1
|
Seward EP, Wykes RC. Membrane Capacitance Measurements of Stimulus-Evoked Exocytosis in Adrenal Chromaffin Cells. Methods Mol Biol 2023; 2565:187-202. [PMID: 36205895 DOI: 10.1007/978-1-0716-2671-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Research using membrane capacitance (Cm) measurements in adrenal chromaffin cells has transformed our understanding of the molecular mechanisms controlling regulated exocytosis. This is in part due to the exquisite temporal resolution of the technique, and the possibility of combining quantification of exo-/endocytosis at the whole-cell level, with the ability to simultaneously monitor and control the calcium signals triggering vesicle fusion. In this regard, experiments performed with Cm measurements complement amperometry experiments that give a measure of secreted transmitter and the behavior of the fusion pore, and fluorescent microscopy studies used to monitor vesicle and protein dynamics in imaged regions of the cell. In this chapter, we provide a detailed account of the methodology used to perform whole-cell patch clamp measurements of Cm in combination with voltage-clamp recordings of voltage-gated calcium channels to quantify stimulus-secretion coupling in chromaffin cells. Stimulus protocols developed for investigation of functionally distinct releasable vesicle pools are also described.
Collapse
Affiliation(s)
| | - Robert C Wykes
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, UK
- Nanomedicine Lab, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
3
|
Félix-Martínez GJ, Gil A, Segura J, Villanueva J, Gutíerrez LM. Modeling the influence of co-localized intracellular calcium stores on the secretory response of bovine chromaffin cells. Comput Biol Med 2018; 100:165-175. [PMID: 30015013 DOI: 10.1016/j.compbiomed.2018.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/19/2022]
Abstract
Catecholamines secretion from chromaffin cells is mediated by a Ca2+-dependent process in the submembrane space where the exocytotic machinery is located and high-Ca2+ microdomains (HCMDs) are formed by the coordinated activity of a functional triad composed of Ca2+ channels, endoplasmic reticulum (ER) and mitochondria. It has been observed experimentally that subpopulations of cortical mitochondria and ER associate to secretory sites in bovine chromaffin cells. Here, we study the effect of the geometrical distribution of the co-localized cortical organelles both in the formation of HCMDs in the vicinity of Ca2+ channels and on the secretory activity of bovine chromaffin cells in response to a single voltage pulse. Our simulations indicate that co-localized organelles have a dual role in the formation of HCMDs, having, on the one hand, an amplification effect due to the Ca2+-induced Ca2+-release mechanism from the ER and, on the other, acting as physical barriers to Ca2+ diffusion. In addition, our simulations suggest that the increased levels of Ca2+ in the microdomain enhances the secretion of the vesicles co-localized to the Ca2+ channels. As a whole, our results support the idea that the functional triads formed by Ca2+ channels, subplasmalemma ER and mitochondria have a positive effect on the secretion of catecholamines in bovine chromaffin cells.
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Depto. de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, 39005, Santander, Spain; Depto. de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, 09340, Mexico City, Mexico.
| | - Amparo Gil
- Depto. de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, 39005, Santander, Spain.
| | - Javier Segura
- Depto. de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005, Santander, Spain.
| | - José Villanueva
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain.
| | - Luis M Gutíerrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
4
|
L-type calcium channels in exocytosis and endocytosis of chromaffin cells. Pflugers Arch 2017; 470:53-60. [DOI: 10.1007/s00424-017-2064-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
|
5
|
Roles of Na +, Ca 2+, and K + channels in the generation of repetitive firing and rhythmic bursting in adrenal chromaffin cells. Pflugers Arch 2017; 470:39-52. [PMID: 28776261 DOI: 10.1007/s00424-017-2048-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/23/2017] [Indexed: 12/30/2022]
Abstract
Adrenal chromaffin cells (CCs) are the main source of circulating catecholamines (CAs) that regulate the body response to stress. Release of CAs is controlled neurogenically by the activity of preganglionic sympathetic neurons through trains of action potentials (APs). APs in CCs are generated by robust depolarization following the activation of nicotinic and muscarinic receptors that are highly expressed in CCs. Bovine, rat, mouse, and human CCs also express a composite array of Na+, K+, and Ca2+ channels that regulate the resting potential, shape the APs, and set the frequency of AP trains. AP trains of increasing frequency induce enhanced release of CAs. If the primary role of CCs is simply to relay preganglionic nerve commands to CA secretion, why should they express such a diverse set of ion channels? An answer to this comes from recent observations that, like in neurons, CCs undergo complex firing patterns of APs suggesting the existence of an intrinsic CC excitability (non-neurogenically controlled). Recent work has shown that CCs undergo occasional or persistent burst firing elicited by altered physiological conditions or deletion of pore-regulating auxiliary subunits. In this review, we aim to give a rationale to the role of the many ion channel types regulating CC excitability. We will first describe their functional properties and then analyze how they contribute to pacemaking, AP shape, and burst waveforms. We will also furnish clear indications on missing ion conductances that may be involved in pacemaking and highlight the contribution of the crucial channels involved in burst firing.
Collapse
|
6
|
Gimenez-Molina Y, Villanueva J, Nanclares C, Lopez-Font I, Viniegra S, Francés MDM, Gandia L, Gil A, Gutiérrez LM. The Differential Organization of F-Actin Alters the Distribution of Organelles in Cultured When Compared to Native Chromaffin Cells. Front Cell Neurosci 2017; 11:135. [PMID: 28522964 PMCID: PMC5415619 DOI: 10.3389/fncel.2017.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022] Open
Abstract
Cultured bovine chromaffin cells have been used extensively as a neuroendocrine model to study regulated secretion. In order to extend such experimental findings to the physiological situation, it is necessary to study mayor cellular structures affecting secretion in cultured cells with their counterparts present in the adrenomedullary tissue. F-actin concentrates in a peripheral ring in cultured cells, as witnessed by phalloidin–rodhamine labeling, while extends throughout the cytoplasm in native cells. This result is also confirmed when studying the localization of α-fodrin, a F-actin-associated protein. Furthermore, as a consequence of this redistribution of F-actin, we observed that chromaffin granules and mitochondria located into two different cortical and internal populations in cultured cells, whereas they are homogeneously distributed throughout the cytoplasm in the adrenomedullary tissue. Nevertheless, secretion from isolated cells and adrenal gland pieces is remarkably similar when measured by amperometry. Finally, we generate mathematical models to consider how the distribution of organelles affects the secretory kinetics of intact and cultured cells. Our results imply that we have to consider F-actin structural changes to interpret functional data obtained in cultured neuroendocrine cells.
Collapse
Affiliation(s)
- Yolanda Gimenez-Molina
- Instituto de Neurociencias, Centro Mixto del Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezAlicante, Spain
| | - José Villanueva
- Instituto de Neurociencias, Centro Mixto del Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezAlicante, Spain
| | - Carmen Nanclares
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de MadridMadrid, Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias, Centro Mixto del Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezAlicante, Spain.,Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasAlicante, Spain
| | - Salvador Viniegra
- Instituto de Neurociencias, Centro Mixto del Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezAlicante, Spain
| | - Maria Del Mar Francés
- Instituto de Neurociencias, Centro Mixto del Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezAlicante, Spain
| | - Luis Gandia
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de MadridMadrid, Spain
| | - Amparo Gil
- Department Matemática Aplicada y Ciencias de la Computación, Universidad de CantabriaSantander, Spain
| | - Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto del Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezAlicante, Spain
| |
Collapse
|
7
|
Human native Ca v1 channels in chromaffin cells: contribution to exocytosis and firing of spontaneous action potentials. Eur J Pharmacol 2017; 796:115-121. [PMID: 27988286 DOI: 10.1016/j.ejphar.2016.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/31/2023]
Abstract
The present study was performed to evaluate the Cav1 channel subtypes expressed in human chromaffin cells and the role that these channels play in exocytosis and cell excitability. Here we show that human chromaffin cells obtained from organ donors express Cav1.2 and Cav1.3 subtypes using molecular and pharmacological techniques. Immunocytochemical data demonstrated the presence of Cav1.2 and Cav1.3 subtypes, but not Cav1.1 or Cav1.4. Electrophysiological experiments were conducted to investigate the contribution of Cav1 channels to the exocytotic process and cell excitability. Cav1 channels contribute to the exocytosis of secretory vesicles, evidenced by the block of 3μM nifedipine (36.5±2%) of membrane capacitance increment elicited by 200ms depolarizing pulses. These channels show a minor contribution to the initiation of spontaneous action potential firing, as shown by the 2.5 pA of current at the threshold potential (-34mV), which elicits 10.4mV of potential increment. In addition, we found that only 8% of human chromaffin cells exhibit spontaneous action potentials. These data offer novel information regarding human chromaffin cells and the role of human native Cav1 channels in exocytosis and cell excitability.
Collapse
|
8
|
Gil A, Torregrosa-Hetland CJ, González-Vélez V, Villanueva J, Garcia-Martinez V, Viniegra S, Segura J, Gutiérrez LM. Neurite extensions in chromaffin cells: study of the influence of the cytoskeletal structure on calcium dynamics and secretion. FRONTIERS IN LIFE SCIENCE 2012. [DOI: 10.1080/21553769.2012.745452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Vandael DHF, Mahapatra S, Calorio C, Marcantoni A, Carbone E. Cav1.3 and Cav1.2 channels of adrenal chromaffin cells: emerging views on cAMP/cGMP-mediated phosphorylation and role in pacemaking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1608-18. [PMID: 23159773 DOI: 10.1016/j.bbamem.2012.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 12/21/2022]
Abstract
Voltage-gated Ca²⁺ channels (VGCCs) are voltage sensors that convert membrane depolarizations into Ca²⁺ signals. In the chromaffin cells of the adrenal medulla, the Ca²⁺ signals driven by VGCCs regulate catecholamine secretion, vesicle retrievals, action potential shape and firing frequency. Among the VGCC-types expressed in these cells (N-, L-, P/Q-, R- and T-types), the two L-type isoforms, Ca(v)1.2 and Ca(v)1.3, control key activities due to their particular activation-inactivation gating and high-density of expression in rodents and humans. The two isoforms are also effectively modulated by G protein-coupled receptor pathways delimited in membrane micro-domains and by the cAMP/PKA and NO/cGMP/PKG phosphorylation pathways which induce prominent Ca²⁺ current changes if opposingly regulated. The two L-type isoforms shape the action potential and directly participate to vesicle exocytosis and endocytosis. The low-threshold of activation and slow rate of inactivation of Ca(v)1.3 confer to this channel the unique property of carrying sufficient inward current at subthreshold potentials able to activate BK and SK channels which set the resting potential, the action potential shape, the cell firing mode and the degree of spike frequency adaptation during spontaneous firing or sustained depolarizations. These properties help chromaffin cells to optimally adapt when switching from normal to stress-mimicking conditions. Here, we will review past and recent findings on cAMP- and cGMP-mediated modulations of Ca(v)1.2 and Ca(v)1.3 and the role that these channels play in the control of chromaffin cell firing. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- D H F Vandael
- Department of Drug Science, Laboratory of Cellular & Molecular Neuroscience, NIS Center, CNISM, University of Torino, Italy
| | | | | | | | | |
Collapse
|
10
|
Rosa JM, Nanclares C, Orozco A, Colmena I, de Pascual R, García AG, Gandía L. Regulation by L-Type Calcium Channels of Endocytosis: An Overview. J Mol Neurosci 2012; 48:360-7. [DOI: 10.1007/s12031-012-9786-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/22/2012] [Indexed: 11/29/2022]
|
11
|
Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium 2012; 51:321-30. [DOI: 10.1016/j.ceca.2012.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 11/18/2022]
|
12
|
Yavorskii VA, Pogorelaya NK, Bogdanova NA, Lukyanetz EA. Effect of “Chemical” Hypoxia on the Potassium Conductance of the Membrane of Pheochromocytoma Cells. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9205-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Xu S, Shimahara T, Cooke IM. Capacitance increases of dissociated tilapia prolactin cells in response to hyposmotic and depolarizing stimuli. Gen Comp Endocrinol 2011; 173:38-47. [PMID: 21549709 DOI: 10.1016/j.ygcen.2011.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 04/07/2011] [Accepted: 04/19/2011] [Indexed: 11/25/2022]
Abstract
Prolactin (PRL) is the major hormonal mediator of adaptation to hyposmotic conditions. In tilapia (Oreochromis mossambicus), PRL cells are segregated to the rostral pars distalis of the anterior pituitary facilitating the nearly pure culture of dissociated PRL cells. Membrane capacitance (C(m)) was recorded at 1Hz or higher for tens of minutes as a surrogate monitor of PRL secretion by exocytosis from cells under perforated patch clamp. The study compares secretory responses to trains of depolarizing clamps (100 at 2.5 Hz, from -70 to +10 mV for 100 ms) to the physiological stimulus, exposure to hyposmotic medium, here a switch from 350 to 300 mOsm saline ([Ca²⁺] 15 mM). Two-thirds of cells tested with each stimulus responded. In response to depolarizing clamps, C(m) increased linearly at an average rate of 7.2 fF/s. The increase was also linear in response to hyposmotic perfusion, but the average rate was 0.68 fF/s. Response to depolarization was reversibly blocked in Ca²⁺-omitted saline, or in saline with 30 μM Cd²⁺. It was unaffected by 0.1 μM tetrodotoxin. By contrast, responses were reduced but not absent during perfusion of hyposmotic saline with Ca²⁺-omitted; 30 μM Cd²⁺ appeared to enhance the hyposmotic response. BAPTA-AM eliminated responses to both stimuli, confirming that secretion was dependent on increases of intracellular [Ca²⁺]. Together with previous observations from this laboratory of [Ca²⁺](i) with simultaneous collection and immunoassay of perfusate for PRL, we conclude that depolarization and hyposmotic stimuli initiate secretion by independent mechanisms.
Collapse
Affiliation(s)
- Shenghong Xu
- Békésy Laboratory of Neurobiology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
14
|
Currie KPM. Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors. Cell Mol Neurobiol 2011; 30:1201-8. [PMID: 21061161 DOI: 10.1007/s10571-010-9596-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 02/03/2023]
Abstract
Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the "fight-or-flight" response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gbc) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.
Collapse
Affiliation(s)
- Kevin P M Currie
- Departments of Anesthesiology, Pharmacology, and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
15
|
Rosa JM, Torregrosa-Hetland CJ, Colmena I, Gutiérrez LM, García AG, Gandía L. Calcium entry through slow-inactivating L-type calcium channels preferentially triggers endocytosis rather than exocytosis in bovine chromaffin cells. Am J Physiol Cell Physiol 2011; 301:C86-98. [PMID: 21451100 DOI: 10.1152/ajpcell.00440.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium (Ca(2+))-dependent endocytosis has been linked to preferential Ca(2+) entry through the L-type (α(1D), Ca(V)1.3) of voltage-dependent Ca(2+) channels (VDCCs). Considering that the Ca(2+)-dependent exocytotic release of neurotransmitters is mostly triggered by Ca(2+) entry through N-(α(1B), Ca(V)2.2) or PQ-VDCCs (α(1A), Ca(V)2.1) and that exocytosis and endocytosis are coupled, the supposition that the different channel subtypes are specialized to control different cell functions is attractive. Here we have explored this hypothesis in primary cultures of bovine adrenal chromaffin cells where PQ channels account for 50% of Ca(2+) current (I(Ca)), 30% for N channels, and 20% for L channels. We used patch-clamp and fluorescence techniques to measure the exo-endocytotic responses triggered by long depolarizing stimuli, in 1, 2, or 10 mM concentrations of extracellular Ca(2+) ([Ca(2+)](e)). Exo-endocytotic responses were little affected by ω-conotoxin GVIA (N channel blocker), whereas ω-agatoxin IVA (PQ channel blocker) caused 80% blockade of exocytosis as well as endocytosis. In contrast, nifedipine (L channel blocker) only caused 20% inhibition of exocytosis but as much as 90% inhibition of endocytosis. Conversely, FPL67146 (an activator of L VDCCs) notably augmented endocytosis. Photoreleased caged Ca(2+) caused substantially smaller endocytotic responses compared with those produced by K(+) depolarization. Using fluorescence antibodies, no colocalization between L, N, or PQ channels with clathrin was found; a 20-30% colocalization was found between dynamin and all three channel antibodies. This is incompatible with the view that L channels are coupled to the endocytotic machine. Data rather support a mechanism implying the different inactivation rates of L (slow-inactivating) and N/PQ channels (fast-inactivating). Thus a slow but more sustained Ca(2+) entry through L channels could be a requirement to trigger endocytosis efficiently, at least in bovine chromaffin cells.
Collapse
Affiliation(s)
- Juliana M Rosa
- Instituto Teófilo Hernando, IIS del Hospital Universitario de Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Torregrosa-Hetland CJ, Villanueva J, Giner D, Lopez-Font I, Nadal A, Quesada I, Viniegra S, Expósito-Romero G, Gil A, Gonzalez-Velez V, Segura J, Gutiérrez LM. The F-actin cortical network is a major factor influencing the organization of the secretory machinery in chromaffin cells. J Cell Sci 2011; 124:727-34. [PMID: 21303931 DOI: 10.1242/jcs.078600] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied how the F-actin cytoskeleton is involved in establishing the heterogeneous intracellular Ca(2+) levels ([Ca(2+)](i)) and in the organization of the exocytotic machinery in cultured bovine chromaffin cells. Simultaneous confocal visualization of [Ca(2+)](i) and transmitted light studies of the cytoskeleton showed that, following cell stimulation, the maximal signal from the Ca(2+)-sensitive fluorescent dye Fluo-3 was in the empty cytosolic spaces left by cytoskeletal cages. This was mostly due to the accumulation of the dye in spaces devoid of cytoskeletal components, as shown by the use of alternative Ca(2+)-insensitive fluorescent cytosolic markers. In addition to affecting the distribution of such compounds in the cytosol, the cytoskeleton influenced the location of L- and P-Q-type Ca(2+) channel clusters, which were associated with the borders of cytoskeletal cages in resting and stimulated cells. Indeed, syntaxin-1 and synaptotagmin-1, which are components of the secretory machinery, were present in the same location. Furthermore, granule exocytosis took place at these sites, indicating that the organization of the F-actin cytoskeletal cortex shapes the preferential sites for secretion by associating the secretory machinery with preferential sites for Ca(2+) entry. The influence of this cortical organization on the propagation of [Ca(2+)](i) can be modelled, illustrating how it serves to define rapid exocytosis.
Collapse
Affiliation(s)
- Cristina J Torregrosa-Hetland
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Alicante 03550, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Involvement of Synaptic Protein Munc18 in the Process of Release of Catecholamines by Chromaffin Cells of the Rat Adrenal Gland. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Álvarez YD, Marengo FD. The immediately releasable vesicle pool: highly coupled secretion in chromaffin and other neuroendocrine cells. J Neurochem 2010; 116:155-63. [DOI: 10.1111/j.1471-4159.2010.07108.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Zaika OL, Pochinyuk OV, Sadovi OV, Kostyuk PG, Lukyanetz EA. Involvement of the Endoplasmic Reticulum of Chromaffin Cells of the Rat Adrenal Gland in Calcium Signaling. NEUROPHYSIOLOGY+ 2010. [DOI: 10.1007/s11062-010-9117-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Villanueva J, Torregrosa-Hetland CJ, Gil A, González-Vélez V, Segura J, Viniegra S, Gutiérrez LM. The organization of the secretory machinery in chromaffin cells as a major factor in modeling exocytosis. HFSP JOURNAL 2010; 4:85-92. [PMID: 20885775 DOI: 10.2976/1.3338707] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/27/2010] [Indexed: 11/19/2022]
Abstract
The organization of cytoplasm in excitable cells was a largely ignored factor when mathematical models were developed to understand intracellular calcium and secretory behavior. Here we employed a combination of fluorescent evanescent and transmitted light microscopy to explore the F-actin cytoskeletal organization in the vicinity of secretory sites in cultured bovine chromaffin cells. This technique and confocal fluorescent microscopy show chromaffin granules associated with the borders of cortical cytoskeletal cages forming an intricate tridimensional network. Furthermore, the overexpression of SNAP-25 in these cells also reveals the association of secretory machinery clusters with the borders of these cytoskeletal cages. The importance of these F-actin cage borders is stressed when granules appear to interact and remain associated during exocytosis visualized in acridin orange loaded vesicles. These results will prompt us to propose a model of cytoskeletal cages, where the secretory machinery is associated with its borders. Both the calcium level and the secretory response are enhanced in this geometrical arrangement when compared with a random distribution of the secretory machinery that is not restricted to the borders of the cage.
Collapse
|
21
|
Cell Cycle-Dependent Localization of Voltage-Dependent Calcium Channels and the Mitotic Apparatus in a Neuroendocrine Cell Line(AtT-20). Int J Cell Biol 2010; 2009:487959. [PMID: 20130814 PMCID: PMC2814229 DOI: 10.1155/2009/487959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/13/2009] [Accepted: 10/10/2009] [Indexed: 12/15/2022] Open
Abstract
Changes in intracellular calcium are necessary for the successful progression of mitosis in many cells. Both elevation and reduction in intracellular calcium can disrupt mitosis by mechanisms that remain ill defined. In this study we explore the role of transmembrane voltage-gated calcium channels (CaV channels) as regulators of mitosis in the mouse corticotroph cell line (AtT-20). We report that the nifedipine-sensitive isoform CaV1.2 is localized to the "poleward side" of kinetechores during metaphase and at the midbody during cytokinesis. A second nifedipine-sensitive isoform, CaV1.3, is present at the mid-spindle zone in telophase, but is also seen at the midbody. Nifedipine reduces the rate of cell proliferation, and, utilizing time-lapse microscopy, we show that this is due to a block at the prometaphase stage of the cell cycle. Using Fluo-4 we detect calcium fluxes at sites corresponding to the mid-spindle zone and the midbody region. Another calcium dye, Fura PE3/AM, causes an inhibition of mitosis prior to anaphase that we attribute to a chelation of intracellular calcium. Our results demonstrate a novel, isoform-specific localization of CaV1 channels during cell division and suggest a possible role for these channels in the calcium-dependent events underlying mitotic progression in pituitary corticotrophs.
Collapse
|
22
|
Rosa JM, Gandía L, García AG. Inhibition of N and PQ calcium channels by calcium entry through L channels in chromaffin cells. Pflugers Arch 2009; 458:795-807. [PMID: 19347353 DOI: 10.1007/s00424-009-0662-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 02/09/2009] [Accepted: 03/01/2009] [Indexed: 11/24/2022]
Abstract
Why adrenal chromaffin cells express various subtypes of voltage-dependent Ca(2+) channels and whether a given channel is specialized to perform a specific function are puzzling and unanswered questions. In this study, we have used the L Ca(2+) channel activator FPL64176 (FPL) to test the hypothesis that enhanced Ca(2+) entry through this channel favors the inhibition of N and PQ channels in voltage-clamped bovine adrenal chromaffin cells. Using 2 mM Ca(2+) as charge carrier and under the perforated-patch configuration (PPC) of the patch-clamp technique, FPL caused a paradoxical inhibition of the whole-cell inward Ca(2+) current (I (Ca)). Such inhibition turned on into an augmentation upon cell loading with EGTA-AM. Also, under the whole-cell configuration (WCC) of the patch-clamp technique, FPL decreased I (Ca) in the absence of EGTA from the pipette solution and increased the current in its presence. Using 2 mM Ba(2+) as charge carrier, FPL augmented the Ba(2+) current under both recording conditions, WCC and PPC. FPL augmented the residual current remaining after blockade of N and PQ channels with omega-conotoxin MVIIC or by holding the membrane potential at -50 mV. The data support the view that Ca(2+) entering the cell through the lesser inactivating L channels serves to modulate the more inactivating N and PQ channels. They also suggest a close colocalization of L and N/PQ Ca(2+) channels. This kind of L channel specialization may be relevant to cell excitability, exocytosis, and cell survival mechanisms.
Collapse
Affiliation(s)
- Juliana M Rosa
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4. 28029, Madrid, Spain
| | | | | |
Collapse
|
23
|
Douglas SA, Stevenson KE, Knowles PJ, Bunn SJ. Characterization of catecholamine release from deer adrenal medullary chromaffin cells. Neurosci Lett 2008; 445:126-9. [DOI: 10.1016/j.neulet.2008.08.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/18/2008] [Accepted: 08/25/2008] [Indexed: 12/22/2022]
|
24
|
Lukyanetz EA. Role of synaptic proteins in neurotransmitter release-related vesicular trafficking. NEUROPHYSIOLOGY+ 2008. [DOI: 10.1007/s11062-008-9020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Borges R, Camacho M, Gillis KD. Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods. Acta Physiol (Oxf) 2008; 192:173-84. [PMID: 18021323 DOI: 10.1111/j.1748-1716.2007.01814.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our present understanding of exocytosis of catecholamines has benefited tremendously from the arrival of single-cell electrochemical methods (amperometry and voltammetry), electrophysiological techniques (whole-cell and patch capacitance) and from the combination of both techniques (patch amperometry). In this brief review, we will outline the strengths and limitations of amperometric and electrophysiological methods and highlight the major contribution obtained with the use of these techniques in chromaffin cells.
Collapse
Affiliation(s)
- R Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain.
| | | | | |
Collapse
|
26
|
Fox AP, Cahill AL, Currie KPM, Grabner C, Harkins AB, Herring B, Hurley JH, Xie Z. N- and P/Q-type Ca2+ channels in adrenal chromaffin cells. Acta Physiol (Oxf) 2008; 192:247-61. [PMID: 18021320 DOI: 10.1111/j.1748-1716.2007.01817.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ca2+ is the most ubiquitous second messenger found in all cells. Alterations in [Ca2+]i contribute to a wide variety of cellular responses including neurotransmitter release, muscle contraction, synaptogenesis and gene expression. Voltage-dependent Ca2+ channels, found in all excitable cells (Hille 1992), mediate the entry of Ca2+ into cells following depolarization. Ca2+ channels are composed of a large pore-forming subunit, called the alpha1 subunit, and several accessory subunits. Ten different alpha1 subunit genes have been identified and classified into three families, Ca(v1-3) (Dunlap et al. 1995, Catterall 2000). Each alpha1 gene produces a unique Ca2+ channel. Although chromaffin cells express several different types of Ca2+ channels, this review will focus on the Cav(2.1) and Cav(2.2) channels, also known as P/Q- and N-type respectively (Nowycky et al. 1985, Llinas et al. 1989b, Wheeler et al. 1994). These channels exhibit physiological and pharmacological properties similar to their neuronal counterparts. N-, P/Q and to a lesser extent R-type Ca2+ channels are known to regulate neurotransmitter release (Hirning et al. 1988, Horne & Kemp 1991, Uchitel et al. 1992, Luebke et al. 1993, Takahashi & Momiyama 1993, Turner et al. 1993, Regehr & Mintz 1994, Wheeler et al. 1994, Wu & Saggau 1994, Waterman 1996, Wright & Angus 1996, Reid et al. 1997). N- and P/Q-type Ca2+ channels are abundant in nerve terminals where they colocalize with synaptic vesicles. Similarly, these channels play a role in neurotransmitter release in chromaffin cells (Garcia et al. 2006). N- and P/Q-type channels are subject to many forms of regulation (Ikeda & Dunlap 1999). This review pays particular attention to the regulation of N- and P/Q-type channels by heterotrimeric G-proteins, interaction with SNARE proteins, and channel inactivation in the context of stimulus-secretion coupling in adrenal chromaffin cells.
Collapse
Affiliation(s)
- A P Fox
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Alvarez YD, Ibañez LI, Uchitel OD, Marengo FD. P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells. Cell Calcium 2008; 43:155-64. [PMID: 17561253 DOI: 10.1016/j.ceca.2007.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 11/18/2022]
Abstract
Chromaffin cell exocytosis is triggered by Ca(2+) entry through several voltage-dependent channel subtypes. Because it was postulated that immediately releasable vesicles are closely associated with Ca(2+) channels, we wondered what channel types are specifically coupled to the release of this pool. To study this question, cultured mouse chromaffin cell exocytosis was followed by patch-clamp membrane capacitance measurements. The immediately releasable pool was estimated using paired pulse stimulation, resulting in an upper limit of 31+/-3 fF for control conditions (I(Ca): 25+/-2 pA/pF). The N-type channel blocker omega-conotoxin-GVIA affected neither I(Ca) nor the immediately releasable pool exocytosis; although the L channel blocker nitrendipine decreased current by 50%, it did not reduce this pool significantly; and the R channel inhibitor SNX-482 significantly reduced the current but induced only a moderate decrease in the estimated IRP exocytosis. In contrast, the P/Q channel blocker omega-Agatoxin-IVA decreased I(Ca) by 37% but strongly reduced the immediately releasable pool (upper limit: 6+/-1 fF). We used alpha1A subunit knockout mice to corroborate that P/Q Ca(2+) channels were specifically linked to immediately releasable vesicles, and we found that also in this preparation the exocytosis of this pool was severely decreased (6+/-1 fF). On the other hand, application of a strong stimulus that caused the fusion of most of releasable vesicles (3 min, 50 mM K(+)) induced similar exocytosis for wild type and knockout cells. Finally, whereas application of train stimulation on chromaffin cells derived from wild type mice provoked typical early synchronous and delayed asynchronous exocytosis components, the knockout derived cells presented a strongly depressed early exocytosis but showed a prominent delayed asynchronous component. These results demonstrate that P/Q are the dominant calcium channels associated to the release of immediately releasable pool in mouse chromaffin cells.
Collapse
Affiliation(s)
- Yanina D Alvarez
- Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
28
|
Rosa JM, de Diego AMG, Gandía L, García AG. L-type calcium channels are preferentially coupled to endocytosis in bovine chromaffin cells. Biochem Biophys Res Commun 2007; 357:834-9. [PMID: 17451644 DOI: 10.1016/j.bbrc.2007.03.207] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/22/2007] [Indexed: 11/25/2022]
Abstract
Exocytosis and endocytosis are Ca(2+)-dependent processes. The contribution of high-voltage activated Ca(2+) channels subtypes to exocytosis has been thoroughly studied in chromaffin cells. However, similar reports concerning endocytosis are unavailable. Thus, we studied here the effects of blockers of L (nifedipine), N (omega-conotoxin GVIA) and P/Q (omega-agatoxin IVA) Ca(2+) channel on Ca(2+) currents (I(Ca)), Ca(2+) entry (Q(Ca)), as well as on the changes in membrane capacitance (C(m)) in perforated-patch voltage-clamped bovine adrenal chromaffin cells. Using 500-ms pulses to 0 or +10 mV, given from a holding potential of -80 mV and 2 mM Ca(2+) we found that omega-conotoxin GVIA affected little the exo-endocytotic responses while omega-agatoxin IVA markedly blocked those responses. However, nifedipine blocked little exocytosis but almost completely inhibited endocytosis. We conclude that L-type Ca(2+) channels seem to be selectively coupled to endocytosis.
Collapse
Affiliation(s)
- Juliana Martins Rosa
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Carabelli V, Marcantoni A, Comunanza V, Carbone E. Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+ -dependence. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:753-62. [PMID: 17340096 DOI: 10.1007/s00249-007-0138-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/11/2007] [Accepted: 01/27/2007] [Indexed: 12/01/2022]
Abstract
Expression, spatial distribution and specific roles of different Ca(2+) channels in stimulus-secretion coupling of chromaffin cells are intriguing issues still open to discussion. Most of the evidence supports a role of high-voltage activated (HVA) Ca(2+) channels (L-, N-, P/Q- and R-types) in the control of exocytosis: some suggesting a preferential coupling of specific Ca(2+) channel subunits with the secretory apparatus, others favoring the idea of a contribution to secretion proportional to the expression density and gating properties of Ca(2+) channels. In this work we review recent findings and bring new evidence in favor of the hypothesis that also the LVA (low-voltage-activated, T-type) Ca(2+) channels effectively control fast exocytosis near resting potential in adrenal chromaffin cells of adult rats. T-type channels recruited after long-term treatments with pCPT-cAMP (or chronic hypoxia) are shown to control exocytosis with the same efficacy of L-type channels, which are the dominant Ca(2+) channel types expressed in rodent chromaffin cells. A rigorous comparison of T- and L-type channel properties shows that, although operating at different potentials and with different voltage-sensitivity, the two channels possess otherwise similar Ca(2+)-dependence of exocytosis, size and kinetics of depletion of the immediately releasable pool and mobilize vesicles of the same quantal size. Thus, T- and L-type channels are coupled with the same Ca(2+)-efficiency to the secretory apparatus and deplete the same number of vesicles ready for release. The major difference of the secretory signals controlled by the two channels appear to be the voltage range of operation, suggesting the idea that stressful conditions (hypoxia and persistent beta-adrenergic stimulation) can lower the threshold of cell excitability by recruiting new Ca(2+) channels and activate an additional source of catecholamine secretion.
Collapse
Affiliation(s)
- V Carabelli
- Department of Neuroscience, Centre of Excellence NIS, CNISM UdR, Corso Raffaello 30, Turin, Italy.
| | | | | | | |
Collapse
|
30
|
García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J. Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells. Physiol Rev 2006; 86:1093-131. [PMID: 17015485 DOI: 10.1152/physrev.00039.2005] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K+, acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca2+entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca2+(CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca2+that modulates catecholamine release. Targeted aequorins with different Ca2+affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+transients, upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]cmicrodomains in which the local subplasmalemmal [Ca2+]crises abruptly from 0.1 to ∼50 μM, triggering CICR, mitochondrial Ca2+uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca2+uptake, and increase catecholamine release three- to fivefold, support the earlier observation. This increase is probably due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; this transport might be controlled by Ca2+redistribution to the cytoskeleton, through CICR, and/or mitochondrial Ca2+release. We propose that chromaffin cells have developed functional triads that are formed by calcium channels, the ER, and the mitochondria and locally control the [Ca2+]cthat regulate the early and late steps of exocytosis.
Collapse
Affiliation(s)
- Antonio G García
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Madrid, Spain.
| | | | | | | | | |
Collapse
|
31
|
Giancippoli A, Novara M, de Luca A, Baldelli P, Marcantoni A, Carbone E, Carabelli V. Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells. Biophys J 2006; 90:1830-41. [PMID: 16361341 PMCID: PMC1367332 DOI: 10.1529/biophysj.105.071647] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 11/29/2005] [Indexed: 11/18/2022] Open
Abstract
We have studied the functional role of CaV3 channels in triggering fast exocytosis in rat chromaffin cells (RCCs). CaV3 T-type channels were selectively recruited by chronic exposures to cAMP (3 days) via an exchange protein directly activated by cAMP (Epac)-mediated pathway. Here we show that cAMP-treated cells had increased secretory responses, which could be evoked even at very low depolarizations (-50, -40 mV). Potentiation of exocytosis in cAMP-treated cells did not occur in the presence of 50 microM Ni2+, which selectively blocks T-type currents in RCCs. This suggests that the "low-threshold exocytosis" induced by cAMP is due to increased Ca2+ influx through cAMP-recruited T-type channels, rather than to an enhanced secretion downstream of Ca2+ entry, as previously reported for short-term cAMP treatments (20 min). Newly recruited T-type channels increase the fast secretory response at low voltages without altering the size of the immediately releasable pool. They also preserve the Ca2+ dependence of exocytosis, the initial speed of vesicle depletion, and the mean quantal size of single secretory events. All this indicates that cAMP-recruited CaV3 channels enhance the secretory activity of RCCs at low voltages by coupling to the secretory apparatus with a Ca2+ efficacy similar to that of already existing high-threshold Ca2+ channels. Finally, using RT-PCRs we found that the fast inactivating low-threshold Ca2+ current component recruited by cAMP is selectively associated to the alpha1H (CaV3.2) channel isoform.
Collapse
Affiliation(s)
- A Giancippoli
- Department of Neuroscience, NIS Centre of Excellence, CNISM Research Unit, 10125 Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Thiagarajan R, Wilhelm J, Tewolde T, Li Y, Rich MM, Engisch KL. Enhancement of Asynchronous and Train-Evoked Exocytosis in Bovine Adrenal Chromaffin Cells Infected With a Replication Deficient Adenovirus. J Neurophysiol 2005; 94:3278-91. [PMID: 16033942 DOI: 10.1152/jn.00336.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine adrenal chromaffin cells share many characteristics with neurons and are often used as a simple model system to study ion channels and neurotransmitter release. We infected bovine adrenal chromaffin cells with a replication deficient adenovirus that induces expression of the common reporters β-galactosidase and Green Fluorescent Protein via a bicistronic sequence. In perforated-patch recordings performed 48-h postinfection, peak calcium currents were reduced 32%, primarily due to loss of ω-conotoxin-GVIA-sensitive current. In contrast, sodium currents were increased 17%. Exocytosis, detected as an increase in membrane capacitance immediately after a single step depolarization, was reduced in proportion to the decrease in calcium influx. However, capacitance continued to increase for seconds after the depolarization. The amplitude of this poststimulus drift, or asynchronous exocytosis, was approximately three times that which occurred in a small fraction of control cells. Exocytosis evoked by repetitive stimulation with a train of brief depolarizations was increased 50%. Intracellular calcium levels measured during and after stimulation were lower, not higher, in adenovirus-infected cells. Electroporated cells showed reduced calcium currents but no enhancement of exocytosis. Cells infected with UV-irradiated virus showed reduced calcium currents and enhancement of exocytosis, but the changes were smaller than those caused by intact virus. Our results are consistent with the idea that adenovirus capsid and adenoviral DNA contribute to a Ca2+influx- and [Ca2+]i-independent enhancement of exocytosis in bovine chromaffin cells.
Collapse
|
33
|
Alés E, Fuentealba J, García AG, López MG. Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: the role of mitochondria. Eur J Neurosci 2005; 21:142-50. [PMID: 15654851 DOI: 10.1111/j.1460-9568.2004.03861.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was planned on the assumptions that different high-voltage activated calcium channels and/or the ability of mitochondria to take up Ca(2+) could be responsible for different cytosolic Ca(2+) concentrations ([Ca(2+)](c)) and catecholamine release responses in adrenal chromaffin cells of bovine and mouse species. Short K(+) pulses (2-5 s, 70 mM K(+)) increased [Ca(2+)](c) to a peak of about 1 microM; however, in bovine cells the decline was slower than in mouse cells. Secretory responses were faster in mouse but were otherwise quantitatively similar. Upon longer K(+) applications (1 min), elevations of [Ca(2+)](c) and secretion were prolonged in bovine cells; in contrast [Ca(2+)](c) in mouse cells declined three-fold faster and failed to sustain a continued secretion. Confocal [Ca(2+)](c) imaging following a 50-ms depolarizing pulse showed a similar Ca(2+) entry, but a rate of [Ca(2+)](c) increase and a maximum peak significantly higher in bovine cells; the rate of dissipation of the Ca(2+) wave was faster in the mouse. The mitochondrial protonophore CCCP (2 microm) halved the K(+)-evoked [Ca(2+)](c) and secretory signals in mouse cells, but had little affect on bovine responses. We conclude that the relative densities of L (15% in bovine and 50% in mouse) and P/Q Ca(2+) channels (50% in bovine and 15% in mouse) do not contribute to the observed differences; rather, the different intracellular distribution of Ca(2+), which is strongly influenced by mitochondria, is responsible for a more sustained secretory response in bovine, and for a faster and more transient secretory response in mouse chromaffin cells. It seems that mitochondria near the plasmalemma sequester Ca(2+) more rapidly and efficiently in the mouse than in the bovine chromaffin cell.
Collapse
Affiliation(s)
- E Alés
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Zaika OL, Pochynyuk OM, Kostyuk PG, Yavorskaya EN, Lukyanetz EA. Acetylcholine-induced calcium signalling in adrenaline- and noradrenaline-containing adrenal chromaffin cells. Arch Biochem Biophys 2004; 424:23-32. [PMID: 15019833 DOI: 10.1016/j.abb.2004.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 01/13/2004] [Indexed: 11/25/2022]
Abstract
Adrenal chromaffin cells secrete catecholamines in response to cholinergic receptor activation by acetylcholine (ACh). Characteristics of Ca(2+) transients induced by activation of nicotinic (nAChRs) and muscarinic (mAChRs) receptors were analyzed using Fura-2 fluorescent measurements on rat chromaffin cells. We first found two populations of chromaffin cells, which differently responded on AChR stimulation. In the first group (n-cells), consecutive ACh applications evoked persistent Ca(2+) transients, whereas desensitizing transients were observed in the other group (m-cells). The AChR agonists and antagonists precisely imitated or abolished the ACh action on n- and m-type cells, respectively. Cytochemical staining showed that n-cells contained adrenaline, whereas m-cells-noradrenaline. Thus, for the first time we found that nAChRs and mAChRs are differentially expressed in adrenergic and noradrenergic chromaffin cells, respectively. Our data suppose that chromaffin cells can be differentially regulated by incoming ACh signals and in such way release different substances-adrenaline and noradrenaline.
Collapse
Affiliation(s)
- O L Zaika
- International Center for Molecular Physiology, Kiev, Ukraine
| | | | | | | | | |
Collapse
|
35
|
Benavides A, Calvo S, Tornero D, González-García C, Ceña V. Adrenal medulla calcium channel population is not conserved in bovine chromaffin cells in culture. Neuroscience 2004; 128:99-109. [PMID: 15450357 DOI: 10.1016/j.neuroscience.2004.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2004] [Indexed: 10/26/2022]
Abstract
During the stress response adrenal medullary chromaffin cells release catecholamines to the bloodstream. Voltage-activated calcium channels present in the cell membrane play a crucial role in this process. Although the electrophysiological and pharmacological properties of chromaffin cell calcium channels have been studied in detail, the molecular composition of these channels has not been defined yet. Another aspect that needs to be explored is the extent to which chromaffin cells in culture reflect the adrenal medulla calcium channel characteristics. In this sense, it has been described that catecholamine release in the intact adrenal gland recruits different calcium channels than those recruited during secretion from cultured chromaffin cells. Additionally, recent electrophysiological studies show that chromaffin cells in culture differ from those located in the intact adrenal medulla in the contribution of several calcium channel types to the whole cell current. However there is not yet any study that compares the population of calcium channels in chromaffin cells with that one present in the adrenal medulla. In order to gain some insight into the roles that calcium channels might play in the adrenal medullary cells we have analyzed the alpha1 subunit mRNA expression profile. We demonstrate that the expression pattern of voltage-dependent calcium channels in cultured bovine chromaffin cells markedly differs from that found in the native adrenal medulla and that glucocorticoids are only partially involved in those differences. Additionally, we show, for the first time, that the cardiac isoform of L-type calcium channel is present in both bovine adrenal medulla and cultured chromaffin cells and that its levels of expression do not vary during culture.
Collapse
Affiliation(s)
- A Benavides
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla La Mancha, Avda. de Almansa s/n 02006 Albacete, Spain.
| | | | | | | | | |
Collapse
|
36
|
Harkins AB, Cahill AL, Powers JF, Tischler AS, Fox AP. Expression of recombinant calcium channels support secretion in a mouse pheochromocytoma cell line. J Neurophysiol 2003; 90:2325-33. [PMID: 12867528 DOI: 10.1152/jn.00425.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have characterized a recently established mouse pheochromocytoma cell line (MPC 9/3L) as a useful model for studying neurotransmitter release and neuroendocrine secretion. MPC 9/3L cells express many of the proteins involved in Ca2+-dependent neurotransmitter release but do not express functional endogenous Ca2+-influx pathways. When transfected with recombinant N-type Ca2+ channel subunits alpha1B,beta2a,alpha2delta (Cav2.2), the cells expressed robust Ca2+ currents that were blocked by omega-conotoxin GVIA. Activation of N-type Ca2+ currents caused rapid increases in membrane capacitance of the MPC 9/3L cells, indicating that the Ca2+ influx was linked to exocytosis of vesicles similar to that reported in chromaffin or PC12 cells. Synaptic protein interaction (synprint) sites, like those found on N-type Ca2+ channels, are thought to link voltage-dependent Ca2+ channels to SNARE proteins involved in synaptic transmission. Interestingly, MPC 9/3L cells transfected with either LC-type (alpha1C, beta2a, alpha2delta, Cav1.2) or T-type (alpha1G, beta2a, alpha2delta, Cav3.1) Ca2+ channel subunits, which do not express synprint sites, expressed appropriate Ca2+ currents that supported rapid exocytosis. Thus MPC 9/3L cells provide a unique model for the study of exocytosis in cells expressing specific Ca2+ channels of defined subunit composition without complicating contributions from endogenous channels. This model may help to distinguish the roles that different Ca2+ channels play in Ca2+-dependent secretion.
Collapse
Affiliation(s)
- Amy B Harkins
- Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
37
|
Trueta C, Méndez B, De-Miguel FF. Somatic exocytosis of serotonin mediated by L-type calcium channels in cultured leech neurones. J Physiol 2003; 547:405-16. [PMID: 12562971 PMCID: PMC2342656 DOI: 10.1113/jphysiol.2002.030684] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We studied somatic exocytosis of serotonin and its mediation by L-type calcium (Ca2+) channels in cultured Retzius neurones of the leech. Exocytosis was induced by trains of impulses at different frequencies or by depolarisation with 40 mM potassium (K+), and was quantified by use of the fluorescent dye FM 1-43. Stimulation increased the membrane fluorescence and produced a pattern of FM 1-43 fluorescent spots of 1.28 +/- 0.01 microm in diameter, provided that Ca2+ was present in the bathing fluid. Individual spots lost their stain during depolarisation with 40 mM K+. Electron micrographs showed clusters of dense core vesicles, some of which were in contact with the cell membrane. Presynaptic structures with clear vesicles were absent from the soma. The number of fluorescent spots per soma, but not their diameter or their fluorescence intensity, depended on the frequency of stimulation. Trains at 1 Hz produced 19.5 +/- 5 spots per soma, 77.9 +/- 13.9 spots per soma were produced at 10 Hz and 91.5 +/- 16.9 spots per soma at 20 Hz. Staining patterns were similar for neurones in culture and in situ. In the presence of the L-type Ca2+ channel blocker nimodipine (10 microM), a 20 Hz train produced only 22.9 +/- 6.4 spots per soma, representing a 75 % reduction compared to control cells (P < 0.05). Subsequent incubation with 10 mM caffeine to induce Ca2+ release from intracellular stores increased the number of spots to 73.22 +/- 12.5. Blockers of N-, P-, Q- or invertebrate Ca2+ channels did not affect somatic exocytosis. Our results suggest that somatic exocytosis by neurones shares common mechanisms with excitable endocrine cells.
Collapse
Affiliation(s)
- Citlali Trueta
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F., México
| | | | | |
Collapse
|
38
|
Kulick MB, von Kügelgen I. P2Y-receptors mediating an inhibition of the evoked entry of calcium through N-type calcium channels at neuronal processes. J Pharmacol Exp Ther 2002; 303:520-6. [PMID: 12388631 DOI: 10.1124/jpet.102.037960] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the search for P2-receptors modulating the stimulation-evoked entry of calcium at processes of PC12 cells differentiated in the presence of nerve growth factor and neurotrophin-3, electrically evoked increases in free calcium were assessed by fura-2 microfluorimetry. Omission of calcium and addition of cadmium (100 microM) or the N-type calcium channel blocker omega-conotoxin GVIA (0.5 microM) abolished or markedly reduced the evoked responses. The P2Y-receptor agonists 2-methylthio adenosine 5'-diphosphate (2-methylthio-ADP), ADP, and adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS) inhibited the electrically evoked entry of calcium without any changes in basal calcium concentrations. 2-Methylthio-ADP was the most potent agonist. Adenosine, P(1),P(4)-di(adenosine-5')-tetraphosphate (Ap4A), UDP, and UTP (30 microM each) had no effect. The effect of ADPbetaS (30 microM) was abolished by the P2-antagonists reactive blue 2 (3 microM), suramin (100 microM), 2-methylthio-AMP (10 microM), p-chloromercuriphenyl sulfonic acid (1 microM), and AR-C 69931MX [N(6)-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene adenosine 5'-triphosphate] (300 nM). In contrast, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (10 microM), the selective P2Y1-receptor antagonist MRS 2179 (N(6)-methyl-2'-deoxyadenosine 3',5'-bisphosphate; 10 microM), as well as the adenosine A(1)-receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine; 100 nM), caused no change. Pretreatment with pertussis toxin abolished the effect of ADPbetaS. Reverse transcriptase-polymerase chain reaction revealed the presence of mRNA for P2Y12-receptors in nondifferentiated and differentiated PC12 cells. The results indicate that processes of differentiated PC12 cells possess P2Y12-receptors coupling to pertussis toxin-sensitive G-proteins and mediating an inhibition of the stimulation-evoked entry of calcium through omega-conotoxin GVIA-sensitive calcium channels. This suggests a role of P2Y12-receptors in neuromodulation in addition to their involvement in platelet aggregation.
Collapse
Affiliation(s)
- Melanie B Kulick
- Department of Pharmacology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany
| | | |
Collapse
|
39
|
Aldea M, Jun K, Shin HS, Andrés-Mateos E, Solís-Garrido LM, Montiel C, García AG, Albillos A. A perforated patch-clamp study of calcium currents and exocytosis in chromaffin cells of wild-type and alpha(1A) knockout mice. J Neurochem 2002; 81:911-21. [PMID: 12065603 DOI: 10.1046/j.1471-4159.2002.00845.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Simultaneous recordings of inward whole-cell Ca(2+) channel currents (I(Ca) ) and increments of capacitance as an indication of exocytosis (Delta(Cm)), were performed in voltage-clamped single adrenal chromaffin cells from wild-type and alpha(1A) subunit deficient mice, using the perforated-patch configuration of the patch-clamp technique. Using protocol #1 (one single Ca(2+) channel blocker per cell), to dissect the components of I(Ca), L channels contributed 43%, N channels 35% and P/Q channels 30% to the total I(Ca) of wild-type cells. Using protocol #2 (cumulative sequential addition of 3 microm nifedipine, 1 microm omega-conotoxin GVIA, and 1 microm omega-agatoxin IVA), L, N and P/Q channels contributed 40%, 34% and 14%, respectively, to I(Ca); an R component of around 11% remained. In wild-type mice the changes of Delta(Cm) paralleled those of I(Ca). In alpha(1A) deficient mice the L component of I(Ca) rose to 53% while the P/Q disappeared; the N and R components were similar. In these mice, Delta(Cm) associated to N and R channels did not vary; however, the P/Q component was abolished while the L component increased by 20%. In conclusion, exocytosis was proportional to the relative density of each Ca(2+) channel subtype, L, N, P/Q, R. Ablation of the alpha(1A) gene led to a loss of P/Q channel current and to a compensatory increase of L channel-associated secretion; however, this compensation was not sufficient to maintain the overall exocytotic response, that was diminished by 35% in alpha(1A) -deficient mice. This may be due to altered Ca(2+) homeostasis in these mice, as compared to wild mouse chromaffin cells.
Collapse
Affiliation(s)
- Marcos Aldea
- Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mariot P, Vanoverberghe K, Lalevee N, Rossier MF, Prevarskaya N. Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem 2002; 277:10824-33. [PMID: 11799114 DOI: 10.1074/jbc.m108754200] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroendocrine differentiation of prostate epithelial cells is usually associated with an increased aggressivity and invasiveness of prostate tumors and a poor prognosis. However, the molecular mechanisms involved in this process remain poorly understood. We have investigated the possible expression of voltage-gated calcium channels in human prostate cancer epithelial LNCaP cells and their modulation during neuroendocrine differentiation. A small proportion of undifferentiated LNCaP cells displayed a voltage-dependent calcium current. This proportion and the calcium current density were significantly increased during neuroendocrine differentiation induced by long-term treatments with cyclic AMP permeant analogs or with a steroid-reduced culture medium. Biophysical and pharmacological properties of this calcium current suggest that it is carried by low-voltage activated T-type calcium channels. Reverse transcriptase-PCR experiments demonstrated that only a single type of LVA calcium channel mRNA, an alpha(1H) calcium channel mRNA, is expressed in LNCaP cells. Quantitative real-time reverse transcriptase-PCR revealed that alpha(1H) mRNA was overexpressed during neuroendocrine differentiation. Finally, we show that this calcium channel promotes basal calcium entry at resting membrane potential and may facilitate neurite lengthening. This voltage-dependent calcium channel could be involved in the stimulation of mitogenic factor secretion and could therefore be a target for future therapeutic strategies.
Collapse
Affiliation(s)
- Pascal Mariot
- Laboratoire de Physiologie Cellulaire, INSERM EPI9938, Bâtiment SN3, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cédex, France.
| | | | | | | | | |
Collapse
|
41
|
Bournaud R, Hidalgo J, Yu H, Jaimovich E, Shimahara T. Low threshold T-type calcium current in rat embryonic chromaffin cells. J Physiol 2001; 537:35-44. [PMID: 11711559 PMCID: PMC2278937 DOI: 10.1111/j.1469-7793.2001.0035k.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The gating kinetics and functions of low threshold T-type current in cultured chromaffin cells from rats of 19-20 days gestation (E19-E20) were studied using the patch clamp technique. Exocytosis induced by calcium currents was monitored by the measurement of membrane capacitance and amperometry with a carbon fibre sensor. 2. In cells cultured for 1-4 days, the embryonic chromaffin cells were immunohistochemically identified by using polyclonal antibodies against dopamine beta-hydroxylase (DBH) and syntaxin. The immuno-positive cells could be separated into three types, based on the recorded calcium current properties. Type I cells showed exclusively large low threshold T-type current, Type II cells showed only high voltage activated (HVA) calcium channel current and Type III cells showed both T-type and HVA currents. These cells represented 44 %, 46 % and 10 % of the total, respectively. 3. T-type current recorded in Type I cells became detectable at -50 mV, reached its maximum amplitude of 6.8 +/- 1.2 pA pF(-1) (n = 5) at -10 mV and reversed around +50 mV. The current was characterized by criss-crossing kinetics within the -50 to -30 mV voltage range and a slow deactivation (deactivation time constant, tau(d) = 2 ms at -80 mV). The channel closing and inactivation process included both voltage-dependent and voltage-independent steps. The antihypertensive drug mibefradil (200 nM) reduced the current amplitude to about 65 % of control values. Ni(2+) also blocked the current in a dose-dependent manner with an IC(50) of 25 microM. 4. T-type current in Type I cells did not induce exocytosis, while catecholamine secretion by exocytosis could be induced by HVA calcium current in both Type II and Type III cells. The failure to induce exocytosis by T-type current in Type I cells was not due to insufficient Ca(2+) influx through the T-type calcium channel. 5. We suggest that T-type current is expressed in developing immature chromaffin cells. The T-type current is replaced progressively by HVA calcium current during pre- and post-natal development accompanying the functional maturation of the exocytosis mechanism.
Collapse
Affiliation(s)
- R Bournaud
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
42
|
Lukyanetz EA. Different secretory vesicles can be involved in depolarization-evoked exocytosis. Biochem Biophys Res Commun 2001; 288:844-8. [PMID: 11688985 DOI: 10.1006/bbrc.2001.5844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The relationship between Ca(2+) influx through voltage-activated Ca(2+) channels, resting intracellular Ca(2+) level (Ca(i)) and Ca(2+)-dependent exocytosis was studied in bovine adrenal chromaffin cells by using patch-clamp, capacitance, and fluorescent measurements. It was established that depolarization-induced exocytosis passed over two steps, both of which linearly depend on Ca(i). At Ca(i) lying below critical point (200-300 nM) the slope of the relationship was 4.43 and at Ca(i) exceeding the critical point the slope was equal to 31.63. The vesicular mechanism describing experimental two-step dependence of exocytosis on intracellular Ca(2+) (Ca(i)) is proposed. According to the model at Ca(i) below critical point only small-sized vesicles fuse with plasma membrane, whereas at higher Ca(i), larger vesicles started to fuse.
Collapse
Affiliation(s)
- E A Lukyanetz
- Bogomoletz Institute of Physiology, Bogomoletz Str. 4, Kiev-24, 01024, Ukraine.
| |
Collapse
|
43
|
Gil A, Viniegra S, Neco P, Gutiérrez LM. Co-localization of vesicles and P/Q Ca2+-channels explains the preferential distribution of exocytotic active zones in neurites emitted by bovine chromaffin cells. Eur J Cell Biol 2001; 80:358-65. [PMID: 11432726 DOI: 10.1078/0171-9335-00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have taken advantage of the differences between the preferential localization of secretion in the terminals of neurite-emitting bovine chromaffin cells in contrast with the random distribution secretion in spherical cells to study the possible molecular factors determining such localization by using immunofluorescence and confocal microscopy techniques. By analyzing the distribution of dopamine beta-hydroxylase present in the membrane of chromaffin granules, we found that vesicles migrate and accumulate in dense packages in the terminals of neurite processes. Neither members of the fusion core complex such as SNAP-25, nor nicotinic receptors are preferentially located in the terminals as would be expected from elements defining sites of release, thereby suggesting the presence of additional factors. Interestingly, we observed a preferential distribution of the P/Q subtype of Ca2+ channels in these neurite terminals and co-localization with vesicles present in these structures, in sharp contrast with the overall distribution of the L subtype channels. Using the same immunofluorescence techniques we were unable to detect N-type calcium channels. In addition, omega-agatoxin IVA was able to block 70% of the exocytotic release occurring into the neurites, whereas L-type blockers had a weak effect. Taken together our results strongly indicate that the co-localization of vesicles and clusters of P/Q Ca2+ channels may explain the precise localization of exocytotic sites in the terminals of neurite-emitting chromaffin cells, whereas the distribution of secretory sites in round cells may arise from the random presence of these factors as indicated by their partial co-localization.
Collapse
Affiliation(s)
- A Gil
- Instituto de Neurociencias, Centro Mixto, CSIC-Universidad Miguel Hernández, Alicante/Spain
| | | | | | | |
Collapse
|
44
|
Koval LM, Yavorskaya EN, Lukyanetz EA. Electron microscopic evidence for multiple types of secretory vesicles in bovine chromaffin cells. Gen Comp Endocrinol 2001; 121:261-77. [PMID: 11254368 DOI: 10.1006/gcen.2000.7592] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been previously shown that the neuron-like chromaffin cells from the bovine adrenal medulla are heterogeneous. Among other differences, the cells also differed in secretory vesicles represented in their cytoplasm. The present study investigates the types of secretory vesicles in bovine chromaffin cells by electron microscopy. Morphometric analysis revealed five types of electron-dense secretory vesicles in chromaffin cells. These were as follows: elementary large catecholamine-storing chromaffin granules of rounded shape, large dense core vesicles of ovoid and rod-like shapes, small dense core vesicles as well as ribosome-coated vesicles of intermediate density. Among the electron-lucent vesicles there were small synaptic-like microvesicles, endocytotic clathrin-coated vesicles, growth cone vesicles, and emptied large light core vesicles. The structural and functional backgrounds of different types of secretory vesicles are described, focusing on their formation and potential role.
Collapse
Affiliation(s)
- L M Koval
- A. A. Bogomoletz Institute of Physiology, Kiev, MSP 01601, Ukraine
| | | | | |
Collapse
|
45
|
Zaika OL, Pochinyuk OM, Lukyanetz EA. Comparative characteristics of the secretory responses of chromaffin and pheochromocytoma PC-12 cells to acetylcholine stimulation. NEUROPHYSIOLOGY+ 2000. [DOI: 10.1007/bf02506558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Koval LM, Yavorskaya EN, Lukyanetz EA. Ultrastructural features of medullary chromaffin cell cultures. Neuroscience 2000; 96:639-49. [PMID: 10717445 DOI: 10.1016/s0306-4522(99)00563-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ultrastructural organization on the fourth day of culture of chromaffin cells isolated from the bovine adrenal medulla was characterized based on electron microscopic and morphological analysis. We established that medullary chromaffin cells could be divided into four morphologically different subtypes. Most cells (49.1% of those examined) had a dense cytoplasm and fine dense granules. Cells with dense cytoplasm and large granules represented a second type of chromaffin cell (21.1%). Cells of the third type had a light cytoplasm, granules with a light halo and a well-developed Golgi apparatus (26.3%). The fourth type of chromaffin cell was characterized by moderately dense cytoplasm with well-expressed varicose rough endoplasmic reticulum (about 3.5%). Among concomitant cell types, cortical adrenal cells from the zona fasciculata and zona glomerulosa, epithelial cells, fibroblasts, lymphocytes, brown lipoblasts and glial Schwann cells were present. Morphological analysis implies that cells with dense cytoplasm and fine granules and those with light cytoplasm and haloed granules (75.4% in total) are adrenaline-containing cells, whereas the cells with dense cytoplasm and large granules (26.3%) contain noradrenaline. Cells with moderately dense cytoplasm and varicose reticulum share common morphological properties with classical glandular cells and, by their properties, were closer to noradrenaline-containing cells. It is concluded that chromaffin cells, which are the main cell type among cultured cells from adult bovine adrenal medulla, are morphologically quite heterogeneous. Other cell types of different nature may also be present in the culture and can locally influence the properties of the investigated medullary chromaffin cells used in electrophysiological experiments.
Collapse
Affiliation(s)
- L M Koval
- International Center of Molecular Physiology, Kiev, Ukraine
| | | | | |
Collapse
|