1
|
Barham M, Andermahr J, Majczyński H, Sławińska U, Vogt J, Neiss WF. Treadmill training of rats after sciatic nerve graft does not alter accuracy of muscle reinnervation. Front Neurol 2023; 13:1050822. [PMID: 36742044 PMCID: PMC9893025 DOI: 10.3389/fneur.2022.1050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Background and purpose After peripheral nerve lesions, surgical reconstruction facilitates axonal regeneration and motor reinnervation. However, functional recovery is impaired by aberrant reinnervation. Materials and methods We tested whether training therapy by treadmill exercise (9 × 250 m/week) before (run-idle), after (idle-run), or both before and after (run-run) sciatic nerve graft improves the accuracy of reinnervation in rats. Female Lewis rats (LEW/SsNHsd) were either trained for 12 weeks (run) or not trained (kept under control conditions, idle). The right sciatic nerves were then excised and reconstructed with 5 mm of a congenic allograft. One week later, training started in the run-run and idle-run groups for another 12 weeks. No further training was conducted in the run-idle and idle-idle groups. Reinnervation was measured using the following parameters: counting of retrogradely labeled motoneurons, walking track analysis, and compound muscle action potential (CMAP) recordings. Results In intact rats, the common fibular (peroneal) and the soleus nerve received axons from 549 ± 83 motoneurons. In the run-idle group, 94% of these motoneurons had regenerated 13 weeks after the nerve graft. In the idle-run group, 81% of the normal number of motoneurons had regenerated into the denervated musculature and 87% in both run-run and idle-idle groups. Despite reinnervation, functional outcome was poor: walking tracks indicated no functional improvement of motion in any group. However, in the operated hindlimb of run-idle rats, the CMAP of the soleus muscle reached 11.9 mV (normal 16.3 mV), yet only 6.3-8.1 mV in the other groups. Conclusion Treadmill training neither altered the accuracy of reinnervation nor the functional recovery, and pre-operative training (run-idle) led to a higher motor unit activation after regeneration.
Collapse
Affiliation(s)
- Mohammed Barham
- Department II of Anatomy, University of Cologne and University Hospital of Cologne, Cologne, Germany,*Correspondence: Mohammed Barham ✉
| | | | - Henryk Majczyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Urszula Sławińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Johannes Vogt
- Department II of Anatomy, University of Cologne and University Hospital of Cologne, Cologne, Germany,Cluster of Excellence for Aging Research (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Wolfram F. Neiss
- Department I of Anatomy, University of Cologne and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Trigeminal Sensory Supply Is Essential for Motor Recovery after Facial Nerve Injury. Int J Mol Sci 2022; 23:ijms232315101. [PMID: 36499425 PMCID: PMC9740813 DOI: 10.3390/ijms232315101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Recovery of mimic function after facial nerve transection is poor. The successful regrowth of regenerating motor nerve fibers to reinnervate their targets is compromised by (i) poor axonal navigation and excessive collateral branching, (ii) abnormal exchange of nerve impulses between adjacent regrowing axons, namely axonal crosstalk, and (iii) insufficient synaptic input to the axotomized facial motoneurons. As a result, axotomized motoneurons become hyperexcitable but unable to discharge. We review our findings, which have addressed the poor return of mimic function after facial nerve injuries, by testing the hypothesized detrimental component, and we propose that intensifying the trigeminal sensory input to axotomized and electrophysiologically silent facial motoneurons improves the specificity of the reinnervation of appropriate targets. We compared behavioral, functional, and morphological parameters after single reconstructive surgery of the facial nerve (or its buccal branch) with those obtained after identical facial nerve surgery, but combined with direct or indirect stimulation of the ipsilateral infraorbital nerve. We found that both methods of trigeminal sensory stimulation, i.e., stimulation of the vibrissal hairs and manual stimulation of the whisker pad, were beneficial for the outcome through improvement of the quality of target reinnervation and recovery of vibrissal motor performance.
Collapse
|
3
|
Barham M, Streppel M, Guntinas-Lichius O, Fulgham-Scott N, Vogt J, Neiss WF. Treatment With Nimodipine or FK506 After Facial Nerve Repair Neither Improves Accuracy of Reinnervation Nor Recovery of Mimetic Function in Rats. Front Neurosci 2022; 16:895076. [PMID: 35645727 PMCID: PMC9136327 DOI: 10.3389/fnins.2022.895076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Nimodipine and FK506 (Tacrolimus) are drugs that have been reported to accelerate peripheral nerve regeneration. We therefore tested these substances aiming to improve the final functional outcome of motoric reinnervation after facial nerve injury. Methods In 18 female rats, the transected facial nerve was repaired by an artificial nerve conduit. The rats were then treated with either placebo, nimodipine, or FK506, for 56 days. Facial motoneurons were pre-operatively double-labeled by Fluoro-Gold and again 56 days post-operation by Fast-Blue to measure the cytological accuracy of reinnervation. The whisking motion of the vibrissae was analyzed to assess the quality of functional recovery. Results On the non-operated side, 93–97% of those facial nerve motoneurons innervating the vibrissae were double-labeled. On the operated side, double-labeling only amounted to 38% (placebo), 40% (nimodipine), and 39% (FK506), indicating severe misdirection of reinnervation. Regardless of post-operative drug or placebo therapy, the whisking frequency reached 83–100% of the normal value (6.0 Hz), but whisking amplitude was reduced to 33–48% while whisking velocity reached 39–66% of the normal values. Compared to placebo, statistically neither nimodipine nor FK506 improved accuracy of reinnervation and function recovery. Conclusion Despite previous, positive data on the speed and quantity of axonal regeneration, nimodipine and FK506 do not improve the final functional outcome of motoric reinnervation in rats.
Collapse
Affiliation(s)
- Mohammed Barham
- Department II of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
- *Correspondence: Mohammed Barham,
| | - Michael Streppel
- Department of Ear, Nose and Throat-Department (ENT), PAN-Clinic at Neumarkt, Cologne, Germany
| | | | - Nicole Fulgham-Scott
- Department I of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Johannes Vogt
- Department II of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Wolfram F. Neiss
- Department I of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Manthou ME, Gencheva D, Sinis N, Rink S, Papamitsou T, Abdulla D, Bendella H, Sarikcioglu L, Angelov DN. Facial Nerve Repair by Muscle-Vein Conduit in Rats: Functional Recovery and Muscle Reinnervation. Tissue Eng Part A 2020; 27:351-361. [PMID: 32731808 DOI: 10.1089/ten.tea.2020.0045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The facial nerve is the most frequently damaged nerve in head and neck traumata. Repair of interrupted nerves is generally reinforced by fine microsurgical techniques; nevertheless, regaining all functions is the exception rather than the rule. The so-called "postparalytic syndrome," which includes synkinesia and altered blink reflexes, follows nerve injury. The purpose of this study was to examine if nerve-gap repair using an autologous vein filled with skeletal muscle would improve axonal regeneration, reduce neuromuscular junction polyinnervation, and improve the recovery of whisking in rats with transected and sutured right buccal branches of the facial nerve. Vibrissal motor performance was studied with the use of a video motion analysis. Immunofluorescence was used to visualize and analyze target muscle reinnervation. The results taken together indicate a positive effect of muscle-vein-combined conduit (MVCC) on the improvement of the whisking function after reparation of the facial nerve in rats. The findings support the recent suggestion that a venal graft with implantation of a trophic source, such as autologous denervated skeletal muscle, may promote the monoinnervation degree and ameliorate coordinated function of the corresponding muscles.
Collapse
Affiliation(s)
- Maria Eleni Manthou
- Department of Histology and Embryology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Dilyana Gencheva
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Nektarios Sinis
- Privatklinik für Plastische- und Ästhetische Chirurgie, Berlin Wilmersdorf, Germany
| | - Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | - Theodora Papamitsou
- Department of Histology and Embryology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Diana Abdulla
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | | | | |
Collapse
|
5
|
Assessment of axonal sprouting and motor performance after hypoglossal-facial end-to-side nerve repair: experimental study in rats. Exp Brain Res 2020; 238:1563-1576. [PMID: 32488325 DOI: 10.1007/s00221-020-05835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
Hypoglossal-facial nerve anastomosis (HFA) aims to reanimate denervated mimic muscles with hypoglossal axons when the transected facial nerve is not accessible. The aim of this study was to evaluate the recovery of HFA using a "Y" tube in two variants: (1) the proximal stump of the hypoglossal nerve was entubulated to the "Y" tube (classic "Y" tube HFA) and (2) the "Y" tube was sutured to an epineurial window of a slightly damaged hypoglossal nerve (end-to-side "Y" tube HFA). A total of 48 adult female rats were divided into four groups: intact controls (group 1), sham operated (group 2), classic "Y" tube HFA (group 3) and end-to-side "Y" tube HFA (group 4). The abdominal aorta with both common iliac arteries of isogeneic male rats served as the Y-tube conduit. Animals from group 4 recovered better than those from group 3: the degree of collateral axonal branching (3 ± 1%) was significantly lower than that determined in group 3 (13 ± 1%). The mean deviation of the tongue from the midline was significantly smaller in group 4 (6 ± 4°) than that measured in animals from group 3 (41 ± 6°). In the determination of vibrissal motor function in group 3 and group 4, a decrease in amplitude was found to be - 66% and - 92%, respectively. No differences in the reinnervation pattern of the target muscles were detected. As a result, these surgical models were not determined to be able to improve vibrissal movements. It was concluded that performance of end-to-side "Y" tube HFA diminishes collateral axonal branching at the lesion site, which in turn, promotes better recovery of tongue- and vibrissal-motor performance.
Collapse
|
6
|
Chacon MA, Echternacht SR, Leckenby JI. Outcome measures of facial nerve regeneration: A review of murine model systems. Ann Anat 2020; 227:151410. [DOI: 10.1016/j.aanat.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
|
7
|
Ozsoy U, Ogut E, Sekerci R, Hizay A, Rink S, Angelov DN. Effect of Pulsed and Continuous Ultrasound Therapy on the Degree of Collateral Axonal Branching at the Lesion Site, Polyinnervation of Motor End Plates, and Recovery of Motor Function after Facial Nerve Reconstruction. Anat Rec (Hoboken) 2019; 302:1314-1324. [PMID: 30950229 DOI: 10.1002/ar.24122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 11/07/2022]
Abstract
The aim of the present study is to test whether ultrasound therapy of muscles denervated by nerve injury would improve the quality of their reinnervation by reduction of the collateral axonal branching at the lesion site and poly-innervation degree at the neuromuscular junctions. After transection and suture of the buccal branch of the facial nerve, pulsed or continuous type of ultrasound therapy was applied to the paralyzed whisker pad muscles of rats in the course of 2 months. Instead of reduction, we found a significant increase in the collateral axonal branching after continuous ultrasound therapy when compared to the branching determined after pulsed or sham ultrasound therapy. Both types of ultrasound therapy also failed to reduce the proportion of polyinnervated end plates in the reinnervated facial muscles. Accordingly, continuous ultrasound therapy failed to restore any parameter of the motor performance of the vibrissal hairs. Application of pulsed ultrasound therapy promoted slight improvements of the functional parameters angular velocity and acceleration. The inhomogeneous structural and functional results achieved after both types of ultrasound therapy let us conclude that further studies are required to evaluate its effects on peripheral nerve regeneration. Anat Rec, 302:1314-1324, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Umut Ozsoy
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Eren Ogut
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Rahime Sekerci
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Arzu Hizay
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | | |
Collapse
|
8
|
Ozsoy U, Ogut E, Sekerci R, Hizay A, Rink S, Angelov DN. Effect of Pulsed and Continuous Ultrasound Therapy on the Degree of Collateral Axonal Branching at the Lesion Site, Polyinnervation of Motor End Plates, and Recovery of Motor Function after Facial Nerve Reconstruction. Anat Rec (Hoboken) 2019; 302:1314-1324. [DOI: https:/doi.org/10.1002/ar.24122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/27/2018] [Indexed: 07/22/2023]
Abstract
ABSTRACTThe aim of the present study is to test whether ultrasound therapy of muscles denervated by nerve injury would improve the quality of their reinnervation by reduction of the collateral axonal branching at the lesion site and poly‐innervation degree at the neuromuscular junctions. After transection and suture of the buccal branch of the facial nerve, pulsed or continuous type of ultrasound therapy was applied to the paralyzed whisker pad muscles of rats in the course of 2 months. Instead of reduction, we found a significant increase in the collateral axonal branching after continuous ultrasound therapy when compared to the branching determined after pulsed or sham ultrasound therapy. Both types of ultrasound therapy also failed to reduce the proportion of polyinnervated end plates in the reinnervated facial muscles. Accordingly, continuous ultrasound therapy failed to restore any parameter of the motor performance of the vibrissal hairs. Application of pulsed ultrasound therapy promoted slight improvements of the functional parameters angular velocity and acceleration. The inhomogeneous structural and functional results achieved after both types of ultrasound therapy let us conclude that further studies are required to evaluate its effects on peripheral nerve regeneration. Anat Rec, 302:1314–1324, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Umut Ozsoy
- Department of Anatomy, Faculty of Medicine Akdeniz University Antalya Turkey
| | - Eren Ogut
- Department of Anatomy, Faculty of Medicine Akdeniz University Antalya Turkey
| | - Rahime Sekerci
- Department of Anatomy, Faculty of Medicine Akdeniz University Antalya Turkey
| | - Arzu Hizay
- Department of Anatomy, Faculty of Medicine Akdeniz University Antalya Turkey
| | - Svenja Rink
- Department of Prosthetic Dentistry School of Dental and Oral Medicine, University of Cologne Cologne Germany
| | | |
Collapse
|
9
|
Chen P, Knox CJ, Yao L, Li C, Hadlock TA. The effects of venous ensheathment on facial nerve repair in the rat. Laryngoscope 2017; 127:1558-1564. [PMID: 28224625 DOI: 10.1002/lary.26501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 12/25/2016] [Accepted: 12/28/2016] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the protective effect of autologous venous ensheathment on sutured rat facial nerve and to test whether the ensheathment could improve the functional recovery of repaired nerve and accuracy of axonal growth. STUDY DESIGN In vivo study. METHODS Forty-six rats were examined, with six rats serving as normal controls and 40 receiving facial nerve transection and suture repair (SR) or transection and suture repair with an additional venous ensheathment (VE). The rats were then subjected to functional testing, histological assessment of nerve specimens, or retrograde tracing, respectively. RESULTS At the postoperative day (POD) 60, the venous ensheathment showed no adhesion at the surrounding tissues. No significant difference in neuroma formation was found between the two surgical manipulations (SR and VE groups) (P < 0.05). Retrogradely labeled motoneurons in facial nuclei were extremely disorganized after the facial nerve undertook surgical manipulation. In all manipulated groups, double retrogradely labeled neurons, indicative of aberrant axonal branching during regeneration, could be observed after peripheral manipulation across all time points. With the two facial surgical manipulations, the average count of double-labeled neurons at POD 60 was significantly less than at POD 21 (P < 0.05). CONCLUSION Autologous venous ensheathment could not help with the functional recovery of facial nerve or improve the accuracy of axonal regeneration. Further studies are warranted to elucidate the effects of venous ensheathment in other motor and sensory nerve models. LEVEL OF EVIDENCE NA. Laryngoscope, 127:1558-1564, 2017.
Collapse
Affiliation(s)
- Pei Chen
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts, U.S.A.,Department of Otolaryngology, Wuhan Integrated TCM and Western Medicine Hospital (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Christopher J Knox
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Linli Yao
- Department of Otolaryngology, Wuhan Integrated TCM and Western Medicine Hospital (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chunli Li
- Department of Otolaryngology, Wuhan Integrated TCM and Western Medicine Hospital (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tessa A Hadlock
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts, U.S.A
| |
Collapse
|
10
|
Comparative outcome measures in peripheral regeneration studies. Exp Neurol 2016; 287:348-357. [PMID: 27094121 DOI: 10.1016/j.expneurol.2016.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
Abstract
Traumatic peripheral nerve injuries are common and often result in partial or permanent paralysis, numbness of the affected limb, and debilitating neuropathic pain. Experimental animal models of nerve injury have utilized a diversity of outcome measures to examine functional recovery following injury. Four primary categories of outcome measures of regenerative success including retrograde labeling with counts of regenerating neurons, immunohistochemistry and histomorphometry, reinnervation of target muscles, and behavioral analysis of recovery will be reviewed. Validity of different outcome measures are discussed in context of hindlimb, forelimb, and facial nerve injury models. Severity of nerve injury will be highlighted, and comparisons between nerve crush injury and more severe transection and neuroma-in-continuity nerve injury paradigms will be evaluated. The case is made that specific outcome measures may be more sensitive to assessing functional recovery following nerve injury than others. This will be discussed in the context of the lack of association between certain outcome measures of nerve regeneration. Examples of inaccurate conclusions from specific outcome measures will also be considered. Overall, researchers must therefore take care to select appropriate outcome measures for animal nerve injury studies dependant on the specific experimental interventions and scientific questions addressed.
Collapse
|
11
|
Navarro X. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview. Eur J Neurosci 2015; 43:271-86. [PMID: 26228942 DOI: 10.1111/ejn.13033] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023]
Abstract
Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets.
Collapse
Affiliation(s)
- Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
12
|
Bertelli JA, Taleb M, Mira JC, Ghizoni MF. Variation in nerve autograft length increases fibre misdirection and decreases pruning effectiveness. An experimental study in the rat median nerve. Neurol Res 2013; 27:657-65. [PMID: 16157020 DOI: 10.1179/016164105x18494] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES In the clinical set, autologus nerve grafts are the current option for reconstruction of nerve tissue losses. The length of the nerve graft has been suggested to affect outcomes. Experiments were performed in the rat in order to test this assumption and to detect a possible mechanism to explain differences in recovery. METHODS The rat median nerve was repaired by ulnar nerve grafts of different lengths. Rats were evaluated for 12 months by behavioural assessment and histological studies, including ATPase myofibrillary histochemistry and retrograde neuronal labelling. RESULTS It was demonstrated that graft length interferes in behavioural functional recovery that here correlates to muscle weight recovery. Short nerve grafts recovered faster and better. Reinnervation was not specific either at the trunk level or in the muscle itself. The normal mosaic pattern of Type I muscle fibres was never restored and their number remained largely augmented. An increment in the number of motor fibres was observed after the nerve grafting in a predominantly sensory branch in all groups. This increment was more pronounced in the long graft group. In the postoperative period, about a 20% reduction in the number of misdirected motor fibres occurred in the short nerve graft group only. CONCLUSION Variation in the length of nerve grafts interferes in behavioural recovery and increases motor fibres misdirection. Early recovery onset was related to a better outcome, which occurs in the short graft group.
Collapse
Affiliation(s)
- J A Bertelli
- Universidade do Sul de Santa Catarina - Unisul, Centro de Ciências Biológicas e da Saúde- CCBS, Tubaraão, SC, Brazil.
| | | | | | | |
Collapse
|
13
|
Heaton JT, Knox CJ, Malo JS, Kobler JB, Hadlock TA. A system for delivering mechanical stimulation and robot-assisted therapy to the rat whisker pad during facial nerve regeneration. IEEE Trans Neural Syst Rehabil Eng 2013; 21:928-37. [PMID: 23475376 DOI: 10.1109/tnsre.2013.2244911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional recovery is typically poor after facial nerve transection and surgical repair. In rats, whisking amplitude remains greatly diminished after facial nerve regeneration, but can recover more completely if the whiskers are periodically mechanically stimulated during recovery. Here we present a robotic "whisk assist" system for mechanically driving whisker movement after facial nerve injury. Movement patterns were either preprogrammed to reflect natural amplitudes and frequencies, or movements of the contralateral (healthy) side of the face were detected and used to control real-time mirror-like motion on the denervated side. In a pilot study, 20 rats were divided into nine groups and administered one of eight different whisk assist driving patterns (or control) for 5-20 minutes, five days per week, across eight weeks of recovery after unilateral facial nerve cut and suture repair. All rats tolerated the mechanical stimulation well. Seven of the eight treatment groups recovered average whisking amplitudes that exceeded controls, although small group sizes precluded statistical confirmation of group differences. The potential to substantially improve facial nerve recovery through mechanical stimulation has important clinical implications, and we have developed a system to control the pattern and dose of stimulation in the rat facial nerve model.
Collapse
|
14
|
Skouras E, Pavlov S, Bendella H, Angelov DN. Materials and Methods. STIMULATION OF TRIGEMINAL AFFERENTS IMPROVES MOTOR RECOVERY AFTER FACIAL NERVE INJURY 2013. [DOI: 10.1007/978-3-642-33311-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
15
|
Results. STIMULATION OF TRIGEMINAL AFFERENTS IMPROVES MOTOR RECOVERY AFTER FACIAL NERVE INJURY 2013. [DOI: 10.1007/978-3-642-33311-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Klimaschewski L, Hausott B, Angelov DN. The pros and cons of growth factors and cytokines in peripheral axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:137-71. [PMID: 24083434 DOI: 10.1016/b978-0-12-410499-0.00006-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Injury to a peripheral nerve induces a complex cellular and molecular response required for successful axon regeneration. Proliferating Schwann cells organize into chains of cells bridging the lesion site, which is invaded by macrophages. Approximately half of the injured neuron population sends out axons that enter the glial guidance channels in response to secreted neurotrophic factors and neuropoietic cytokines. These lesion-associated polypeptides create an environment that is highly supportive for axon regrowth, particularly after acute injury, and ensure that the vast majority of regenerating axons are directed toward the distal nerve stump. Unfortunately, most neurotrophic factors and neuropoietic cytokines are also strong stimulators of axonal sprouting. Although some of the axonal branches will withdraw at later stages, the sprouting effect contributes to the misdirection of reinnervation that results in the lack of functional recovery observed in many patients with peripheral nerve injuries. Here, we critically review the role of neuronal growth factors and cytokines during axon regeneration in the peripheral nervous system. Their differential effects on axon elongation and sprouting were elucidated in various studies on intraneuronal signaling mechanisms following nerve lesion. The present data define a goal for future therapeutic strategies, namely, to selectively stimulate a Ras/Raf/ERK-mediated axon elongation program over an intrinsic PI3K-dependent axonal sprouting program in lesioned motor and sensory neurons. Instead of modulating growth factor or cytokine levels at the lesion site, targeting specific intraneuronal molecules, such as the negative feedback inhibitors of ERK signaling, has been shown to promote long-distance regeneration while avoiding sprouting of regenerating axons until they have reached their target areas.
Collapse
Affiliation(s)
- Lars Klimaschewski
- Division of Neuroanatomy, Department of Anatomy and Histology, Innsbruck Medical University, Innsbruck, Austria
| | | | | |
Collapse
|
17
|
Ozsoy U, Hizay A, Demirel BM, Ozsoy O, Bilmen Sarikcioglu S, Turhan M, Sarikcioglu L. The hypoglossal–facial nerve repair as a method to improve recovery of motor function after facial nerve injury. Ann Anat 2011; 193:304-13. [PMID: 21458251 DOI: 10.1016/j.aanat.2011.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/03/2011] [Accepted: 01/05/2011] [Indexed: 12/16/2022]
|
18
|
Outcome measures of peripheral nerve regeneration. Ann Anat 2011; 193:321-33. [DOI: 10.1016/j.aanat.2011.04.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 01/25/2023]
|
19
|
Non-invasive stimulation of the vibrissal pad improves recovery of whisking function after simultaneous lesion of the facial and infraorbital nerves in rats. Exp Brain Res 2011; 212:65-79. [PMID: 21526334 DOI: 10.1007/s00221-011-2697-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/12/2011] [Indexed: 01/30/2023]
Abstract
We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.
Collapse
|
20
|
Skouras E, Ozsoy U, Sarikcioglu L, Angelov DN. Intrinsic and therapeutic factors determining the recovery of motor function after peripheral nerve transection. Ann Anat 2011; 193:286-303. [PMID: 21458252 DOI: 10.1016/j.aanat.2011.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 01/01/2023]
Abstract
Insufficient recovery after peripheral nerve injury has been attributed to (i) poor pathfinding of regrowing axons, (ii) excessive collateral axonal branching at the lesion site and (iii) polyneuronal innervation of the neuromuscular junctions (NMJ). The facial nerve transection model has been used initially to measure restoration of function after varying therapies and to examine the mechanisms underlying their effects. Since it is very difficult to control the navigation of several thousand axons, efforts concentrated on collateral branching and NMJ-polyinnervation. Treatment with antibodies against trophic factors to combat branching improved the precision of reinnervation, but had no positive effects on functional recovery. This suggested that polyneuronal reinnervation--rather than collateral branching--may be the critical limiting factor. The former could be reduced by pharmacological agents known to perturb microtubule assembly and was followed by recovery of function. Because muscle polyinnervation is activity-dependent and can be manipulated, attempts to design a clinically feasible therapy were performed by electrical stimulation or by soft tissue massage. Electrical stimulation applied to the transected facial nerve or to paralysed facial muscles did not improve vibrissal motor performance and failed to diminish polyinnervation. In contrast, gentle stroking of the paralysed muscles (vibrissal, orbicularis oculi, tongue musculature) resulted in full recovery of function. This manual stimulation was also effective after hypoglossal-facial nerve suture and after interpositional nerve grafting, but not after surgical reconstruction of the median nerve. All these findings raise hopes that clinically feasible and effective therapies could be soon designed and tested.
Collapse
Affiliation(s)
- Emmanouil Skouras
- Department of Orthopedics and Traumatology, University of Cologne, Joseph-Stelzmann-Strasse 9, Cologne, Germany
| | | | | | | |
Collapse
|
21
|
Angelov DN. Factors Limiting Motor Recovery After Facial Nerve Injury. PHYSICAL REHABILITATION OF PARALYSED FACIAL MUSCLES: FUNCTIONAL AND MORPHOLOGICAL CORRELATES 2011. [DOI: 10.1007/978-3-642-18120-7_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Guntinas-Lichius O, Glowka TR, Angelov DN, Irintchev A, Neiss WF. Improved functional recovery after facial nerve reconstruction by temporary denervation of the contralateral mimic musculature with botulinum toxin in rats. Neurorehabil Neural Repair 2010; 25:15-23. [PMID: 20930211 DOI: 10.1177/1545968310376058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Even optimal nerve reconstruction after facial nerve damage leads to defective reinnervation because of misdirected axonal sprouting and polyinnervation of the end plates of the facial muscles. OBJECTIVE The authors studied whether temporary chemical denervation of the contralateral nonlesioned hemiface with botulinum toxin (BTX) would increase regeneration of the lesioned buccal branch of the facial nerve and improve functional recovery of the whisker pad. METHODS The experiments were performed in 65 adult rats distributed in 4 interventions: (1) buccal-buccal nerve anastomosis (BBA), (2) BBA plus ipsilateral injection of BTX into the whisker pad, (3) BBA plus contralateral BTX injection, or (4) BTX injection without any surgery. Sequential preoperative and postoperative retrograde fluorescence tracing at 4 weeks after surgery quantified the accuracy of reinnervation. Functional recovery was measured by biometrical image analysis of whisking behavior at 12 weeks after surgery. RESULTS After BTX injection without any surgery, muscle paralysis was transient, and the animals restored normal nerve terminals and normal vibrissal function at 8 weeks after treatment. After BBA and ipsilateral or contralateral BTX injection, the degree of correct reinnervation increased significantly to 61% in comparison to 27% after BBA without any other intervention. Enhanced correct reinnervation was accompanied by a significant improvement of whisking after contralateral but not after ipsilateral injection of BTX. CONCLUSIONS These results provide evidence that transient contralateral muscle paralysis helps improve the morphological and functional regeneration after facial nerve repair.
Collapse
|
23
|
Irintchev A, Angelov DN, Guntinas-Lichius O. [Regeneration of the facial nerve in comparison to other peripheral nerves : from bench to bedside]. HNO 2010; 58:426-32. [PMID: 20454881 DOI: 10.1007/s00106-010-2100-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite increasing knowledge of cellular and molecular mechanisms determining the success or failure of peripheral nerve regeneration, no effective treatments for peripheral nerve injury exist. Newly developed and validated approaches for precise numerical assessment of motor deficits have recently allowed testing of novel strategies in experimental animals. One of these approaches is the daily manual stimulation of the denervated musculature. This treatment is effective in cases of cranial nerve lesions with preservation of the sensory input (facial or hypoglossal nerve) and has the potential of direct translation in clinical settings. However, manual stimulation appears to be ineffective for the treatment of mixed peripheral nerve injuries. Generally, no long-term improvement of functional recovery is achieved by electrical stimulation in rodents. While short-term post-traumatic stimulation of the proximal nerve stump has no negative effects, direct electrical stimulation of the muscle during the period of de- and reinnervation appears to hinder muscle fibre reinnervation. Finally, experimental evidence suggests that application of peptides known as glycomimetics, which mimic functional properties of carbohydrate molecules, may provide significant benefits after injuries of mixed peripheral nerves.
Collapse
Affiliation(s)
- A Irintchev
- Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde, Friedrich-Schiller-Universität, 07740, Jena, Deutschland.
| | | | | |
Collapse
|
24
|
Navarro X, Udina E. Chapter 6 Methods and Protocols in Peripheral Nerve Regeneration Experimental Research. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:105-26. [DOI: 10.1016/s0074-7742(09)87006-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Abstract
Using a combination of the following, it is possible to investigate procedures to improve the morphological and functional regeneration of the facial nerve in animal models: 1) retrograde fluorescence tracing to analyse collateral axonal sprouting and the selectivity of reinnervation of the mimic musculature, 2) immunohistochemistry to analyse both the terminal axonal sprouting in the muscles and the axon reaction within the nucleus of the facial nerve, the peripheral nerve, and its environment, and 3) digital motion analysis of the muscles. To obtain good functional facial nerve regeneration, a reduction of terminal sprouting in the mimic musculature seems to be more important than a reduction of collateral sprouting at the lesion site. Promising strategies include acceleration of nerve regeneration, forced induced use of the paralysed face, mechanical stimulation of the face, and transplantation of nerve-growth-promoting olfactory epithelium at the lesion site.
Collapse
Affiliation(s)
- O Guntinas-Lichius
- Klinik und Poliklinik für Hals-, Nasen-, Ohrenkranke, Friedrich-Schiller-Universität, Lessingstrasse 2, 07740 Jena.
| | | |
Collapse
|
26
|
Rueger MA, Aras S, Guntinas-Lichius O, Neiss WF. Re-activation of atrophic motor Schwann cells after hypoglossal-facial nerve anastomosis. Neurosci Lett 2008; 434:253-9. [PMID: 18337003 DOI: 10.1016/j.neulet.2008.01.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/13/2008] [Accepted: 01/16/2008] [Indexed: 11/24/2022]
Abstract
Facial nerve lesions are common in humans and often require surgical intervention. If repair is delayed, reinnervation can be facilitated by transposing the freshly cut hypoglossal nerve end-to-end directly to the distal facial nerve, allowing for uncompromised hypoglossal axons to reinnervate the denervated facial musculature (hypoglossal-facial anastomosis, HFA). Schwann cells (SCs) in the distal nerve stump have an important function in promoting axonal regeneration by expressing multiple regeneration-associated proteins. Chronically denervated SCs cease to express those factors, but it is unknown whether they can be reactivated by fresh axonal sprouts and regain part of their function. We evaluated SC function and viability in distal facial nerve stump of rats at various time points after chronic denervation as well as following immediate or delayed HFA by assessing their expression of growth-associated protein 43 kDa (GAP-43) and the neuregulin receptors erbB2 and erbB4. Our results show that maximal upregulation of those factors in denervated SCs occurred a few weeks after nerve transection, indicating that a short period of denervation might even be beneficial before nerve repair. Motor SCs denervated for 32 weeks had downregulated their activity and ceased to express the regeneration-associated factors. SCs immediately re-expressed GAP-43, erbB2, and erbB4 following contact with fresh hypoglossal motor axons, demonstrating they are competent to promote regeneration even after long-term denervation.
Collapse
|
27
|
Local stabilization of microtubule assembly improves recovery of facial nerve function after repair. Exp Neurol 2008; 209:131-44. [DOI: 10.1016/j.expneurol.2007.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 09/03/2007] [Accepted: 09/10/2007] [Indexed: 11/23/2022]
|
28
|
Suarez V, Guntinas-Lichius O, Streppel M, Ingorokva S, Grosheva M, Neiss WF, Angelov DN, Klimaschewski L. The axotomy-induced neuropeptides galanin and pituitary adenylate cyclase-activating peptide promote axonal sprouting of primary afferent and cranial motor neurones. Eur J Neurosci 2007; 24:1555-64. [PMID: 17004919 DOI: 10.1111/j.1460-9568.2006.05029.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neuropeptides galanin and pituitary adenylate cyclase-activating peptide (PACAP) are markedly up-regulated in response to peripheral nerve lesion. Both peptides are involved in neuronal differentiation and neurite outgrowth during development. In this study, we investigated the effects of galanin and PACAP on axonal elongation and sprouting by adult rat sensory neurones in vitro and facial motor neurones in vivo. Dissociated rat dorsal root ganglion neurones were plated on laminin substrate and analysed morphometrically. Both the mean axonal length and the number of branch points significantly increased in the presence of galanin or PACAP (2-5 microm). Effects on axonal collateralization were investigated in the rat facial nerve lesion model by direct application of the peptides to collagen-filled conduits entubulating the transected facial nerve stumps. Triple retrograde labelling of brainstem neurones confirmed that the peptides potently induce axonal sprouting of cranial motor neurones. The number of neurones regenerating into identified rami of the facial nerve increased up to fivefold. Biometrical analysis of whisking behaviour revealed that galanin and PACAP impaired the functional outcome when compared with vehicle-treated animals 8 weeks after surgery. In conclusion, although galanin and PACAP have been established as neurotrophic molecules with respect to axonal development and regeneration, their potential as treatments for peripheral nerve lesions appears limited because of the extensive stimulation of collateral axon branching. These branches are misrouted towards incorrect muscles and cause impairment in their coordinated activity.
Collapse
Affiliation(s)
- Victor Suarez
- Institut für Anatomie, Universität zu Köln, Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Synergistic terminal motor end-to-side nerve graft repair: investigation in a non-human primate model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 100:97-101. [PMID: 17985555 DOI: 10.1007/978-3-211-72958-8_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
End-to-side nerve repair has re-emerged in the literature in recent years but clinical applications for this technique are not yet fully defined and clinical reports are rare and controversial. Hypothetically, there might be useful functional results performing peripheral end-to-side nerve graft repair using synergistic terminal branches with defined motor function. An end-to-side nerve graft repair bridging from the terminal motor branch of deep branch of the ulnar nerve to the thenar motor branch of the median nerve was performed in non-human primates. The results in this non-human primate model demonstrate the efficacy of end-to-side nerve graft repair at the level of peripheral terminal motor branches. End-to-side neurorrhaphy may present a viable alternative in conditions of unsuitable end-to-end coaptation and inappropriate nerve grafting procedures.
Collapse
|
30
|
Bertelli JA, Ghizoni MF. Concepts of nerve regeneration and repair applied to brachial plexus reconstruction. Microsurgery 2006; 26:230-44. [PMID: 16586502 DOI: 10.1002/micr.20234] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brachial plexus injury is a serious condition that usually affects young adults. Progress in brachial plexus repair is intimately related to peripheral nerve surgery, and depends on clinical and experimental studies. We review the rat brachial plexus as an experimental model, together with its behavioral evaluation. Techniques to repair nerves, such as neurolysis, nerve coaptation, nerve grafting, nerve transfer, fascicular transfer, direct muscle neurotization, and end-to-side neurorraphy, are discussed in light of the authors' experimental studies. Intradural repair of the brachial plexus by graft implants into the spinal cord and motor rootlet transfer offer new possibilities in brachial plexus reconstruction. The clinical experience of intradural repair is presented. Surgical planning in root rupture or avulsion is proposed. In total avulsion, the authors are in favor of the reconstruction of thoraco-brachial and abdomino-antebrachial grasping, and on the transfer of the brachialis muscle to the wrist extensors if it is reinnervated. Surgical treatment of painful conditions and new drugs are also discussed.
Collapse
|
31
|
Bertelli JA, Taleb M, Mira JC, Ghizoni MF. Functional recovery improvement is related to aberrant reinnervation trimming. A comparative study using fresh or predegenerated nerve grafts. Acta Neuropathol 2006; 111:601-9. [PMID: 16718355 DOI: 10.1007/s00401-005-0005-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 09/13/2005] [Accepted: 09/13/2005] [Indexed: 11/24/2022]
Abstract
Experimentally predegenerated nerve grafts have been demonstrated to improve recovery. In a 12 month-long study, we compared the degree of recovery of conventional and predegenerated grafts in rat median nerve repair. To induce predegeneration the ulnar donor nerve was crushed and grafting to the median nerve was performed 2 weeks later. The day of recovery and the improvement of finger flexion strength were studied by the grasping test. At 3, 6, 9, and 12 months after surgery retrograde labeling studies and flexor carpi radialis muscle ATPase histochemistry were performed. In the predegenerated grafts, the recovery of finger flexion occurred 19.6+/-1.5 days after surgery and was significantly faster than that in the conventional group. Twelve months after surgery, a similar rate of 85% of grasping strength recovery in relation to the normal control rats was demonstrated for the conventional and predegenerated grafts. After grafting, a larger number of motoneurons, compared to the normal controls, were retrograde labeled in the median nerve. This surplus of retrograde labeled motoneurons in the predominantly sensory branch of the median nerve represented misdirected motor fibers. There was a time-related decrease in the number of labeled motoneurons, which correlated to functional grasping strength recovery. Muscle reinnervation induced a predominance of type I over type II muscle fibers. Forty percent of type I fibers were grouped indicating that collateral sprouting plays a prominent role during muscle reinnervation. Regeneration in predegenerated grafts was faster but the final rate of recovery was similar to conventional grafts.
Collapse
Affiliation(s)
- Jayme Augusto Bertelli
- Centro de Ciências Biológicas e da Saúde (CCBS), Universidade do Sul de Santa Catarina (Unisul), Tubarão, and Department of Orthopedic Surgery, Governador Celso Ramos Hospital, Florianópolis, SC, Brazil.
| | | | | | | |
Collapse
|
32
|
Guntinas-Lichius O, Angelov DN, Morellini F, Lenzen M, Skouras E, Schachner M, Irintchev A. Opposite impacts of tenascin-C and tenascin-R deficiency in mice on the functional outcome of facial nerve repair. Eur J Neurosci 2006; 22:2171-9. [PMID: 16262655 DOI: 10.1111/j.1460-9568.2005.04424.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The glycoproteins tenascin-C (TNC) and tenascin-R (TNR) are extracellular matrix proteins involved in the development, plasticity and repair of the nervous system. Altered expression patterns after nerve lesions in adult animals have suggested that these molecules influence axonal regeneration. To test this hypothesis, we investigated adult mice constitutively deficient in the expression of TNC, TNR or both, using the facial nerve injury paradigm. Quantitative analysis of vibrissal movements prior to nerve transection and repair (facial-facial anastomosis) did not reveal genotype-specific differences, and thus impacts of the mutations on motor function in intact animals. Two months after nerve repair, recovery of vibrissal whisking was poor in wild-type mice, a typical finding after facial-facial anastomosis in rodents. Differential effects of the mutations on whisking were found: recovery of function was worse in TNC-deficient and better in TNR null mice compared with wild-type littermates. In double-knockout animals, vibrissal performance was insufficient, but to a lesser extent compared with TNC null mutant mice. Retrograde labelling of motoneurons in the same animals showed that similar numbers of motoneurons had reinnervated the whisker pads in all experimental groups precluding varying extents of motoneuron death and/or axon regeneration failures as causes for the different outcomes of nerve repair. Our results provide strong evidence that TNC promotes and TNR impedes recovery after nerve lesion. These findings are of particular interest with regard to the scanty knowledge about factors determining success of regeneration in the peripheral nervous system of mammals.
Collapse
|
33
|
Nichols CM, Myckatyn TM, Rickman SR, Fox IK, Hadlock T, Mackinnon SE. Choosing the correct functional assay: A comprehensive assessment of functional tests in the rat. Behav Brain Res 2005; 163:143-58. [PMID: 15979168 DOI: 10.1016/j.bbr.2005.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 05/16/2005] [Accepted: 05/18/2005] [Indexed: 11/19/2022]
Abstract
While there are several ways to quantify peripheral nerve regeneration; the true measure of successful outcome is functional recovery. Functional tests are relatively easily conducted in human subjects; however it is more difficult in a laboratory animal. The laboratory rat is an excellent animal model of peripheral nerve injury and has been used extensively in the field of peripheral nerve research. Due to the intense interest in the rat as an experimental model, functional assays have been reported. In an effort to provide a resource to which investigators can refer when considering the most appropriate functional assay for a given experiment, the authors have compiled and tabulated the available functional tests applicable to various models of rat nerve injury.
Collapse
Affiliation(s)
- Chris M Nichols
- Washington University School of Medicine, Division of Plastic and Reconstructive Surgery, Campus Box 8238, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
34
|
Guntinas-Lichius O, Irintchev A, Streppel M, Lenzen M, Grosheva M, Wewetzer K, Neiss WF, Angelov DN. Factors limiting motor recovery after facial nerve transection in the rat: combined structural and functional analyses. Eur J Neurosci 2005; 21:391-402. [PMID: 15673438 DOI: 10.1111/j.1460-9568.2005.03877.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is believed that a major reason for the poor functional recovery after peripheral nerve lesion is collateral branching and regrowth of axons to incorrect muscles. Using a facial nerve injury protocol in rats, we previously identified a novel and clinically feasible approach to combat axonal misguidance--the application of neutralizing antibodies against neurotrophic factors to the injured nerve. Here, we investigated whether reduced collateral branching at the lesion site leads to better functional recovery. Treatment of rats with antibodies against nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor, insulin-like neurotrophic factor I, ciliary neurotrophic factor or glial cell line-derived neurotrophic factor increased the precision of reinnervation, as evaluated by multiple retrograde labelling of motoneurons, more than two-fold as compared with control animals. However, biometric analysis of vibrissae movements did not show positive effects on functional recovery, suggesting that polyneuronal reinnervation--rather than collateral branching --may be the critical limiting factor. In support of this hypothesis, we found that motor end-plates with morphological signs of multiple innervation were much more frequent in reinnervated muscles of rats that did not recover after injury (51% of all end-plates) than in animals with good functional performance (10%). Because polyneuronal innervation of muscle fibres is activity-dependent and can be manipulated, the present findings raise hopes that clinically feasible and effective therapies could be soon designed and tested.
Collapse
|
35
|
Mader K, Andermahr J, Angelov DN, Neiss WF. Dual mode of signalling of the axotomy reaction: retrograde electric stimulation or block of retrograde transport differently mimic the reaction of motoneurons to nerve transection in the rat brainstem. J Neurotrauma 2004; 21:956-68. [PMID: 15307907 DOI: 10.1089/0897715041526113] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Axotomy of a peripheral nerve causes a complex central response of neuronal perikarya, astroglia and microglia. The signal initiating this axotomy reaction is currently explained either by deprivation of target-derived trophic factors after interruption of transport (trophic hypothesis) or by electrophysiological disturbances of the axotomized neurons (electric hypothesis). In 108 adult Wistar rats we have compared the time course and intensity of the axotomy reaction in the hypoglossal nucleus after (1) resection of the nerve (permanent axotomy), (2) one-time electric stimulation (intact nerve, brief transient electric disturbance), and (3) colchicine block of transport (intact nerve, prolonged transient loss of trophic factors). Nerve resection activated microglia at 2-35 days post-operation (dpo), elevated GFAP in astrocytes at 3-35 dpo and increased CGRP in motoneurons at 2-15 dpo. Fluorogold prelabeling revealed neurophagocytosis and 25% neuron loss at 25 dpo. Colchicine block similarly activated microglia at 5-35 dpo, elevated GFAP at 7-35 dpo and upregulated CGRP at 7-25 dpo. Neurophagocytosis and 15% motoneuron loss were evident at 25 dpo. Electric stimulation (15 min, 4 Hz, 0.1 msec impulse, 2 mAmp) of the intact nerve activated microglia at 1-10 dpo, elevated astroglial GFAP-expression at 7-35 dpo, and upregulated CGRP at 1-10 dpo, but no neuron death and neurophagocytosis were detected. Hence electric stimulation elicited a faster, shorter-lasting response, but transport block as well as axotomy a slower, longer-lasting response. This suggests a dual mode of signaling: Onset and early phase of the axotomy reaction are triggered by electric disturbances, late phase and neuron death by deprivation of trophic factors.
Collapse
Affiliation(s)
- Konrad Mader
- Klinik für Unfallchirurgie, Hand- und Wiederherstellungschirurgie, St. Vinzenz Hospital, Köln, Germany.
| | | | | | | |
Collapse
|
36
|
Bertelli JA, dos Santos ARS, Taleb M, Calixto JB, Mira JC, Ghizoni MF. Long interpositional nerve graft consistently induces incomplete motor and sensory recovery in the rat. J Neurosci Methods 2004; 134:75-80. [PMID: 15102505 DOI: 10.1016/j.jneumeth.2003.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 11/06/2003] [Accepted: 11/06/2003] [Indexed: 10/26/2022]
Abstract
Motor and sensory regeneration was studied in a 40 mm long graft interposed between the sectioned stumps of the rat median nerve. Animals were behaviorally assessed from 1 to 720 days after surgery by the grasping and modified Randall-Sellito tests. Rats recovered grasping function 43.7 (S.D. +/- 2.6) days after surgery. Grasping strength attained 50 and 65% of the normal control group, 280 and 360 days after surgery, respectively. From 90 to 360 days after surgery, sensory nociceptive recovery was only 30% of the normal control group. The results indicate that motor and sensory neurons were capable of regenerating additional axonal length, but functional return was clearly better in the motor system. This model of deficient reinnervation might prove to be of interest in testing of new strategies for the enhancement of nerve recovery.
Collapse
Affiliation(s)
- Jayme Augusto Bertelli
- Center of Biological and Health Sciences, University of the South of Santa Catarina (Unisul), Av. José Acácio Moreira, 787, Bairro Dehon, Cx Postal 370, Tubarão 88704-900, SC, Brazil.
| | | | | | | | | | | |
Collapse
|
37
|
Valero-Cabré A, Tsironis K, Skouras E, Navarro X, Neiss WF. Peripheral and Spinal Motor Reorganization after Nerve Injury and Repair. J Neurotrauma 2004; 21:95-108. [PMID: 14987469 DOI: 10.1089/089771504772695986] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Functional recovery after peripheral nerve injury depends on the amount as well as on the accuracy of reinnervation by regenerative axons. In this study, the rat sciatic nerve was subjected to crush injury or complete transection repaired by either (1) straight nerve suture, (2) crossed nerve suture of tibial and peroneal fascicles, or (3) silicone tubulization leaving a gap of 4 mm. The compound muscle action potentials (CMAP) of gastrocnemius, tibialis anterior and plantar muscles were recorded 90 days post operation to assess functional reinnervation and Fast Blue, Fluoro Gold and DiI were applied to the nerve branches projecting into these muscles to quantify morphological reinnervation. The CMAP amplitude achieved in gastrocnemius, tibialis anterior and plantar muscles was higher after nerve crush (86%, 82%, 65% of control) than after any surgical nerve repair (straight suture: 49%, 53%, 32%; crossed suture: 56%, 50%, 31%; silicone tube: 42%, 44%, 25%). The total number of labeled motoneurons, however, did not significantly differ between groups (control: 1238 +/- 82, crush: 1048 +/- 49, straight suture: 1175 +/- 106, crossed suture: 1085 +/- 84, silicone tube: 1250 +/- 182). The volume occupied by labeled motoneurons within the spinal cord was larger after surgical nerve repair than in crush or normal control animals, and fewer neurons showed abnormal multiple projections after crush (2.5%) or straight suture (2.2%) than following crossed suture (5%) or silicone tube (6%). In conclusion, nerve repair with a silicone tube leaving a short gap does not increase accuracy of reinnervation.
Collapse
Affiliation(s)
- Antoni Valero-Cabré
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Gruart A, Streppel M, Guntinas-Lichius O, Angelov DN, Neiss WF, Delgado-García JM. Gradient of adaptability in four different motor systems performing the same learned motor task in cats. Eur J Neurosci 2003; 18:2813-24. [PMID: 14656330 DOI: 10.1111/j.1460-9568.2003.03019.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of four different brainstem motoneuron pools to perform a newly acquired motor task was studied in alert cats. A classical conditioning of eyelid responses was carried out in (i). unoperated animals, and in animals with (ii). transection, 180 degrees rotation, and re-suture of the zygomatic facial nerve branch, (iii). a crossed anastomosis of the buccal to the zygomatic facial nerve branch and (iv). a hypoglossal-facial nerve anastomosis. Animals were conditioned with a delay paradigm using a tone (350 ms, 600 Hz, 90 dB) as conditioned stimulus, followed 250 ms later by an air puff (100 ms, 3 kg/cm2) as unconditioned stimulus. Animals with zygomatic nerve rotation performed conditioned responses (CRs) at control rate, with significantly larger amplitude, area and velocity, but a de-synchronized oscillatory pattern. Animals with buccal-zygomatic anastomosis acquired CRs at control rate, but these CRs had significantly smaller amplitude than those of controls and a de-synchronized pattern. Animals with a hypoglossal-facial anastomosis were unable to perform CRs. The trigeminal hyper-reflexia triggered by the axotomy was probably the origin of the large CRs after zygomatic nerve rotation. Trigeminal hyper-reflexia could also contribute to generation of the small CRs recorded after buccal-zygomatic anastomosis. Although trigeminal hyper-reflexia was also present following hypoglossal-facial anastomosis, hypoglossal motoneurons did not reach their firing threshold to perform CRs. In accordance with the embryonic origin of involved motoneurons, animals with buccal-zygomatic and hypoglossal-facial anastomoses moved the ipsilateral eyelid synchronously to mouth-related activities. It is suggested that there is a gradient of adaptability in motoneuron pools forced to perform new motor tasks through foreign muscles, which depends on their embryological origins and functional properties.
Collapse
Affiliation(s)
- Agnès Gruart
- Laboratorio Andaluz de Biología, Universidad Pablo de Olavide, 41013-Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Guntinas-Lichius O, Wittekindt C. The Role of Growth Factors for Disease and Therapy in Diseases of the Head and Neck. DNA Cell Biol 2003; 22:593-606. [PMID: 14577911 DOI: 10.1089/104454903322405473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Growth factors are a large family of polypeptide molecules that regulate cell division in many tissues by autocrine or paracrine mechanisms. Depending on what receptors are activated, growth factors can initiate mitogenic, antiproliferative, or trophic effects, that is, growth factors act as positive or negative modulators of cell proliferation. Therefore, growth factors do not only play an important role in embryonic development and adult tissue homeostasis, but also in pathological situations like infection, wound healing, and tumorigenesis. Consequently, the application of growth factors, or vice versa the application of substances which are directed against growth factors like antigrowth factor antibodies, may have therapeutic applications. This review provides a brief account of what we know regarding growth factors in otorhinolaryngology, particularly in the field of otology, wound healing, oncology, peripheral nerve regeneration, and rhinology.
Collapse
Affiliation(s)
- O Guntinas-Lichius
- Clinic of Otolaryngology, Head and Neck Surgery, University of Cologne, Germany.
| | | |
Collapse
|
40
|
Romansky RK. Axonal misdirection as contributing factor to aberrant reinnervation of muscles after facial nerve suture in cats. Arch Physiol Biochem 2003; 111:273-83. [PMID: 14972751 DOI: 10.1076/apab.111.3.273.23460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Whereas basic features of post-axotomy muscle reinnervation have been extensively studied in rats, little is known about axonal regrowth and pathfinding in cats. To address the question, adult cats were subjected to facial-facial anastomosis (FFA). First group served to establish optimal parameters for labeling of the zygomatic and buccal facial branches with 1,1'dioctadecyl-3,3,3,'3'-tetramethylindo-carbocyanine perchlorate (DiI) and Fast Blue (FB) placed onto respective transected nerves. The second group of animals underwent identical bilateral labeling 3 months after transection and suture of the right facial nerve. This group served to establish the number of motoneurons, which had branched after surgery and projected into both facial branches. On control side, DiI application onto zygomatico-orbital branch labeled 3883 +/- 598 (mean +/- S.D.) perikarya were confined to the dorsal and intermediate facial subnuclei, meanwhile an application of FB onto the buccal branch labeled 1617 +/- 552 perikarya in the lateral and ventrolateral subnuclei. There were no double-labeled cells. Three months after FFA all retrogradely labeled motoneurons were scattered throughout the entire facial nucleus. To establish the proportion of perikarya, that re-grew multiple axonal branches into both nerves, double-labeled (FB + DiI) motoneurons were counted from digital images. The zygomatico-orbital nerve contained 3311 +/- 430 DiI-labeled whereas the buccal nerve 1500 +/- 442 FB-labeled motoneurons. The occurrence of 311 +/- 103 double-labeled perikarya (DiI+FB) suggested that approximately 6% of all retrogradely labeled motoneurons branched axons into both nerves. I conclude that malfunctioning axonal pathfinding rather than deviant reinnervation contributed to poor recovery of function after FFA in the cat.
Collapse
Affiliation(s)
- R K Romansky
- Department of Anatomy, Medical University Sofia, Bulgaria.
| |
Collapse
|
41
|
Transplantation of olfactory mucosa minimizes axonal branching and promotes the recovery of vibrissae motor performance after facial nerve repair in rats. J Neurosci 2002. [PMID: 12177208 DOI: 10.1523/jneurosci.22-16-07121.2002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The occurrence of abnormally associated movements is inevitable after facial nerve transection. The reason for this post-paralytic syndrome is poor guidance of regrowing axons, whereby a given muscle group is reinnervated by misrouted axonal branches. Olfactory ensheathing glia have been shown to reduce axonal sprouting and stimulate axonal regeneration after transplantation into the spinal cord. In the present study, we asked whether transplantation of olfactory mucosa (OM) would also reduce sprouting of a damaged peripheral pure motor nerve. The adult facial nerve was transected, and the effect of the OM placed at the lesion site was analyzed with regard to the accuracy of target reinnervation, axonal sprouting of motoneurons, and vibrissal motor performance. Accuracy of target reinnervation and axonal sprouting were studied using preoperative/postoperative labeling and triple retrograde labeling of facial motoneurons, respectively. The vibrissal motor performance was monitored using a video-based motion analysis. We show here that implantation of OM, compared with simple facial-facial anastomosis, (1) improved the protraction, amplitude, angular velocity, and acceleration of vibrissal movements up to 80% of the control values, (2) reduced the percentage of branching motoneurons from 76 to 39%, and (3) improved the accuracy of reinnervation from 22 to 49%. Moreover, we present evidence, that transplanted OM but not buccal mucous membrane induced a sustained upregulation of trophic factors at the lesion site. It is concluded that transplantation of OM to the transected facial nerve significantly improves nerve regeneration.
Collapse
|
42
|
Puigdellívol-Sánchez A, Valero-Cabré A, Prats-Galino A, Navarro X, Molander C. On the use of fast blue, fluoro-gold and diamidino yellow for retrograde tracing after peripheral nerve injury: uptake, fading, dye interactions, and toxicity. J Neurosci Methods 2002; 115:115-27. [PMID: 11992663 DOI: 10.1016/s0165-0270(01)00532-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The usefulness of three retrograde fluorescent dyes for tracing injured peripheral axons was investigated. The rat sciatic was transected bilaterally and the proximal end briefly exposed to either Fast Blue (FB), Fluoro-Gold (FG) or to Diamidino Yellow (DY) on the right side, and to saline on the left side, respectively. The nerves were then resutured and allowed to regenerate. Electrophysiological tests 3 months later showed similar latencies and amplitudes of evoked muscle and nerve action potentials between tracer groups. The nerves were then cut distal to the original injury and exposed to a second (different) dye. Five days later, retrogradely labelled neurones were counted in the dorsal root ganglia (DRGs) and spinal cord ventral horn. The number of neurones labelled by the first tracer was similar for all three dyes in the DRG and ventral horn except for FG, which labelled fewer motoneurones. When used as second tracer, DY labelled fewer neurones than FG and FB in some experimental situations. The total number of neurones labelled by the first and/or second tracer was reduced by about 30% compared with controls. The contributions of cell death as well as different optional tracer combinations for studies of nerve regeneration are discussed.
Collapse
Affiliation(s)
- Anna Puigdellívol-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Barcelona, c/Casanova no. 143, 08036, Barcelona, Spain
| | | | | | | | | |
Collapse
|
43
|
Streppel M, Azzolin N, Dohm S, Guntinas-Lichius O, Haas C, Grothe C, Wevers A, Neiss WF, Angelov DN. Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion. Eur J Neurosci 2002; 15:1327-42. [PMID: 11994127 DOI: 10.1046/j.1460-9568.2002.01971.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A major reason for the insufficient recovery of function after motor nerve injury are the numerous axonal branches which often re-innervate muscles with completely different functions. We hypothesized that a neutralization of diffusable neurotrophic factors at the lesion site in rats could reduce the branching of transected axons. Following analysis of local protein expression by immunocytochemistry and by in situ hybridization, we transected the facial nerve trunk of adult rats and inserted both ends into a silicon tube containing (i) collagen gel with neutralizing concentrations of antibodies to NGF, BDNF, bFGF, IGF-I, CNTF and GDNF; (ii) five-fold higher concentrations of the antibodies and (iii) combination of antibodies. Two months later, retrograde labelling was used to estimate the portion of motoneurons the axons of which had branched and projected into three major branches of the facial trunk. After control entubulation in collagen gel containing non-immune mouse IgG 85% of all motoneurons projecting along the zygomatic branch sprouted and sent at least one twin axon to the buccal and/or marginal-mandibular branches of the facial nerve. Neutralizing concentrations of anti-NGF, anti-BDNF and anti-IGF-I significantly reduced sprouting. The most pronounced effect was achieved after application of anti-BDNF, which reduced the portion of branched neurons to 18%. All effects after a single application of antibodies were concentration-dependent and superior to those observed after combined treatment. This first report on improved quality of reinnervation by antibody-therapy implies that, in rats, the post-transectional collateral axonal branching can be reduced without obvious harmful effects on neuronal survival and axonal elongation.
Collapse
Affiliation(s)
- M Streppel
- Anatomical Institute, University of Cologne, 50931 Cologne, FR Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guntinas-Lichius O, Angelov DN, Tomov TL, Dramiga J, Neiss WF, Wewetzer K. Transplantation of olfactory ensheathing cells stimulates the collateral sprouting from axotomized adult rat facial motoneurons. Exp Neurol 2001; 172:70-80. [PMID: 11681841 DOI: 10.1006/exnr.2001.7774] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axon regrowth after CNS and PNS injury is only the first step toward complete functional recovery which depends largely on the specificity of the newly formed nerve-target projections. Since most of the studies involving the application of glial cells to the lesioned nervous system have focused primarily on the extent of neurite outgrowth, little is known regarding their effects on the accompanying processes of axonal sprouting and pathfinding. In this study, we analyzed the effects of transplanted olfactory ensheathing cells (OECs) on axonal sprouting of adult facial neurons by using triple fluorescent retrograde tracing and biometrical analysis of whisking behavior. We found that 2 months after facial nerve axotomy and immediate implantation of OECs in between both nerve stumps fixed in a silicon tube, the total number of labeled neurons was increased by about 100%, compared to animals with simple facial nerve suture or entubulation in an empty conduit. This change in the number of axon sprouts was not random. The highest increase in axon number was observed in the marginal mandibular branch, whereas no changes were detected in the zygomatic branch. This increased sprouting did not improve the whisking behavior as measured by biometric video analysis. Our results demonstrate that OECs are potent inducers of axonal sprouting in vivo. Hence OEC-filled nerve conduits may be a powerful tool to enforce regeneration of a peripheral nerve under adverse conditions, e.g., after long delay between injury and surgical repair. In mixed nerves, increased axonal sprouting will improve specificity since inappropriate nerve-target connections are pruned off during preferential motor innervation. In pure motor nerves, however, OEC-mediated axonal sprouting may result in polyneuronal innveration of target muscles.
Collapse
Affiliation(s)
- O Guntinas-Lichius
- Department of Oto-Rhino-Laryngology, University of Cologne, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The architecture of the differentiated nervous system is stable but the molecular mechanisms that are required for stabilization are unknown. We characterized the gene unc-119 in the nematode Caenorhabditis elegans and demonstrate that it is required to stabilize the differentiated structure of the nervous system. In unc-119 mutants, motor neuron commissures are excessively branched in adults. However, live imaging demonstrated that growth cone behavior during extension was fairly normal with the exception that the overall rate of migration was reduced. Later, after development was complete, secondary growth cones sprouted from existing motor neuron axons and cell bodies. These new growth cones extended supernumerary branches to the dorsal nerve cord at the same time the previously formed axons retracted. These defects could be suppressed by expressing the UNC-119 protein after embryonic development; thus demonstrating that UNC-119 is required for the maintenance of the nervous system architecture. Finally, UNC-119 is located in neuron cell bodies and axons and acts cell-autonomously to inhibit axon branching.
Collapse
Affiliation(s)
- K M Knobel
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | | | |
Collapse
|
46
|
Valero-Cabré A, Tsironis K, Skouras E, Perego G, Navarro X, Neiss WF. Superior muscle reinnervation after autologous nerve graft or poly-L-lactide-epsilon-caprolactone (PLC) tube implantation in comparison to silicone tube repair. J Neurosci Res 2001; 63:214-23. [PMID: 11169632 DOI: 10.1002/1097-4547(20010115)63:2<214::aid-jnr1014>3.0.co;2-d] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recovery after peripheral nerve injury depends not only on the amount of reinnervation, but also on its accuracy. The rat sciatic nerve was subjected to an 8 mm long gap lesion repaired either by autograft (AG, n = 6) or tubulization with impermeable silicone tube (SIL, n = 6) or permeable tube of poly-L-lactide-epsilon-caprolactone (PLC, n = 8). Recordings of the compound muscle action potential (CMAP) from gastrocnemius (mGC), tibialis anterior (mTA) and plantar (mPL) muscles were performed 90 days after injury to assess the amount of muscle reinnervation. The CMAP amplitude achieved in mGC, mTA and mPL was similar in after nerve autograft (39%, 42%, 22% of control values) and PLC tube implantation (37%, 36%, 24%) but lower with SIL tube (29%, 30%, 14%). The nerve fascicles projecting into each of these muscles were then transected and retrograde tracers (Fluoro Gold, Fast Blue, DiI) were applied to quantify the percentage of motoneurons with single or multiple branches to different targets. The total number of labeled motoneurons for the three muscles did not differ in autografted rats (1186 +/- 56; mean +/- SEM) with respect to controls (1238 +/- 82), but was reduced with PLC tube (802 +/- 101) and SIL tube (935 +/- 213). The percentage of neurons with multiple projections was lower after autograft and PLC tube (6%) than with SIL tube (10%). Considering the higher CMAP amplitude and lower number of neurons with multiple projections, PLC nerve conduits seem superior to SIL tubes and a suitable alternative to autografts for the repair of long gaps.
Collapse
Affiliation(s)
- A Valero-Cabré
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Popratiloff AS, Neiss WF, Skouras E, Streppel M, Guntinas-Lichius O, Angelov DN. Evaluation of muscle re-innervation employing pre- and post-axotomy injections of fluorescent retrograde tracers. Brain Res Bull 2001; 54:115-23. [PMID: 11226720 DOI: 10.1016/s0361-9230(00)00411-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In experimental studies on peripheral nerve repair, the possibility to objectively compare original and post-operative innervation is of decisive importance for the selection of the proper nerve-reconstruction strategy. Herewith we report serious drawbacks encountered with the standard method of pre- and post-operative intramuscular injections of widely used retrograde neuronal tracers. Labeling of rat facial motoneurons by injection of Fast-Blue (FB; Group 1), Dil (Group 2), or Fluoro-Gold (FG; Group 3) into the whisker pad muscles was followed by transection and suture of the facial nerve. Two months later, the same rats received Dil (Group 1), FG (Group 2), and FB (Group 3) injections with the same parameters as the pre-operative injections. By quantitative evaluation of single- and double-retrogradely labeled perikarya of facial motoneurons, we tried to estimate the accuracy of re-innervation. Observations through a "UV-filter" (for FB-labeled perikarya) and a "rhodamine-filter" (for Dil-labeled perikarya) in Group 1 revealed an unexpected axotomy-triggered leakage of FB which compromised the counts. After pre-operative Dil labeling, nerve suture, and post-operative FG labeling (Group 2), Dil created an extracellular deposit in the whisker pad. Thus, the uptake of pre-operative tracer by sprouts of re-growing axons compromised counts of retrogradely labeled motoneurons. Employing the "UV-filter" in Group 3 (FG-, FB-, FG+FB-labeled perikarya), the emission of FB obscured that of FG and also compromised cell counts. The use of filter sets constructed ad hoc for detection of FG and FB rendered possible an objective comparison.
Collapse
Affiliation(s)
- A S Popratiloff
- Institut I für Anatomie der Universität zu Köln, Köln, Germany
| | | | | | | | | | | |
Collapse
|