1
|
Baum P, Beinhauer A, Zirwes L, Loenneker L, Jabs R, Narayanan RT, Oberlaender M, Seifert G, Kettenmann H, Steinhäuser C. Activity dependent modulation of glial gap junction coupling in the thalamus. iScience 2024; 27:111043. [PMID: 39435144 PMCID: PMC11491719 DOI: 10.1016/j.isci.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Astrocytes and oligodendrocytes in the ventrobasal thalamus are electrically coupled through gap junctions. We have previously shown that these cells form large panglial networks, which have a key role in the transfer of energy substrates to postsynapses for sustaining neuronal activity. Here, we show that the efficiency of these transfer networks is regulated by synaptic activity: preventing the generation and propagation of action potentials resulted in reduced glial coupling. Systematic analyses of mice deficient for individual connexin isoforms revealed that oligodendroglial Cx32 and Cx47 are the targets of this modulation. Importantly, we show that during a critical time window, sensory deprivation through whisker trimming reduces the efficiency of the glial transfer networks also in vivo. Together with our previous results the current findings indicate that neuronal activity and provision of energy metabolites through panglial coupling are interdependent events regulated in a bidirectional manner.
Collapse
Affiliation(s)
- Paula Baum
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Anna Beinhauer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Lara Zirwes
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Linda Loenneker
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Rajeevan T. Narayanan
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behavior - caesar, 53175 Bonn, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behavior - caesar, 53175 Bonn, Germany
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU Amsterdam, 081 Amsterdam, the Netherlands
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
2
|
Butcher JB, Sims RE, Ngum NM, Bazzari AH, Jenkins SI, King M, Hill EJ, Nagel DA, Fox K, Parri HR, Glazewski S. A requirement for astrocyte IP3R2 signaling for whisker experience-dependent depression and homeostatic upregulation in the mouse barrel cortex. Front Cell Neurosci 2022; 16:905285. [PMID: 36090792 PMCID: PMC9452848 DOI: 10.3389/fncel.2022.905285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Changes to sensory experience result in plasticity of synapses in the cortex. This experience-dependent plasticity (EDP) is a fundamental property of the brain. Yet, while much is known about neuronal roles in EDP, very little is known about the role of astrocytes. To address this issue, we used the well-described mouse whiskers-to-barrel cortex system, which expresses a number of forms of EDP. We found that all-whisker deprivation induced characteristic experience-dependent Hebbian depression (EDHD) followed by homeostatic upregulation in L2/3 barrel cortex of wild type mice. However, these changes were not seen in mutant animals (IP3R2–/–) that lack the astrocyte-expressed IP3 receptor subtype. A separate paradigm, the single-whisker experience, induced potentiation of whisker-induced response in both wild-type (WT) mice and IP3R2–/– mice. Recordings in ex vivo barrel cortex slices reflected the in vivo results so that long-term depression (LTD) could not be elicited in slices from IP3R2–/– mice, but long-term potentiation (LTP) could. Interestingly, 1 Hz stimulation inducing LTD in WT paradoxically resulted in NMDAR-dependent LTP in slices from IP3R2–/– animals. The LTD to LTP switch was mimicked by acute buffering astrocytic [Ca2+]i in WT slices. Both WT LTD and IP3R2–/– 1 Hz LTP were mediated by non-ionotropic NMDAR signaling, but only WT LTD was P38 MAPK dependent, indicating an underlying mechanistic switch. These results demonstrate a critical role for astrocytic [Ca2+]i in several EDP mechanisms in neocortex.
Collapse
Affiliation(s)
- John B. Butcher
- School of Life Sciences, Keele University, Keele, United Kingdom
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Robert E. Sims
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Neville M. Ngum
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Amjad H. Bazzari
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Stuart I. Jenkins
- Neural Tissue Engineering Group, Institute for Science and Technology in Medicine (ISTM), Keele University, Keele, United Kingdom
| | - Marianne King
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Eric J. Hill
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - David A. Nagel
- Aston Medical School, Aston Medical Research Institute, Aston University, Birmingham, United Kingdom
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - H. Rheinallt Parri
- College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- *Correspondence: H. Rheinallt Parri,
| | - Stanislaw Glazewski
- School of Life Sciences, Keele University, Keele, United Kingdom
- Stanislaw Glazewski,
| |
Collapse
|
3
|
Kraft AW, Bauer AQ, Culver JP, Lee JM. Sensory deprivation after focal ischemia in mice accelerates brain remapping and improves functional recovery through Arc-dependent synaptic plasticity. Sci Transl Med 2019; 10:10/426/eaag1328. [PMID: 29386356 DOI: 10.1126/scitranslmed.aag1328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 06/22/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Recovery after stroke, a major cause of adult disability, is often unpredictable and incomplete. Behavioral recovery is associated with functional reorganization (remapping) in perilesional regions, suggesting that promoting this process might be an effective strategy to enhance recovery. However, the molecular mechanisms underlying remapping after brain injury and the consequences of its modulation are poorly understood. Focal sensory loss or deprivation has been shown to induce remapping in the corresponding brain areas through activity-regulated cytoskeleton-associated protein (Arc)-mediated synaptic plasticity. We show that targeted sensory deprivation via whisker trimming in mice after induction of ischemic stroke in the somatosensory cortex representing forepaw accelerates remapping into the whisker barrel cortex and improves sensorimotor recovery. These improvements persisted even after focal sensory deprivation ended (whiskers allowed to regrow). Mice deficient in Arc, a gene critical for activity-dependent synaptic plasticity, failed to remap or recover sensorimotor function. These results indicate that post-stroke remapping occurs through Arc-mediated synaptic plasticity and is required for behavioral recovery. Furthermore, our findings suggest that enhancing perilesional cortical plasticity via focal sensory deprivation improves recovery after ischemic stroke in mice.
Collapse
Affiliation(s)
- Andrew W Kraft
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph P Culver
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, USA. .,Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Gunner G, Cheadle L, Johnson KM, Ayata P, Badimon A, Mondo E, Nagy MA, Liu L, Bemiller SM, Kim KW, Lira SA, Lamb BT, Tapper AR, Ransohoff RM, Greenberg ME, Schaefer A, Schafer DP. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat Neurosci 2019; 22:1075-1088. [PMID: 31209379 PMCID: PMC6596419 DOI: 10.1038/s41593-019-0419-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 05/02/2019] [Indexed: 01/25/2023]
Abstract
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remains a key open question. Here, whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. We show that this synapse elimination is dependent on the microglial fractalkine receptor, CX3CR1, but not complement receptor 3, signaling. Further, mice deficient in the CX3CR1 ligand (CX3CL1) also have profound defects in synapse elimination. Single-cell RNAseq then revealed that Cx3cl1 is cortical neuron-derived and Adam10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and microglia following whisker lesioning. Finally, inhibition of Adam10 phenocopies Cx3cr1−/− and Cx3cl1−/− synapse elimination defects. Together, these results identify novel neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
Collapse
Affiliation(s)
- Georgia Gunner
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lucas Cheadle
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kasey M Johnson
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Pinar Ayata
- Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Badimon
- Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Mondo
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Liwang Liu
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shane M Bemiller
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - Ki-Wook Kim
- Department of Pharmacology and Center for Stem Cell and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - Andrew R Tapper
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | - Anne Schaefer
- Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
6
|
Jacob V, Mitani A, Toyoizumi T, Fox K. Whisker row deprivation affects the flow of sensory information through rat barrel cortex. J Neurophysiol 2016; 117:4-17. [PMID: 27707809 PMCID: PMC5209544 DOI: 10.1152/jn.00289.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/01/2016] [Indexed: 11/24/2022] Open
Abstract
Sensory cortical plasticity is usually quantified by changes in evoked firing rate. In this study we quantified plasticity by changes in sensory detection performance using Chernoff information and receiver operating characteristic analysis. We found that whisker deprivation causes a change in information flow within the cortical layers and that layer 5 regular-spiking cells, despite showing only a small potentiation of short-latency input, show the greatest increase in information content for the spared input partly by decreasing their spontaneous activity. Whisker trimming causes substantial reorganization of neuronal response properties in barrel cortex. However, little is known about experience-dependent rerouting of sensory processing following sensory deprivation. To address this, we performed in vivo intracellular recordings from layers 2/3 (L2/3), layer 4 (L4), layer 5 regular-spiking (L5RS), and L5 intrinsically bursting (L5IB) neurons and measured their multiwhisker receptive field at the level of spiking activity, membrane potential, and synaptic conductance before and after sensory deprivation. We used Chernoff information to quantify the “sensory information” contained in the firing patterns of cells in response to spared and deprived whisker stimulation. In the control condition, information for flanking-row and same-row whiskers decreased in the order L4, L2/3, L5IB, L5RS. However, after whisker-row deprivation, spared flanking-row whisker information was reordered to L4, L5RS, L5IB, L2/3. Sensory information from the trimmed whiskers was reduced and delayed in L2/3 and L5IB neurons, whereas sensory information from spared whiskers was increased and advanced in L4 and L5RS neurons. Sensory information from spared whiskers was increased in L5IB neurons without a latency change. L5RS cells exhibited the largest changes in sensory information content through an atypical plasticity combining a significant decrease in spontaneous activity and an increase in a short-latency excitatory conductance. NEW & NOTEWORTHY Sensory cortical plasticity is usually quantified by changes in evoked firing rate. In this study we quantified plasticity by changes in sensory detection performance using Chernoff information and receiver operating characteristic analysis. We found that whisker deprivation causes a change in information flow within the cortical layers and that layer 5 regular-spiking cells, despite showing only a small potentiation of short-latency input, show the greatest increase in information content for the spared input partly by decreasing their spontaneous activity.
Collapse
Affiliation(s)
- Vincent Jacob
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Akinori Mitani
- RIKEN Brain Science Institute, Wako, Saitama, Japan; and.,Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Taro Toyoizumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan; and
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, United Kingdom;
| |
Collapse
|
7
|
Johnson BA, Frostig RD. Long, intrinsic horizontal axons radiating through and beyond rat barrel cortex have spatial distributions similar to horizontal spreads of activity evoked by whisker stimulation. Brain Struct Funct 2015; 221:3617-39. [PMID: 26438334 DOI: 10.1007/s00429-015-1123-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023]
Abstract
Stimulation of a single whisker evokes a peak of activity that is centered over the associated barrel in rat primary somatosensory cortex, and yet the evoked local field potential and the intrinsic signal optical imaging response spread symmetrically away from this barrel for over 3.5 mm to cross cytoarchitectonic borders into other "unimodal" sensory cortical areas. To determine whether long horizontal axons have the spatial distribution necessary to underlie this activity spread, we injected adeno-associated viral vectors into barrel cortex and characterized labeled axons extending from the injection site in transverse sections of flattened cortex. Combined qualitative and quantitative analyses revealed labeled axons radiating diffusely in all directions for over 3.5 mm from supragranular injection sites, with density declining over distance. The projection pattern was similar at four different cortical depths, including infragranular laminae. Infragranular vector injections produced patterns similar to the supragranular injections. Long horizontal axons were detected both using a vector with a permissive cytomegalovirus promoter to label all neuronal subtypes and using a calcium/calmodulin-dependent protein kinase II α vector to restrict labeling to excitatory cortical pyramidal neurons. Individual axons were successfully reconstructed from series of supragranular sections, indicating that they traversed gray matter only. Reconstructed axons extended from the injection site, left the barrel field, branched, and sometimes crossed into other sensory cortices identified by cytochrome oxidase staining. Thus, radiations of long horizontal axons indeed have the spatial characteristics necessary to explain horizontal activity spreads. These axons may contribute to multimodal cortical responses and various forms of cortical neural plasticity.
Collapse
Affiliation(s)
- B A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697-4550, USA
| | - R D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697-4550, USA. .,Department of Biomedical Engineering and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
Astrocyte and Neuronal Plasticity in the Somatosensory System. Neural Plast 2015; 2015:732014. [PMID: 26345481 PMCID: PMC4539490 DOI: 10.1155/2015/732014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 11/17/2022] Open
Abstract
Changing the whisker complement on a rodent's snout can lead to two forms of experience-dependent plasticity (EDP) in the neurons of the barrel cortex, where whiskers are somatotopically represented. One form, termed coding plasticity, concerns changes in synaptic transmission and connectivity between neurons. This is thought to underlie learning and memory processes and so adaptation to a changing environment. The second, called homeostatic plasticity, serves to maintain a restricted dynamic range of neuronal activity thus preventing its saturation or total downregulation. Current explanatory models of cortical EDP are almost exclusively neurocentric. However, in recent years, increasing evidence has emerged on the role of astrocytes in brain function, including plasticity. Indeed, astrocytes appear as necessary partners of neurons at the core of the mechanisms of coding and homeostatic plasticity recorded in neurons. In addition to neuronal plasticity, several different forms of astrocytic plasticity have recently been discovered. They extend from changes in receptor expression and dynamic changes in morphology to alteration in gliotransmitter release. It is however unclear how astrocytic plasticity contributes to the neuronal EDP. Here, we review the known and possible roles for astrocytes in the barrel cortex, including its plasticity.
Collapse
|
9
|
Ramanathan DS, Conner JM, Anilkumar AA, Tuszynski MH. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits. J Neurophysiol 2015; 113:1585-97. [PMID: 25505106 PMCID: PMC4346727 DOI: 10.1152/jn.00408.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022] Open
Abstract
Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia.
Collapse
Affiliation(s)
- Dhakshin S Ramanathan
- Department of Neurosciences, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Francisco, California; and Veterans Affairs Medical Center, San Francisco, California
| | - James M Conner
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Arjun A Anilkumar
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, California; Veterans Affairs Medical Center, San Diego, California;
| |
Collapse
|
10
|
Glazewski S, Barth AL. Stimulus intensity determines experience-dependent modifications in neocortical neuron firing rates. Eur J Neurosci 2014; 41:410-9. [PMID: 25546174 PMCID: PMC4331261 DOI: 10.1111/ejn.12805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 11/27/2022]
Abstract
Although subthreshold inputs of neocortical sensory neurons are broadly tuned, the spiking output is more restricted. These subthreshold inputs provide a substrate for stimulus intensity-dependent changes their spiking output, as well as for experience-dependent plasticity to alter firing properties. Here we investigated how different stimulus intensities modified the firing output of individual neurons in layer 2/3 of the mouse barrel cortex. Decreasing stimulus intensity over a 30-fold range lowered the firing rates evoked by principal whisker stimulation and reduced the overall size of the responding ensemble in whisker-undeprived animals. We then examined how these responses were changed after single-whisker experience (SWE). After 7 days of SWE, the mean magnitude of response to spared whisker stimulation at the highest stimulus intensity was not altered. However, lower-intensity whisker stimulation revealed a more than 10-fold increase in mean firing output compared with control animals. Also, under control conditions, only ∽15% of neurons showed any firing at low stimulus intensity, compared with more than 70% of neurons after SWE. However, response changes measured in the immediately surrounding representations were detected only for the highest stimulus intensity. Overall, these data showed that the measurement of experience-dependent changes in the spike output of neocortical neurons was highly dependent upon stimulus intensity.
Collapse
Affiliation(s)
- Stanislaw Glazewski
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA; School of Life Sciences and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | | |
Collapse
|
11
|
Herrera-Rincon C, Panetsos F. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex. Front Cell Neurosci 2014; 8:385. [PMID: 25452715 PMCID: PMC4231972 DOI: 10.3389/fncel.2014.00385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/29/2014] [Indexed: 11/13/2022] Open
Abstract
Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex "on demand" by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain ; Department of Industrial Engineering and Management Systems, University of Central Florida Orlando, FL, USA
| |
Collapse
|
12
|
Medini P. Experience-dependent plasticity of visual cortical microcircuits. Neuroscience 2014; 278:367-84. [PMID: 25171791 DOI: 10.1016/j.neuroscience.2014.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. This review recapitulates the main recent findings in the field using mainly the primary visual cortex as a model system to highlight the more important questions and physiological principles (such as the role of non-competitive mechanisms, the role of inhibition in excitatory cell plasticity, the functional importance of spine and axonal plasticity on a microscale level). I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions.
Collapse
Affiliation(s)
- P Medini
- Institutionen för Molekylärbiologi, and Institutionen för Integrativ Medicinsk Biologi (IMB), Fysiologi Avdelning, Umeå Universitet, 90187 Umeå, Sweden.
| |
Collapse
|
13
|
Han Y, Huang MD, Sun ML, Duan S, Yu YQ. Long-Term Synaptic Plasticity in Rat Barrel Cortex. Cereb Cortex 2014; 25:2741-51. [PMID: 24735674 DOI: 10.1093/cercor/bhu071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rats generate sweeping whisker movements in order to explore their environments and identify objects. In somatosensory pathways, neuronal activity is modulated by the frequency of whisker vibration. However, the potential role of rhythmic neuronal activity in the cerebral processing of sensory signals and its mechanism remain unclear. Here, we showed that rhythmic vibrissal stimulation with short duration in anesthetized rats resulted in an increase or decrease in the amplitude of somatosensory-evoked potentials (SEPs) in the contralateral barrel cortex. The plastic change of the SEPs was frequency dependent and long lasting. The long-lasting enhancement of the vibrissa-to-cortex evoked response was side- but not barrel-specific. Local application of dl-2-amino-5-phosphonopentanoic acid into the barrel cortex revealed that this vibrissa-to-cortex long-term plasticity in adult rats was N-methyl-d-aspartate receptor-dependent. Most interestingly, whisker trimming through postnatal day (P)1-7 but not P29-35 impaired the long-term plasticity induced by 100 Hz vibrissal stimulation. The short period of rhythmic vibrissal stimulation did not induce long-lasting plasticity of field potentials in the thalamus. In conclusion, our results suggest that natural rhythmic whisker activity modifies sensory information processing in cerebral cortex, providing further insight into sensory perception.
Collapse
Affiliation(s)
- Yong Han
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming-De Huang
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Man-Li Sun
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shumin Duan
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Qin Yu
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Rajabi S, Shamsizadeh A, Amini H, Shirazi M, Allahtavakoli M, Abbasnejad M, Sheibani V. Effect of DSP-4 induced central noradrenergic depletion on tactile learning in rat. Neurol Res 2013; 34:80-4. [DOI: 10.1179/1743132811y.0000000050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Soodeh Rajabi
- Kerman neuroscience research centre, Kerman University of Medical Sciences, Iran
- Department of BiologyFaculty of Basic Sciences, Shahid Bahonar University of Kerman, Iran
| | - Ali Shamsizadeh
- Physiology–Pharmacology Research Centre, Rafsanjan University of Medical Sciences, Iran
| | - Hossein Amini
- Department of PharmacologyNeuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Shirazi
- Physiology–Pharmacology Research Centre, Rafsanjan University of Medical Sciences, Iran
| | | | - Mehdi Abbasnejad
- Department of BiologyFaculty of Basic Sciences, Shahid Bahonar University of Kerman, Iran
| | - Vahid Sheibani
- Kerman neuroscience research centre, Kerman University of Medical Sciences, Iran
| |
Collapse
|
15
|
Cheetham CEJ, Fox K. The role of sensory experience in presynaptic development is cortical area specific. J Physiol 2011; 589:5691-9. [PMID: 21946850 PMCID: PMC3249043 DOI: 10.1113/jphysiol.2011.218347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/26/2011] [Indexed: 11/08/2022] Open
Abstract
The postsynaptic response to a stimulus is dependent on the history of previous activity at that synapse. This short-term plasticity (STP) is a key determinant of neural network function. During postnatal development, many excitatory intracortical synapses switch from strong depression during early postnatal life, to weaker depression and in some cases facilitation in adulthood. However, it is not known whether this developmental switch is an innate feature of synaptic maturation, or whether it requires activity. We investigated this question in the barrel and visual cortex, two widely studied models of experience-dependent plasticity. We have previously defined the time course over which presynaptic development occurs in these two cortical areas, enabling us to make the first direct comparison of the role of sensory experience during synaptic development. We found that maturation of STP in visual cortex was unaffected by dark rearing from before eye opening. In marked contrast, total whisker deprivation completely blocked the developmental decrease in presynaptic release probability (Pr), and the concomitant increase in paired pulse ratio (PPR), which occur in barrel cortex during the third and fourth postnatal weeks. However, the developmental increase in the steady state response to a train of stimuli was unaffected by whisker deprivation. This supports a mechanistic link between Pr and the PPR, but dissociates Pr from the steady state amplitude during repetitive stimulation. Our findings indicate that sensory experience plays a greater role in presynaptic development at L4 to L2/3 excitatory synapses in the barrel cortex than in the visual cortex.
Collapse
Affiliation(s)
- Claire E J Cheetham
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | | |
Collapse
|
16
|
Iurilli G, Benfenati F, Medini P. Loss of visually driven synaptic responses in layer 4 regular-spiking neurons of rat visual cortex in absence of competing inputs. Cereb Cortex 2011; 22:2171-81. [PMID: 22047965 DOI: 10.1093/cercor/bhr304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Monocular deprivation (MD) during development shifts the ocular preference of primary visual cortex (V1) neurons by depressing closed-eye responses and potentiating open-eye responses. As these 2 processes are temporally and mechanistically distinct, we tested whether loss of responsiveness occurs also in absence of competing inputs. We thus compared the effects of long-term MD in layer 4 regular-spiking pyramidal neurons (L4Ns) of binocular and monocular V1 (bV1 and mV1) with whole-cell recordings. In bV1, input depression was larger than potentiation, and the ocular dominance shift was larger for spike outputs. MD-but not retinal inactivation with tetrodotoxin-caused a comparable loss of synaptic and spike responsiveness in mV1, which is innervated only by the deprived eye. Conversely, brief MD depressed synaptic responses only in bV1. MD-driven depression in mV1 was accompanied by a proportional reduction of visual thalamic inputs, as assessed upon pharmacological silencing of intracortical transmission. Finally, sub- and suprathreshold responsiveness was similarly degraded in L4Ns of bV1 upon complete deprivation of patterned vision through a binocular deprivation period of comparable length. Thus, loss of synaptic inputs from the deprived eye occurs also in absence of competition in the main thalamorecipient lamina, albeit at a slower pace.
Collapse
Affiliation(s)
- Giuliano Iurilli
- Neuroscience and Brain Technologies Department, Italian Institute of Technology, Genova, Italy
| | | | | |
Collapse
|
17
|
Zhang Z, Sun QQ. The balance between excitation and inhibition and functional sensory processing in the somatosensory cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:305-33. [PMID: 21708316 DOI: 10.1016/b978-0-12-385198-7.00012-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The balance between excitation and inhibition (E/I balance) is tightly regulated in adult cortices to maintain proper nervous system function. Disturbed E/I balance is associated with numerous neuropsychological disorders, such as autism, epilepsy and schizophrenia. The present review will discuss aspects of Hebbian and homeostatic mechanisms regulating excitatory and inhibitory balance related to sensory processing in somatosensory cortex of rodents. Additionally, changes in the E/I balance during sensory manipulation will be discussed.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
18
|
Nakashima AS, Dyck RH. Dynamic, experience-dependent modulation of synaptic zinc within the excitatory synapses of the mouse barrel cortex. Neuroscience 2010; 170:1015-9. [PMID: 20727945 DOI: 10.1016/j.neuroscience.2010.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/06/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
Increasing evidence suggests that synaptic zinc, found within the axon terminals of a subset of glutamatergic neurons in the cerebral cortex, is intricately involved in cortical plasticity. Using the vibrissae/barrel cortex model of cortical plasticity, we have previously shown manipulations of sensory input leads to rapid changes in synaptic zinc levels within the corresponding regions of the somatotopic map in the cortex. Here, using electron microscopy, we show how some of these changes are mediated at the synaptic level. We found that the density of zincergic synapses increased significantly in layers II/III, IV, and V. In layers IV and V, this change occurred in the absence of a significant increase in excitatory synapse density, which seems to indicate that excitatory synapses, which previously did not contain synaptic zinc, begin to newly house zinc within its synaptic vesicles. Our results show that excitatory neurons can dynamically change the phenotype of the vesicular content of their synapses in response to changes in sensory input. Given the range of modulatory effects zinc can have on neurotransmission, such a change in the complement of vesicular contents presumably allow these neurons to utilize synaptic zinc to facilitate plasticity. Thus, our results further support the role of zinc as an active participant in the processes contributing to experience-dependent cortical plasticity.
Collapse
Affiliation(s)
- A S Nakashima
- Department of Psychology, University of Calgary, 2500 University Dr. N.W., Calgary, AB, Canada
| | | |
Collapse
|
19
|
Popescu MV, Polley DB. Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron 2010; 65:718-31. [PMID: 20223206 DOI: 10.1016/j.neuron.2010.02.019] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2010] [Indexed: 11/26/2022]
Abstract
Degraded sensory experience during critical periods of development can have adverse effects on brain function. In the auditory system, conductive hearing loss associated with childhood ear infections can produce long-lasting deficits in auditory perceptual acuity, much like amblyopia in the visual system. Here we explore the neural mechanisms that may underlie "amblyaudio" by inducing reversible monaural deprivation (MD) in infant, juvenile, and adult rats. MD distorted tonotopic maps, weakened the deprived ear's representation, strengthened the open ear's representation, and disrupted binaural integration of interaural level differences (ILD). Bidirectional plasticity effects were strictly governed by critical periods, were more strongly expressed in primary auditory cortex than inferior colliculus, and directly impacted neural coding accuracy. These findings highlight a remarkable degree of competitive plasticity between aural representations and suggest that the enduring perceptual sequelae of childhood hearing loss might be traced to maladaptive plasticity during critical periods of auditory cortex development.
Collapse
Affiliation(s)
- Maria V Popescu
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
20
|
Sheibani V, Shamsizadeh A, Afarinesh MR, Rezvani ME. Neonatal capsaicin treatment modulates experience-dependent plasticity in the rat barrel cortex. J Comp Neurol 2010; 518:3427-38. [DOI: 10.1002/cne.22384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Krieger P. Experience-dependent increase in spine calcium evoked by backpropagating action potentials in layer 2/3 pyramidal neurons in rat somatosensory cortex. Eur J Neurosci 2009; 30:1870-7. [PMID: 19912332 DOI: 10.1111/j.1460-9568.2009.06977.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In spines on basal dendrites of layer 2/3 pyramidal neurons in somatosensory barrel cortex, calcium transients evoked by back-propagating action potentials (bAPs) were investigated (i) along the length of the basal dendrite, (ii) with postnatal development and (iii) with sensory deprivation during postnatal development. Layer 2/3 pyramidal neurons were investigated at three different ages. At all ages [postnatal day (P)8, P14, P21] the bAP-evoked calcium transient amplitude increased with distance from the soma with a peak at around 50 microm, followed by a gradual decline in amplitude. The effect of sensory deprivation on the bAP-evoked calcium was investigated using two different protocols. When all whiskers on one side of the rat snout were trimmed daily from P8 to P20-24 there was no difference in the bAP-evoked calcium transient between cells in the contralateral hemisphere, lacking sensory input from the whisker, and cells in the ipsilateral barrel cortex, with intact whisker activation. When, however, only the D-row whiskers on one side were trimmed the distribution of bAP-evoked calcium transients in spines was shifted towards larger amplitudes in cells located in the deprived D-column. In conclusion, (i) the bAP-evoked calcium transient gradient along the dendrite length is established at P8, (ii) the calcium transient increases in amplitude with age and (iii) this increase is enhanced in layer 2/3 pyramidal neurons located in a sensory-deprived barrel column that is bordered by non-deprived barrel columns.
Collapse
Affiliation(s)
- Patrik Krieger
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Abstract
Sensory experience and learning alter sensory representations in cerebral cortex. The synaptic mechanisms underlying sensory cortical plasticity have long been sought. Recent work indicates that long-term cortical plasticity is a complex, multicomponent process involving multiple synaptic and cellular mechanisms. Sensory use, disuse, and training drive long-term potentiation and depression (LTP and LTD), homeostatic synaptic plasticity and plasticity of intrinsic excitability, and structural changes including formation, removal, and morphological remodeling of cortical synapses and dendritic spines. Both excitatory and inhibitory circuits are strongly regulated by experience. This review summarizes these findings and proposes that these mechanisms map onto specific functional components of plasticity, which occur in common across the primary somatosensory, visual, and auditory cortices.
Collapse
Affiliation(s)
- Daniel E Feldman
- Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, USA.
| |
Collapse
|
23
|
Reliable and precise neuronal firing during sensory plasticity in superficial layers of primary somatosensory cortex. J Neurosci 2009; 29:11817-27. [PMID: 19776268 DOI: 10.1523/jneurosci.3431-09.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neocortical neurons show astonishing variation in the presence and timing of action potentials across stimulus trials, a phenomenon whose function and significance has been the subject of great interest. Here we present data showing that this response variability can be significantly reduced by altered sensory experience. Removal of all but one whisker from the side of the mouse face results in the rapid (within 24 h) potentiation of mean firing rates within the cortical representation of the spared whisker in young postnatal animals (postnatal days 13-16). Analysis of single-unit responses from whisker-spared animals shows that this potentiation can be attributed to an enhancement of trial-to-trial reliability (i.e., reduced response failures), as well as an increase in the mean number of spikes evoked within a successful trial. Changes were confined to superficial layers 2/3 and were not observed in the input layer of the cortex, layer 4. In addition to these changes in firing rates, we also observed profound changes in the precise timing of sensory-evoked responses. Trial-to-trial temporal precision was enhanced and the absolute latency of responses was reduced after single-whisker experience. Enhanced spike-timing precision and trial-to-trial reliability could also be triggered in adolescent animals with longer periods (7 d) of single-whisker experience. These experiments provide a quantitative analysis of how sensory experience can enhance both reliability and temporal precision in neocortical neurons and provide a framework for testing specific hypotheses about the role of response variability in cortical function and the molecular mechanisms underlying this phenomenon.
Collapse
|
24
|
Banerjee A, Meredith RM, Rodríguez-Moreno A, Mierau SB, Auberson YP, Paulsen O. Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex. ACTA ACUST UNITED AC 2009; 19:2959-69. [PMID: 19363149 PMCID: PMC2774397 DOI: 10.1093/cercor/bhp067] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spike timing–dependent plasticity (STDP) is a strong candidate for an N-methyl-D-aspartate (NMDA) receptor-dependent form of synaptic plasticity that could underlie the development of receptive field properties in sensory neocortices. Whilst induction of timing-dependent long-term potentiation (t-LTP) requires postsynaptic NMDA receptors, timing-dependent long-term depression (t-LTD) requires the activation of presynaptic NMDA receptors at layer 4-to-layer 2/3 synapses in barrel cortex. Here we investigated the developmental profile of t-LTD at layer 4-to-layer 2/3 synapses of mouse barrel cortex and studied their NMDA receptor subunit dependence. Timing-dependent LTD emerged in the first postnatal week, was present during the second week and disappeared in the adult, whereas t-LTP persisted in adulthood. An antagonist at GluN2C/D subunit–containing NMDA receptors blocked t-LTD but not t-LTP. Conversely, a GluN2A subunit–preferring antagonist blocked t-LTP but not t-LTD. The GluN2C/D subunit requirement for t-LTD appears to be synapse specific, as GluN2C/D antagonists did not block t-LTD at horizontal cross-columnar layer 2/3-to-layer 2/3 synapses, which was blocked by a GluN2B antagonist instead. These data demonstrate an NMDA receptor subunit-dependent double dissociation of t-LTD and t-LTP mechanisms at layer 4-to-layer 2/3 synapses, and suggest that t-LTD is mediated by distinct molecular mechanisms at different synapses on the same postsynaptic neuron.
Collapse
Affiliation(s)
- Abhishek Banerjee
- The Neuronal Oscillations Group, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
25
|
Fox K. Experience-dependent plasticity mechanisms for neural rehabilitation in somatosensory cortex. Philos Trans R Soc Lond B Biol Sci 2009; 364:369-81. [PMID: 19038777 PMCID: PMC2674476 DOI: 10.1098/rstb.2008.0252] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional rehabilitation of the cortex following peripheral or central nervous system damage is likely to be improved by a combination of behavioural training and natural or therapeutically enhanced synaptic plasticity mechanisms. Experience-dependent plasticity studies in the somatosensory cortex have begun to reveal those synaptic plasticity mechanisms that are driven by sensory experience and might therefore be active during behavioural training. In this review the anatomical pathways, synaptic plasticity mechanisms and structural plasticity substrates involved in cortical plasticity are explored, focusing on work in the somatosensory cortex and the barrel cortex in particular.
Collapse
Affiliation(s)
- Kevin Fox
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
26
|
Broser P, Grinevich V, Osten P, Sakmann B, Wallace DJ. Critical period plasticity of axonal arbors of layer 2/3 pyramidal neurons in rat somatosensory cortex: layer-specific reduction of projections into deprived cortical columns. Cereb Cortex 2008; 18:1588-603. [PMID: 17998276 PMCID: PMC2430153 DOI: 10.1093/cercor/bhm189] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We examined the effect of whisker trimming during early postnatal development on the morphology of axonal arbors in rat somatosensory cortex. Axonal arbors from populations of layer 2/3 pyramidal neurons in the D2 column were labeled by lentivirus-mediated expression of green fluorescent protein. Axonal projection patterns were compared between untrimmed control animals and animals with all whiskers in A-, B-, and C-rows trimmed (D- and E-rows left intact) from postnatal days 7 to 15 (termed from here on DE-pairing). Control animals had approximately symmetrical horizontal projections toward C- and E-row columns in both supra- and infragranular layers. Following DE-pairing, the density of axons in supragranular layers projecting from the labeled neurons in the D2 column was higher in E- than in C-row columns. This asymmetry resulted primarily from a reduction in projection density toward the deprived C-row columns. In contrast, no change was observed in infragranular layers. The results indicate that DE-pairing during early postnatal development results in reduced axonal projection from nondeprived into deprived columns and that cortical neurons are capable of structural rearrangements at subsets of their axonal arbors.
Collapse
Affiliation(s)
- P Broser
- Department of Cell Physiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
27
|
Drew PJ, Feldman DE. Intrinsic signal imaging of deprivation-induced contraction of whisker representations in rat somatosensory cortex. ACTA ACUST UNITED AC 2008; 19:331-48. [PMID: 18515797 DOI: 10.1093/cercor/bhn085] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In classical sensory cortical map plasticity, the representation of deprived or underused inputs contracts within cortical sensory maps, whereas spared inputs expand. Expansion of spared inputs occurs preferentially into nearby cortical columns representing temporally correlated spared inputs, suggesting that expansion involves correlation-based learning rules at cross-columnar synapses. It is unknown whether deprived representations contract in a similar anisotropic manner, which would implicate similar learning rules and sites of plasticity. We briefly deprived D-row whiskers in 20-day-old rats, so that each deprived whisker had deprived (D-row) and spared (C- and E-row) neighbors. Intrinsic signal optical imaging revealed that D-row deprivation weakened and contracted the functional representation of deprived D-row whiskers in L2/3 of somatosensory (S1) cortex. Spared whisker representations did not strengthen or expand, indicating that D-row deprivation selectively engages the depression component of map plasticity. Contraction of deprived whisker representations was spatially uniform, with equal withdrawal from spared and deprived neighbors. Single-unit electrophysiological recordings confirmed these results, and showed substantial weakening of responses to deprived whiskers in layer 2/3 of S1, and modest weakening in L4. The observed isotropic contraction of deprived whisker representations during D-row deprivation is consistent with plasticity at intracolumnar, rather than cross-columnar, synapses.
Collapse
Affiliation(s)
- Patrick J Drew
- Section of Neurobiology, Division of Biological Science, University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | |
Collapse
|
28
|
Dolan S, Cahusac PMB. Enhanced short-latency responses in the ventral posterior medial (VPM) thalamic nucleus following whisker trimming in the adult rat. Physiol Behav 2007; 92:500-6. [PMID: 17521687 DOI: 10.1016/j.physbeh.2007.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 04/06/2007] [Accepted: 04/16/2007] [Indexed: 11/23/2022]
Abstract
This study examined the effects of whisker trimming on the functional organization of the adult somatosensory thalamus. In vivo extracellular unit recordings were made on ventral posterior medial (VPM) thalamic neurons in urethane anaesthetised adult rats. Neuronal response properties to controlled whisker deflection were recorded in untrimmed control animals and in animals where one row of whiskers had been trimmed for a median of 18 days. Trimming significantly increased short-latency responses to stimulation of the centre receptive field whisker (mean increase of 36%, p<.001). Longer latency responses to surround receptive field whiskers were unaffected. Spontaneous firing was significantly decreased in trimmed animals. A condition-test paradigm indicated that thalamic inhibition was reduced following whisker trimming, although this effect failed to reach statistical significance. These results demonstrate a capacity of the adult somatosensory thalamus to undergo functional reorganization in response to non-traumatic and innocuous whisker trimming.
Collapse
Affiliation(s)
- Sharron Dolan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| | | |
Collapse
|
29
|
Wallace DJ, Sakmann B. Plasticity of representational maps in somatosensory cortex observed by in vivo voltage-sensitive dye imaging. ACTA ACUST UNITED AC 2007; 18:1361-73. [PMID: 17921458 DOI: 10.1093/cercor/bhm168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the effect of selective whisker trimming on the development of the cortical representation of a whisker deflection in layer 2/3 of rat somatosensory cortex using in vivo voltage-sensitive dye (vsd) imaging. Responses to deflection of D-row whiskers were recorded after trimming of A-row, B-row, and C-row whiskers, referred to as DE pairing, during postnatal development. Animals DE paired from postnatal day (p) 7 to p17 had a significant bias in the spread of the vsd signal, favoring spread toward the concomitantly nondeprived E-row columns. This resulted primarily from a strong decrease in signal spreading into the deprived C-row columns. In contrast, signal spread in control littermates was approximately symmetrical. DE pairing failed to elicit significant changes when begun after p14, thus defining a critical period for this phenomenon. The results suggest that sensory deprivation in this model results in lower connectivity being established between nondeprived columns and adjacent deprived ones.
Collapse
Affiliation(s)
- Damian J Wallace
- Department of Cell Physiology, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
30
|
Stevens RT, Hodge CJ. Functional barrel cortex in 'hairless', nude mice. Brain Res 2007; 1156:93-8. [PMID: 17499613 DOI: 10.1016/j.brainres.2007.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/30/2022]
Abstract
Although nude mice are not truly hairless, they demonstrate abnormal hair structure and growth patterns, which are related to their genetic state. Whereas wild-type mice are born with visible vibrissae, nude mice are distinguishable at birth by the lack of visible vibrissae, which do not appear until approximately postnatal day 6. Additionally, adult nude mice have abnormal whisker cycling patterns in which structurally normal whisker follicles produce fragile whiskers which break or fallout leaving follicles whiskerless for several days before a fine replacement whisker appears and develops. The current study shows that despite these abnormal periods of whisker deprivation, the barrel cortex of nude mice develops a normal structural appearance viewed with cytochrome oxidase staining. Additionally, intrinsic optical imaging studies of barrel cortex responses to single whisker stimulation do not appear altered from normal despite periodic loss of adjacent whiskers.
Collapse
Affiliation(s)
- Richard T Stevens
- Department of Neurosurgery, 750 East Adams St., SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
31
|
Tokarski K, Urban-Ciecko J, Kossut M, Hess G. Sensory learning-induced enhancement of inhibitory synaptic transmission in the barrel cortex of the mouse. Eur J Neurosci 2007; 26:134-41. [PMID: 17573922 DOI: 10.1111/j.1460-9568.2007.05629.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In adult mice, repetitive pairing of stimulation of mystacial vibrissae with an electrical shock to the tail induces expansion of the cortical representation of stimulated vibrissae accompanied by elevation of the GABAergic markers. Here, we show that this associative learning paradigm results in a selective increase in the frequency of spontaneous inhibitory postsynaptic currents in layer IV excitatory neurons located within the barrel representing stimulated vibrissae, evident 24 h after the end of training. The mean amplitude of spontaneous inhibitory postsynaptic potentials recorded from excitatory neurons was unchanged. Recordings from layer IV excitatory and fast spiking neurons showed that the training induced changes neither in the mean frequency nor it the mean amplitude of spontaneous excitatory postsynaptic currents. On the other hand, the mean amplitude of field potentials evoked by the stimulation of layer VI and recorded in layer IV was significantly reduced. These data indicate that aversive training results in a selective and long-lasting enhancement of GABAergic transmission within the cortical representation of stimulated vibrissae, which may result in a decrease in layer VI-evoked field responses.
Collapse
Affiliation(s)
- Krzysztof Tokarski
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | | | | | | |
Collapse
|
32
|
Shamsizadeh A, Sheibani V, Arabzadeh S, Afarinesh MR, Farazifard R, Noorbakhsh SM, Fathollahi Y. Single whisker experience started on postnatal days 0, 5 or 8 changes temporal characteristics of response integration in layers IV and V of rat barrel cortex neurons. Brain Res Bull 2007; 74:29-36. [PMID: 17683786 DOI: 10.1016/j.brainresbull.2007.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Revised: 03/14/2007] [Accepted: 04/22/2007] [Indexed: 11/29/2022]
Abstract
Neonatal single whisker experience changes the response properties of spared barrel neurons to deflections of principal and adjacent whiskers. However little is known about the temporal characteristics of the paired whisker inputs. To address this issue we used computer controlled mechanical displacement of paired whiskers in control and plucked animals (plucking of all whiskers but D2 started at 0, 5 and 8 postnatal days). The principal whisker (PW) and its caudal adjacent whisker (AW) were deflected simultaneously or serially at different inter-stimulus intervals (10, 20, 30, 50 and 100 ms). Neuronal responses were recorded in D2 spared barrel both in layers IV and V. In the control group, combined deflection of AW prior to PW led to suppression of ON and OFF responses to PW deflection both in layers IV and V. The magnitude of this suppression was strongly dependent on the inter-stimulus intervals (ISIs). At almost all tested ISIs, whisker plucking from P0, P5 and P8 weakened suppressive interactions in layers IV and V barrel neurons for both ON and OFF responses. The most decrease in inhibitory interactions was observed in P5 plucked animals. Principal whisker-evoked ON responses were increased only in P0 plucked animals both in layers IV and V. AW-evoked ON responses are decreased in P5 plucked animals in layer IV. The available data suggest that sensory experience can modulate temporal aspects of response integration and receptive field properties of layers IV and V neurons in barrel cortex. These changes have different critical periods.
Collapse
Affiliation(s)
- Ali Shamsizadeh
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
33
|
Glazewski S, Benedetti BL, Barth AL. Ipsilateral whiskers suppress experience-dependent plasticity in the barrel cortex. J Neurosci 2007; 27:3910-20. [PMID: 17409256 PMCID: PMC6672419 DOI: 10.1523/jneurosci.0181-07.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Each cerebral hemisphere processes sensory input from both sides of the body, but the impact of this convergence on shaping and modifying receptive field properties remains controversial. Here we investigated the effect of chronic deprivation of ipsilateral sensory whiskers on receptive field plasticity in primary somatosensory cortex. In the absence of ipsilateral whiskers, cortical receptive fields were significantly larger than control after 1 week. Removal of all but a single whisker from one side of the face [single-whisker experience (SWE)] has been shown to result in the expansion of the cortical area responding to the spared whisker. We compared the effects of SWE in the presence (SWE-unilateral) and absence (SWE-bilateral) of ipsilateral whiskers. SWE-bilateral deprivation results in a significant increase in neuronal responses to spared whisker stimulation both in its cognate barrel column and in adjacent, surrounding barrel columns compared with control and SWE-unilateral deprived animals. Surround receptive fields in deprived columns were maintained in SWE-bilateral treated animals but depressed in SWE-unilateral animals. The increase in spared whisker responses was progressive with longer deprivation periods. These data show that ipsilateral whiskers can constrain receptive field size in the barrel cortex.
Collapse
Affiliation(s)
- Stanislaw Glazewski
- Institute for Science and Technology in Medicine and School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom, and
| | - Brett L. Benedetti
- Department of Biological Sciences and
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Alison L. Barth
- Department of Biological Sciences and
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
34
|
Lee SH, Land PW, Simons DJ. Layer- and cell-type-specific effects of neonatal whisker-trimming in adult rat barrel cortex. J Neurophysiol 2007; 97:4380-5. [PMID: 17392411 DOI: 10.1152/jn.01217.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tactile deprivation in rats produced by whisker-trimming early in life leads to abnormally robust responses of excitatory neurons in layer 4 of primary somatosensory cortex when the re-grown whiskers are stimulated. Present findings from fast-spike neurons indicate that presumed inhibitory cells fire less robustly under the same conditions. These contrasting effects may reflect altered patterns of thalamocortical input to excitatory versus inhibitory cells and/or changes in the strength of intracortical connections. Despite increased excitability of layer 4, neurons in layer 2/3 respond at control levels even after full whisker re-growth. Layer 4 synapses onto supragranular neurons may be permanently depressed as a result of neonatal sensory deprivation.
Collapse
Affiliation(s)
- Soo-Hyun Lee
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
35
|
Quairiaux C, Armstrong-James M, Welker E. Modified Sensory Processing in the Barrel Cortex of the Adult Mouse After Chronic Whisker Stimulation. J Neurophysiol 2007; 97:2130-47. [PMID: 17122325 DOI: 10.1152/jn.00338.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic stimulation of a mystacial whisker follicle for 24 h induces structural and functional changes in layer IV of the corresponding barrel, with an insertion of new inhibitory synapses on spines and a depression of neuronal responses to the stimulated whisker. Under urethane anesthesia, we analyzed how sensory responses of single units are affected in layer IV and layers II & III of the stimulated barrel column as well as in adjacent columns. In the stimulated column, spatiotemporal characteristics of the activation evoked by the stimulated whisker are not altered, although spontaneous activity and response magnitude to the stimulated whisker are decreased. The sensitivity of neurons for the deflection of this whisker is not altered but the dynamic range of the response is reduced as tested by varying the amplitude and repetition rate of the deflection. Responses to deflection of nonstimulated whiskers remain unaltered with the exception of in-row whisker responses that are depressed in the column corresponding to the stimulated whisker. In adjacent nonstimulated columns, neuronal activity remains unaltered except for a diminished response of units in layer II/III to deflection of the stimulated whisker. From these results we propose that an increased inhibition within the stimulated barrel reduced the magnitude of its excitatory output and accordingly the flow of excitation toward layers II & III and the subsequent spread into adjacent columns. In addition, the period of uncorrelated activity between pathways from the stimulated and nonstimulated whiskers weakens synaptic inputs from in-row whiskers in the stimulated barrel column.
Collapse
Affiliation(s)
- Charles Quairiaux
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
36
|
Abstract
In excitatory neurons, most glutamatergic synapses are made on the heads of dendritic spines, each of which houses the postsynaptic terminal of a single glutamatergic synapse. We review recent studies demonstrating in vivo that spines are motile and plastic structures whose morphology and lifespan are influenced, even in adult animals, by changes in sensory input. However, most spines that appear in adult animals are transient, and the addition of stable spines and synapses is rare. In vitro studies have shown that patterns of neuronal activity known to induce synaptic plasticity can also trigger changes in spine morphology. Therefore, it is tempting to speculate that the plastic changes of spine morphology reflect the dynamic state of its associated synapse and are responsible to some extent for neuronal circuitry remodeling. Nevertheless, morphological changes are not required for all forms of synaptic plasticity, and whether changes in the spine shape and size significantly impact synaptic signals is unclear.
Collapse
Affiliation(s)
- Veronica A Alvarez
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
37
|
Daw MI, Scott HL, Isaac JTR. Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles. Mol Cell Neurosci 2007; 34:493-502. [PMID: 17329121 PMCID: PMC1952688 DOI: 10.1016/j.mcn.2007.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/21/2006] [Accepted: 01/03/2007] [Indexed: 11/28/2022] Open
Abstract
The thalamocortical (TC) input to layer IV provides the major pathway for ascending sensory information to the mammalian sensory cortex. During development there is a dramatic refinement of this input that underlies the maturation of the topographical map in layer IV. Over the last 10 years our understanding of the mechanisms of the developmental and experience-driven changes in synaptic function at TC synapses has been greatly advanced. Here we describe these studies that point to a key role for NMDA receptor-dependent synaptic plasticity, a role for kainate receptors and for a rapid maturation in GABAergic inhibition. The expression mechanisms of some of the forms of neonatal synaptic plasticity are novel and, in combination with other mechanisms, produce a layer IV circuit that exhibits functional properties necessary for mature sensory processing.
Collapse
Affiliation(s)
- Michael I Daw
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
38
|
Bender KJ, Allen CB, Bender VA, Feldman DE. Synaptic basis for whisker deprivation-induced synaptic depression in rat somatosensory cortex. J Neurosci 2006; 26:4155-65. [PMID: 16624936 PMCID: PMC3070309 DOI: 10.1523/jneurosci.0175-06.2006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whisker deprivation weakens excitatory layer 4 (L4) inputs to L2/3 pyramidal cells in rat primary somatosensory (S1) cortex, which is likely to contribute to whisker map plasticity. This weakening has been proposed to represent long-term depression (LTD) induced by sensory deprivation in vivo. Here, we studied the synaptic expression mechanisms for deprivation-induced weakening of L4-L2/3 inputs and assessed its similarity to LTD, which is known to be expressed presynaptically at L4-L2/3 synapses. Whisker deprivation increased the paired pulse ratio at L4-L2/3 synapses and slowed the use-dependent block of NMDA receptor currents by MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], indicating that deprivation reduced transmitter release probability at these synapses. In contrast, deprivation did not alter either miniature EPSC amplitude in L2/3 neurons or the amplitude of quantal L4-L2/3 synaptic responses measured in strontium, indicating that postsynaptic responsiveness was unchanged. In young postnatal day 12 (P12) rats, at least 4 d of deprivation were required to significantly weaken L4-L2/3 synapses. Similar weakening occurred when deprivation began at older ages (P20), when synapses are mostly mature, indicating that weakening is unlikely to represent a failure of synaptic maturation but instead represents a reduction in the strength of existing synapses. Thus, whisker deprivation weakens L4-L2/3 synapses by decreasing presynaptic function, similar to known LTD mechanisms at this synapse.
Collapse
Affiliation(s)
- Kevin J Bender
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0357, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.
Collapse
Affiliation(s)
- Raluca Moucha
- Neuroscience Program, School of Brain and Behavioral Sciences, University of Texas at Dallas, Dallas, TX, USA
| | | |
Collapse
|
40
|
Shoykhet M, Land PW, Simons DJ. Whisker trimming begun at birth or on postnatal day 12 affects excitatory and inhibitory receptive fields of layer IV barrel neurons. J Neurophysiol 2005; 94:3987-95. [PMID: 16093330 DOI: 10.1152/jn.00569.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rats, whisker trimming during development leads to persistent alterations in the function of cortical barrel circuits and to behavioral deficits later in life. Here we examined how whisker trimming begun either at birth (P0) or on postnatal day 12 (P12), around the onset of whisking behavior, affects receptive fields of layer IV barrel neurons. All whiskers on the left face were trimmed for 40-45 days and then allowed to regrow fully. Extracellular single-unit recordings and controlled deflections of principal and adjacent whiskers (PW and AW, respectively), individually or in paired combinations, were used to assess excitatory and suppressive effects of neighboring whiskers on barrel neurons. Results indicate that whisker trimming both from P0 and P12 leads to enlarged excitatory and weakened inhibitory receptive fields in layer IV neurons. PW- and AW-evoked responses are larger in magnitude in trimmed than in control animals; AW-evoked responses are disproportionately affected, decreasing the spatial focus of barrel neurons. Deprivation after P12 accounts for approximately 50% of the total effect observed in P0 trimmed animals. Suppressive interactions, evoked by two whiskers deflected in succession, are weaker in trimmed than in control animals. Suppressive caudal/rostral and ventral/dorsal gradients, however, seem unaffected by sensory deprivation. Thus the developmental period during which experience persistently modifies maturing barrel circuitry extends up to and likely beyond the onset of whisking behavior. Sensory deprivation during this time affects development of both excitatory and inhibitory receptive fields of barrel neurons and likely impairs cortical integration of sensory information from multiple whiskers.
Collapse
Affiliation(s)
- Michael Shoykhet
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | |
Collapse
|
41
|
Shumway C, Morissette J, Bower JM. Mechanisms underlying reorganization of fractured tactile cerebellar maps after deafferentation in developing and adult rats. J Neurophysiol 2005; 94:2630-43. [PMID: 15987764 DOI: 10.1152/jn.00161.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies showed that fractured tactile cerebellar maps in rats reorganize after deafferentation during development and in adulthood while maintaining a fractured somatotopy. Several months after deafferentation of the infraorbital branch of the trigeminal nerve, the missing upper lip innervation is replaced in the tactile maps in the granule cell layer of crus IIa. The predominant input into the denervated area is always the upper incisor representation. This study examined whether this reorganization was caused by mechanisms intrinsic to the cerebellum or extrinsic, i.e., occurring in somatosensory structures afferent to the cerebellum. We first compared normal and deafferented maps and found that the expansion of the upper incisor is not caused by a preexisting bias in the strength or abundance of upper incisor input in normal animals. We then mapped tactile representations before and immediately after denervation. We found that the pattern of reorganization observed in the cerebellum several months later is not caused by unmasking of a silent or weaker upper incisor representation. Both results indicate that the reorganization is not a result of subsequent growth or sprouting mechanism within the cerebellum itself. Finally, we compared postlesion maps in the cerebellum and the somatosensory cortex. We found that the upper incisor representation significantly expands in both regions and that this expansion is correlated, suggesting that reorganization in the cerebellum is a passive consequence of reorganization in afferent cerebellar pathways. This result has important developmental and functional implications.
Collapse
Affiliation(s)
- Caroly Shumway
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, USA.
| | | | | |
Collapse
|
42
|
Vyazovskiy VV, Welker E, Fritschy JM, Tobler I. Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur J Neurosci 2004; 20:1363-70. [PMID: 15341608 DOI: 10.1111/j.1460-9568.2004.03583.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regional differences in EEG slow wave activity (SWA) during sleep after sleep deprivation (SD) may be a consequence of differential metabolic activation of cortical areas. We investigated the relationship between the regional EEG dynamics and 2-deoxyglucose (DG) uptake after SD in mice. Six hours' SD were combined with natural unilateral whisker stimulation in an enriched environment to selectively activate the barrel cortex and motor areas. As expected, an interhemispheric asymmetry of 2-DG uptake was found in the barrel cortex immediately after SD. To test whether sleep contributes to recovery of the asymmetry, the stimulation was followed by either undisturbed sleep or by an additional SD. The asymmetry vanished after recovery sleep but also after the additional period of wakefulness without stimulation. In addition, relative 2-DG uptake in the primary motor cortex and retrosplenial area was significantly higher immediately after the SD than after the additional sleep or wakefulness, whereas no other region differed between the groups. Whisker stimulation elicited a greater increase in EEG SWA during non rapid eye movement sleep in the stimulated hemisphere than in the control hemisphere; this increase lasted for 10 h. Within a hemisphere, the initial increase in SWA was higher in the frontal than in the parietal derivation. We conclude that the regional SWA differences during sleep are use-dependent and may be related to the regional pattern of metabolism during the previous waking episode. However, the regional metabolic recovery is not dependent on sleep, and is not directly reflected in changes in SWA during sleep.
Collapse
Affiliation(s)
- Vladyslav V Vyazovskiy
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, CH-8057, Switzerland
| | | | | | | |
Collapse
|
43
|
Celikel T, Szostak VA, Feldman DE. Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nat Neurosci 2004; 7:534-41. [PMID: 15064767 PMCID: PMC3082358 DOI: 10.1038/nn1222] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 03/12/2004] [Indexed: 11/08/2022]
Abstract
Deprivation-induced plasticity of sensory cortical maps involves long-term potentiation (LTP) and depression (LTD) of cortical synapses, but how sensory deprivation triggers LTP and LTD in vivo is unknown. Here we tested whether spike timing-dependent forms of LTP and LTD are involved in this process. We measured spike trains from neurons in layer 4 (L4) and layers 2 and 3 (L2/3) of rat somatosensory cortex before and after acute whisker deprivation, a manipulation that induces whisker map plasticity involving LTD at L4-to-L2/3 (L4-L2/3) synapses. Whisker deprivation caused an immediate reversal of firing order for most L4 and L2/3 neurons and a substantial decorrelation of spike trains, changes known to drive timing-dependent LTD at L4-L2/3 synapses in vitro. In contrast, spike rate changed only modestly. Thus, whisker deprivation is likely to drive map plasticity by spike timing-dependent mechanisms.
Collapse
Affiliation(s)
- Tansu Celikel
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|
44
|
Shetty P, Shoykhet M, Simons DJ. Whisker plucking alters responses of rat trigeminal ganglion neurons. Somatosens Mot Res 2004; 20:233-8. [PMID: 14675962 DOI: 10.1080/08990220310001622951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Whisker plucking in developing and adult rats provides a convenient method of temporarily altering tactile input for the purposes of studying experience-dependent plasticity in the somatosensory cortex. Yet, a comprehensive examination of the effect of whisker plucking on the response properties of whisker follicle-innervating trigeminal ganglion (NVg) neurons is lacking. We used extracellular single unit recordings to examine responses of NVg neurons to controlled whisker stimuli in three groups of animals: (1) rats whose whiskers were plucked from birth for 21 days; (2) rats whose whiskers were plucked once at 21 days of age; and (3) control animals. After at least 3 weeks of whisker re-growth, NVg neurons in plucked rats displayed normal, single whisker receptive fields and could be characterized as slowly (SA) or rapidly adapting (RA). The proportion of SA and RA neurons was unaffected by whisker plucking. Both SA and RA NVg neurons in plucked rats displayed normal response latencies and angular tuning but abnormally large responses to whisker movement onsets and offsets. SA neurons were affected to a greater extent than RA neurons. The effect of whisker plucking was more pronounced in animals whose whiskers were plucked repeatedly during development than in rats whose whiskers were plucked once. Individual neurons in plucked animals displayed abnormal periods of prolonged rhythmic firing following deflection onsets and aberrant bursts of activity during the plateau phase of the stimulus. These results indicate that whisker plucking exerts a long-term effect on responses of trigeminal ganglion neurons to peripheral stimulation.
Collapse
Affiliation(s)
- Pranav Shetty
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
45
|
Erzurumlu RS. Somatosensory cortical plasticity: recruiting silenced barrels by active whiskers. Exp Neurol 2004; 184:565-9. [PMID: 14769350 PMCID: PMC3671918 DOI: 10.1016/s0014-4886(03)00396-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 07/28/2003] [Indexed: 11/18/2022]
|
46
|
Abstract
Sensory experience drives plasticity of the body map in developing and adult somatosensory cortex, but the synaptic mechanisms underlying such plasticity are not well understood. Recently, several mechanisms that are likely to contribute to map plasticity have been directly observed in response to altered experience in vivo. These mechanisms include long-term potentiation and long-term depression at specific excitatory synapses, competition between lemniscal (barrel) and non-lemniscal (septal) processing streams, and regulation of the number of inhibitory synapses.
Collapse
Affiliation(s)
- Elisabeth Foeller
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
47
|
Schierloh A, Eder M, Zieglgänsberger W, Dodt HU. Sensory deprivation changes the pattern of synaptic connectivity in rat barrel cortex. Neuroreport 2003; 14:1787-91. [PMID: 14534421 DOI: 10.1097/00001756-200310060-00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined whether sensory deprivation during formation of the cortical circuitry influences the pattern of intracortical single-cell connections in rat barrel cortex. Excitatory postsynaptic potentials from layer 5 pyramidal neurons were recorded in vitro using patch-clamp techniques. In order to evoke such postsynaptic potentials presumptive presynaptic neurons were stimulated by photolytically applied glutamate thus generating action potentials. Synaptic connections between the stimulated and the recorded neuron were identified by the occurrence of postsynaptic potentials following photostimulation. Sensory deprivation altered the projections from layer 2/3 neurons to layer 5 pyramidal cells (L2/3-->L5 projections). In slices of non-deprived rats the input probability of L2/3-->L5 projections showed a periodic pattern with more synaptic connections originating from the borders of the barrel columns, and less synaptic connections originating from the centres. After whisker clipping this periodic pattern disappeared completely and the input probability declined monotonically with increasing distance between stimulated and recorded neuron. These results indicate that sensory input is a prerequisite to establish a synaptic projection pattern which is correlated to the columnar organisation of the anatomical barrel structure.
Collapse
|
48
|
Allen CB, Celikel T, Feldman DE. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nat Neurosci 2003; 6:291-9. [PMID: 12577061 DOI: 10.1038/nn1012] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 01/16/2003] [Indexed: 11/08/2022]
Abstract
Cortical map plasticity is thought to involve long-term depression (LTD) of cortical synapses, but direct evidence for LTD during plasticity or learning in vivo is lacking. One putative role for LTD is in the reduction of cortical responsiveness to behaviorally irrelevant or unused sensory stimuli, a common feature of map plasticity. Here we show that whisker deprivation, a manipulation that drives map plasticity in rat somatosensory cortex (S1), induces detectable LTD-like depression at intracortical excitatory synapses between cortical layer 4 (L4) and L2/3 pyramidal neurons. This synaptic depression occluded further LTD, enhanced LTP, was column specific, and was driven in part by competition between active and inactive whiskers. The synaptic locus of LTD and these properties suggest that LTD underlies the reduction of cortical responses to deprived whiskers, a major component of S1 map plasticity.
Collapse
Affiliation(s)
- Cara B Allen
- Neurosciences Program, 9500 Gilman Drive, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
49
|
Experience-dependent plasticity is impaired in adult rat barrel cortex after whiskers are unused in early postnatal life. J Neurosci 2003. [PMID: 12514235 DOI: 10.1523/jneurosci.23-01-00358.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The capacity of adult barrel cortex to show experience-dependent plasticity after early restricted neonatal sensory deprivation was analyzed in barrel field cortex neurons. Selective sensory deprivation was induced by trimming two whiskers from postnatal day 0 (P0) to P21, namely, the principal D2 whisker plus one adjacent surround whisker (D3). At maturity (P90), responses of supragranular (layer II/III) and barrel (layer IV) neurons, all located in the D2 barrel column, were analyzed for modified responses to the deprived principal whisker (D2) and the nondeprived (D1) and deprived (D3) adjacent surround whiskers. For supragranular neurons, the responses to both principal and surround whiskers were reduced at maturity, whereas the barrel neurons showed mildly elevated responses to the principal whisker but a reduced response to the deprived surround whisker. In normal adult rats, trimming all but the principal D2 whisker and an adjacent D3 whisker for 3 d (whisker pairing) produced the expected bias: elevated responses from the intact D3 compared with the cut D1 whisker in both barrel and supragranular neurons. When the neonatally deprived D2 and D3 whiskers were paired at maturity, a similar D3/D1 bias was generated in barrel neurons, but no bias occurred in supragranular neuron responses. Pairing the maintained D1 and deprived D2 whiskers produced a much greater bias toward D1 compared with the deprived D3 whisker in barrel neurons than in supragranular neurons. There were minimal effects on response latencies in layer IV under any of the experimental conditions. These findings indicate that a restricted period of sensory deprivation in early postnatal life (1) impairs intracortical relay of deprived inputs from layer IV to layer II/III in barrel cortex at maturity and (2) degrades receptive field plasticity of the supragranular layer cells but not the thalamic-recipient barrel neurons.
Collapse
|
50
|
Fox K, Wallace H, Glazewski S. Is there a thalamic component to experience-dependent cortical plasticity? Philos Trans R Soc Lond B Biol Sci 2002; 357:1709-15. [PMID: 12626005 PMCID: PMC1693089 DOI: 10.1098/rstb.2002.1169] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sensory deprivation and injury to the peripheral nervous system both induce plasticity in the somatosensory system of adult animals, but in different places. While injury induces plasticity at several locations within the ascending somatosensory pathways, sensory deprivation appears only to affect the somatosensory cortex. Experiments have been performed to detect experience-dependent plasticity in thalamic receptive fields, thalamic domain sizes and convergence of thalamic receptive fields onto cortical cells. So far, plasticity has not been detected with sensory deprivation paradigms that cause substantial cortical plasticity. Part of the reason for the lack of thalamic plasticity may lie in the synaptic properties of afferent systems to the thalamus. A second factor may lie in the differences in the organization of cortical and thalamic circuits. Many deprivation paradigms induce plasticity by decreasing phasic lateral inhibition. Since lateral inhibition appears to be far weaker in the thalamus than the cortex, sensory deprivation may not cause large enough imbalances in thalamic activity to induce plasticity in the thalamus.
Collapse
Affiliation(s)
- Kevin Fox
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | |
Collapse
|