1
|
Scheuren PS, Calvo M. Exploring neuroinflammation: A key driver in neuropathic pain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:311-338. [PMID: 39580216 DOI: 10.1016/bs.irn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Inflammation is a fundamental part of the body's natural defense mechanism, involving immune cells and inflammatory mediators to promote healing and protect against harm. In the event of a lesion or disease of the somatosensory nervous system, inflammation, however, triggers a cascade of changes in both the peripheral and central nervous systems, ultimately contributing to chronic neuropathic pain. Substantial evidence links neuroinflammation to various conditions associated with neuropathic pain. This chapter will explore the role of neuroinflammation in the initiation, maintenance, and resolution of peripheral and central neuropathic pain. Additionally, biomarkers of neuroinflammation in humans will be examined, emphasizing their relevance in different neuropathic pain disorders.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Margarita Calvo
- Physiology Department, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
2
|
Sørensen LB, Gazerani P, Sluka KA, Graven-Nielsen T. Repeated Injections of Low-Dose Nerve Growth Factor (NGF) in Healthy Humans Maintain Muscle Pain and Facilitate Ischemic Contraction-Evoked Pain. PAIN MEDICINE 2020; 21:3488-3498. [PMID: 33111942 DOI: 10.1093/pm/pnaa315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Nerve growth factor (NGF) is essential for generating and potentiating pain responses. This double-blinded crossover study assessed NGF-evoked pain in healthy humans after repeated NGF injections in the tibialis anterior (TA) muscle compared with control injections of isotonic saline. SUBJECTS Twenty healthy subjects participated in two experimental phases; each consisted of seven sessions over 21 days. METHODS At day 0, day 2, and day 4, a low-dose NGF (1 µg) was injected. Data on daily self-reported muscle pain (using a Likert scale) were collected. Data on pressure pain thresholds (PPTs), pain evoked by nonischemic and ischemic muscle contractions (using a numerical rating scale [NRS]), pressure pain detection (PDT), and pain tolerance thresholds (PTTs) to cuff algometry were recorded before day 0 and at 1, 2, 4, 7, 10, and 21 days after the first injection. Temporal summation of pain (TSP) and conditioned pain modulation (CPM) were recorded to assess central pain mechanisms. RESULTS Likert scores remained elevated for 9 days after NGF injection (P<0.05). PPTs at the TA muscle were decreased at day 1 until day 7 after NGF injection compared with day 0 (P=0.05). In subjects presenting with NGF-induced muscle hyperalgesia, pain NRS scores evoked by nonischemic contractions were higher after NGF injection at day 4 and day 7 (P<0.04) compared with the control condition. At all time points, higher pain NRS scores were found with ischemic compared with nonischemic contractions (P<0.05). The pain NRS after ischemic contractions was elevated following prolonged NGF hyperalgesia at day 7 compared with the control condition and day 0 (P<0.04). The PDT, PTT, TSP, and CPM remained unchanged during the period of NGF-induced hyperalgesia. CONCLUSIONS Repeated low-dose NGF injections maintain muscle pain and potentiate pain evoked by ischemic contractions during prolonged NGF hyperalgesia.
Collapse
Affiliation(s)
- Line Bay Sørensen
- Department of Health Science and technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Parisa Gazerani
- Biomedicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Thomas Graven-Nielsen
- Department of Health Science and technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Manion J, Waller MA, Clark T, Massingham JN, Neely GG. Developing Modern Pain Therapies. Front Neurosci 2019; 13:1370. [PMID: 31920521 PMCID: PMC6933609 DOI: 10.3389/fnins.2019.01370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic pain afflicts as much as 50% of the population at any given time but our methods to address pain remain limited, ineffective and addictive. In order to develop new therapies an understanding of the mechanisms of painful sensitization is essential. We discuss here recent progress in the understanding of mechanisms underlying pain, and how these mechanisms are being targeted to produce modern, specific therapies for pain. Finally, we make recommendations for the next generation of targeted, effective, and safe pain therapies.
Collapse
Affiliation(s)
- John Manion
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew A. Waller
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Teleri Clark
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Joshua N. Massingham
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Genome Editing Initiative, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Caroleo MC, Brizzi A, De Rosa M, Pandey A, Gallelli L, Badolato M, Carullo G, Cione E. Targeting Neuropathic Pain: Pathobiology, Current Treatment and Peptidomimetics as a New Therapeutic Opportunity. Curr Med Chem 2019; 27:1469-1500. [PMID: 31142248 DOI: 10.2174/0929867326666190530121133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
There is a huge need for pharmaceutical agents for the treatment of chronic Neuropathic Pain (NP), a complex condition where patients can suffer from either hyperalgesia or allodynia originating from central or peripheral nerve injuries. To date, the therapeutic guidelines include the use of tricyclic antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants, beside the use of natural compounds and non-pharmacological options. Unfortunately, these drugs suffer from limited efficacy and serious dose-dependent adverse effects. In the last decades, the heptapeptide SP1-7, the major bioactive metabolite produced by Substance P (SP) cleavage, has been extensively investigated as a potential target for the development of novel peptidomimetic molecules to treat NP. Although the physiological effects of this SP fragment have been studied in detail, the mechanism behind its action is not fully clarified and the target for SP1-7 has not been identified yet. Nevertheless, specific binding sites for the heptapeptide have been found in brain and spinal cord of both mouse and rats. Several Structure-Affinity Relationship (SAR) studies on SP1-7 and some of its synthetic analogues have been carried out aiming to developing more metabolically stable and effective small molecule SP1-7-related amides that could be used as research tools for a better understanding of the SP1-7 system and, in a longer perspective, as potential therapeutic agents for future treatment of NP.
Collapse
Affiliation(s)
- Maria Cristina Caroleo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Polo Scientifico San Miniato, Via A. Moro 2, 53100 Siena, Italy
| | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| | - Ankur Pandey
- Department of Chemistry and Center of Advanced Studies in Chemistry, Punjab University, Chandigarh, India
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Mariateresa Badolato
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Gabriele Carullo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| |
Collapse
|
5
|
Bélanger P, West CR, Brown MT. Development of pain therapies targeting nerve growth factor signal transduction and the strategies used to resolve safety issues. J Toxicol Sci 2018; 43:1-10. [PMID: 29415946 DOI: 10.2131/jts.43.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Therapeutic agents commonly used in the management of chronic pain have limited effectiveness and may be associated with issues of dependence and tolerability. Thus, a large unmet medical need exists for the development of safe and effective therapeutics for treatment of chronic pain. A novel approach includes identification of intracellular signals involved in the pain transduction pathway, such as nerve growth factor (NGF). Monoclonal antibodies targeting NGF, such as tanezumab, fulranumab and fasinumab, have been investigated for the treatment of chronic pain conditions. Due to unexpected joint adverse events in clinical studies and concerns about sympathetic nervous system toxicity in animals, these agents were placed on 2 separate partial clinical holds, which were subsequently lifted after rigorous evaluations were conducted to understand how inhibition of NGF impacts safety. To share learnings regarding the rigorous evaluation of clinical and nonclinical safety data which contributed to the removal of these partial clinical holds, this article reviews the rationale for developing agents that target NGF as potential treatments for chronic pain, describes nonclinical and clinical studies of these agents, and describes strategies used to evaluate whether inhibition of NGF has negative effects on joint or sympathetic nervous system safety.
Collapse
|
6
|
Minnone G, De Benedetti F, Bracci-Laudiero L. NGF and Its Receptors in the Regulation of Inflammatory Response. Int J Mol Sci 2017; 18:1028. [PMID: 28492466 PMCID: PMC5454940 DOI: 10.3390/ijms18051028] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/28/2022] Open
Abstract
There is growing interest in the complex relationship between the nervous and immune systems and how its alteration can affect homeostasis and result in the development of inflammatory diseases. A key mediator in cross-talk between the two systems is nerve growth factor (NGF), which can influence both neuronal cell function and immune cell activity. The up-regulation of NGF described in inflamed tissues of many diseases can regulate innervation and neuronal activity of peripheral neurons, inducing the release of immune-active neuropeptides and neurotransmitters, but can also directly influence innate and adaptive immune responses. Expression of the NGF receptors tropomyosin receptor kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) is dynamically regulated in immune cells, suggesting a varying requirement for NGF depending on their state of differentiation and functional activity. NGF has a variety of effects that can be either pro-inflammatory or anti-inflammatory. This apparent contradiction can be explained by considering NGF as part of an endogenous mechanism that, while activating immune responses, also activates pathways necessary to dampen the inflammatory response and limit tissue damage. Decreases in TrkA expression, such as that recently demonstrated in immune cells of arthritis patients, might prevent the activation by NGF of regulatory feed-back mechanisms, thus contributing to the development and maintenance of chronic inflammation.
Collapse
Affiliation(s)
- Gaetana Minnone
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, 00146 Rome, Italy.
| | - Fabrizio De Benedetti
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, 00146 Rome, Italy.
| | - Luisa Bracci-Laudiero
- Division of Rheumatology and Immuno-Rheumatology Research Laboratories, Bambino Gesù Children's Hospital, 00146 Rome, Italy.
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy.
| |
Collapse
|
7
|
Benítez-Temiño B, Davis-López de Carrizosa MA, Morcuende S, Matarredona ER, de la Cruz RR, Pastor AM. Functional Diversity of Neurotrophin Actions on the Oculomotor System. Int J Mol Sci 2016; 17:E2016. [PMID: 27916956 PMCID: PMC5187816 DOI: 10.3390/ijms17122016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022] Open
Abstract
Neurotrophins play a principal role in neuronal survival and differentiation during development, but also in the maintenance of appropriate adult neuronal circuits and phenotypes. In the oculomotor system, we have demonstrated that neurotrophins are key regulators of developing and adult neuronal properties, but with peculiarities depending on each neurotrophin. For instance, the administration of NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor) or NT-3 (neurotrophin-3) protects neonatal extraocular motoneurons from cell death after axotomy, but only NGF and BDNF prevent the downregulation in ChAT (choline acetyltransferase). In the adult, in vivo recordings of axotomized extraocular motoneurons have demonstrated that the delivery of NGF, BDNF or NT-3 recovers different components of the firing discharge activity of these cells, with some particularities in the case of NGF. All neurotrophins have also synaptotrophic activity, although to different degrees. Accordingly, neurotrophins can restore the axotomy-induced alterations acting selectively on different properties of the motoneuron. In this review, we summarize these evidences and discuss them in the context of other motor systems.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | | | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Esperanza R Matarredona
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
8
|
Khodorova A, Nicol GD, Strichartz G. The TrkA receptor mediates experimental thermal hyperalgesia produced by nerve growth factor: Modulation by the p75 neurotrophin receptor. Neuroscience 2016; 340:384-397. [PMID: 27826102 DOI: 10.1016/j.neuroscience.2016.10.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
Abstract
The p75 neurotrophin receptor (p75NTR) and its activation of the sphingomyelin signaling cascade are essential for mechanical hypersensitivity resulting from locally injected nerve growth factor (NGF). Here the roles of the same effectors, and of the tropomyosin receptor kinase A (TrkA) receptor, are evaluated for thermal hyperalgesia from NGF. Sensitivity of rat hind paw plantar skin to thermal stimulation after local sub-cutaneous injection of NGF (500ng) was measured by the latency for paw withdrawal (PWL) from a radiant heat source. PWL was reduced from baseline values at 0.5-22h by ∼40% from that in naïve or vehicle-injected rats, and recovered to pre-injection levels by 48h. Local pre-injection with a p75NTR blocking antibody did not affect the acute thermal hyperalgesia (0.5-3.5h) but hastened its recovery so that it had reversed to baseline by 22h. In addition, GW4869 (2mM), an inhibitor of the neutral sphingomyelinase (nSMase) that is an enzyme in the p75NTR pathway, also failed to prevent thermal hyperalgesia. However, C2-ceramide, an analog of the ceramide produced by sphingomyelinase, did cause thermal hyperalgesia. Injection of an anti-TrkA antibody known to promote dimerization and activation of that receptor, independent of NGF, also caused thermal hyperalgesia, and prevented the further reduction of PWL from subsequently injected NGF. A non-specific inhibitor of tropomyosin receptor kinases, K252a, prevented thermal hyperalgesia from NGF, but not that from the anti-TrkA antibody. These findings suggest that the TrkA receptor has a predominant role in thermal hypersensitivity induced by NGF, while p75NTR and its pathway intermediates serve a modulatory role.
Collapse
Affiliation(s)
- Alla Khodorova
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Grant D Nicol
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gary Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Neurotrophic factors and their inhibitors in chronic pain treatment. Neurobiol Dis 2016; 97:127-138. [PMID: 27063668 DOI: 10.1016/j.nbd.2016.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 11/21/2022] Open
Abstract
Chronic pain affects more than 20% of the UK population. Neurotrophic factors have been identified as therapeutic targets to improve current treatments of chronic pain. This review article focuses on nerve growth factor (NGF) and interleukin-6 (IL-6) as potential therapeutic targets. In this review we highlight the mechanisms of action and the current progress of targeted therapies in clinical trials.
Collapse
|
10
|
Pittman SK, Gracias NG, Fehrenbacher JC. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons. Exp Neurol 2016; 279:104-115. [PMID: 26883566 DOI: 10.1016/j.expneurol.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/25/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity.
Collapse
Affiliation(s)
- Sherry K Pittman
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States.
| | - Neilia G Gracias
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States; Indiana University School of Medicine, Stark Neuroscience Research Institute, United States.
| | - Jill C Fehrenbacher
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, United States; Indiana University School of Medicine, Stark Neuroscience Research Institute, United States; Indiana University School of Medicine, Department of Anesthesiology, United States.
| |
Collapse
|
11
|
Abstract
UNLABELLED Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are highly homologous yet distinct components of signal transduction pathways known to regulate cell survival and function. Recent evidence indicates an isoform-specific role for ERK2 in pain processing and peripheral sensitization. However, the function of ERK2 in primary sensory neurons has not been directly tested. To dissect the isoform-specific function of ERK2 in sensory neurons, we used mice with Cre-loxP-mediated deletion of ERK2 in Nav1.8(+) sensory neurons that are predominantly nociceptors. We find that ERK2, unlike ERK1, is required for peripheral sensitization and cold sensation. We also demonstrate that ERK2, but not ERK1, is required to preserve epidermal innervation in a subset of peptidergic neurons. Additionally, deletion of both ERK isoforms in Nav1.8(+) sensory neurons leads to neuron loss not observed with deletion of either isoform alone, demonstrating functional redundancy in the maintenance of sensory neuron survival. Thus, ERK1 and ERK2 exhibit both functionally distinct and redundant roles in sensory neurons. SIGNIFICANCE STATEMENT ERK1/2 signaling affects sensory neuron function and survival. However, it was not clear whether ERK isoform-specific roles exist in these processes postnatally. Previous work from our laboratory suggested either functional redundancy of ERK isoforms or a predominant role for ERK2 in pain; however, the tools to discriminate between these possibilities were not available at the time. In the present study, we use new genetic knock-out lines to demonstrate that ERK2 in sensory neurons is necessary for development of inflammatory pain and for postnatal maintenance of peptidergic epidermal innervation. Interestingly, postnatal loss of both ERK isoforms leads to a profound loss of sensory neurons. Therefore, ERK1 and ERK2 display both functionally distinct and redundant roles in sensory neurons.
Collapse
|
12
|
Abstract
Nerve growth factor (NGF) was first identified as a substance that is essential for the development of nociceptive primary neurons and later found to have a role in inflammatory hyperalgesia in adults. Involvement of NGF in conditions with no apparent inflammatory signs has also been demonstrated. In this review we look at the hyperalgesic effects of exogenously injected NGF into different tissues, both human and animal, with special emphasis on the time course of these effects. The roles of NGF in inflammatory and neuropathic conditions as well as cancer pain are then reviewed. The role of NGF in delayed onset muscle soreness is described in more detail than its other roles based on the authors' recent observations. Acute effects are considered to be peripherally mediated, and accordingly, sensitization of nociceptors by NGF to heat and mechanical stimulation has been reported. Changes in the conductive properties of axons have also been reported. The intracellular mechanisms so far proposed for heat sensitization are direct phosphorylation and membrane trafficking of TRPV1 by TrkA. Little investigation has been done on the mechanism of mechanical sensitization, and it is still unclear whether mechanisms similar to those for heat sensitization work in mechanical sensitization. Long-lasting sensitizing effects are mediated both by changed expression of neuropeptides and ion channels (Na channels, ASIC, TRPV1) in primary afferents and by spinal NMDA receptors. Therapeutic perspectives are briefly discussed at the end of the chapter.
Collapse
Affiliation(s)
- Kazue Mizumura
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501, Japan,
| | | |
Collapse
|
13
|
Butt M, Evans M, Bowman CJ, Cummings T, Oneda S, Shelton D, Zorbas M. Morphologic, stereologic, and morphometric evaluation of the nervous system in young cynomolgus monkeys (Macaca fascicularis) following maternal administration of tanezumab, a monoclonal antibody to nerve growth factor. Toxicol Sci 2014; 142:463-76. [PMID: 25326242 DOI: 10.1093/toxsci/kfu192] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tanezumab, an antibody to nerve growth factor, was administered to pregnant cynomolgus monkeys at 0, 0.5, 4, and 30 mg/kg weekly, beginning gestation day (GD) 20 through parturition (∼GD165). Maternal tanezumab administration appeared to increase stillbirths and infant mortality, but no consistent pattern of gross and/or microscopic change was detected to explain the mortality. Offspring exposed in utero were evaluated at 12 months of age using light microscopy (all tissues), stereology (basal forebrain cholinergic and dorsal root ganglia neurons), and morphometry (sural nerve). Light microscopy revealed decreased number of neurons in sympathetic ganglia (superior mesenteric, cervicothoracic, and ganglia in the thoracic sympathetic trunk). Stereologic assessment indicated an overall decrease in dorsal root ganglion (thoracic) volume and number of neurons in animals exposed to tanezumab 4 mg/kg (n = 9) and 30 mg/kg (n = 1). At all tanezumab doses, the sural nerve was small due to decreases in myelinated and unmyelinated axons. Existing axons/myelin sheaths appeared normal when viewed with light and transmission electron microscopy. There was no indication of tanezumab-related, active neuron/nerve fiber degeneration/necrosis in any tissue, indicating decreased sensory/sympathetic neurons and axonal changes were due to hypoplasia or atrophy. These changes in the sensory and sympathetic portions of the peripheral nervous system suggest some degree of developmental neurotoxicity, although what effect, if any, the changes had on normal function and survival was not apparent. Overall, these changes were consistent with published data from rodent studies.
Collapse
Affiliation(s)
- Mark Butt
- *Tox Path Specialists, LLC, Frederick, Maryland 21701, Pfizer Inc., San Diego, California 92121, Pfizer Inc, Groton, Connecticut 06340, SNBL USA, Ltd., Everett, Washington 98203, and Pfizer Inc, South San Francisco, California 94080
| | - Mark Evans
- *Tox Path Specialists, LLC, Frederick, Maryland 21701, Pfizer Inc., San Diego, California 92121, Pfizer Inc, Groton, Connecticut 06340, SNBL USA, Ltd., Everett, Washington 98203, and Pfizer Inc, South San Francisco, California 94080
| | - Christopher J Bowman
- *Tox Path Specialists, LLC, Frederick, Maryland 21701, Pfizer Inc., San Diego, California 92121, Pfizer Inc, Groton, Connecticut 06340, SNBL USA, Ltd., Everett, Washington 98203, and Pfizer Inc, South San Francisco, California 94080
| | - Thomas Cummings
- *Tox Path Specialists, LLC, Frederick, Maryland 21701, Pfizer Inc., San Diego, California 92121, Pfizer Inc, Groton, Connecticut 06340, SNBL USA, Ltd., Everett, Washington 98203, and Pfizer Inc, South San Francisco, California 94080
| | - Satoru Oneda
- *Tox Path Specialists, LLC, Frederick, Maryland 21701, Pfizer Inc., San Diego, California 92121, Pfizer Inc, Groton, Connecticut 06340, SNBL USA, Ltd., Everett, Washington 98203, and Pfizer Inc, South San Francisco, California 94080
| | - David Shelton
- *Tox Path Specialists, LLC, Frederick, Maryland 21701, Pfizer Inc., San Diego, California 92121, Pfizer Inc, Groton, Connecticut 06340, SNBL USA, Ltd., Everett, Washington 98203, and Pfizer Inc, South San Francisco, California 94080
| | - Mark Zorbas
- *Tox Path Specialists, LLC, Frederick, Maryland 21701, Pfizer Inc., San Diego, California 92121, Pfizer Inc, Groton, Connecticut 06340, SNBL USA, Ltd., Everett, Washington 98203, and Pfizer Inc, South San Francisco, California 94080
| |
Collapse
|
14
|
Jongen JLM, Smits H, Pederzani T, Bechakra M, Hossaini M, Koekkoek SK, Huygen FJPM, De Zeeuw CI, Holstege JC, Joosten EAJ. Spinal autofluorescent flavoprotein imaging in a rat model of nerve injury-induced pain and the effect of spinal cord stimulation. PLoS One 2014; 9:e109029. [PMID: 25279562 PMCID: PMC4184817 DOI: 10.1371/journal.pone.0109029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022] Open
Abstract
Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.
Collapse
Affiliation(s)
| | - Helwin Smits
- Pain Management and Research Center, UMC+, Maastricht, the Netherlands
| | | | - Malik Bechakra
- Dept. of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Mehdi Hossaini
- Dept. of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Chris I. De Zeeuw
- Dept. of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Jan C. Holstege
- Dept. of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | |
Collapse
|
15
|
Abstract
The neurotrophin family is comprised of the structurally related secreted proteins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophine-4 (NT-4). They bind and activate the tyrosine kinase receptors Trk A, B, and C in a ligand-specific manner and additionally bind a shared p75NTR receptor. The neurotrophins were originally defined by their ability to support the survival and maturation of embryonic neurons. However, they also control important physiological functions of the adult nervous system including learning and memory, sensation, and energy homeostasis. For example, NGF/trkA signaling is critical for normal and pathological sensation of pain. Likewise, the BDNF/trkB pathway controls feeding and metabolism, and its dysfunction leads to severe obesity. Antibodies can modulate neurotrophin signaling. Thus, NGF blocking agents can attenuate pain in several animal models, and a recombinant humanized NGF blocking antibody (Tanezumab) has shown promising results in human clinical trials for osteoarthritic pain. On the other hand trkB agonist antibodies can modulate food intake and body weight in rodents and nonhuman primates. The power of monoclonal antibodies to modulate neurotrophin signaling promises to turn the rich biological insights into novel human medicines.
Collapse
Affiliation(s)
- A Rosenthal
- Alector Inc., 953 Indiana St., San Francisco, CA, 94107, USA,
| | | |
Collapse
|
16
|
Evans LJ, Loescher AR, Boissonade FM, Whawell SA, Robinson PP, Andrew D. Temporal mismatch between pain behaviour, skin Nerve Growth factor and intra-epidermal nerve fibre density in trigeminal neuropathic pain. BMC Neurosci 2014; 15:1. [PMID: 24380503 PMCID: PMC3890607 DOI: 10.1186/1471-2202-15-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/05/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The neurotrophin Nerve Growth factor (NGF) is known to influence the phenotype of mature nociceptors, for example by altering synthesis of neuropeptides, and changes in NGF levels have been implicated in the pathophysiology of chronic pain conditions such as neuropathic pain. We have tested the hypothesis that after partial nerve injury, NGF accumulates within the skin and causes 'pro-nociceptive' phenotypic changes in the remaining population of sensory nerve fibres, which could underpin the development of neuropathic pain. RESULTS Eleven days after chronic constriction injury of the rat mental nerve the intra-epidermal nerve fibre density of the chin skin from had reduced from 11.6 ± 4.9 fibres/mm to 1.0 ± 0.4 fibres/mm; this slowly recovered to 2.4 ± 2.0 fibres/mm on day 14 and 4.0 ± 0.8 fibres/mm on day 21. Cold hyperalgesia in the ipsilateral lower lip was detectable 11 days after chronic constriction injury, although at this time skin [NGF] did not differ between sides. At 14 days post-injury, there was a significantly greater [NGF] ipsilaterally compared to contralaterally (ipsilateral = 111 ± 23 pg/mg, contralateral = 69 ± 13 pg/mg), but there was no behavioural evidence of neuropathic pain at this time-point. By 21 days post-injury, skin [NGF] was elevated bilaterally and there was a significant increase in the proportion of TrkA-positive (the high-affinity NGF receptor) intra-epidermal nerve fibres that were immunolabelled for the neuropeptide Calcitonin Gene-related peptide. CONCLUSIONS The temporal mismatch in behaviour, skin [NGF] and phenotypic changes in sensory nerve fibres indicate that increased [NGF] does not cause hyperalgesia after partial mental nerve injury, although it may contribute to the altered neurochemistry of cutaneous nerve fibres.
Collapse
Affiliation(s)
| | | | | | | | | | - David Andrew
- Oral & Maxillofacial Medicine and Surgery, University of Sheffield School of Clinical Dentistry, Claremont Crescent, Sheffield, UK.
| |
Collapse
|
17
|
Fabbretti E. ATP P2X3 receptors and neuronal sensitization. Front Cell Neurosci 2013; 7:236. [PMID: 24363643 PMCID: PMC3849726 DOI: 10.3389/fncel.2013.00236] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/08/2013] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence indicates the importance of extracellular adenosine triphosphate (ATP) in the modulation of neuronal function. In particular, fine control of ATP release and the selective and discrete ATP receptor operation are crucial elements of the crosstalk between neuronal and non-neuronal cells in the peripheral and central nervous systems. In peripheral neurons, ATP signaling gives an important contribution to neuronal sensitization, especially that involved in neuropathic pain. Among other subtypes, P2X3 receptors expressed on sensory neurons are sensitive even to nanomolar concentrations of extracellular ATP, and therefore are important transducers of pain stimuli. P2X3 receptor function is highly sensitive to soluble factors like neuropeptides and neurotrophins, and is controlled by transduction mechanisms, protein-protein interactions and discrete membrane compartmentalization. More recent findings have demonstrated that P2X3 receptors interact with the synaptic scaffold protein calcium/calmodulin-dependent serine protein kinase (CASK) in a state dependent fashion, indicating that CASK plays a crucial role in the modulation of P2X3 receptor stability and efficiency. Activation of P2X3 receptors within CASK/P2X3 complex has important consequences for neuronal plasticity and possibly for the release of neuromodulators and neurotransmitters. Better understanding of the interactome machinery of P2X3 receptors and their integration with other receptors and channels on neuronal surface membranes, is proposed to be essential to unveil the process of neuronal sensitization and related, abnormal pain signaling.
Collapse
Affiliation(s)
- Elsa Fabbretti
- University of Nova Gorica, Center for Biomedical Sciences and Engineering Nova Gorica, Slovenia
| |
Collapse
|
18
|
Probing functional properties of nociceptive axons using a microfluidic culture system. PLoS One 2013; 8:e80722. [PMID: 24278311 PMCID: PMC3835735 DOI: 10.1371/journal.pone.0080722] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022] Open
Abstract
Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization.
Collapse
|
19
|
Murase S, Kato K, Taguchi T, Mizumura K. Glial cell line-derived neurotrophic factor sensitized the mechanical response of muscular thin-fibre afferents in rats. Eur J Pain 2013; 18:629-38. [PMID: 24174387 DOI: 10.1002/j.1532-2149.2013.00411.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND The role of glial cell line-derived neurotrophic factor (GDNF) in pain and muscular nociceptor activities is not well understood. We examined pain-related behaviour and mechanical response of muscular thin-fibre afferents after intramuscular injection of GDNF in rats. METHODS GDNF and antagonist to transient receptor potential V1 or acid-sensing ion channels were injected into rat gastrocnemius muscle and muscular mechanical hyperalgesia was assessed with a Randall-Selitto analgesiometer. Activities of single C- (conduction velocity < 2.0 m/s) and Aδ-fibres (conduction velocity 2.0-12.0 m/s) were recorded from extensor digitorum longus muscle-nerve preparations in vitro. The changes in the responses to mechanical stimuli before and after GDNF injection were recorded. RESULTS Mechanical hyperalgesia was observed from 1 h to 1 day after GDNF (0.03 μM, 20 μL) injection. The decreased withdrawal threshold was temporarily reversed after intramuscular injection of amiloride (50 mM, 20 μL), but not capsazepine (50 μM, 20 μL). In single-fibre recordings, both phosphate buffered saline (PBS) and GDNF failed to induce any significant discharges. GDNF significantly enhanced the mechanical response when compared with the PBS group, but only in Aδ-fibre afferents. C-fibres were not affected. Significantly lowered threshold and increased response magnitude to mechanical stimuli were observed 30 or 60-120 min after injection. These times are compatible with the timing of the onset of the hyperalgesic effect of GDNF. CONCLUSIONS These results suggest that GDNF increased the response of muscular Aδ-fibre afferents to mechanical stimuli, resulting in muscular mechanical hyperalgesia.
Collapse
Affiliation(s)
- S Murase
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan
| | | | | | | |
Collapse
|
20
|
Sekino Y, Nakano J, Hamaue Y, Chuganji S, Sakamoto J, Yoshimura T, Origuchi T, Okita M. Sensory hyperinnervation and increase in NGF, TRPV1 and P2X3expression in the epidermis following cast immobilization in rats. Eur J Pain 2013; 18:639-48. [DOI: 10.1002/j.1532-2149.2013.00412.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Y. Sekino
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - J. Nakano
- Department of Physical Therapy Science; Unit of Physical and Occupational Therapy Sciences; Nagasaki University Graduate School of Biochemical Sciences; Japan
| | - Y. Hamaue
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - S. Chuganji
- Department of Physical Therapy Science; Unit of Physical and Occupational Therapy Sciences; Nagasaki University Graduate School of Biochemical Sciences; Japan
| | - J. Sakamoto
- Department of Rehabilitation; Nagasaki University Hospital; Japan
| | - T. Yoshimura
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - T. Origuchi
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - M. Okita
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| |
Collapse
|
21
|
Abstract
Inflammation is the process by which an organism responds to tissue injury involving both immune cell recruitment and mediator release. Diverse causes of neuropathic pain are associated with excessive inflammation in both the peripheral and central nervous system which may contribute to the initiation and maintenance of persistent pain. Chemical mediators, such as cytokines, chemokines, and lipid mediators, released during an inflammatory response have the undesired effect of sensitizing and stimulating nociceptors, their central synaptic targets or both. These changes can promote long-term maladaptive plasticity resulting in persistent neuropathic pain. This review aims to provide an overview of inflammatory mechanisms at differing levels of the sensory neuroaxis with a focus on neuropathic pain. We will compare and contrast neuropathic pain states such as traumatic nerve injury which is associated with a vigorous inflammatory response and chemotherapy induced pain in which the inflammatory response is much more modest. Targeting excessive inflammation in neuropathic pain provides potential therapeutic opportunities and we will discuss some of the opportunities but also the clinical challenges in such an approach.
Collapse
Affiliation(s)
- A Ellis
- King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
22
|
Webber CA, Salame J, Luu GLS, Acharjee S, Ruangkittisakul A, Martinez JA, Jalali H, Watts R, Ballanyi K, Guo GF, Zochodne DW, Power C. Nerve growth factor acts through the TrkA receptor to protect sensory neurons from the damaging effects of the HIV-1 viral protein, Vpr. Neuroscience 2013; 252:512-25. [PMID: 23912036 DOI: 10.1016/j.neuroscience.2013.07.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/30/2013] [Accepted: 07/22/2013] [Indexed: 01/19/2023]
Abstract
Distal sensory polyneuropathy (DSP) with associated neuropathic pain is the most common neurological disorder affecting patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Viral protein R (Vpr) is a neurotoxic protein encoded by HIV-1 and secreted by infected macrophages. Vpr reduces neuronal viability, increases cytosolic calcium and membrane excitability of cultured dorsal root ganglion (DRG) sensory neurons, and is associated with mechanical allodynia in vivo. A clinical trial with HIV/AIDS patients demonstrated that nerve growth factor (NGF) reduced the severity of DSP-associated neuropathic pain, a problem linked to damage to small diameter, potentially NGF-responsive fibers. Herein, the actions of NGF were investigated in our Vpr model of DSP and we demonstrated that NGF significantly protected sensory neurons from the effects of Vpr. Footpads of immunodeficient Vpr transgenic (vpr/RAG1(-/-)) mice displayed allodynia (p<0.05), diminished epidermalinnervation (p<0.01) and reduced NGF mRNA expression (p<0.001) compared to immunodeficient (wildtype/RAG1(-/-)) littermate control mice. Compartmented cultures confirmed recombinant Vpr exposure to the DRG neuronal perikarya decreased distal neurite extension (p<0.01), whereas NGF exposure at these distal axons protected the DRG neurons from the Vpr-induced effect on their cell bodies. NGF prevented Vpr-induced attenuation of the phosphorylated glycogen synthase-3 axon extension pathway and tropomyosin-related kinase A (TrkA) receptor expression in DRG neurons (p<0.05) and it directly counteracted the cytosolic calcium burst caused by Vpr exposure to DRG neurons (p<0.01). TrkA receptor agonist indicated that NGFacted through the TrkA receptor to block the Vpr-mediated decrease in axon outgrowth in neonatal and adult rat and fetal human DRG neurons (p<0.05). Similarly, inhibiting the lower affinity NGF receptor, p75, blocked Vpr's effect on DRG neurons. Overall, NGF/TrkA signaling or p75 receptor inhibition protects somatic sensory neurons exposed to Vpr, thus laying the groundwork for potential therapeutic options for HIV/AIDS patients suffering from DSP.
Collapse
Affiliation(s)
- C A Webber
- Division of Anatomy, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schmelz M. Local nociceptor sensitization with NGF: Mechanical or heat hyperalgesia á la carte? Eur J Pain 2013; 17:467-8. [DOI: 10.1002/j.1532-2149.2012.00287.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2012] [Indexed: 11/09/2022]
Affiliation(s)
- M. Schmelz
- Department of Anesthesiology and Intensive Care Medicine; Medical Faculty Mannheim; Heidelberg University; Mannheim; Germany
| |
Collapse
|
24
|
Kovačič U, Tesovnik B, Molnar N, Cör A, Skalerič U, Gašperšič R. Dental pulp and gingivomucosa in rats are innervated by two morphologically and neurochemically different populations of nociceptors. Arch Oral Biol 2013; 58:788-95. [PMID: 23411402 DOI: 10.1016/j.archoralbio.2013.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Difference in phenotypes of sensory neurons innervating dental pulp or gingivomucosa may be responsible for intense pain sensations in pulpitis in contrast to relatively painless chronic periodontitis. Therefore, we classified these neurons according to their size and two neurochemical characteristics of nociceptors, their TrkA expression and isolectin IB4 binding. DESIGN In rats (n=6) fluorescent tracers Fluorogold and TrueBlue were simultaneously applied into the standard-sized tooth cavity and nearby gingival sulcus, respectively. After the fluorescence on paraffin trigeminal ganglia (TG) sections was identified and photographed, immunohistochemistry for TrkA expression and IB4 binding was performed on the same sections. RESULTS The average sizes of TG neurons projecting to the gingivomucosa and dental pulp were 894±441μm(2) and 1012±381μm(2), respectively. The proportions of small-sized gingival and pulpal neurons were 14% and 5%, respectively (p<0.05). The proportions of TrkA-positive neurons among all gingival or pulpal neurons were 76% and 86%, respectively (p<0.05). Among all gingival or pulpal neurons the proportions of IB4-positive neurons were 46% and 3% (p<0.001), respectively, and the majority of them were small-medium sized. CONCLUSIONS Dental pulp and gingivomucosa are richly innervated by nociceptive TrkA-expressing neurons. However, while great majority of pulpal neurons are larger NGF-dependent A-fibre nociceptors without affinity to bind IB4, almost half of the gingival neurons are smaller IB4 binding C-fibre nociceptors. The difference in phenotype of sensory neurons might partially explain the different sensitivity of both tissues during normal and pathological conditions.
Collapse
Affiliation(s)
- Uroš Kovačič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
25
|
Ghilardi JR, Freeman KT, Jimenez-Andrade JM, Coughlin KA, Kaczmarska MJ, Castaneda-Corral G, Bloom AP, Kuskowski MA, Mantyh PW. Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint. ACTA ACUST UNITED AC 2012; 64:2223-32. [PMID: 22246649 DOI: 10.1002/art.34385] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Many forms of arthritis are accompanied by significant chronic joint pain. This study was undertaken to investigate whether there is significant sprouting of sensory and sympathetic nerve fibers in the painful arthritic knee joint and whether nerve growth factor (NGF) drives this pathologic reorganization. METHODS A painful arthritic knee joint was produced by injection of Freund's complete adjuvant (CFA) into the knee joint of young adult mice. CFA-injected mice were then treated systemically with vehicle or anti-NGF antibody. Pain behaviors were assessed, and at 28 days following the initial CFA injection, the knee joints were processed for immunohistochemistry analysis using antibodies against calcitonin gene-related peptide (CGRP; sensory nerve fibers), neurofilament 200 kd (NF200; sensory nerve fibers), growth-associated protein 43 (GAP-43; sprouted nerve fibers), tyrosine hydroxylase (TH; sympathetic nerve fibers), CD31 (endothelial cells), or CD68 (monocyte/macrophages). RESULTS In CFA-injected mice, there was a significant increase in the density of CD68+ macrophages, CD31+ blood vessels, and CGRP+, NF200+, GAP-43+, and TH+ nerve fibers in the synovium, as well as a significant increase in joint pain-related behaviors. None of these findings were observed in sham-injected mice. Administration of anti-NGF reduced these pain-related behaviors and the ectopic sprouting of nerve fibers, but had no significant effect on the increase in density of CD31+ blood vessels or CD68+ macrophages. CONCLUSION These findings demonstrate that ectopic sprouting of sensory and sympathetic nerve fibers occurs in the painful arthritic joint and may be involved in the generation and maintenance of arthritic pain.
Collapse
|
26
|
Frias B, Lopes T, Pinto R, Cruz F, Cruz CD. Neurotrophins in the lower urinary tract: becoming of age. Curr Neuropharmacol 2012; 9:553-8. [PMID: 22654715 PMCID: PMC3263451 DOI: 10.2174/157015911798376253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/19/2010] [Accepted: 07/19/2010] [Indexed: 01/23/2023] Open
Abstract
The lower urinary tract (LUT) comprises a storage unit, the urinary bladder, and an outlet, the urethra. The coordination between the two structures is tightly controlled by the nervous system and, therefore, LUT function is highly susceptible to injuries to the neuronal pathways involved in micturition control. These injuries may include lesions to the
spinal cord or to nerve fibres and result in micturition dysfunction. A common trait of micturition pathologies, irrespective of its origin, is an upregulation in synthesis and secretion of neurotrophins, most notably Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF). These neurotrophins are produced by neuronal and non-neuronal cells and exert their effects upon binding to their high-affinity receptors abundantly expressed in the neuronal circuits regulating
LUT function. In addition, NGF and BDNF are present in detectable amounts in the urine of patients suffering from various LUT pathologies, suggesting that analysis of urinary NGF and BDNF may serve as likely biomarkers to be studied in tandem with other factors when diagnosing patients. Studies with experimental models of bladder dysfunction
using antagonists of NGF and BDNF receptors as well as scavenging agents suggest that those NTs may be key elements in the pathophysiology of bladder dysfunctions. In addition, available data indicates that NGF and BDNF might constitute future targets for designing new drugs for better treatment of bladder dysfunction.
Collapse
Affiliation(s)
- Bárbara Frias
- Department of Experimental Biology, Faculty of Medicine of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | | | | | |
Collapse
|
27
|
Mills CD, Nguyen T, Tanga FY, Zhong C, Gauvin DM, Mikusa J, Gomez EJ, Salyers AK, Bannon AW. Characterization of nerve growth factor-induced mechanical and thermal hypersensitivity in rats. Eur J Pain 2012; 17:469-79. [PMID: 22915527 DOI: 10.1002/j.1532-2149.2012.00202.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND Injection of nerve growth factor (NGF) produces mechanical and thermal hypersensitivity in rodents and humans. Treatment with sequestering antibodies demonstrates the importance of NGF in various pain states, with efficacy seen in a number of animal pain models and in painful human conditions. However, these phenomena have not been evaluated in the context of using NGF-induced hypersensitivities as a model of pain. METHODS NGF-induced behaviours were characterized using von Frey filament, pinprick and thermal endpoints and then pharmacologically evaluated with known reference agents. RESULTS Intraplantar NGF injection produced a dose-dependent increase in thermal sensitivity that lasted through 24 h post-injection and an immediate long-lasting (2 week) increase in mechanical sensitivity at the injection site, with no effects detected at secondary sites. NGF-induced mechanical sensitivity was pharmacologically characterized at 4 h and 1 week post-NGF injection. The nonsteroidal anti-inflammatory drugs (NSAIDs), celecoxib and diclofenac, were minimally effective against both thermal and mechanical endpoints. Gabapenitn and duloxetine were only moderately effective against thermal and mechanical hypersensitivity. Morphine was effective against thermal and mechanical endpoints at every time point examined. Treatment with the transient receptor potential vanilloid 1 (TRPV1) antagonist A-784168 partially attenuated NGF-induced thermal and mechanical sensitivity at all time points examined. CONCLUSIONS The results reported here suggest that effects of NGF on thermal and mechanical sensitivity in rats are similar to those reported in human and are partially driven by TRPV1. The rat NGF model may serve as a potential translational model for exploring the effects of novel analgesic agents.
Collapse
Affiliation(s)
- C D Mills
- Department of Neuroscience, Abbott Laboratories, Abbott Park, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Sudden cardiac death (SCD) is common in dialysis patients accounting for up to 25% of all-cause mortality. Unlike in the general population, occlusive coronary artery disease is implicated in a minority of these deaths. Activation of the sympathetic nervous system is prevalent in the dialysis population and may underlie this high rate of SCD. β-blockers reduce SCD in the general population and, given their mode of action, β-blockers would seem to be an ideal class of agents to prevent SCD in dialysis patients. In this review, we will explore the etiology of SCD in dialysis patients and discuss the evidence supporting the use of β-blockers in patients with ESRD. We will also examine potential impediments to the use β-blocker in the dialysis population and outline directions for future trials in this area.
Collapse
|
29
|
Ye Y, Dang D, Viet CT, Dolan JC, Schmidt BL. Analgesia targeting IB4-positive neurons in cancer-induced mechanical hypersensitivity. THE JOURNAL OF PAIN 2012; 13:524-31. [PMID: 22483679 DOI: 10.1016/j.jpain.2012.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/02/2012] [Accepted: 01/16/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cancer patients often suffer from pain and most will be prescribed μ-opioids. μ-opioids are not satisfactory in treating cancer pain and are associated with multiple debilitating side effects. Recent studies show that μ and δ opioid receptors are separately expressed on IB4 (-) and IB4 (+) neurons, which control thermal and mechanical pain, respectively. In this study we investigated IB4 (+) and IB4 (-) neurons in mechanical and thermal hypersensitivity in an orthotopic mouse oral cancer model. We used a δ opioid receptor agonist and a P2X(3) antagonist to target IB4 (+) neurons and to demonstrate that this subset plays a key role in cancer-induced mechanical allodynia, but not in thermal hyperalgesia. Moreover, selective removal of IB4 (+) neurons using IB4-saporin impacts cancer-induced mechanical but not thermal hypersensitivity. Our results demonstrate that peripherally administered pharmacological agents targeting IB4 (+) neurons, such as a selective δ-opioid receptor agonist or P2X(3) antagonist, might be useful in treating oral cancer pain. PERSPECTIVE To clarify the mechanisms of oral cancer pain, we examined the differential role of IB4 (+) and IB4 (-) neurons. Characterization of these 2 subsets of putative nociceptors is important for further development of effective clinical cancer pain relief.
Collapse
Affiliation(s)
- Yi Ye
- Bluestone Center for Clinic Research, New York University, New York, NY, USA
| | | | | | | | | |
Collapse
|
30
|
Paterson S, Schmelz M, McGlone F, Turner G, Rukwied R. Facilitated neurotrophin release in sensitized human skin. Eur J Pain 2012; 13:399-405. [DOI: 10.1016/j.ejpain.2008.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/25/2008] [Accepted: 05/11/2008] [Indexed: 02/05/2023]
|
31
|
Nie H, Madeleine P, Arendt-Nielsen L, Graven-Nielsen T. Temporal summation of pressure pain during muscle hyperalgesia evoked by nerve growth factor and eccentric contractions. Eur J Pain 2012; 13:704-10. [DOI: 10.1016/j.ejpain.2008.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/09/2008] [Accepted: 06/30/2008] [Indexed: 11/26/2022]
|
32
|
Hoffman EM, Zhang Z, Anderson MB, Schechter R, Miller KE. Potential mechanisms for hypoalgesia induced by anti-nerve growth factor immunoglobulin are identified using autoimmune nerve growth factor deprivation. Neuroscience 2011; 193:452-65. [PMID: 21802499 DOI: 10.1016/j.neuroscience.2011.06.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 01/13/2023]
Abstract
Nerve growth factor (NGF) antagonism has long been proposed as a chronic pain treatment. In 2010, the FDA suspended clinical trials using tanezumab, a humanized monoclonal anti-NGF antibody, to treat osteoarthritis due to worsening joint damage in 16 patients. Increased physical activity in the absence of acute pain which normally prevents self-harm was purported as a potential cause. Such an adverse effect is consistent with an extension of tanezumab's primary mechanism of action by decreasing pain sensitivity below baseline levels. In animal inflammatory pain models, NGF antagonism decreases intraepidermal nerve fiber (IENF) density and attenuates increases in expression of nociception-related proteins, such as calcitonin gene-related peptide (CGRP) and substance P (SP). Little is known of the effects of NGF antagonism in noninflamed animals and the hypoalgesia that ensues. In the current study, we immunized rats with NGF or cytochrome C (cytC) and examined (1) nocifensive behaviors with thermal latencies, mechanical thresholds, the hot plate test, and the tail flick test, (2) IENF density, and (3) expression of CGRP, SP, voltage-gated sodium channel 1.8 (Nav1.8), and glutaminase in subpopulations of dorsal root ganglion (DRG) neurons separated by size and isolectin B4 (IB4) labeling. Rats with high anti-NGF titers had delayed responses on the hot plate test but no other behavioral abnormalities. Delayed hot plate responses correlated with lower IENF density. CGRP and SP expression was decreased principally in medium (400-800 μm(2)) and small neurons (<400 μm(2)), respectively, regardless of IB4 labeling. Expression of Nav1.8 was only decreased in small and medium IB4 negative neurons. NGF immunization appears to result in a more profound antagonism of NGF than tanezumab therapy, but we hypothesize that decreases in IENF density and nociception-related protein expression are potential mechanisms for tanezumab-induced hypoalgesia.
Collapse
Affiliation(s)
- E M Hoffman
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | | | | | | | | |
Collapse
|
33
|
Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology 2011; 115:189-204. [PMID: 21602663 PMCID: PMC3121917 DOI: 10.1097/aln.0b013e31821b1ac5] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nerve growth factor (NGF) was originally discovered as a neurotrophic factor essential for the survival of sensory and sympathetic neurons during development. However, in the adult NGF has been found to play an important role in nociceptor sensitization after tissue injury. The authors outline mechanisms by which NGF activation of its cognate receptor, tropomyosin-related kinase A receptor, regulates a host of ion channels, receptors, and signaling molecules to enhance acute and chronic pain. The authors also document that peripherally restricted antagonism of NGF-tropomyosin-related kinase A receptor signaling is effective for controlling human pain while appearing to maintain normal nociceptor function. Understanding whether there are any unexpected adverse events and how humans may change their behavior and use of the injured/degenerating tissue after significant pain relief without sedation will be required to fully appreciate the patient populations that may benefit from these therapies targeting NGF.
Collapse
Affiliation(s)
- Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | |
Collapse
|
34
|
Biomarkers in overactive bladder: a new objective and noninvasive tool? Adv Urol 2011; 2011:382431. [PMID: 21687625 PMCID: PMC3113283 DOI: 10.1155/2011/382431] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/28/2011] [Indexed: 11/21/2022] Open
Abstract
Overactive bladder syndrome (OAB) is a highly prevalent urinary
dysfunction, with considerable economic and human costs. Clinical diagnosis of OAB is still based on subjective symptoms. A new
accurate, objective and noninvasive test to diagnose OAB and assess therapeutic outcome is lacking. Recent studies in lower
urinary tract (LUT) dysfunctions, particularly in OAB patients, indicate that urinary proteins (neurotrophins, prostaglandins, and
cytokines), serum C reactive protein, and detrusor wall thickness are altered, and such changes could be used as biomarkers of the
disease. Nowadays, increasing emphasis has been given to the role of urinary neurotrophins, namely nerve growth factor (NGF) and
brain derived neurotrophic factor (BDNF), as key players in some urinary dysfunctions. Although recently considered to be a bladder
dysfunction biomarker, urinary NGF presents low sensitivity and specificity. Preliminary results suggest that BDNF may serve as a
more efficient biomarker. Even though we have to wait for future studies to confirm the potential role of NGF and BDNF as OAB
biomarkers, it is already clear that neurotrophins will contribute to elucidate the physiopathological basis of OAB. Herein are
reviewed the latest advances in this new and exciting field, the detection and clinical application of emerging OAB biomarkers.
Collapse
|
35
|
In vitro comparison of motor and sensory neuron outgrowth in a 3D collagen matrix. J Neurosci Methods 2011; 198:53-61. [DOI: 10.1016/j.jneumeth.2011.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/07/2011] [Accepted: 03/08/2011] [Indexed: 02/01/2023]
|
36
|
Hashimoto Y, Shuto T, Mizunoe S, Tomita A, Koga T, Sato T, Takeya M, Suico MA, Niibori A, Sugahara T, Shimasaki S, Sugiyama T, Scholte B, Kai H. CFTR-deficiency renders mice highly susceptible to cutaneous symptoms during mite infestation. J Transl Med 2011; 91:509-18. [PMID: 21135815 DOI: 10.1038/labinvest.2010.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pruritus, also known as itch, is a sensation that causes a desire to scratch. Prolonged scratching exacerbates skin lesions in several skin diseases such as atopic dermatitis. Here, we identify the cystic fibrosis transmembrane conductance regulator (CFTR/Cftr), an integral membrane protein that mediates transepithelial chloride transport, as a determinant factor in mice for the susceptibility to several cutaneous symptoms during mite infestation. Mice that endogenously express dysfunctional Cftr (Cftr(ΔF508/ΔF508)) show significant increase of scratching behavior and skin fibrosis after mite exposure. These phenotypes were due to the increased expression of nerve growth factor (NGF) that augments the sensitization of peripheral nerve fibers. Moreover, protein gene product 9.5 (PGP9.5)-positive neurites were abundant in the epidermis of mite-infested Cftr(ΔF508/ΔF508) mice. Furthermore, mite-infested Cftr(+/+) mice orally administered with a chloride channel inhibitor glibenclamide had higher scratching count and increased level of NGF than vehicle-treated mice. Consistently, mite extract-exposed primary and transformed human keratinocytes, treated with CFTR inhibitor, had significantly higher level of NGF mRNA compared with vehicle-treated, mite extract-exposed cells. These results reveal that CFTR in keratinocytes plays a critical role for the regulation of peripheral nerve function and pruritus sensation, and suggest that Cftr(ΔF508/ΔF508) mice may serve as a novel mouse model that represents NGF-dependent generation of pruritus.
Collapse
Affiliation(s)
- Yasuaki Hashimoto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Davis JA, Visscher MO, Wickett RR, Hoath SB. Role of TNF-α polymorphism -308 in neurosensory irritation. Int J Cosmet Sci 2011; 33:105-12. [DOI: 10.1111/j.1468-2494.2010.00597.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Peleshok JC, Ribeiro-da-Silva A. Delayed reinnervation by nonpeptidergic nociceptive afferents of the glabrous skin of the rat hindpaw in a neuropathic pain model. J Comp Neurol 2010; 519:49-63. [DOI: 10.1002/cne.22500] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Anand U, Otto WR, Anand P. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons. Mol Pain 2010; 6:82. [PMID: 21106058 PMCID: PMC3003244 DOI: 10.1186/1744-8069-6-82] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/24/2010] [Indexed: 12/22/2022] Open
Abstract
Background Oxaliplatin chemotherapy induced neuropathy is a dose related cumulative toxicity that manifests as tingling, numbness, and chronic pain, compromising the quality of life and leading to discontinued chemotherapy. Patients report marked hypersensitivity to cold stimuli at early stages of treatment, when sensory testing reveals cold and heat hyperalgesia. This study examined the morphological and functional effects of oxaliplatin treatment in cultured adult rat DRG neurons. Results 48 hour exposure to oxaliplatin resulted in dose related reduction in neurite length, density, and number of neurons compared to vehicle treated controls, using Gap43 immunostaining. Neurons treated acutely with 20 μg/ml oxaliplatin showed significantly higher signal intensity for cyclic AMP immunofluorescence (160.5 ± 13 a.u., n = 3, P < 0.05), compared to controls (120.3 ± 4 a.u.). Calcium imaging showed significantly enhanced capsaicin (TRPV1 agonist), responses after acute 20 μg/ml oxaliplatin treatment where the second of paired capsaicin responses increased from 80.7 ± 0.6% without oxaliplatin, to 171.26 ± 29% with oxaliplatin, (n = 6 paired t test, P < 0.05); this was reduced to 81.42 ± 8.1% (P < 0.05), by pretretreatment with the cannabinoid CB2 receptor agonist GW 833972. Chronic oxaliplatin treatment also resulted in dose related increases in capsaicin responses. Similarly, second responses to icilin (TRPA1/TRPM8 agonist), were enhanced after acute (143.85 ± 7%, P = 0.004, unpaired t test, n = 3), and chronic (119.7 ± 11.8%, P < 0.05, n = 3) oxaliplatin treatment, compared to control (85.3 ± 1.7%). Responses to the selective TRPM8 agonist WS-12 were not affected. Conclusions Oxaliplatin treatment induces TRP sensitization mediated by increased intracellular cAMP, which may cause neuronal damage. These effects may be mitigated by co-treatment with adenylyl cyclase inhibitors, like CB2 agonists, to alleviate the neurotoxic effects of oxaliplatin.
Collapse
Affiliation(s)
- Uma Anand
- Histopathology Unit, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC1A 3PX, UK.
| | | | | |
Collapse
|
40
|
Bishop T, Marchand F, Young AR, Lewin GR, McMahon SB. Ultraviolet-B-induced mechanical hyperalgesia: A role for peripheral sensitisation. Pain 2010; 150:141-152. [DOI: 10.1016/j.pain.2010.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 03/29/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
|
41
|
RET signaling is required for survival and normal function of nonpeptidergic nociceptors. J Neurosci 2010; 30:3983-94. [PMID: 20237269 DOI: 10.1523/jneurosci.5930-09.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Small unmyelinated sensory neurons classified as nociceptors are divided into two subpopulations based on phenotypic differences, including expression of neurotrophic factor receptors. Approximately half of unmyelinated nociceptors express the NGF receptor TrkA, and half express the GDNF family ligand (GFL) receptor Ret. The function of NGF/TrkA signaling in the TrkA population of nociceptors has been extensively studied, and NGF/TrkA signaling is a well established mediator of pain. The GFLs are analgesic in models of neuropathic pain emphasizing the importance of understanding the physiological function of GFL/Ret signaling in nociceptors. However, perinatal lethality of Ret-null mice has precluded the study of the physiological role of GFL/Ret signaling in the survival, maintenance, and function of nociceptors in viable mice. We deleted Ret exclusively in nociceptors by crossing nociceptor-specific Na(v)1.8 Cre and Ret conditional mice to produce Ret-Na(v)1.8 conditional knock-out (CKO) mice. Loss of Ret exclusively in nociceptors results in a reduction in nociceptor number and size, indicating that Ret signaling is important for the survival and trophic support of these cells. Ret-Na(v)1.8 CKO mice exhibit reduced epidermal innervation but normal central projections. In addition, Ret-Na(v)1.8 CKO mice have increased sensitivity to cold and increased formalin-induced pain, demonstrating that Ret signaling modulates the function of nociceptors in vivo. Enhanced inflammation-induced pain may be mediated by decreased prostatic acid phosphatase (PAP), as PAP levels are markedly reduced in Ret-Na(v)1.8 CKO mice. The results of this study identify the physiological role of endogenous Ret signaling in the survival and function of nociceptors.
Collapse
|
42
|
Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on scratching behavior in mice. Int Immunopharmacol 2010; 10:304-7. [DOI: 10.1016/j.intimp.2009.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 11/05/2009] [Accepted: 11/30/2009] [Indexed: 11/22/2022]
|
43
|
Ye Y, Woodbury CJ. Early postnatal loss of heat sensitivity among cutaneous myelinated nociceptors in Swiss-Webster mice. J Neurophysiol 2010; 103:1385-96. [PMID: 20071635 DOI: 10.1152/jn.00472.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cutaneous myelinated nociceptors are known to exhibit considerable heterogeneity in their response to noxious heat. In the present experiments, we studied heat sensitivity among myelinated nociceptors during early postnatal life to determine whether this heterogeneity is correlated with other physiological and anatomical properties. A total of 129 cutaneous myelinated nociceptors were recorded intracellularly and characterized using mechanical and thermal skin stimuli in ex vivo preparations from neonatal Swiss-Webster (SW) mice across postnatal ages P2-P10; physiologically identified cells were iontophoretically labeled with neurobiotin for analyses of dorsal horn terminations from heat-sensitive and heat-insensitive cells. Our results show that heat sensitivity is not strictly correlated with other physiological or anatomical properties, most notably mechanical threshold or laminar termination patterns, of myelinated nociceptors at these ages. Further, we found a marked decline in the number of heat-sensitive myelinated mechanonociceptors (A-mechanoheat nociceptors [AMHs]) during this early postnatal period. Indeed, 68% of myelinated nociceptors were AMHs between P2 and P5, whereas this percentage dropped to 36% between P6 and P10. Multiple independent lines of evidence suggest that this decrease reflects a change in phenotype in a subset of myelinated nociceptors that lose sensitivity to noxious heat in early postnatal life. Interestingly, evidence was also obtained for a significant strain difference since the early transient excess in the number of AMHs in P2-P5 SW neonates was not present in similarly aged neonates from the C57Bl/6 strain. Potential mechanisms underlying these postnatal changes in AMH number are discussed.
Collapse
Affiliation(s)
- Yi Ye
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
44
|
Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009; 336:349-84. [PMID: 19387688 DOI: 10.1007/s00441-009-0784-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), INF 307, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
45
|
Abstract
The prevalence of people suffering from chronic pain is extremely high and pain affects millions of people worldwide. As such, persistent pain represents a major health problem and an unmet clinical need. The reason for the high incidence of chronic pain patients is in a large part due to a paucity of effective pain control. An important reason for poor pain control is undoubtedly a deficit in our understanding of the underlying causes of chronic pain and as a consequence our arsenal of analgesic therapies is limited. However, there is considerable hope for the development of new classes of analgesic drugs by targeting novel processes contributing to clinically relevant pain. In this chapter we highlight a number of molecular species which are potential therapeutic targets for future neuropathic pain treatments. In particular, the roles of voltage-gated ion channels, neuroinflammation, protein kinases and neurotrophins are discussed in relation to the generation of neuropathic pain and how by targeting these molecules it may be possible to provide better pain control than is currently available.
Collapse
Affiliation(s)
- Fabien Marchand
- King's College London, London, Neurorestoration, CARD Wolfson Wing, Hodgkin Building, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | | | | |
Collapse
|
46
|
Bove SE, Flatters SJL, Inglis JJ, Mantyh PW. New advances in musculoskeletal pain. ACTA ACUST UNITED AC 2008; 60:187-201. [PMID: 19166876 DOI: 10.1016/j.brainresrev.2008.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 11/28/2022]
Abstract
Non-malignant musculoskeletal pain is the most common clinical symptom that causes patients to seek medical attention and is a major cause of disability in the world. Musculoskeletal pain can arise from a variety of common conditions including osteoarthritis, rheumatoid arthritis, osteoporosis, surgery, low back pain and bone fracture. A major problem in designing new therapies to treat musculoskeletal pain is that the underlying mechanisms driving musculoskeletal pain are not well understood. This lack of knowledge is largely due to the scarcity of animal models that closely mirror the human condition which would allow the development of a mechanistic understanding and novel therapies to treat this pain. To begin to develop a mechanism-based understanding of the factors involved in generating musculoskeletal pain, in this review we present recent advances in preclinical models of osteoarthritis, post-surgical pain and bone fracture pain. The models discussed appear to offer an attractive platform for understanding the factors that drive this pain and the preclinical screening of novel therapies to treat musculoskeletal pain. Developing both an understanding of the mechanisms that drive persistent musculoskeletal pain and novel mechanism-based therapies to treat these unique pain states would address a major unmet clinical need and have significant clinical, economic and societal benefits.
Collapse
Affiliation(s)
- Susan E Bove
- Department of Neurosciences Biology, Pfizer Global Research and Development, Groton Laboratories, Groton, CT, USA
| | | | | | | |
Collapse
|
47
|
Rydevik B, Szpalski M, Aebi M, Gunzburg R. Whiplash injuries and associated disorders: new insights into an old problem. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008. [DOI: 10.1007/s00586-007-0484-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Nakajima T, Ohtori S, Yamamoto S, Takahashi K, Harada Y. Differences in innervation and innervated neurons between hip and inguinal skin. Clin Orthop Relat Res 2008; 466:2527-32. [PMID: 18704614 PMCID: PMC2584300 DOI: 10.1007/s11999-008-0432-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 07/16/2008] [Indexed: 01/31/2023]
Abstract
Pain originating from the hip may be referred to the groin and anterior thigh. We investigated sensory dorsal root ganglion neurons innervating the hip and the inguinal skin in rats using retrograde neurotransport and immunohistochemistry. A retrograde neurotracer Fluoro-Gold was injected into the left hip or inguinal skin of rats. Seven days later, we harvested bilateral dorsal root ganglions and counted the number of Fluoro-Gold-labeled neurons positive for calcitonin gene-related peptide, a marker of nerve growth factor-dependent neurons, or isolectin B4, a marker of glial cell line-derived neurotrophic factor-dependent neurons. In the hip group, Fluoro-Gold-labeled neurons were distributed throughout the left dorsal root ganglions from T13 to L5, primarily at L1, L2, L3, and L4, and the percentage of calcitonin gene-related peptide-positive neurons was higher than that of isolectin B4-binding neurons. In the inguinal skin group, Fluoro-Gold-labeled neurons were distributed throughout the left dorsal root ganglions from T13 to L3, primarily at L1, L2, and L3, and the percentage of isolectin B4-binding neurons was higher than that of calcitonin gene-related peptide-positive neurons. These data suggest the sensory innervation pattern and characteristics of the sensory nerve of the rat hip are different from those of inguinal skin.
Collapse
Affiliation(s)
- Takayuki Nakajima
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | | | | | | | | |
Collapse
|
49
|
Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, Esler MD, Lambert GW. Sympathetic activation in chronic renal failure. J Am Soc Nephrol 2008; 20:933-9. [PMID: 18799718 DOI: 10.1681/asn.2008040402] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The potential involvement of sympathetic overactivity has been neglected in this population despite accumulating experimental and clinical evidence suggesting a crucial role of sympathetic activation for both progression of renal failure and the high rate of cardiovascular events in patients with chronic kidney disease. The contribution of sympathetic neural mechanisms to the occurrence of cardiac arrhythmias, the development of hypertension, and the progression of heart failure are well established; however, the exact mechanisms contributing to heightened sympathetic tone in patients with chronic kidney disease are unclear. This review analyses potential mechanisms underlying sympathetic activation in chronic kidney disease, the range of adverse consequences associated with this activation, and potential therapeutic implications resulting from this relationship.
Collapse
Affiliation(s)
- Markus P Schlaich
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart Research Institute, P.O. Box 6492 St. Kilda Road Central, Melbourne VIC 8008, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ernsberger U. The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res 2008; 333:353-71. [PMID: 18629541 PMCID: PMC2516536 DOI: 10.1007/s00441-008-0634-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/05/2008] [Indexed: 03/24/2023]
Abstract
The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|