1
|
Scott EY, Safarian N, Casasbuenas DL, Dryden M, Tockovska T, Ali S, Peng J, Daniele E, Nie Xin Lim I, Bang KWA, Tripathy S, Yuzwa SA, Wheeler AR, Faiz M. Integrating single-cell and spatially resolved transcriptomic strategies to survey the astrocyte response to stroke in male mice. Nat Commun 2024; 15:1584. [PMID: 38383565 PMCID: PMC10882052 DOI: 10.1038/s41467-024-45821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Astrocytes, a type of glial cell in the central nervous system (CNS), adopt diverse states in response to injury that are influenced by their location relative to the insult. Here, we describe a platform for spatially resolved, single-cell transcriptomics and proteomics, called tDISCO (tissue-digital microfluidic isolation of single cells for -Omics). We use tDISCO alongside two high-throughput platforms for spatial (Visium) and single-cell transcriptomics (10X Chromium) to examine the heterogeneity of the astrocyte response to a cortical ischemic stroke in male mice. We show that integration of Visium and 10X Chromium datasets infers two astrocyte populations, proximal or distal to the injury site, while tDISCO determines the spatial boundaries and molecular profiles that define these populations. We find that proximal astrocytes show differences in lipid shuttling, with enriched expression of Apoe and Fabp5. Our datasets provide a resource for understanding the roles of astrocytes in stroke and showcase the utility of tDISCO for hypothesis-driven, spatially resolved single-cell experiments.
Collapse
Affiliation(s)
- Erica Y Scott
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Nickie Safarian
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, CA, 250 College St., Toronto, Ontario, M5T 1R8, Canada
| | - Daniela Lozano Casasbuenas
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Michael Dryden
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Teodora Tockovska
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Shawar Ali
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Emerson Daniele
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Isabel Nie Xin Lim
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - K W Annie Bang
- Lunenfeld-Tanenbaum Research Institute, Flow Cytometry Core, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
| | - Shreejoy Tripathy
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, Ontario, M5T 1R8, Canada
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, CA, 250 College St., Toronto, Ontario, M5T 1R8, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Maryam Faiz
- Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
2
|
Peng B, Xu C, Wang S, Zhang Y, Li W. The Role of Connexin Hemichannels in Inflammatory Diseases. BIOLOGY 2022; 11:biology11020237. [PMID: 35205103 PMCID: PMC8869213 DOI: 10.3390/biology11020237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023]
Abstract
The connexin protein family consists of approximately 20 members, and is well recognized as the structural unit of the gap junction channels that perforate the plasma membranes of coupled cells and, thereby, mediate intercellular communication. Gap junctions are assembled by two preexisting hemichannels on the membranes of apposing cells. Non-junctional connexin hemichannels (CxHC) provide a conduit between the cell interior and the extracellular milieu, and are believed to be in a protectively closed state under physiological conditions. The development and characterization of the peptide mimetics of the amino acid sequences of connexins have resulted in the development of a panel of blockers with a higher selectivity for CxHC, which have become important tools for defining the role of CxHC in various biological processes. It is increasingly clear that CxHC can be induced to open by pathogen-associated molecular patterns. The opening of CxHC facilitates the release of damage-associated molecular patterns, a class of endogenous molecules that are critical for the pathogenesis of inflammatory diseases. The blockade of CxHC leads to attenuated inflammation, reduced tissue injury and improved organ function in human and animal models of about thirty inflammatory diseases and disorders. These findings demonstrate that CxHC may contribute to the intensification of inflammation, and serve as a common target in the treatments of various inflammatory diseases. In this review, we provide an update on the progress in the understanding of CxHC, with a focus on the role of these channels in inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Yijie Zhang
- Correspondence: (Y.Z.); (W.L.); Tel.: +86-13903782431 (Y.Z.); +86-17839250252 (W.L.)
| | - Wei Li
- Correspondence: (Y.Z.); (W.L.); Tel.: +86-13903782431 (Y.Z.); +86-17839250252 (W.L.)
| |
Collapse
|
3
|
Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020; 9:E846. [PMID: 32244528 PMCID: PMC7226843 DOI: 10.3390/cells9040846] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer's, Parkinson's, and Huntington's diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| | | | | | | | | | - Sonia-Luz Albarracin
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| |
Collapse
|
4
|
Dispelling myths about connexins, pannexins and P2X7 in hypoxic-ischemic central nervous system. Neurosci Lett 2019; 695:76-85. [PMID: 29195910 DOI: 10.1016/j.neulet.2017.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 10/07/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
Abstract
In membrane physiology, as in other fields, myths or speculations may be repeated so often and so widely that they are perceived as facts. To some extent, this has occurred with regard to gap junctions, hemichannels, pannexin channels and P2X7 (ionotropic receptors), especially concerning the interpretation of the individual role of these channels in hypoxic-ischemic CNS since these channels may be closed by the same pharmacological blockers. Significance of existing controversial data are highlighted and contradictory views from different groups are critically discussed herein.
Collapse
|
5
|
Freitas-Andrade M, Wang N, Bechberger JF, De Bock M, Lampe PD, Leybaert L, Naus CC. Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke. J Exp Med 2019; 216:916-935. [PMID: 30872361 PMCID: PMC6446879 DOI: 10.1084/jem.20171452] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/31/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
This study demonstrates that astrocytic connexin43 gap junction hemichannels are largely controlled by four C-terminal tail–located serine residues and provides mechanistic insight on how phosphorylation of these residues affects recovery from stroke. Connexin43 (Cx43) function is influenced by kinases that phosphorylate specific serine sites located near its C-terminus. Stroke is a powerful inducer of kinase activity, but its effect on Cx43 is unknown. We investigated the impact of wild-type (WT) and knock-in Cx43 with serine to alanine mutations at the protein kinase C (PKC) site Cx43S368A, the casein kinase 1 (CK1) sites Cx43S325A/328Y/330A, and the mitogen-activated protein kinase (MAPK) sites Cx43S255/262/279/282A (MK4) on a permanent middle cerebral artery occlusion (pMCAO) stroke model. We demonstrate that MK4 transgenic animals exhibit a significant decrease in infarct volume that was associated with improvement in behavioral performance. An increase in astrocyte reactivity with a concomitant decrease in microglial reactivity was observed in MK4 mice. In contrast to WT, MK4 astrocytes displayed reduced Cx43 hemichannel activity. Pharmacological blockade of Cx43 hemichannels with TAT-Gap19 also significantly decreased infarct volume in WT animals. This study provides novel molecular insights and charts new avenues for therapeutic intervention associated with Cx43 function.
Collapse
Affiliation(s)
- Moises Freitas-Andrade
- Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nan Wang
- Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - John F Bechberger
- Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marijke De Bock
- Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Luc Leybaert
- Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Piantanida AP, Acosta LE, Brocardo L, Capurro C, Greer CA, Rela L. Selective Cre-mediated gene deletion identifies connexin 43 as the main connexin channel supporting olfactory ensheathing cell networks. J Comp Neurol 2019; 527:1278-1289. [PMID: 30628061 DOI: 10.1002/cne.24628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Many functions of glial cells depend on the formation of selective glial networks mediated by gap junctions formed by members of the connexin family. Olfactory ensheathing cells (OECs) are specialized glia associated with olfactory sensory neuron axons. Like other glia, they form selective networks, however, the connexins that support OEC connectivity in vivo have not been identified. We used an in vivo mouse model to selectively delete candidate connexin genes with temporal control from OECs and address the physiological consequences. Using this model, we effectively abolished the expression of connexin 43 (Cx43) in OECs in both juvenile and adult mice. Cx43-deleted OECs exhibited features consistent with the loss of gap junctions including reduced membrane conductance, largely reduced sensitivity to the gap junction blocker meclofenamic acid and loss of dye coupling. This indicates that Cx43, a typically astrocytic connexin, is the main connexin forming functional channels in OECs. Despite these changes in functional properties, the deletion of Cx43 deletion did not alter the density of OECs. The strategy used here may prove useful to delete other candidate genes to better understand the functional roles of OECs in vivo.
Collapse
Affiliation(s)
- Ana Paula Piantanida
- CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Luis Ernesto Acosta
- CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Lucila Brocardo
- CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Claudia Capurro
- CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut.,Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Lorena Rela
- CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Neurociencia de Sistemas, Buenos Aires, Argentina
| |
Collapse
|
7
|
Yin X, Feng L, Ma D, Yin P, Wang X, Hou S, Hao Y, Zhang J, Xin M, Feng J. Roles of astrocytic connexin-43, hemichannels, and gap junctions in oxygen-glucose deprivation/reperfusion injury induced neuroinflammation and the possible regulatory mechanisms of salvianolic acid B and carbenoxolone. J Neuroinflammation 2018; 15:97. [PMID: 29587860 PMCID: PMC5872583 DOI: 10.1186/s12974-018-1127-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Glia-mediated neuroinflammation is related to brain injury exacerbation after cerebral ischemia/reperfusion (I/R) injury. Astrocytic hemichannels or gap junctions, which were mainly formed by connexin-43, have been implicated in I/R damage. However, the exact roles of astrocytic hemichannels and gap junction in neuroinflammatory responses induced by I/R injury remain unknown. Methods Primary cultured astrocytes were subjected to OGD/R injury, an in vitro model of I/R injury. Salvianolic acid B (SalB) or carbenoxolone (CBX) were applied for those astrocytes. Besides, Cx43 mimetic peptides Gap19 or Gap26 were also applied during OGD/R injury; Cx43 protein levels were determined by western blot and cytoimmunofluorescene staining, hemichannel activities by Ethidium bromide uptake and ATP concentration detection, and gap junction intercellular communication (GJIC) permeability by parachute assay. Further, astrocyte-conditioned medium (ACM) was collected and incubated with microglia. Meanwhile, ATP or apyrase were applied to explore the role of ATP during OGD/R injury. Microglial activation, M1/M2 phenotypes, and M1/M2-related cytokines were detected. Also, microglia-conditioned medium (MEM) was collected and incubated with astrocytes to further investigate its influence on astrocytic hemichannel activity and GJIC permeability. Lastly, effects of ACM and MCM on neuronal viability were detected by flow cytometry. Results We found that OGD/R induced abnormally opened hemichannels with increased ATP release and EtBr uptake but reduced GJIC permeability. WB tests showed decreased astrocytic plasma membrane’s Cx43, while showing an increase in cytoplasma. Treating OGD/R-injured microglia with ATP or OGD/R-ACM induced further microglial activation and secondary pro-inflammatory cytokine release, with the M1 phenotype predominating. Conversely, astrocytes incubated with OGD/R-MCM exhibited increased hemichannel opening but reduced GJIC coupling. Both SalB and CBX inhibited abnormal astrocytic hemichannel opening and ATP release and switched the activated microglial phenotype from M1 to M2, thus providing effective neuroprotection. Application of Gap19 or Gap26 showed similar results with CBX. We also found that OGD/R injury caused both plasma membrane p-Cx43(Ser265) and p-Src(Tyr416) significantly upregulated; application of SalB may be inhibiting Src kinase and attenuating Cx43 internalization. Meanwhile, CBX treatment induced obviously downregulation of p-Cx43(Ser368) and p-PKC(Ser729) protein levels in plasma membrane. Conclusions We propose a vicious cycle exists between astrocytic hemichannel and microglial activation after OGD/R injury, which would aggravate neuroinflammatory responses and neuronal damage. Astrocytic Cx43, hemichannels, and GJIC play critical roles in OGD/R injury-induced neuroinflammatory responses; treatment differentially targeting astrocytic Cx43, hemichannels, and GJIC may provide novel avenues for therapeutics during cerebral I/R injury. Electronic supplementary material The online version of this article (10.1186/s12974-018-1127-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiang Yin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Di Ma
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Ping Yin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Xinyu Wang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Jingdian Zhang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Meiying Xin
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China.
| |
Collapse
|
8
|
Li W, Bao G, Chen W, Qiang X, Zhu S, Wang S, He M, Ma G, Ochani M, Al-Abed Y, Yang H, Tracey KJ, Wang P, D'Angelo J, Wang H. Connexin 43 Hemichannel as a Novel Mediator of Sterile and Infectious Inflammatory Diseases. Sci Rep 2018; 8:166. [PMID: 29317708 PMCID: PMC5760527 DOI: 10.1038/s41598-017-18452-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Cytoplasmic membrane-bound connexin 43 (Cx43) proteins oligomerize into hexameric channels (hemichannels) that can sometimes dock with hemichannels on adjacent cells to form gap junctional (GJ) channels. However, the possible role of Cx43 hemichannels in sterile and infectious inflammatory diseases has not been adequately defined due to the lack of selective interventions. Here we report that a proinflammatory mediator, the serum amyloid A (SAA), resembled bacterial endotoxin by stimulating macrophages to up-regulate Cx43 expression and double-stranded RNA-activated protein kinase R (PKR) phosphorylation in a TLR4-dependent fashion. Two well-known Cx43 mimetic peptides, the GAP26 and TAT-GAP19, divergently affected macrophage hemichannel activities in vitro, and differentially altered the outcome of lethal sepsis in vivo. By screening a panel of Cx43 mimetic peptides, we discovered that one cysteine-containing peptide, P5 (ENVCYD), effectively attenuated hemichannel activities, and significantly suppressed endotoxin-induced release of ATP and HMGB1 in vitro. In vivo, the P5 peptide conferred a significant protection against hepatic ischemia/reperfusion injury and lethal microbial infection. Collectively, these findings have suggested a pathogenic role of Cx43 hemichannels in sterile injurious as well as infectious inflammatory diseases possibly through facilitating extracellular ATP efflux to trigger PKR phosphorylation/activation.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA. .,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,International Laboratory for Sepsis Research, Huaihe Hospital, Henan University, Kaifeng, Henan, 475000, China.
| | - Guoqiang Bao
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of General Surgery, Tangdu Hospital, The 4th Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Weiqiang Chen
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA.,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Xiaoling Qiang
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA.,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shu Zhu
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA.,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shuaiwei Wang
- International Laboratory for Sepsis Research, Huaihe Hospital, Henan University, Kaifeng, Henan, 475000, China
| | - Mingzhu He
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Gaifeng Ma
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Mahendar Ochani
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Huan Yang
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J Tracey
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ping Wang
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - John D'Angelo
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA. .,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
9
|
Freitas-Andrade M, She J, Bechberger J, Naus CC, Sin WC. Acute connexin43 temporal and spatial expression in response to ischemic stroke. J Cell Commun Signal 2017; 12:193-204. [PMID: 29134540 DOI: 10.1007/s12079-017-0430-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Connexin43 (Cx43) gap junctions expressed in astrocytes can significantly impact neuronal survival in stroke. However, little is known regarding Cx43 spatial and temporal expression during the initial stages of brain ischemia. Using immunohistochemistry and Western blot analysis, we examined Cx43 spatial and temporal expression as a function of neuronal injury within the first 24 h after permanent middle cerebral artery occlusion (pMCAO). Western blot analysis showed a significant increase in Cx43 protein expression in the core ischemic area at 2 and 3 h after pMCAO. However, after 6 h of pMCAO Cx43 levels were significantly reduced. This reduction was due to cell death and concomitant Cx43 degradation in the expanding focal ischemic region, while the peri-infarct zone revealed intense Cx43 staining. The neuronal cell-death marker Fluoro-Jade C labeled injured neurons faintly at 1 h post-pMCAO with a time-dependent increase in both intensity and size of punctate staining. In addition, decreased microtubule-associated protein 2 (MAP2) immunoreactivity and thionin staining similarly indicated cell damage beginning at 1 h after pMCAO. Taken together, Cx43 expression is sensitive to neuronal injury and can be detected as early as 2 h post-pMCAO. These findings underscore Cx43 gap junction as a potential early target for therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Moises Freitas-Andrade
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jennifer She
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - John Bechberger
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Wun Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
10
|
Gao Q, Katakowski M, Chen X, Li Y, Chopp M. Human Marrow Stromal Cells Enhance Connexin43 Gap Junction Intercellular Communication in Cultured Astrocytes. Cell Transplant 2017; 14:109-17. [PMID: 15881420 DOI: 10.3727/000000005783983205] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human marrow stromal cells (hMSCs) provide functional benefit in rats subjected to stroke. Astrocytes are coupled into a cellular network via gap junction channels, predominantly composed of connexin-43 (Cx43) proteins. Astrocytes are believed to play a vital role in neuroprotection by providing energy substrates to neurons and by regulating the concentrations of K+ and neurotransmitters via gap junctions. We therefore investigated the effect of factors secreted by hMSCs on gap junction intercellular communication (GJIC), expression of Cx43, and phosphorylation of Cx43 in an astrocyte cell culture system. Exposing rat cortical astrocytes to various concentrations of hMSC conditioned medium, we demonstrate that hMSCs produce soluble factors that significantly increase astrocytic GJIC, measured by the scrape-loading dye transfer method. Immunohistochemistry and Western blot showed increased Cx43 expression concomitant with altered GJIC. As the PI3K/Akt signaling pathway has been demonstrated to alter gap junction expression and GJIC, we selectively blocked phosphoinositide 3-kinase (PI3K). Addition of the PI3K inhibitor LY294002 decreased GJIC and Cx43 expression in astrocytes. These inhibitory effects of LY294002 were countered by the addition of hMSC conditioned media. Furthermore, coculturing hMSCs with rat astrocytes increased astrocyte GJIC in a manner dependent upon the hMSC/astrocyte ratio. These findings demonstrate that hMSCs secrete soluble factors that increase GJIC of astrocytes through upregulation of Cx43, and indicate a mechanistic role for PI3K.
Collapse
Affiliation(s)
- Qi Gao
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
11
|
Nagy JI, Rash JE. Cx36, Cx43 and Cx45 in mouse and rat cerebellar cortex: species-specific expression, compensation in Cx36 null mice and co-localization in neurons vs. glia. Eur J Neurosci 2017; 46:1790-1804. [PMID: 28561933 DOI: 10.1111/ejn.13614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
Electrical synapses formed by connexin36 (Cx36)-containing gap junctions between interneurons in the cerebellar cortex have been well characterized, including those formed between basket cells and between Golgi cells, and there is gene reporter-based evidence for the expression of connexin45 (Cx45) in the cerebellar molecular layer. Here, we used immunofluorescence approaches to further investigate expression patterns of Cx36 and Cx45 in this layer and to examine localization relationships of these connexins with each other and with glial connexin43 (Cx43). In mice, strain differences were found, such that punctate labelling for Cx36 was differentially distributed in the molecular layer of C57BL/6 vs. CD1 mice. In mice with EGFP reporter representing Cx36 expression, Cx36-puncta were localized to processes of stellate cells and other cerebellar interneurons. Punctate labelling of Cx45 was faint in the molecular layer of wild-type mice and was increased in intensity in mice with Cx36 gene ablation. The vast majority of Cx36-puncta co-localized with Cx45-puncta, which in turn was associated with the scaffolding protein zonula occludens-1. In rats, Cx45-puncta were also co-localized with Cx36-puncta and additionally occurred along Bergmann glial processes adjacent to Cx43-puncta. The results indicate strain and species differences in Cx36 as well as Cx45 expression, possible compensatory processes after loss of Cx36 expression and localization of Cx45 to both neuronal and Bergmann glial gap junctions. Further, expression of both Cx43 and Cx45 in Bergmann glia of rat may contribute to the complex properties of junctional coupling between these cells and perhaps to their reported coupling with Purkinje cells.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| | - J E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Olympiou M, Sargiannidou I, Markoullis K, Karaiskos C, Kagiava A, Kyriakoudi S, Abrams CK, Kleopa KA. Systemic inflammation disrupts oligodendrocyte gap junctions and induces ER stress in a model of CNS manifestations of X-linked Charcot-Marie-Tooth disease. Acta Neuropathol Commun 2016; 4:95. [PMID: 27585976 PMCID: PMC5009701 DOI: 10.1186/s40478-016-0369-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is a common form of inherited neuropathy resulting from different mutations affecting the gap junction (GJ) protein connexin32 (Cx32). A subset of CMT1X patients may additionally present with acute fulminant CNS dysfunction, typically triggered by conditions of systemic inflammation and metabolic stress. To clarify the underlying mechanisms of CNS phenotypes in CMT1X we studied a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) injection to compare wild type (WT), connexin32 (Cx32) knockout (KO), and KO T55I mice expressing the T55I Cx32 mutation associated with CNS phenotypes. Following a single intraperitoneal LPS or saline (controls) injection at the age of 40-60 days systemic inflammatory response was documented by elevated TNF-α and IL-6 levels in peripheral blood and mice were evaluated 1 week after injection. Behavioral analysis showed graded impairment of motor performance in LPS treated mice, worse in KO T55I than in Cx32 KO and in Cx32 KO worse than WT. Iba1 immunostaining revealed widespread inflammation in LPS treated mice with diffusely activated microglia throughout the CNS. Immunostaining for the remaining major oligodendrocyte connexin Cx47 and for its astrocytic partner Cx43 revealed widely reduced expression of Cx43 and loss of Cx47 GJs in oligodendrocytes. Real-time PCR and immunoblot analysis indicated primarily a down regulation of Cx43 expression with secondary loss of Cx47 membrane localization. Inflammatory changes and connexin alterations were most severe in the KO T55I group. To examine why the presence of the T55I mutant exacerbates pathology even more than in Cx32 KO mice, we analyzed the expression of ER-stress markers BiP, Fas and CHOP by immunostaining, immunoblot and Real-time PCR. All markers were increased in LPS treated KO T55I mice more than in other genotypes. In conclusion, LPS induced neuroinflammation causes disruption of the main astrocyte-oligodendrocyte GJs, which may contribute to the increased sensitivity of Cx32 KO mice to LPS and of patients with CMT1X to various stressors. Moreover the presence of an intracellularly retained, misfolded CMT1X mutant such as T55I induces ER stress under inflammatory conditions, further exacerbating oligodendrocyte dysfunction and pathological changes in the CNS.
Collapse
Affiliation(s)
- Margarita Olympiou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriaki Markoullis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Styliana Kyriakoudi
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, USA
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 6 International Airport Avenue, P.O. Box 23462, , 1683, Nicosia, Cyprus.
| |
Collapse
|
13
|
Petit JM, Magistretti P. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle. Neuroscience 2016; 323:135-56. [DOI: 10.1016/j.neuroscience.2015.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
|
14
|
Alstrøm JS, Hansen DB, Nielsen MS, MacAulay N. Isoform-specific phosphorylation-dependent regulation of connexin hemichannels. J Neurophysiol 2015; 114:3014-22. [PMID: 26400258 DOI: 10.1152/jn.00575.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022] Open
Abstract
Connexins form gap junction channels made up of two connexons (hemichannels) from adjacent cells. Unopposed hemichannels may open toward the extracellular space upon stimulation by, e.g., removal of divalent cations from the extracellular solution and allow isoform-specific transmembrane flux of fluorescent dyes and physiologically relevant molecules, such as ATP and ions. Connexin (Cx)43 and Cx30 are the major astrocytic connexins. Protein kinase C (PKC) regulates Cx43 in its cell-cell gap junction configuration and may also act to keep Cx43 hemichannels closed. In contrast, the regulation of Cx30 hemichannels by PKC is unexplored. To determine phosphorylation-dependent regulation of Cx30 and Cx43 hemichannels, these were heterologously expressed in Xenopus laevis oocytes and opened with divalent cation-free solution. Inhibition of PKC activity did not affect hemichannel opening of either connexin. PKC activation had no effect on Cx43-mediated hemichannel activity, whereas both dye uptake and current through Cx30 hemichannels were reduced. We detected no PKC-induced connexin internalization from the plasma membrane, indicating that PKC reduced Cx30 hemichannel activity by channel closure. In an attempt to resolve the PKC phosphorylation site(s) on Cx30, alanine mutations of putative cytoplasmic PKC consensus sites were created to prevent phosphorylation (T5A, T8A, T102A, S222A, S225A, S239A, and S258A). These Cx30 mutants responded to PKC activation, suggesting that Cx30 hemichannels are not regulated by phosphorylation of a single site. In conclusion, Cx30, but not Cx43, hemichannels close upon PKC activation, illustrating that connexin hemichannels display not only isoform-specific permeability profiles but also isoform-specific regulation by PKC.
Collapse
Affiliation(s)
- Jette Skov Alstrøm
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Daniel Bloch Hansen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Morten Schak Nielsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
15
|
Weber B, Barros LF. The Astrocyte: Powerhouse and Recycling Center. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a020396. [PMID: 25680832 DOI: 10.1101/cshperspect.a020396] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brain metabolism is characterized by fuel monodependence, high-energy expenditure, autonomy from the rest of body, local recycling, and marked division of labor between cell types. Although neurons spend most of the brain's energy on signaling, astrocytes bear the brunt of the metabolic load, controlling the composition of the interstitial fluid, supplying neurons with energy substrates and precursors for biosynthesis, and recycling neurotransmitters, oxidized scavengers, and other waste products. Outstanding questions in this field are the role of oligodendrocytes, the metabolic behavior of the different subtypes of astrocytes during development and disease, and the emerging notion that metabolism may participate directly in information processing.
Collapse
Affiliation(s)
- Bruno Weber
- University of Zürich, Institute of Pharmacology and Toxicology, 8057 Zürich, Switzerland
| | - L Felipe Barros
- Centro de Estudios Científicos, Casilla 1469, Valdivia, Chile
| |
Collapse
|
16
|
Kim MJ, Cho JH, Cho JH, Park JH, Ahn JH, Tae HJ, Cho GS, Yan BC, Hwang IK, Lee CH, Bae EJ, Won MH, Lee JC. Impact of hyperthermia before and during ischemia–reperfusion on neuronal damage and gliosis in the gerbil hippocampus induced by transient cerebral ischemia. J Neurol Sci 2015; 348:101-10. [DOI: 10.1016/j.jns.2014.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/22/2014] [Accepted: 11/11/2014] [Indexed: 12/28/2022]
|
17
|
Meier C, Rosenkranz K. Cx43 expression and function in the nervous system-implications for stem cell mediated regeneration. Front Physiol 2014; 5:106. [PMID: 24672489 PMCID: PMC3957031 DOI: 10.3389/fphys.2014.00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
Pathological conditions of the brain such as ischemia cause major sensorimotor and cognitive impairments. In novel therapeutic approaches to brain injury, stem cells have been applied to ameliorate the pathological outcome. In several experimental models, including hypoxia-ischemia and trauma, transplantation of stem cells correlated with an improved functional and structural outcome. At the cellular level, brain insults also change gap junction physiology and expression, leading to altered intercellular communication. Differences in expression in response to brain injury have been detected in particular in Cx43, the major astrocytic gap junction protein, and its overexpression or deletion was associated with the pathophysiological outcome. We here focus on Cx43 changes in host tissue mediated by stem cells. Stem cell-induced changes in connexin expression, and consecutively in gap junction channel or hemichannel function, might play a part in altered cell interaction, intercellular communication, and neural cell survival, and thereby contribute to the beneficial effects of transplanted stem cells.
Collapse
Affiliation(s)
- Carola Meier
- Department of Anatomy and Cell Biology, Saarland University Homburg/Saar, Germany
| | - Katja Rosenkranz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
18
|
Solan JL, Lampe PD. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 2014; 588:1423-9. [PMID: 24508467 DOI: 10.1016/j.febslet.2014.01.049] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially "unzip" and be internalized/endocytosed into the cell that produced each connexin.
Collapse
Affiliation(s)
- Joell L Solan
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| |
Collapse
|
19
|
Li Y, Liu Z, Xin H, Chopp M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia 2013; 62:1-16. [PMID: 24272702 DOI: 10.1002/glia.22585] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/08/2013] [Accepted: 09/18/2013] [Indexed: 12/19/2022]
Abstract
Astrocytes have not been a major therapeutic target for the treatment of stroke, with most research emphasis on the neuron. Given the essential role that astrocytes play in maintaining physiological function of the central nervous system and the very rapid and sensitive reaction astrocytes have in response to cerebral injury or ischemic insult, we propose to replace the neurocentric view for treatment with a more nuanced astrocytic centered approach. In addition, after decades of effort in attempting to develop neuroprotective therapies, which target reduction of the ischemic lesion, there are no effective clinical treatments for stroke, aside from thrombolysis with tissue plasminogen activator, which is used in a small minority of patients. A more promising therapeutic approach, which may affect nearly all stroke patients, may be in promoting endogenous restorative mechanisms, which enhance neurological recovery. A focus of efforts in stimulating recovery post stroke is the use of exogenously administered cells. The present review focuses on the role of the astrocyte in mediating the brain network, brain plasticity, and neurological recovery post stroke. As a model to describe the interaction of a restorative cell-based therapy with astrocytes, which drives recovery from stroke, we specifically highlight the subacute treatment of stroke with multipotent mesenchymal stromal cell therapy.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | | | | |
Collapse
|
20
|
Kleopa KA, Sargiannidou I, Markoullis K. Connexin pathology in chronic multiple sclerosis and experimental autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cen3.12055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kleopas A. Kleopa
- Neurology Clinics and Neuroscience Laboratory; The Cyprus Institute of Neurology and Genetics; Nicosia Cyprus
| | - Irene Sargiannidou
- Neurology Clinics and Neuroscience Laboratory; The Cyprus Institute of Neurology and Genetics; Nicosia Cyprus
| | - Kyriaki Markoullis
- Neurology Clinics and Neuroscience Laboratory; The Cyprus Institute of Neurology and Genetics; Nicosia Cyprus
| |
Collapse
|
21
|
Theodoric N, Bechberger JF, Naus CC, Sin WC. Role of gap junction protein connexin43 in astrogliosis induced by brain injury. PLoS One 2012; 7:e47311. [PMID: 23110066 PMCID: PMC3479098 DOI: 10.1371/journal.pone.0047311] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Astrogliosis is a process that involves morphological and biochemical changes associated with astrocyte activation in response to cell damage in the brain. The upregulation of intermediate filament proteins including glial fibrillary acidic protein (GFAP), nestin and vimentin are often used as indicators for astrogliosis. Although connexin43 (Cx43), a channel protein widely expressed in adult astrocytes, exhibits enhanced immunoreactivity in the peri-lesion region, its role in astrogliosis is still unclear. Here, we correlated the temporal and spatial expression of Cx43 to the activation of astrocytes and microglia in response to an acute needle stab wound in vivo. We found large numbers of microglia devoid of Cx43 in the needle wound at 3 days post injury (dpi) while reactive astrocytes expressing Cx43 were present in the peripheral zone surrounding the injury site. A redistribution of Cx43 to the needle site, corresponding to the increased presence of GFAP-positive reactive astrocytes in the region, was only apparent from 6 dpi and sustained until at least 15 dpi. Interestingly, the extent of microglial activation and subsequent astrogliosis in the brain of Cx43 knockout mice was significantly larger than those of wild type, suggesting that Cx43 expression limits the degree of microgliosis. Although Cx43 is not essential for astrogliosis and microglial activation induced by a needle injury, our results demonstrate that Cx43 is a useful marker for injury induced astrogliosis due to its enhanced expression specifically within a small region of the lesion for an extended period. As a channel protein, Cx43 is a potential in vivo diagnostic tool of asymptomatic brain injury.
Collapse
Affiliation(s)
- Nicolas Theodoric
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John F. Bechberger
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wun-Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
22
|
Markoullis K, Sargiannidou I, Gardner C, Hadjisavvas A, Reynolds R, Kleopa KA. Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis. Glia 2012; 60:1053-66. [PMID: 22461072 DOI: 10.1002/glia.22334] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/05/2012] [Indexed: 12/16/2023]
Abstract
Gap junctions (GJs) are vital for oligodendrocyte survival and myelination. In order to examine how different stages of inflammatory demyelination affect oligodendrocyte GJs, we studied the expression of oligodendrocytic connexin32 (Cx32) and Cx47 and astrocytic Cx43 in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) induced by recombinant myelin oligodendrocyte glycoprotein. EAE was characterized by remissions and relapses with demyelination and axonal loss. Formation of GJ plaques was quantified in relation to the lesions and in normal appearing white matter (NAWM). During acute EAE at 14 days postimmunization (dpi) both Cx47 and Cx32 GJs were severely reduced within and around lesions but also in the NAWM. Cx47 was localized intracellularly in oligodendrocytes while protein levels remained unchanged, and this redistribution coincided with the loss of Cx43 GJs in astrocytes. Cx47 and Cx32 expression increased during remyelination at 28 dpi but decreased again at 50 dpi in the relapsing phase. Oligodendrocyte GJs remained reduced even in NAWM, despite increased formation of Cx43 GJs toward lesions indicating astrogliosis. EAE induced in Cx32 knockout mice resulted in an exacerbated clinical course with more demyelination and axonal loss compared with wild-type EAE mice of the same backcross, despite similar degree of inflammation, and an overall milder loss of Cx47 and Cx43 GJs. Thus, EAE causes persistent impairment of both intra- and intercellular oligodendrocyte GJs even in the NAWM, which may be an important mechanism of MS progression. Furthermore, GJ deficient myelinated fibers appear more vulnerable to CNS inflammatory demyelination.
Collapse
Affiliation(s)
- Kyriaki Markoullis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
23
|
Lynn BD, Tress O, May D, Willecke K, Nagy JI. Ablation of connexin30 in transgenic mice alters expression patterns of connexin26 and connexin32 in glial cells and leptomeninges. Eur J Neurosci 2011; 34:1783-93. [PMID: 22098503 DOI: 10.1111/j.1460-9568.2011.07900.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Expression of connexin26 (Cx26), Cx30 and Cx43 in astrocytes and expression of Cx29, Cx32 and Cx47 in oligodendrocytes of adult rodent brain has been well documented, as has the interdependence of connexin expression patterns of macroglial cells in Cx32- and Cx47-knockout mice. To investigate this interdependence further, we examined immunofluorescence labelling of glial connexins in transgenic Cx30 null mice. Ablation of astrocytic Cx30, confirmed by the absence of immunolabelling for this connexin in all brain regions, resulted in the loss of its coupling partner Cx32 on the oligodendrocyte side of astrocyte-oligodendrocyte (A/O) gap junctions, but had no effect on the localization of astrocytic Cx43 and oligodendrocytic Cx47 at these junctions or on the distribution of Cx32 along myelinated fibres. Surprisingly, gene deletion of Cx30 led to the near total elimination of immunofluorescence labelling for Cx26 in all leptomeningeal tissues covering brain surfaces as well as in astrocytes of brain parenchyma. Moreover northern blot analysis revealed downregulation of Cx26 mRNA in Cx30-knockout brains. Our results support earlier observations on the interdependency of Cx30/Cx32 targeting to A/O gap junctions and further suggest that Cx26 mRNA expression is affected by Cx30 gene expression. In addition, Cx30 protein may be required for co-stabilization of gap junctions or for co-trafficking in cells.
Collapse
Affiliation(s)
- B D Lynn
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
24
|
Márquez-Rosado L, Solan JL, Dunn CA, Norris RP, Lampe PD. Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1985-92. [PMID: 21819962 DOI: 10.1016/j.bbamem.2011.07.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 11/30/2022]
Abstract
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
25
|
Jeyaraman MM, Srisakuldee W, Nickel BE, Kardami E. Connexin43 phosphorylation and cytoprotection in the heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:2009-13. [PMID: 21763271 DOI: 10.1016/j.bbamem.2011.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 01/20/2023]
Abstract
The fundamental role played by connexins including connexin43 (Cx43) in forming intercellular communication channels (gap junctions), ensuring electrical and metabolic coupling between cells, has long been recognized and extensively investigated. There is also increasing recognition that Cx43, and other connexins, have additional roles, such as the ability to regulate cell proliferation, migration, and cytoprotection. Multiple phosphorylation sites, targets of different signaling pathways, are present at the regulatory, C-terminal domain of Cx43, and contribute to constitutive as well as transient phosphorylation Cx43 patterns, responding to ever-changing environmental stimuli and corresponding cellular needs. The present paper will focus on Cx43 in the heart, and provide an overview of the emerging recognition of a relationship between Cx43, its phosphorylation pattern, and development of resistance to injury. We will also review our recent work regarding the role of an enhanced phosphorylation state of Cx43 in cardioprotection. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
26
|
Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 2011; 31:414-25. [PMID: 21228152 DOI: 10.1523/jneurosci.5247-10.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.
Collapse
|
27
|
Kerr NM, Johnson CS, Green CR, Danesh-Meyer HV. Gap junction protein connexin43 (GJA1) in the human glaucomatous optic nerve head and retina. J Clin Neurosci 2010; 18:102-8. [PMID: 20934339 DOI: 10.1016/j.jocn.2010.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 06/09/2010] [Indexed: 11/19/2022]
Abstract
Primary open angle glaucoma is characterised by the progressive and irreversible death of retinal ganglion cells. Experimental evidence suggests that the initial site of injury to the retinal ganglion cell is at or near the lamina cribrosa or in the peripapillary retina. However, the mediators of axonal injury remain poorly understood. The purpose of this study was to investigate the expression of the gap junction protein connexin43 (GJA1) in the human glaucomatous optic nerve head and retina as a potential mediator of axonal injury. Using affinity isolated polyclonal antibodies to the C-terminal segment of human connexin43, the expression of connexin43 was determined in post-mortem human eyes with primary open angle glaucoma and age-matched controls. In normal eyes, connexin43 was present on glial fibrillary acidic protein (GFAP)-positive astrocytes in the retinal ganglion cell layer and optic nerve head. In glaucomatous eyes, increased connexin43 immunoreactivity was observed at the level of the lamina cribrosa and in the peripapillary and mid-peripheral retina in association with glial activation. This novel finding may suggest that gap junction communication is a potential mediator of retinal ganglion cell injury in glaucoma.
Collapse
Affiliation(s)
- Nathan M Kerr
- Department of Ophthalmology, University of Auckland, Faculty of Medical and Health Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|
28
|
Role of connexin43 in central nervous system injury. Exp Neurol 2010; 225:250-61. [DOI: 10.1016/j.expneurol.2010.07.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/09/2010] [Accepted: 07/15/2010] [Indexed: 01/03/2023]
|
29
|
Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010; 11:87-99. [DOI: 10.1038/nrn2757] [Citation(s) in RCA: 562] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Nikonenko AG, Radenovic L, Andjus PR, Skibo GG. Structural Features of Ischemic Damage in the Hippocampus. Anat Rec (Hoboken) 2009; 292:1914-21. [DOI: 10.1002/ar.20969] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Kihara AH, Paschon V, Akamine PS, Saito KC, Leonelli M, Jiang JX, Hamassaki DE, Britto LRG. Differential expression of connexins during histogenesis of the chick retina. Dev Neurobiol 2009; 68:1287-302. [PMID: 18506822 DOI: 10.1002/dneu.20652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gap junction (GJ) channels couple adjacent cells, allowing transfer of second messengers, ions, and molecules up to 1 kDa. These channels are composed by a multigene family of integral membrane proteins called connexins (Cx). In the retina, besides being essential circuit element in the visual processing, GJ channels also play important roles during its development. Herein, we analyzed Cx43, Cx45, Cx50, and Cx56 expression during chick retinal histogenesis. Cx exhibited distinct expression profiles during retinal development, except for Cx56, whose expression was not detected. Cx43 immunolabeling was observed at early development, in the transition of ventricular zone and pigmented epithelium. Later, Cx43 was seen in the outer plexiform and ganglion cell layers, and afterwards also in the inner plexiform layer. We observed remarkable changes in the phosphorylation status of this protein, which indicated modifications in functional properties of this Cx during retinal histogenesis. By contrast, Cx45 showed stable gene expression levels throughout development and ubiquitous immunoreactivity in progenitor cells. From later embryonic development, Cx45 was mainly observed in the inner retina, and it was expressed by glial cells and neurons. In turn, Cx50 was virtually absent in the chick retina at initial embryonic phases. Combination of PCR, immunohistochemistry and Western blot indicated that this Cx was present in differentiated cells, arising in parallel with the formation of the visual circuitry. Characterization of Cx expression in the developing chick retina indicated particular roles for these proteins and revealed similarities and differences when compared to other species.
Collapse
Affiliation(s)
- A H Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Vertebrate gap junctions, composed of proteins from the connexin gene family, play critical roles in embryonic development, co-ordinated contraction of excitable cells, tissue homoeostasis, normal cell growth and differentiation. Phosphorylation of connexin43, the most abundant and ubiquitously expressed connexin, has been implicated in the regulation of gap junctional communication at several stages of the connexin 'life cycle', including hemichannel oligomerization, export of the protein to the plasma membrane, hemichannel activity, gap junction assembly, gap junction channel gating and connexin degradation. Consistent with a short (1-5 h) protein half-life, connexin43 phosphorylation is dynamic and changes in response to activation of many different kinases. The present review assesses our current understanding of the effects of phosphorylation on connexin43 structure and function that in turn regulate gap junction biology, with an emphasis on events occurring in heart and skin.
Collapse
|
33
|
Hutchings G, Gevaert T, Deprest J, Roskams T, Van Lommel A, Nilius B, De Ridder D. Immunohistochemistry using an antibody to unphosphorylated connexin 43 to identify human myometrial interstitial cells. Reprod Biol Endocrinol 2008; 6:43. [PMID: 18796153 PMCID: PMC2553078 DOI: 10.1186/1477-7827-6-43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 09/16/2008] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Myometrial smooth myocytes contract as a result of electrical signalling via a process called excitation-contraction coupling. This process is understood in great detail at the cellular level but the generation and coordination of electrical signals throughout the myometrium are incompletely understood. Recent evidence concerning the vital role of interstitial cells of Cajal in tissue-level signalling in gastrointestinal tract, and the presence of similar cells in urinary tract smooth muscle may be relevant for future research into myometrial contractility but there remains a lack of evidence regarding these cells in the myometrium. METHODS Single stain immunohistochemical and double stain immunofluorescence techniques visualised antibodies directed against total connexin 43, unphosphorylated connexin 43, KIT, alpha-SMA and prolyl 4-hydroxylase in myometrial biopsies from 26 women representing all stages of reproductive life. RESULTS Myometrial smooth myocytes from term uterine biopsies expressed connexin 43 in a punctate pattern typical of gap junctions. However, on the boundaries of the smooth muscle bundles, cells were present with a more uniform staining pattern. These cells continued to possess the same staining characteristics in non-pregnant biopsies whereas the smooth myocytes no longer expressed connexin 43. Immunohistochemistry using an antibody directed against connexin 43 unphosphorylated at serine 368 showed that it is this isoform that is expressed continually by these cells. Double-stain immunofluorescence for unphosphorylated connexin 43 and KIT, an established marker for interstitial cells, revealed a complete match indicating these cells are myometrial interstitial cells (MICs). MICs had elongated cell processes and were located mainly on the surface of the smooth muscle bundles and within the fibromuscular septum. No particular arrangement of cells as plexuses was observed. Antibody to prolyl 4-hydroxylase identified fibroblasts as separate from MICs. CONCLUSION MICs are identified consistently on the boundaries of smooth muscle bundles in both the pregnant and non-pregnant uterus and are distinct from fibroblasts. The uniform distribution of connexin 43 on the cell membrane of MICs, rather than localisation in gap junction plaques, may represent the presence of connexin hemichannels. This antibody specificity may aid future study of this potentially important cell type.
Collapse
Affiliation(s)
- Graham Hutchings
- Department of Obstetrics and Gynaecology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Thomas Gevaert
- Department of Morphology and Molecular Pathology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan Deprest
- Department of Obstetrics and Gynaecology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Tania Roskams
- Department of Morphology and Molecular Pathology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Alfons Van Lommel
- Department of Morphology and Molecular Pathology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Bernd Nilius
- Department of Physiology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Dirk De Ridder
- Department of Urology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
34
|
Ball KK, Gandhi GK, Thrash J, Cruz NF, Dienel GA. Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [(14)C]glucose metabolite trafficking. J Neurosci Res 2008; 85:3267-83. [PMID: 17600824 PMCID: PMC2819729 DOI: 10.1002/jnr.21376] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inferior colliculus has the highest rates of blood flow and metabolism in brain, and functional metabolic activity increases markedly in response to acoustic stimulation. However, brain imaging with [1- and 6-(14)C]glucose greatly underestimates focal metabolic activation that is readily detected with [(14)C]deoxyglucose, suggesting that labeled glucose metabolites are quickly dispersed and released from highly activated zones of the inferior colliculus. To evaluate the role of coupling of astrocytes via gap junctions in dispersal of molecules within the inferior colliculus, the present study assessed the distribution of connexin (Cx) proteins in the inferior colliculus and spreading of Lucifer yellow from single microinjected astrocytes in slices of adult rat brain. Immunoreactive Cx43, Cx30, and Cx26 were heterogeneously distributed; the patterns for Cx43 and Cx 30 differed and were similar to those of immunoreactive GFAP and S100beta, respectively. Most Cx43 was phosphorylated in resting and acoustically stimulated rats. Dye spreading revealed an extensive syncytial network that included thousands of cells and perivasculature endfeet; with 8% Lucifer yellow VS and a 5-min diffusion duration, about 6,100 astrocytes (range 2,068-11,939) were labeled as far as 1-1.5 mm from the injected cell. The relative concentration of Lucifer yellow fell by 50% within 0.3-0.8 mm from the injected cell with a 5-min diffusion interval. Perivascular dye labeling was readily detectable and often exceeded dye levels in nearby neuropil. Thus, astrocytes have the capability to distribute intracellular molecules quickly from activated regions throughout the large, heterogeneous syncytial volume of the inferior colliculus, and rapid trafficking of labeled metabolites would degrade resolution of focal metabolic activation.
Collapse
Affiliation(s)
- Kelly K. Ball
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Gautam K. Gandhi
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jarrod Thrash
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nancy F. Cruz
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Gerald A. Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Correspondence to: Gerald A. Dienel, PhD, Department of Neurology, Slot 830, University of Arkansas for Medical Sciences, 4301 W. Markham St., Shorey Bldg., Room 715, Little Rock, AR 72205.
| |
Collapse
|
35
|
Talhouk RS, Zeinieh MP, Mikati MA, El-Sabban ME. Gap junctional intercellular communication in hypoxia-ischemia-induced neuronal injury. Prog Neurobiol 2007; 84:57-76. [PMID: 18006137 DOI: 10.1016/j.pneurobio.2007.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 08/29/2007] [Accepted: 10/04/2007] [Indexed: 01/07/2023]
Abstract
Brain hypoxia-ischemia is a relatively common and serious problem in neonates and in adults. Its consequences include long-term histological and behavioral changes and reduction in seizure threshold. Gap junction intercellular communication is pivotal in the spread of hypoxia-ischemia related injury and in mediating its long-term effects. This review provides a comprehensive and critical review of hypoxia-ischemia and hypoxia in the brain and the potential role of gap junctions in the spread of the neuronal injury induced by these insults. It also presents the effects of hypoxia-ischemia and of hypoxia on the state of gap junctions in vitro and in vivo. Understanding the mechanisms involved in gap junction-mediated neuronal injury due to hypoxia will lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rabih S Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | | | | | | |
Collapse
|
36
|
Duffy HS, Wit AL. Is there a role for remodeled connexins in AF? No simple answers. J Mol Cell Cardiol 2007; 44:4-13. [PMID: 17935733 DOI: 10.1016/j.yjmcc.2007.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 01/19/2023]
Abstract
Gap junctions provide direct cytoplasmic continuity between cells forming a low resistivity barrier to electrical propagation. As such, aberrant regulation of these low resistive conduits has been blamed for electrical conduction disorders in diseased myocardium. While there is a plethora of evidence that abnormalities in gap junctional communication underlie many forms of ventricular arrhythmias, the role of gap junctions in atrial conduction disorders has been less well studied. The atria are the most heterogeneous cardiac structures in terms of the gap junction proteins, connexins (Cx), which are present. Cx40 is the primary, or most abundant, gap junction protein in atria although Cx43 is also abundantly expressed. Cx45 is also expressed in atria, although at low levels. This heterogeneity in connexins leads to a complexity that makes understanding the role of cell coupling in conduction disorders and arrhythmogenesis difficult. In this review we focus on what is known about atrial connexins and their role in atrial fibrillation but also on the challenges presented in understanding the complex interplay between the individual connexin isoforms.
Collapse
|
37
|
Zappalà A, Li Volti G, Serapide MF, Pellitteri R, Falchi M, La Delia F, Cicirata V, Cicirata F. Expression of pannexin2 protein in healthy and ischemized brain of adult rats. Neuroscience 2007; 148:653-67. [PMID: 17692470 DOI: 10.1016/j.neuroscience.2007.06.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
The expression pattern of the pannexin2 protein (Px2) in healthy and ischemized brains of adult rats was investigated. A polyclonal antibody for rat Px2 was generated in chicken and purified for affinity. This antibody was used to study by Western blot, Enzyme-Linked Immunosorbent Assay, and immunohistochemistry, the expression pattern of Px2 in healthy brain of adult rats and in the hippocampus of rats submitted to bilateral clamping of carotid arteries for 20 min, followed by different times of reperfusion (I/R) (8 h, 24 h, 48 h, 72 h, 14 days and 30 days). Immunohistochemical studies visualized the wide and complex expression pattern of Px2 in the healthy brain. All Px2(+) positive cells were neurons which also showed no puncta on their cellular membranes. Both pyramidal cells and interneurons, the majority of which were positive to parvalbumin, were stained in healthy hippocampus. The number of Px2 interneurons in the hippocampus showed a progressive reduction at successive time intervals after I/R, with a negative peak of about -40% after 72 h from I/R. Interneurons which were positive for both Px2 and parvalbumin, represented about the 85% of all parvalbumin cells stained in the hippocampus. This percentage rested grossly unmodified at different time intervals after I/R in spite of the progressive neuronal depletion. Concomitantly, an intense astrogliosis occurred in the hippocampus. Most of the astroglial cells expressed de novo and for a transient time (from 24 h to 14 days from I/R), Px2. Primary co-cultures of hippocampal neurons and astrocytes were submitted to transient ischemia-like injury. This set of experiments further confirmed the in vivo results by showing that Px2 is de novo and transiently expressed in astroglial cells following a transient ischemia-like injury. These results suggested the expression of Px2 in the astrocytes may be induced either from injured neurons or by biochemical pathways internal to the astrocyte itself. In conclusion, our results showed the transient expression of Px2 in astrocytes of reactive gliosis occurring in the hippocampus following I/R injury. We hypothesize that Px2 expression in astrocytes following an ischemic insult is principally involved in the formation of hemichannels for the release of signaling molecules devoted to influence the cellular metabolism and the redox status of the surrounding environment.
Collapse
Affiliation(s)
- A Zappalà
- Department of Physiological Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Malone P, Miao H, Parker A, Juarez S, Hernandez MR. Pressure induces loss of gap junction communication and redistribution of connexin 43 in astrocytes. Glia 2007; 55:1085-98. [PMID: 17551925 DOI: 10.1002/glia.20527] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Astrocytes, the major glia in the nonmyelinated optic nerve head (ONH), connect via gap junctions built of connexin-43 (Cx43) to form a functional syncytium allowing communication and control of ionic and metabolic homeostasis of retinal ganglion cells (RGCs) axon. We examined gap junction intercellular communication (GJIC) by scrape loading assays in human ONH astrocytes exposed to hydrostatic (HP) or ambient pressure (CP) in vitro. Immunostaining, immunoprecipitation, and immunoblots were used to detect Cx43 distribution and phosphorylation in astrocytes exposed to HP with/without EGF receptor (EGFR) tyrosine kinase inhibitors AG1478 and AG82 and MAPK inhibitors U0126, PD98059, and SB203580. The data indicates that upon exposure to HP, astrocytes decrease GJIC and exhibit altered cellular localization and phosphorylation of Cx43. Inhibition of EGFR blocked the effects of HP on GJIC and HP-induced Cx43 tyrosine phosphorylation. Inhibitors of MAPK- ERK1/2 and -p38 caused partial closure of GJIC under CP and HP, which was maintained for 6 h. Inhibition of Big Mitogen-Activated Kinase 1/ERK5 (BMK1/ERK5) caused partial closure under CP and HP followed by full recovery after 6 h. Inhibition of MAPK did not affect the HP-induced increase in Cx43 serine 279/282 phosphorylation. We conclude that activation of the EGFR pathway in response to HP leads to decrease of GJIC via tyrosine phosphorylation of Cx43 in ONH astrocytes. In glaucoma under conditions of elevated intraocular pressure (IOP), astrocytes may lose GJIC altering the homeostasis of RGC axons, adopting the reactive phenotype, contributing to glaucomatous neuropathy.
Collapse
Affiliation(s)
- Paula Malone
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
39
|
Rash JE, Olson CO, Davidson KGV, Yasumura T, Kamasawa N, Nagy JI. Identification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience 2007; 147:938-56. [PMID: 17601673 PMCID: PMC2034517 DOI: 10.1016/j.neuroscience.2007.04.061] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 04/15/2007] [Accepted: 04/30/2007] [Indexed: 11/15/2022]
Abstract
Locus coeruleus neurons are strongly coupled during early postnatal development, and it has been proposed that these neurons are linked by extraordinarily abundant gap junctions consisting of connexin32 (Cx32) and connexin26 (Cx26), and that those same connexins abundantly link neurons to astrocytes. Based on the controversial nature of those claims, immunofluorescence imaging and freeze-fracture replica immunogold labeling were used to re-investigate the abundance and connexin composition of neuronal and glial gap junctions in developing and adult rat and mouse locus coeruleus. In early postnatal development, connexin36 (Cx36) and connexin43 (Cx43) immunofluorescent puncta were densely distributed in the locus coeruleus, whereas Cx32 and Cx26 were not detected. By freeze-fracture replica immunogold labeling, Cx36 was found in ultrastructurally-defined neuronal gap junctions, whereas Cx32 and Cx26 were not detected in neurons and only rarely detected in glia. In 28-day postnatal (adult) rat locus coeruleus, immunofluorescence labeling for Cx26 was always co-localized with the glial gap junction marker Cx43; Cx32 was associated with the oligodendrocyte marker 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase); and Cx36 was never co-localized with Cx26, Cx32 or Cx43. Ultrastructurally, Cx36 was localized to gap junctions between neurons, whereas Cx32 was detected only in oligodendrocyte gap junctions; and Cx26 was found only rarely in astrocyte junctions but abundantly in pia mater. Thus, in developing and adult locus coeruleus, neuronal gap junctions contain Cx36 but do not contain detectable Cx32 or Cx26, suggesting that the locus coeruleus has the same cell-type specificity of connexin expression as observed ultrastructurally in other regions of the CNS. Moreover, in both developing and adult locus coeruleus, no evidence was found for gap junctions or connexins linking neurons with astrocytes or oligodendrocytes, indicating that neurons in this nucleus are not linked to the pan-glial syncytium by Cx32- or Cx26-containing gap junctions or by abundant free connexons composed of those connexins.
Collapse
Affiliation(s)
- J E Rash
- Department of Biomedical Sciences, Colorado State University, Campus Delivery 1617, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Haupt C, Witte OW, Frahm C. Up-regulation of Connexin43 in the glial scar following photothrombotic ischemic injury. Mol Cell Neurosci 2007; 35:89-99. [PMID: 17350281 DOI: 10.1016/j.mcn.2007.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/29/2006] [Accepted: 02/05/2007] [Indexed: 11/29/2022] Open
Abstract
Several types of CNS injury and various diseases are associated with the development of a glial scar. Astrocytes are major components of the glial scar. They are interconnected by gap junctions, with connexin43 (Cx43) being the most prominent channel protein. We applied a model of focal cerebral ischemia to study the spatio-temporal expression of glial fibrillary acidic protein, as well as of Cx43 mRNA and protein in gliotic tissue up to 60 days after injury. Reactive astrocytes enveloping the lesion up-regulated their Cx43 mRNA and protein. A band of reactive astrocytes filling in the lesion exhibited elevated Cx43 and showed a high degree of proliferation. Because of these findings, we hypothesize a role for Cx43 in glial scar formation, specifically in the proliferation of astrocytes.
Collapse
Affiliation(s)
- Corinna Haupt
- Department of Neurology, Friedrich-Schiller-University, Erlanger Allee 101, 07747 Jena, Germany
| | | | | |
Collapse
|
41
|
Lang NN, Luksha L, Newby DE, Kublickiene K. Connexin 43 mediates endothelium-derived hyperpolarizing factor-induced vasodilatation in subcutaneous resistance arteries from healthy pregnant women. Am J Physiol Heart Circ Physiol 2007; 292:H1026-32. [PMID: 17085540 DOI: 10.1152/ajpheart.00797.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of gap junctions in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation of human arteries was assessed using connexin mimetic peptides (CMPs) designated (37,43)Gap27, (40)Gap27, and (43)Gap26 according to homology with the major vascular connexins (Cx37, Cx40, and Cx43). Resistance arteries were obtained from subcutaneous fat biopsies of healthy pregnant women undergoing elective cesarean section. Endothelium-dependent vasodilatation to bradykinin (BK) was assessed using wire myography. N(omega)-nitro-l-arginine methyl ester (l-NAME) and indomethacin (nitric oxide synthase and cyclooxygenase inhibitors, respectively) attenuated maximal relaxation to BK (R(max)) by approximately 50%. Coincubation with l-NAME, indomethacin, and the combined CMPs ((37,43)Gap27, (40)Gap27, and (43)Gap26) almost abolished relaxation to BK (R(max) = 12.2 +/- 3.7%). In arteries incubated with l-NAME and indomethacin, the addition of either (37,43)Gap27 or (40)Gap27 had no significant effect on R(max), whereas (43)Gap26 caused marked inhibition (R(max) = 21 +/- 6.4%, P = 0.005 vs. l-NAME plus indomethacin alone) that was similar to that of the triple combination. Endothelium-independent vasorelaxation was unaffected by CMPs, l-NAME, or indomethacin. Immunohistochemistry demonstrated Cx37, Cx40, and Cx43 expression in the endothelium and vascular smooth muscle. In pregnant women, EDHF-mediated vasorelaxation of subcutaneous resistance arteries is dependent on Cx43 and gap junctions.
Collapse
Affiliation(s)
- Ninian N Lang
- Centre for Cardiovascular Science, The University of Edinburgh, Chancellor's Bldg., Edinburgh, EH16 4SU United Kingdom.
| | | | | | | |
Collapse
|
42
|
Luksha L, Poston L, Gustafsson JA, Hultenby K, Kublickiene K. The oestrogen receptor beta contributes to sex related differences in endothelial function of murine small arteries via EDHF. J Physiol 2006; 577:945-55. [PMID: 17038424 PMCID: PMC1890383 DOI: 10.1113/jphysiol.2006.121939] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sex related differences in cardiovascular function have been reported in oestrogen receptor beta knockout (ERbetaKO) mice. In this study we examined the role of endothelium-derived hyperpolarizing factor (EDHF) in differences in small artery endothelial function between ERbetaKO and wild-type (WT) mice. Small femoral arteries were isolated from ERbetaKO and WT mice and mounted on a wire myograph. Concentration-response curves to ACh were compared before and after incubation with inhibitors of nitric oxide (NO) and prostacyclin (PGI2) synthesis. Comparison of the expression of the principal vascular connexins (Cx37, 40 and 43), implicated in EDHF-mediated dilatation were undertaken by immunohistochemistry. Vascular ultrastructure was studied by transmission and scanning electron microscopy. ACh-induced relaxation of arteries (< 200 microm internal diameter) was greater in WT females versus males and was attributable to a greater EDHF component of relaxation. This sex difference was absent in ERbetaKO mice. Arteries from ERbetaKO males (but not females) were more sensitive to ACh compared to WT. The pharmacological evidence and morphological prerequisite for involvement of gap junctions in EDHF-mediated responses was confirmed in male arteries. The absence of ERbeta had no influence on expression of main Cx subtypes within vascular wall or on ultrastructure and morphology of the endothelium. The data suggest that in WT male mice, ERbeta reduces EDHF-mediated relaxation through gap junction communication.
Collapse
Affiliation(s)
- Leonid Luksha
- Institution for Clinical Science, Intervention and Technology (CLINTEC), Department of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital-Huddinge campus, 14186 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
43
|
Parthasarathi K, Ichimura H, Monma E, Lindert J, Quadri S, Issekutz A, Bhattacharya J. Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J Clin Invest 2006; 116:2193-200. [PMID: 16878174 PMCID: PMC1518791 DOI: 10.1172/jci26605] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 06/06/2006] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI), which is associated with a mortality of 30-40%, is attributable to inflammation that develops rapidly across the lung's vast vascular surface, involving an entire lung or even both lungs. No specific mechanism explains this extensive inflammatory spread, probably because of the lack of approaches for detecting signal conduction in lung capillaries. Here, we addressed this question by applying the photolytic uncaging approach to induce focal increases in Ca2+ levels in targeted endothelial cells of alveolar capillaries. Uncaging caused Ca2+ levels to increase not only in the targeted cell, but also in vascular locations up to 150 microm from the target site, indicating that Ca2+ was conducted from the capillary to adjacent vessels. No such conduction was evident in mouse lungs lacking endothelial connexin 43 (Cx43), or in rat lungs in which we pretreated vessels with peptide inhibitors of Cx43. These findings provide the first direct evidence to our knowledge that interendothelial Ca2+ conduction occurs in the lung capillary bed and that Cx43-containing gap junctions mediate the conduction. A proinflammatory effect was evident in that induction of increases in Ca2+ levels in the capillary activated expression of the leukocyte adherence receptor P-selectin in venules. Further, peptide inhibitors of Cx43 completely blocked thrombin-induced microvascular permeability increases. Together, our findings reveal a novel role for Cx43-mediated gap junctions, namely as conduits for the spread of proinflammatory signals in the lung capillary bed. Gap junctional mechanisms require further consideration in the understanding of ALI.
Collapse
Affiliation(s)
- Kaushik Parthasarathi
- Lung Biology Laboratory, St. Luke's-Roosevelt Hospital Center, Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10019, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Edry I, Sela-Abramovich S, Dekel N. Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle. Mol Cell Endocrinol 2006; 252:102-6. [PMID: 16647194 DOI: 10.1016/j.mce.2006.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The source of the inhibitory levels of cAMP that maintain oocytes meiotically arrested is under controversy. A model for regulation of the meiotic division that suggests the transfer of a somatic follicular cells-derived cAMP into the oocyte via gap junctions was first proposed by us in 1978. Later studies provide strong evidence that established gap-junctional communication within the ovarian follicle is indispensable for maintenance of meiotic arrest. On the other hand, other recent reports suggest that oocytes generate their own inhibitory cAMP by a G protein-coupled receptor-activated Gs. These studies as well as other recent reports related to this topic are thoroughly discussed in this chapter.
Collapse
Affiliation(s)
- Iris Edry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
45
|
Kihara AH, de Castro LM, Moriscot AS, Hamassaki DE. Prolonged dark adaptation changes connexin expression in the mouse retina. J Neurosci Res 2006; 83:1331-41. [PMID: 16496335 DOI: 10.1002/jnr.20815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the retina, ambient light levels influence the cell coupling provided by gap junction (GJ) channels, to compensate the visual function for various lighting conditions. However, the effects of ambient light levels on expression of connexins (Cx), the proteins that form the GJ channels, are poorly understood. In the present study, we first determined whether gene expression of specific Cx (Cx26, Cx31.1, Cx36, Cx37, Cx40, Cx43, Cx45, Cx50, and Cx57) was affected by prolonged dark adaptation. Cx mRNA relative levels were determined in mouse retinas dark adapted for 3 hr, 1 day, and 7 days by using quantitative real-time PCR. Transcript levels of some Cx were repressed after 3 hr (Cx57), 1 day (Cx45), or 7 days (Cx36 and Cx43) of dark adaptation; others were increased after 1 day (Cx50) or 7 days (Cx31.1 and Cx37); and two of them (Cx26 and Cx40) were not significantly altered. The second aim was to determine whether prolonged dark adaptation affects protein expression of two important Cx in retina: neuronal Cx36 and glial Cx43. We were able to demonstrate that important changes in protein distribution and expression also took place in retina during long-term dark adaptation. Given their localization, the specific alterations in Cx expression may reflect their distinct response to ambient light levels.
Collapse
Affiliation(s)
- Alexandre Hiroaki Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences,University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
46
|
Zahs KR, Ceelen PW. Gap junctional coupling and connexin immunoreactivity in rabbit retinal glia. Vis Neurosci 2006; 23:1-10. [PMID: 16597346 DOI: 10.1017/s0952523806231018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 09/06/2005] [Indexed: 11/07/2022]
Abstract
Gap junctions provide a pathway for the direct intercellular exchange of ions and small signaling molecules. Gap junctional coupling between retinal astrocytes and between astrocytes and Müller cells, the principal glia of vertebrate retinas, has been previously demonstrated by the intercellular transfer of gap-junction permeant tracers. However, functional gap junctions have yet to be demonstrated between mammalian Müller cells. In the present study, when the gap-junction permeant tracers Neurobiotin and Lucifer yellow were injected into a Müller cellviaa patch pipette, the tracers transferred to at least one additional cell in more than half of the cases examined. Simultaneous whole-cell recordings from pairs of Müller cells in the isolated rabbit retina revealed electrical coupling between closely neighboring cells, confirming the presence of functional gap junctions between rabbit Müller cells. The limited degree of this coupling suggests that Müller cell–Müller cell gap junctions may coordinate the functions of small ensembles of these glial cells. Immunohistochemistry and immunoblotting were used to identify the connexins in rabbit retinal glia. Connexin30 (Cx30) and connexin43 (Cx43) immunoreactivities were associated with astrocytes in the medullary ray region of the retinas of both pigmented and albino rabbits. Connexin43 was also found in Müller cells, but antibody recognition differed between astrocytic and Müller cell connexin43.
Collapse
Affiliation(s)
- Kathleen R Zahs
- Department of Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
47
|
Perez Velazquez JL, Kokarovtseva L, Sarbaziha R, Jeyapalan Z, Leshchenko Y. Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage. Eur J Neurosci 2006; 23:1-10. [PMID: 16420410 DOI: 10.1111/j.1460-9568.2005.04523.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18alpha-glycyrrhetinic acid and endothelin, applied via cannulae implanted into the hippocampus in one hemisphere, resulted in decreased numbers of TUNEL-positive neurons, as compared with the contralateral hippocampus that received saline injection. Post-treatment with carbenoxolone for up to 30 min after the stroke injury still resulted in decreased cell death, but post-treatment at 90 min after the ischaemic insult did not result in differences in cell death. However, quinine, an inhibitor of Cx36-mediated gap junctional coupling, did not result in appreciable neuroprotection. Searching for a possible mechanism for the observed protective effects, possible actions of the gap junctional blockers in the electrical activity of the hippocampus during the ischaemic insult were assessed using intracerebral recordings, with no differences observed between the saline-injected and the contralateral drug-injected hippocampus. However, a significant reduction in lipid peroxides, a measure of free radical formation, in the hippocampus treated with carbenoxolone, revealed that the actions of gap junctional coupling during injuries may be causally related to oxidative stress. These observations suggest that coupling in glial networks may be functionally important in determining neuronal vulnerability to oxidative injuries.
Collapse
Affiliation(s)
- Jose L Perez Velazquez
- Brain and Behaviour Programme and Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
48
|
Penes MC, Li X, Nagy JI. Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci 2005; 22:404-18. [PMID: 16045494 DOI: 10.1111/j.1460-9568.2005.04225.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PDZ domain-containing protein zonula occludens-1 (ZO-1) interacts with several members of the connexin (Cx) family of gap junction-forming proteins and has been localized to gap junctions, including those containing Cx47 in oligodendrocytes. We now provide evidence for ZO-1 expression in astrocytes in vivo and association with astrocytic connexins by confocal immunofluorescence demonstration of ZO-1 colocalization with astrocytic Cx30 and Cx43, and by ZO-1 coimmunoprecipitation with Cx30 and Cx43. Evidence for direct interaction of Cx30 with ZO-1 was obtained by pull-down assays that indicated binding of Cx30 to the second of the three PDZ domains in ZO-1. Further, we investigated mouse Y-box transcription factor MsY3, the canine ortholog of which has been termed ZO-1-associated nucleic acid-binding protein (ZONAB) and previously reported to interact with ZO-1. By immunofluorescence using specific antimouse ZONAB antibody, ZONAB was found to be associated with oligodendrocytes throughout mouse brain and spinal cord, and to be colocalized with oligodendrocytic Cx47 and Cx32 as well as with astrocytic Cx43. Our results extend the CNS cell types that express the multifunctional protein ZO-1, demonstrate an additional connexin (Cx30) that directly interacts with ZO-1, and show for the first time the association of a transcription factor (ZONAB) with ZO-1 localized to oligodendrocyte and astrocyte gap junctions. Given previous observations that ZONAB and ZO-1 in combination regulate gene expression, our results suggest roles of glial gap junction-mediated anchoring of signalling molecules in a wide variety of glial homeostatic processes.
Collapse
Affiliation(s)
- Mihai C Penes
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba R3E 3J7, Canada
| | | | | |
Collapse
|
49
|
Laird DW. Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:172-82. [PMID: 15955302 DOI: 10.1016/j.bbamem.2004.09.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 09/16/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.
Collapse
Affiliation(s)
- Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A-5C1.
| |
Collapse
|
50
|
Oliveira R, Christov C, Guillamo JS, de Boüard S, Palfi S, Venance L, Tardy M, Peschanski M. Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol 2005; 6:7. [PMID: 15715906 PMCID: PMC553963 DOI: 10.1186/1471-2121-6-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 02/16/2005] [Indexed: 12/04/2022] Open
Abstract
Background Gliomas are "intraparenchymally metastatic" tumors, invading the brain in a non-destructive way that suggests cooperation between glioma cells and their environment. Recent studies using an engineered rodent C6 tumor cell line have pointed to mechanisms of invasion that involved gap junctional communication (GJC), with connexin 43 as a substrate. We explored whether this concept may have clinical relevance by analyzing the participation of GJC in human glioblastoma invasion. Results Three complementary in vitro assays were used: (i) seeding on collagen IV, to analyze homocellular interactions between tumor cells (ii) co-cultures with astrocytes, to study glioblastoma/astrocytes relationships and (iii) implantation into organotypic brain slice cultures, that mimic the three-dimensional parenchymal environment. Carbenoxolone, a potent blocker of GJC, inhibited cell migration in the two latter models. It paradoxically increased it in the first one. These results showed that homocellular interaction between tumor cells supports intercellular adhesion, whereas heterocellular glioblastoma/astrocytes interactions through functional GJC conversely support tumor cell migration. As demonstrated for the rodent cell line, connexin 43 may be responsible for this heterocellular functional coupling. Its levels of expression, high in astrocytes, correlated positively with invasiveness in biopsied tumors. Conclusions our results underscore the potential clinical relevance of the concept put forward by other authors based on experiments with a rodent cell line, that glioblastoma cells use astrocytes as a substrate for their migration by subverting communication through connexin 43-dependent gap junctions.
Collapse
Affiliation(s)
- Roxane Oliveira
- INSERM/UPVM 421, Plasticité cellulaire et thérapeutique, Faculté de Médecine, 94010 Créteil cedex France
| | - Christo Christov
- INSERM/UPVM 421, Plasticité cellulaire et thérapeutique, Faculté de Médecine, 94010 Créteil cedex France
| | - Jean Sébastien Guillamo
- INSERM/UPVM 421, Plasticité cellulaire et thérapeutique, Faculté de Médecine, 94010 Créteil cedex France
| | - Sophie de Boüard
- INSERM/UPVM 421, Plasticité cellulaire et thérapeutique, Faculté de Médecine, 94010 Créteil cedex France
| | - Stéphane Palfi
- INSERM/UPVM 421, Plasticité cellulaire et thérapeutique, Faculté de Médecine, 94010 Créteil cedex France
- Service de neurochirurgie, CHU Henri Mondor, 94010 Créteil cedex France
| | - Laurent Venance
- INSERM U 114, NeuroBiologie, Collège de France, Place Marcellin Berthelot, 75005 Paris cedex France
| | - Marcienne Tardy
- INSERM/UPVM 421, Plasticité cellulaire et thérapeutique, Faculté de Médecine, 94010 Créteil cedex France
| | - Marc Peschanski
- INSERM/UPVM 421, Plasticité cellulaire et thérapeutique, Faculté de Médecine, 94010 Créteil cedex France
| |
Collapse
|