa T, Hirama R, Masunaga K, Nakamura T, Asakawa K, Cao J, Teraoka H, Unno T, Komori SI, Yamada M, Wess J, Taneike T. Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 377:503-13. [DOI: 10.1007/s00210-007-0223-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 11/14/2007] [Indexed: 11/30/2022]
|
18
|
|
19
|
Abstract
Pharacologic therapy has been the mainstay of treatment for patients who have overactive bladder. In recent years, a number of new antimuscarinic agents have been introduced. Solifenacin succinate is a new once-daily antimuscarinic agent that is an effective and well-tolerated treatment option for patients who have overactive bladder. Solifenacin increases functional bladder capacity and decreases urgency, frequency, and incontinence. In pharmacokinetic studies, solifenacin demonstrated selectivity for the bladder over the salivary gland; thus, it is likely that the bladder selectivity of this agent is responsible for the low incidence of dry mouth and constipation reported in the clinical trials.
Collapse
Affiliation(s)
- Karl J Kreder
- Department of Urology, University of Iowa, 200 Hawkins Drive, 3 RCP, Iowa City, IA 52242-1089, USA.
| |
Collapse
|
20
|
Ng YK, de Groat WC, Wu HY. Muscarinic regulation of neonatal rat bladder spontaneous contractions. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1049-59. [PMID: 16709645 PMCID: PMC3111964 DOI: 10.1152/ajpregu.00236.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro preparations of whole urinary bladders of neonatal rats exhibit prominent myogenic spontaneous contractions, the amplitude and frequency of which can be increased by muscarinic agonists. The muscarinic receptor subtype responsible for this facilitation was examined in the present experiments. Basal spontaneous contractions in bladders from 1- to 2-wk-old Sprague-Dawley rats were not affected by M2 or M3 receptor antagonists. However, administration of 0.5 microM physostigmine, an anticholinesterase agent that increases the levels of endogenous acetylcholine, or 50-100 nM carbachol, a cholinergic agonist at low concentrations, which did not cause tonic contractions, significantly augmented the frequency and amplitude of spontaneous contractions. Blockade of M2 receptors with 0.1 microM AF-DX 116 or 1 microM methoctramine or blockade of M3 receptors with 50 nM 4-diphenylacetoxy-N-methylpiperidine methiodide or 0.1 microM 4-diphenylacetoxy-N-(2-chloroethyl)piperidine hydrochloride (4-DAMP mustard) reversed the physostigmine and carbachol responses. M2 and M3 receptor blockade did not alter the facilitation of spontaneous contractions induced by 10 nM BAY K 8644, an L-type Ca2+ channel opener, or 0.1 microM iberiotoxin, a large-conductance Ca2+-activated K+ channel blocker. NS-1619 (30 microM), a large-conductance Ca2+-activated K+ channel opener, decreased carbachol-augmented spontaneous contractions. These results suggest that spontaneous contractions in the neonatal rat bladder are enhanced by activation of M2 and M3 receptors by endogenous acetylcholine released in the presence of an anticholinesterase agent or a cholinergic receptor agonist.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Animals, Newborn
- Calcium Channel Agonists/pharmacology
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Cholinesterase Inhibitors/pharmacology
- Diamines/pharmacology
- Electric Stimulation
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Hypertonia/physiopathology
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Parasympatholytics/pharmacology
- Peptides/pharmacology
- Physostigmine/pharmacology
- Piperidines/pharmacology
- Pirenzepine/analogs & derivatives
- Pirenzepine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M2/physiology
- Receptor, Muscarinic M3/antagonists & inhibitors
- Receptor, Muscarinic M3/physiology
- Urinary Bladder/innervation
- Urinary Bladder/physiology
Collapse
Affiliation(s)
- Yuen-Keng Ng
- Department of Surgery, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
21
|
Chapple CR, Gormley EA. Developments in pharmacological therapy for the overactive bladder. BJU Int 2006; 98 Suppl 1:78-87; discussion 88-9. [PMID: 16911610 DOI: 10.1111/j.1464-410x.2006.06381.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher R Chapple
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Hallam University, Sheffield, UK.
| | | |
Collapse
|
22
|
Kim DY, Kim JW, Yang EK. Altered Expressions of Calcium-Activated Potassium Channel and Connexin in Bladder Mucosae of Stress Urinary Incontinence Patients with Overactive Bladder Symptoms. Korean J Urol 2006. [DOI: 10.4111/kju.2006.47.7.722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Duk Yoon Kim
- Department of Urology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jung Wook Kim
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Eun Kyoung Yang
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
23
|
Wuest M, Kaden S, Hakenberg OW, Wirth MP, Ravens U. Effect of rilmakalim on detrusor contraction in the presence and absence of urothelium. Naunyn Schmiedebergs Arch Pharmacol 2005; 372:203-12. [PMID: 16283254 DOI: 10.1007/s00210-005-0015-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 09/15/2005] [Indexed: 01/25/2023]
Abstract
Openers of K(ATP) channels are known to inhibit KCl-, carbachol- and also electrically induced contractions in detrusor muscle strips from various species. Contractions of isolated strips of urinary bladder are usually of higher amplitude when the urothelium has been removed. This has been explained by the release of an urothelium-derived relaxing factor. In this study we examined whether intact urothelium may modulate the effect of the selective KATP channel opener rilmakalim. Contractile responses to 85 mM KCl and 10 microM carbachol were measured in detrusor strips from mouse, pig and man. In the presence of an intact urothelium, contractions were significantly reduced in strips from all three species investigated. In preparations with urothelium rilmakalim reduced KCl contractions with similar potency and efficacy [-logIC50 (M) 4.6 to 5.1; Effmax reduction to 14-30% of control]. However, in urothelium-denuded strips rilmakalim was more potent in pig (-logIC50 5.5) than in mouse and man (-logIC50 4.7 and 4.4, respectively). The order of potency for rilmakalim to suppress carbachol-induced contractions was pig (-logIC50 6.7)>man (5.8)>mouse (4.7); contractions were significantly more reduced in pig (Effmax reduction to 11+/-2%, n=10) and in mouse (21+/-2%, n=8) than in human detrusor (55+/-5%, n=5). The presence of urothelium did not affect the concentration-response curves for rilmakalim, with the exception of KCl-induced contractions in pig. Only the rilmakalim-induced relaxation of carbachol-mediated contractions in pig were prevented by the KATP channel blocker glibenclamide. We conclude that with this one exception, the responses to rilmakalim in detrusor contractions were not mediated by KATP channel opening.
Collapse
Affiliation(s)
- Melinda Wuest
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Detrusor overactivity is a relatively common yet embarrassing symptom complex with significant impact on quality of life. The mainstay of current pharmacological treatment involves the use of muscarinic receptor antagonists, but their therapeutic effectiveness is limited by a combination of limited efficacy and troublesome side effects and has recently been challenged by Herbison et al. Recognition of the limitations of existing therapy has started the search for pharmacotherapeutic agents acting on alternative pathways underlying detrusor overactivity with the intention of improving storage symptoms of urgency, frequency and urge incontinence. RECENT FINDINGS Recent research has suggested that several transmitters may modulate bladder storage. However, no agents currently available, acting via mechanisms other than muscarinic receptors have entered clinical practice so far. It is clear that far from being a passive container for urine, the urothelium is a crucial area within the bladder wall and its functions are complex and only now beginning to be appreciated. The release of several neurotransmitters from urothelium in response to distension and its action on receptors on sensory neurons is being increasingly recognized. The role for this afferent stimulation on the micturition reflex is gradually gaining importance in the pathophysiology of detrusor overactivity. SUMMARY In this article, the recent developments in basic science related to the pathogenesis and pharmacological basis for future drug targets for effective management of overactive bladder are discussed.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Urology, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | | | | | |
Collapse
|
25
|
Hampel C, Gillitzer R, Pahernik S, Melchior SW, Thüroff JW. Medikament�se Therapie der weiblichen Harninkontinenz. Urologe A 2005; 44:244-55. [PMID: 15711814 DOI: 10.1007/s00120-005-0769-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drug treatment for female urinary incontinence requires a thorough knowledge of the differential diagnosis and pathophysiology of incontinence as well as of the pharmacological agents employed. Pharmacotherapy has to be tailored to suit the incontinence subtype and should be carefully balanced according to efficacy and side effects of the drug. Women with urge incontinence require treatment that relaxes or desensitizes the bladder (antimuscarinics, estrogens, alpha-blockers, beta-mimetics, botulinum toxin A, resiniferatoxin, vinpocetine), whereas patients with stress incontinence need stimulation and strengthening of the pelvic floor and external sphincter (alpha-mimetics, estrogens, duloxetine). Females with overflow incontinence need reduction of outflow resistance (baclofen, alpha-blockers, intrasphincteric botulinum toxin A) and/or improvement of bladder contractility (parasympathomimetics). If nocturia or nocturnal incontinence are the major complaints, control of diuresis is obtained by administration of the ADH analogue desmopressin. Future developments will help to further optimize the pharmacological therapy for female urinary incontinence.
Collapse
Affiliation(s)
- C Hampel
- Urologische Klinik, Johannes-Gutenberg-Universität, Mainz.
| | | | | | | | | |
Collapse
|
26
|
Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 2004; 56:581-631. [PMID: 15602011 DOI: 10.1124/pr.56.4.4] [Citation(s) in RCA: 362] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The lower urinary tract constitutes a functional unit controlled by a complex interplay between the central and peripheral nervous systems and local regulatory factors. In the adult, micturition is controlled by a spinobulbospinal reflex, which is under suprapontine control. Several central nervous system transmitters can modulate voiding, as well as, potentially, drugs affecting voiding; for example, noradrenaline, GABA, or dopamine receptors and mechanisms may be therapeutically useful. Peripherally, lower urinary tract function is dependent on the concerted action of the smooth and striated muscles of the urinary bladder, urethra, and periurethral region. Various neurotransmitters, including acetylcholine, noradrenaline, adenosine triphosphate, nitric oxide, and neuropeptides, have been implicated in this neural regulation. Muscarinic receptors mediate normal bladder contraction as well as at least the main part of contraction in the overactive bladder. Disorders of micturition can roughly be classified as disturbances of storage or disturbances of emptying. Failure to store urine may lead to various forms of incontinence, the main forms of which are urge and stress incontinence. The etiology and pathophysiology of these disorders remain incompletely known, which is reflected in the fact that current drug treatment includes a relatively small number of more or less well-documented alternatives. Antimuscarinics are the main-stay of pharmacological treatment of the overactive bladder syndrome, which is characterized by urgency, frequency, and urge incontinence. Accepted drug treatments of stress incontinence are currently scarce, but new alternatives are emerging. New targets for control of micturition are being defined, but further research is needed to advance the pharmacological treatment of micturition disorders.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
27
|
Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 2004; 84:935-86. [PMID: 15269341 DOI: 10.1152/physrev.00038.2003] [Citation(s) in RCA: 648] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detrusor smooth muscle is the main muscle component of the urinary bladder wall. Its ability to contract over a large length interval and to relax determines the bladder function during filling and micturition. These processes are regulated by several external nervous and hormonal control systems, and the detrusor contains multiple receptors and signaling pathways. Functional changes of the detrusor can be found in several clinically important conditions, e.g., lower urinary tract symptoms (LUTS) and bladder outlet obstruction. The aim of this review is to summarize and synthesize basic information and recent advances in the understanding of the properties of the detrusor smooth muscle, its contractile system, cellular signaling, membrane properties, and cellular receptors. Alterations in these systems in pathological conditions of the bladder wall are described, and some areas for future research are suggested.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Dept. of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
28
|
Yamaguchi O. [Pathophysiology of the overactive bladder and its pharmacological treatment]. Nihon Yakurigaku Zasshi 2003; 121:331-8. [PMID: 12784735 DOI: 10.1254/fpj.121.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper reviews the possible mechanisms underlying bladder overactivity and discusses the targets for pharmacological treatment of this disorder. Damage to the brain (cerebrovascular disease, etc.) induces bladder overactivity by reducing suprapontine inhibition. Currently, attention has focused on C-fiber bladder afferents that may concern the mechanisms for bladder overactivity resulting from various etiologies such as spinal cord lesions, bladder outlet obstruction and bladder hypersensitivity disorders. With regard to the pathophysiology of idiopathic overactive bladder, both myogenic and neurogenic mechanisms may be involved in involuntary detrusor contraction. Since an intravesical capsaicin or resiniferatoxin was shown to have favorable therapeutic effects, afferent C-fiber neurons become a new target for pharmacological treatment. C-fiber neurons are known to contain tachykinins and other peptides as neurotransmitters. When released, tachykinins can influence via NK receptors bladder activity. In addition, evidences suggest that ATP receptors (P2X3) and prostaglandin receptors in afferent C-fiber neurons may play a role in mediating bladder overactivity. Thus, NK-antagonist, P2X3-antagonist and PG receptor-antagonist may be potential therapeutic drugs in the near future. beta 3-Adrenoceptor agonist is an another candidate drug for the treatment of the overactive bladder. Finally, it is important to notice that in any etiology including an idiopathic one, antimuscarinic drugs can improve bladder overactivity, although dry mouth and constipation are inevitable side-effects.
Collapse
Affiliation(s)
- Osamu Yamaguchi
- Department of Urology, Fukushima Medical University, School of Medicine, Hikarigaoka-1, Fukushima City 960-1295, Japan.
| |
Collapse
|