1
|
Wang Z, Wang X, He Y, Wu H, Mao R, Wang H, Qiu L. Exploring Framework Nucleic Acids: A Perspective on Their Cellular Applications. JACS AU 2024; 4:4110-4128. [PMID: 39610738 PMCID: PMC11600171 DOI: 10.1021/jacsau.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
Cells are fundamental units of life. The coordination of cellular functions and behaviors relies on a cascade of molecular networks. Technologies that enable exploration and manipulation of specific molecular events in living cells with high spatiotemporal precision would be critical for pathological study, disease diagnosis, and treatment. Framework nucleic acids (FNAs) represent a novel class of nucleic acid materials characterized by their monodisperse and rigid nanostructure. Leveraging their exceptional programmability, convenient modification property, and predictable atomic-level architecture, FNAs have attracted significant attention in diverse cellular applications such as cell recognition, imaging, manipulation, and therapeutic interventions. In this perspective, we will discuss the utilization of FNAs in living cell systems while critically assessing the opportunities and challenges presented in this burgeoning field.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Rui Mao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Haiyuan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
2
|
Płatek R, Grycz K, Więckowska A, Czarkowska-Bauch J, Skup M. L1 Cell Adhesion Molecule Overexpression Down Regulates Phosphacan and Up Regulates Structural Plasticity-Related Genes Rostral and Caudal to the Complete Spinal Cord Transection. J Neurotrauma 2019; 37:534-554. [PMID: 31426714 DOI: 10.1089/neu.2018.6103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) supports spinal cord cellular milieu after contusion and compression lesions, contributing to neuroprotection, promoting axonal outgrowth, and reducing outgrowth-inhibitory molecules in lesion proximity. We extended investigations into L1CAM molecular targets and explored long-distance effects of L1CAM rostral and caudal to complete spinal cord transection (SCT) in adult rats. L1CAM overexpression in neurons and glia after Th10/Th11 SCT was achieved using adeno-associated viral vector serotype 5 (AAV5) injected into an L1-lumbar segment immediately after transection. At 5 weeks, a L1CAM mRNA profound decrease detected rostral and caudal to the transection site was alleviated by AAV5-L1CAM treatment, with increased endogenous L1CAM rostral to the SCT. Transected corticospinal tract fibers showed attenuated retraction after treatment, accompanied by a multi-segmental increase of lesion-reduced expression of adenylate cyclase 1 (Adcy1), synaptophysin, growth-associated protein 43, and myelin basic protein genes caudal to transection, and Adcy1 rostral to transection. In parallel, chondroitin sulfate proteoglycan phosphacan elevated after SCT was downregulated after treatment. Low-molecular L1CAM isoforms generated after spinalization indicated the involvement of sheddases in L1CAM processing and long-distance effects. A disintegrin and metalloproteinase (ADAM)10 sheddase immunoreactivity, stronger in AAV5-L1CAM than AAV5- enhanced green fluorescent protein (EGFP)-transduced motoneurons indicated local ADAM10 upregulation by L1CAM. The results suggest that increased L1CAM availability and penetration of diffusible L1CAM fragments post-lesion induce both local and long-distance neuronal and glial responses toward better neuronal maintenance, neurite growth, and myelination. Despite the fact that intervention promoted beneficial molecular changes, kinematic analysis of hindlimb movements showed minor improvement, indicating that spinalized rats require longer L1CAM treatment to regain locomotor functions.
Collapse
Affiliation(s)
- Rafał Płatek
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Kamil Grycz
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
3
|
Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Front Cell Neurosci 2019; 13:128. [PMID: 31024258 PMCID: PMC6460947 DOI: 10.3389/fncel.2019.00128] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 01/19/2023] Open
Abstract
Injuries and diseases of the peripheral nervous system (PNS) are common but frequently irreversible. It is often but mistakenly assumed that peripheral neuron regeneration is robust without a need to be improved or supported. However, axonal lesions, especially those involving proximal nerves rarely recover fully and injuries generally are complicated by slow and incomplete regeneration. Strategies to enhance the intrinsic growth properties of reluctant adult neurons offer an alternative approach to consider during regeneration. Since axons rarely regrow without an intimately partnered Schwann cell (SC), approaches to enhance SC plasticity carry along benefits to their axon partners. Direct targeting of molecules that inhibit growth cone plasticity can inform important regenerative strategies. A newer approach, a focus of our laboratory, exploits tumor suppressor molecules that normally dampen unconstrained growth. However several are also prominently expressed in stable adult neurons. During regeneration their ongoing expression “brakes” growth, whereas their inhibition and knockdown may enhance regrowth. Examples have included phosphatase and tensin homolog deleted on chromosome ten (PTEN), a tumor suppressor that inhibits PI3K/pAkt signaling, Rb1, the protein involved in retinoblastoma development, and adenomatous polyposis coli (APC), a tumor suppressor that inhibits β-Catenin transcriptional signaling and its translocation to the nucleus. The identification of several new targets to manipulate the plasticity of regenerating adult peripheral neurons is exciting. How they fit with canonical regeneration strategies and their feasibility require additional work. Newer forms of nonviral siRNA delivery may be approaches for molecular manipulation to improve regeneration.
Collapse
Affiliation(s)
- Arul Duraikannu
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anand Krishnan
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Association study of fibroblast growth factor genes and brain volumes in schizophrenic patients and healthy controls. Psychiatr Genet 2014; 24:283-4. [PMID: 25360608 DOI: 10.1097/ypg.0000000000000057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Keimpema E, Hökfelt T, Harkany T, Doherty P. The molecular interplay between endocannabinoid and neurotrophin signals in the nervous system and beyond. Eur J Neurosci 2014; 39:334-43. [DOI: 10.1111/ejn.12431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Erik Keimpema
- Division of Molecular Neurobiology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Scheeles väg 1:A1 SE-17177 Stockholm Sweden
- Department of Molecular Neuroscience; Center for Brain Research; Medical University of Vienna; Spitalgasse 4 A-1090 Vienna Austria
| | - Tomas Hökfelt
- Department of Neuroscience; Karolinska Institutet; Stockholm Sweden
| | - Tibor Harkany
- Division of Molecular Neurobiology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Scheeles väg 1:A1 SE-17177 Stockholm Sweden
- Department of Molecular Neuroscience; Center for Brain Research; Medical University of Vienna; Spitalgasse 4 A-1090 Vienna Austria
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases; King's College London; London SE1 9RT UK
| |
Collapse
|
6
|
Sheng L, Leshchyns'ka I, Sytnyk V. Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal 2013; 11:94. [PMID: 24330678 PMCID: PMC3878801 DOI: 10.1186/1478-811x-11-94] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023] Open
Abstract
Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed.
Collapse
Affiliation(s)
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
7
|
USP47 and C terminus of Hsp70-interacting protein (CHIP) antagonistically regulate katanin-p60-mediated axonal growth. J Neurosci 2013; 33:12728-38. [PMID: 23904609 DOI: 10.1523/jneurosci.0698-13.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Katanin is a heterodimeric enzyme that severs and disassembles microtubules. While the p60 subunit has the enzyme activity, the p80 subunit regulates the p60 activity. The microtubule-severing activity of katanin plays an essential role in axonal growth. However, the mechanisms by which neuronal cells regulate the expression of katanin-p60 remains unknown. Here we showed that USP47 and C terminus of Hsp70-interacting protein (CHIP) antagonistically regulate the stability of katanin-p60 and thereby axonal growth. USP47 was identified as a katanin-p60-specific deubiquitinating enzyme for its stabilization. We also identified CHIP as a ubiquitin E3 ligase that promotes proteasome-mediated degradation of katanin-p60. Moreover, USP47 promoted axonal growth of cultured rat hippocampal neurons, whereas CHIP inhibited it. Significantly, treatment with basic fibroblast growth factor (bFGF), an inducer of axonal growth, increased the levels of USP47 and katanin-p60, but not CHIP. Consistently, bFGF treatment resulted in a marked decrease in the level of ubiquitinated katanin-p60 and thereby in the promotion of axonal growth. On the other hand, the level of USP47, but not CHIP, decreased concurrently with that of katanin-p60 as axons reached their target cells. These results indicate that USP47 plays a crucial role in the control of axonal growth during neuronal development by antagonizing CHIP-mediated katanin-p60 degradation.
Collapse
|
8
|
NCAM function in the adult brain: lessons from mimetic peptides and therapeutic potential. Neurochem Res 2013; 38:1163-73. [PMID: 23494903 DOI: 10.1007/s11064-013-1007-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023]
Abstract
Neural cell adhesion molecules (NCAMs) are complexes of transmembranal proteins critical for cell-cell interactions. Initially recognized as key players in the orchestration of developmental processes involving cell migration, cell survival, axon guidance, and synaptic targeting, they have been shown to retain these functions in the mature adult brain, in relation to plastic processes and cognitive abilities. NCAMs are able to interact among themselves (homophilic binding) as well as with other molecules (heterophilic binding). Furthermore, they are the sole molecule of the central nervous system undergoing polysialylation. Most interestingly polysialylated and non-polysialylated NCAMs display opposite properties. The precise contributions each of these characteristics brings in the regulations of synaptic and cellular plasticity in relation to cognitive processes in the adult brain are not yet fully understood. With the aim of deciphering the specific involvement of each interaction, recent developments led to the generation of NCAM mimetic peptides that recapitulate identified binding properties of NCAM. The present review focuses on the information such advances have provided in the understanding of NCAM contribution to cognitive function.
Collapse
|
9
|
Aikawa Y, Hirakawa H, Lee S. Spatiotemporal regulation of the ubiquitinated cargo-binding activity of Rabex-5 in the endocytic pathway. J Biol Chem 2012; 287:40586-97. [PMID: 23048039 DOI: 10.1074/jbc.m112.411793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The regulatory mechanism underlying the interaction of the Rabex-5 MIU domain with ubiquitinated cargos remains unclear. RESULTS Rabex-5 guanine nucleotide exchange factor (GEF) mutants affected interactions of ubiquitinated cargos. CONCLUSION GDP/GTP exchange in the GEF domain controls the MIU domain interactions with the ubiquitinated cargos. SIGNIFICANCE Rabex-5 GEF activity acts as an intramolecular switch for spatiotemporal trafficking of the ubiquitinated cargos. Ubiquitin (Ub)-dependent endocytosis of membrane proteins requires precise molecular recognition of ubiquitinated cargo by Ub-binding proteins (UBPs). Many UBPs are often themselves monoubiquitinated, a mechanism referred to as coupled monoubiquitination, which prevents them from binding in trans to the ubiquitinated cargo. However, the spatiotemporal regulatory mechanism underlying the interaction of UBPs with the ubiquitinated cargo, via their Ub-binding domains (UBDs) remains unclear. Previously, we reported the interaction of Rabex-5, a UBP and guanine nucleotide exchange factor (GEF) for Rab5, with ubiquitinated neural cell adhesion molecule L1, via its motif interacting with Ub (MIU) domain. This interaction is critical for the internalization and sorting of the ubiquitinated L1 into endosomal/lysosomal compartments. The present study demonstrated that the interaction of Rabex-5 with Rab5 depends specifically on interaction of the MIU domain with the ubiquitinated L1 to drive its internalization. Notably, impaired GEF mutants and the Rabex-5(E213A) mutant increased the flexibility of the hinge region in the HB-VPS9 tandem domain, which significantly affected their interactions with the ubiquitinated L1. In addition, GEF mutants increased the catalytic efficiency, which resulted in a reduced interaction with the ubiquitinated L1. Furthermore, the coupled monoubiquitination status of Rabex-5 was found to be significantly associated with interaction of Rabex-5 and the ubiquitinated L1. Collectively, our study reveals a novel mechanism, wherein the GEF activity of Rabex-5 acts as an intramolecular switch orchestrating ubiquitinated cargo-binding activity and coupled monoubiquitination to permit the spatiotemporal dynamic exchange of the ubiquitinated cargos.
Collapse
Affiliation(s)
- Yoshikatsu Aikawa
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, 1-3 Miyakodani, Kyotanabe, Kyoto 610-0394, Japan.
| | | | | |
Collapse
|
10
|
Oudin MJ, Hobbs C, Doherty P. DAGL-dependent endocannabinoid signalling: roles in axonal pathfinding, synaptic plasticity and adult neurogenesis. Eur J Neurosci 2012; 34:1634-46. [PMID: 22103420 DOI: 10.1111/j.1460-9568.2011.07831.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Until recently, endocannabinoid (eCB) signalling was largely studied in the context of synaptic plasticity in the postnatal brain in the absence of detailed knowledge of the nature of the enzyme(s) responsible for the synthesis of the eCBs. However, the identification of two diacylglycerol lipases (DAGLα and DAGLβ) responsible for the synthesis of 2-arachidonoylglycerol (2-AG) has increased the understanding of where this eCB is synthesised in relationship to the expression of cannabinoid receptor (CB)1 and CB2. Furthermore, the generation of knockout animals for each enzyme has allowed for the direct testing of their importance for established and emerging eCB functions. Based on this, we now know that DAGLα is enriched in dendritic spines that appose CB1-positive synaptic terminals, and that 2-AG functions as a retrograde signal controlling synaptic strength throughout the nervous system. Consequently, we have built on the principle that expression of eCB components dictates function to identify additional physiological functions of this signalling cassette. A number of studies have now provided support for DAGL-dependent eCB signalling playing important roles in brain development and in cellular plasticity in the adult nervous system. In this article, we will review evidence based on the localisation of the enzymes, as well as from genetic and pharmacological studies, that show DAGL-dependent eCB signalling to play an important role in axonal growth and guidance during development, in retrograde synaptic signalling at mature synapses, and in the control of adult neurogenesis in the hippocampus and subventricular zone.
Collapse
Affiliation(s)
- Madeleine J Oudin
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | | |
Collapse
|
11
|
Figge C, Loers G, Schachner M, Tilling T. Neurite outgrowth triggered by the cell adhesion molecule L1 requires activation and inactivation of the cytoskeletal protein cofilin. Mol Cell Neurosci 2011; 49:196-204. [PMID: 22019611 DOI: 10.1016/j.mcn.2011.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/09/2011] [Accepted: 10/05/2011] [Indexed: 01/29/2023] Open
Abstract
Neurite outgrowth, an essential process for constructing nervous system connectivity, requires molecular cues which promote neurite extension and guide growing neurites. The neural cell adhesion molecule L1 is one of the molecules involved in this process. Growth of neurites depends on actin remodeling, but actin-remodeling proteins which act downstream of L1 signaling are not known. In this study, we investigated whether the actin-remodeling protein cofilin, which can be activated by dephosphorylation, is involved in neurite outgrowth stimulated by L1. Upon stimulation with an L1 monoclonal antibody which specifically triggers L1-dependent neurite outgrowth, cofilin phosphorylation in cultured cerebellar granule neurons and isolated growth cones was reduced to 47 ± 13% or 58 ± 9% of IgG control levels, respectively. We therefore investigated whether cofilin phosphorylation plays a role in L1-stimulated neurite outgrowth. Inhibition of calcineurin, a phosphatase acting upstream of cofilin dephosphorylation, impaired L1-dependent neurite extension in cultures of cerebellar granule neurons and led to an increase in cofilin phosphorylation. Moreover, when peptide S3, a competitive inhibitor of cofilin phosphorylation, or peptide pS3, a competitive inhibitor of cofilin dephosphorylation, were transferred into cerebellar neurons in culture, L1-stimulated neurite outgrowth was reduced from 173 ± 15% to 103 ± 4% of poly-L-lysine control levels in the presence of either peptide. Our findings suggest that both activation of cofilin by dephosphorylation and inactivation of cofilin by phosphorylation are essential for L1-stimulated neurite outgrowth. These results are in accordance with a cofilin activity cycle recently proposed for invasive tumor cells and inflammatory cells, indicating that a similar regulatory mechanism might be involved in neurite outgrowth. As L1 is expressed by invasive tumor cells, cofilin might also be a downstream actor of L1 in metastasis.
Collapse
Affiliation(s)
- Carina Figge
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
12
|
Owczarek S, Soroka V, Kiryushko D, Larsen MH, Yuan Q, Sandi C, Berezin V, Bock E. Neuroplastin-65 and a mimetic peptide derived from its homophilic binding site modulate neuritogenesis and neuronal plasticity. J Neurochem 2011; 117:984-94. [DOI: 10.1111/j.1471-4159.2011.07269.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Dallerac G, Zerwas M, Novikova T, Callu D, Leblanc-Veyrac P, Bock E, Berezin V, Rampon C, Doyere V. The neural cell adhesion molecule-derived peptide FGL facilitates long-term plasticity in the dentate gyrus in vivo. Learn Mem 2011; 18:306-13. [DOI: 10.1101/lm.2154311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Owczarek S, Kiryushko D, Larsen MH, Kastrup JS, Gajhede M, Sandi C, Berezin V, Bock E, Soroka V. Neuroplastin-55 binds to and signals through the fibroblast growth factor receptor. FASEB J 2009; 24:1139-50. [PMID: 19952283 DOI: 10.1096/fj.09-140509] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroplastin (Np) is a glycoprotein belonging to the immunoglobulin superfamily of cell adhesion molecules (CAMs) and existing in two isoforms, Np55 and Np65, named according to their molecular weights. The extracellular part of Np65 contains three immunoglobulin (Ig)-like modules (Ig1, Ig2, and Ig3), whereas Np55 lacks the Ig1 module. Of these two isoforms, only Np65 is involved in homophilic interactions resulting in cell adhesion, whereas the role of Np55 is poorly understood. The present study reports for the first time the crystal structure of the ectodomain of Np55 at 1.95-A resolution and demonstrates that Np55 binds to and activates the fibroblast growth factor receptor 1 (FGFR1). Furthermore, we identify a sequence motif in the Ig2 module of Np55 interacting with FGFR1 and show that a synthetic peptide encompassing this motif, termed narpin, binds to and activates FGFR1. We show that both Np55 and the narpin peptide induce neurite outgrowth through FGFR1 activation and that Np55 increases synaptic calcium concentration in an FGFR1-dependent manner. Moreover, we demonstrate that narpin has an antidepressive-like effect in rats subjected to the forced swim test, suggesting that Np55-induced signaling may be involved in synaptic plasticity in vivo. Owczarek, S., Kiryushko, D., Larsen, M. H., Kastrup, J. S., Gajhede, M., Sandi, C., Berezin, V., Bock, E., Soroka, V. Neuroplastin-55 binds to and signals through the fibroblast growth factor receptor.
Collapse
Affiliation(s)
- Sylwia Owczarek
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Blegdamsvej 3C, Bldg. 24.2, 2200 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kavushansky A, Ben-Shachar D, Richter-Levin G, Klein E. Physical stress differs from psychosocial stress in the pattern and time-course of behavioral responses, serum corticosterone and expression of plasticity-related genes in the rat. Stress 2009; 12:412-25. [PMID: 19929444 DOI: 10.1080/10253890802556081] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stressors differ in their physiological and behavioral outcomes. One of the major mechanisms by which stressors affect the brain and behavior is alteration in neuronal plasticity. We investigated in the rat the effects of a single exposure to psychophysical (electrical foot shock) vs. psychological (social defeat) stressors on anxiety- and depression-related behaviors, serum levels of corticosterone and the expression of plasticity-related genes CAM-L1, CREB, GAP-43, and laminin in the prefrontal cortex (PFC), the amygdala and the hippocampus. Rats were examined for 24 h or 1 week after the exposure to stress. Footshocks enhanced anxiety-related behaviors, whereas social defeat induced depression-related behaviors at both time points and less pronounced anxiety 1 week post-exposure. Serum corticosterone concentrations were enhanced 24 h after shocks, but only 1 week after exposure to the social stressor. Moreover, the shock-stressed rats exhibited decreased CAM-L1 protein level in the hippocampus 24 h post-exposure and decreased GAP-43 protein level in the PFC 1 week post-exposure. By contrast, the social stressor enhanced expression of the plasticity-related proteins in the amygdala and the hippocampus, mostly 1 week after the exposure. These results indicate stressor-specific time-dependent changes in different neuronal pathways, and suggest consideration of a cause-specific approach to the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Alexandra Kavushansky
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, B. Rappaport Faculty of Medicine, Bat Galim, Technion, Haifa, 31096, Israel
| | | | | | | |
Collapse
|
16
|
A critical importance of polyamine site in NMDA receptors for neurite outgrowth and fasciculation at early stages of P19 neuronal differentiation. Exp Cell Res 2008; 314:2603-17. [PMID: 18586028 DOI: 10.1016/j.yexcr.2008.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/27/2008] [Accepted: 06/05/2008] [Indexed: 01/16/2023]
Abstract
We have investigated the role of N-methyl-d-aspartate receptors (NMDARs) and gamma-aminobutyric acid receptors type A (GABA(A)Rs) at an early stage of P19 neuronal differentiation. The subunit expression was profiled in 24-hour intervals with RT-PCR and functionality of the receptors was verified via fluo-3 imaging of Ca(2+) dynamics in the immature P19 neurons showing that both NMDA and GABA excite neuronal bodies, but only polyamine-site sensitive NMDAR stimulation leads to enhanced Ca(2+) signaling in the growth cones. Inhibition of NR1/NR2B NMDARs by 1 muM ifenprodil severely impaired P19 neurite extension and fasciculation, and this negative effect was fully reversible by polyamine addition. In contrast, GABA(A)R antagonism by a high dose of 200 microM bicuculline had no observable effect on P19 neuronal differentiation and fasciculation. Except for the differential NMDAR and GABA(A)R profiles of Ca(2+) signaling within the immature P19 neurons, we have also shown that inhibition of NR1/NR2B NMDARs strongly decreased mRNA level of NCAM-180, which has been previously implicated as a regulator of neuronal growth cone protrusion and neurite extension. Our data thus suggest a critical role of NR1/NR2B NMDARs during the process of neuritogenesis and fasciculation of P19 neurons via differential control of local growth cone Ca(2+) surges and NCAM-180 signaling.
Collapse
|
17
|
Goncalves MB, Suetterlin P, Yip P, Molina-Holgado F, Walker DJ, Oudin MJ, Zentar MP, Pollard S, Yáñez-Muñoz RJ, Williams G, Walsh FS, Pangalos MN, Doherty P. A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol Cell Neurosci 2008; 38:526-36. [PMID: 18562209 DOI: 10.1016/j.mcn.2008.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/02/2008] [Indexed: 01/18/2023] Open
Abstract
The subventricular zone (SVZ) is a major site of neurogenesis in the adult. We now show that ependymal and proliferating cells in the adult mouse SVZ express diacylglycerol lipases (DAGLs), enzymes that synthesise a CB1/CB2 cannabinoid receptor ligand. DAGL and CB2 antagonists inhibit the proliferation of cultured neural stem cells, and the proliferation of progenitor cells in young animals. Furthermore, CB2 agonists stimulate progenitor cell proliferation in vivo, with this effect being more pronounced in older animals. A similar response was seen with a fatty acid amide hydrolase (FAAH) inhibitor that limits degradation of endocannabinoids. The effects on proliferation were mirrored in changes in the number of neuroblasts migrating from the SVZ to the olfactory bulb (OB). In this context, CB2 antagonists reduced the number of newborn neurons appearing in the OB in the young adult animals while CB2 agonists stimulated this in older animals. These data identify CB2 receptor agonists and FAAH inhibitors as agents that can counteract the naturally observed decline in adult neurogenesis that is associated with ageing.
Collapse
|
18
|
Guilarducci-Ferraz CVV, da Silva GM, Torres PMM, Dos Santos AA, de Araújo EG. The increase in retinal cells proliferation induced by FGF2 is mediated by tyrosine and PI3 kinases. Neurochem Res 2007; 33:754-64. [PMID: 17940890 DOI: 10.1007/s11064-007-9491-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 08/28/2007] [Indexed: 11/30/2022]
Abstract
Since 1973, multiple effects of basic fibroblast growth factor have been described in a large number of cells. These effects include proliferation, survival and differentiation. The aim of this work was to study the intracellular pathways involved in the basic fibroblast growth factor (FGF2) effect on rat retinal cells proliferation in vitro. Our data show that treatment with FGF2 increases proliferation in a concentration- and time-dependent manner. The effect of 25 ng/ml FGF2 was blocked by 10 microM genistein, a tyrosine kinase inhibitor and by 25 microM LY294002, a PI3 kinase inhibitor. The concomitant treatment with 0.3 microM chelerythrine chloride, a protein kinase C inhibitor, and 6.25 microM LY294002 also inhibited the effect of FGF2. Our results suggest that the proliferative effect of FGF2 on retinal cell cultures involves the activation of distinct kinases.
Collapse
Affiliation(s)
- Carla Valéria Vieira Guilarducci-Ferraz
- Programa de Neuroimunologia, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Caxia Postal 100180, CEP 24.001-970 Niteroi, RJ, Brazil
| | | | | | | | | |
Collapse
|
19
|
Zhong Y, Yao H, Deng L, Cheng Y, Zhou X. Promotion of neurite outgrowth and protective effect of erythropoietin on the retinal neurons of rats. Graefes Arch Clin Exp Ophthalmol 2007; 245:1859-67. [PMID: 17828550 DOI: 10.1007/s00417-007-0671-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 08/03/2007] [Accepted: 08/06/2007] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To clarify the effect of erythropoietin (EPO) on neurite outgrowth of the cultured retinal neurocytes, and investigate whether EPO might potentially be beneficial in protecting cultured retinal neurocytes suffering from glutamate-induced cytotoxity. METHODS After the retinal neurocytes were cultured for 48 hours, the culture media was replaced with serum-free media, and the cultured retinal cells were exposed to 1.0 U/ml, 3.0 U/ml and 6.0 U/ml EPO for another 48 hours; then the cells were stained with Sudan Black B, and the neurite outgrowth of those cells were evaluated by an image-analysis system. After the retinal neurocytes were cultured for 48 hours, the cells were cultured in serum-free media containing 5 mM or 10 mM glutamate, and the cells were incubated in the presence or absence of Epo (1.0 U/ml, 3.0 U/ml, 6.0 U/ml respectively) for another 48 hours. The survival and apoptosis rates of those cells were estimated by MTT assay and fluorescein isothiocyanate (FITC)-annexin V/propidium Iodide (PI) flow cytometry respectively. RESULTS EPO induced a stable improvement of neurite outgrowth of retinal neurocytes in a dose-dependent manner. Compared with the control group, the neurite outgrowth length increased to 162.8% at 6.0 U/ml EPO exposure. EPO had no any significant effect on the survival and apoptosis rates of the retinal neurocytes cultured in serum-free media, but it was beneficial in promoting the survival and decreasing the early and total apoptosis rates of the cultured retinal neurocytes suffering from glutamate-induced cytotoxicity. CONCLUSION EPO had a significant biological effect on neurite outgrowth of the dissociated retinal neurocytes in vitro. EPO was beneficial in promoting the survival and decreasing the apoptosis rates of the cultured retinal neurocytes suffering from glutamate-induced cytotoxicity.
Collapse
Affiliation(s)
- Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Shanghai Jiaotong University, 197 Ruijin No.2 Road, 200025, Shanghai, People's Republic of China.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Raivich G, Makwana M. The making of successful axonal regeneration: Genes, molecules and signal transduction pathways. ACTA ACUST UNITED AC 2007; 53:287-311. [PMID: 17079020 DOI: 10.1016/j.brainresrev.2006.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/12/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022]
Abstract
Unlike its central counterpart, the peripheral nervous system is well known for its comparatively good potential for regeneration following nerve fiber injury. This ability is mirrored by the de novo expression or upregulation of a wide variety of molecules including transcription factors, growth-stimulating substances, cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions, that promote neurite outgrowth in cultured neurons. However, their role in vivo is less known. Recent studies using neutralizing antibodies, gene inactivation and overexpression techniques have started to shed light on those endogenous molecules that play a key role in axonal outgrowth and the process of successful functional repair in the injured nervous system. The aim of the current review is to provide a summary on this rapidly growing field and the experimental techniques used to define the specific effects of candidate signaling molecules on axonal regeneration in vivo.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| | | |
Collapse
|
22
|
Grothe C, Haastert K, Jungnickel J. Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration—Lessons from in vivo studies in mice and rats. ACTA ACUST UNITED AC 2006; 51:293-9. [PMID: 16430964 DOI: 10.1016/j.brainresrev.2005.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 12/07/2005] [Indexed: 11/23/2022]
Abstract
Diffusible and substratum-bound molecules regulate development and regeneration of the peripheral nervous system. The understanding of physiological function of these factors could have an impact on the development of new therapeutic strategies to stimulate nerve regeneration across long gaps. Within the group of trophic factors, basic fibroblast growth factor (FGF-2) and its high-affinity receptors are expressed in the intact peripheral nervous system and regulated following nerve injury. After exogenous application, FGF-2 promotes neuronal survival and neurite outgrowth in vitro and in vivo. In this review, animal studies on the physiological role of the endogenous FGF-2 system and the regenerative capacity after exogenous FGF-2 administration are summarized. The concept of FGF-2 function is discussed in context with other growth factors that are also physiologically relevant in the peripheral nervous system. Studies of sciatic nerve axotomy in FGF-2- and FGF receptor (R) 3-deleted mice, respectively, strongly suggested that FGF-2 binding to FGFR3 is involved in injury-induced neuronal apoptosis. At the lesion site, inhibition of myelination and stimulation of Schwann cell proliferation by FGF-2 via FGFR1/2 is suggested from rat and mouse studies, whereas neurite formation is very likely enhanced via FGFR3 activation. Additionally to these demonstrated physiological functions of endogenous FGF-2, administration of FGF-2 isoforms in the rat model of nerve regeneration across long gaps revealed a role of the high molecular weight isoforms of FGF-2 on sensory recovery. Within the group of physiologically relevant trophic factors, the FGF-2 system seems to be crucially involved in the scenario of peripheral nerve development and regeneration.
Collapse
Affiliation(s)
- Claudia Grothe
- Hannover Medical School, Department of Neuroanatomy, Hannover, Germany.
| | | | | |
Collapse
|
23
|
Jacques-Fricke BT, Seow Y, Gottlieb PA, Sachs F, Gomez TM. Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J Neurosci 2006; 26:5656-64. [PMID: 16723522 PMCID: PMC6675278 DOI: 10.1523/jneurosci.0675-06.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca2+ signals are known to be important regulators of neurite outgrowth and steering. Here we show that inhibiting Ca2+ influx through stretch-activated channels using various compounds, including a highly specific peptide isolated from Grammostola spatulata spider venom (GsMTx4), strongly accelerates the rate of neurite extension on diverse substrata and within the intact spinal cord. Consistent with the presence of stretch-activated channels, we show that Ca2+ influx is triggered by hypotonic solutions, which can be partially blocked by GsMTx4. Finally, chelating local, but not global, Ca2+ signals prevents the acceleration that is normally produced by GsMTx4. Blocking Ca2+ influx through other channel types has little or opposite effects, but release from intracellular stores is required for maximal acceleration. Together, our data suggest that Ca2+ functions at distinct microdomains in growth cones, with influx through mechanosensitive channels acting to inhibit outgrowth in opposition to influx through other plasma membrane channels and release from stores.
Collapse
|
24
|
Kiryushko D, Novitskaya V, Soroka V, Klingelhofer J, Lukanidin E, Berezin V, Bock E. Molecular mechanisms of Ca(2+) signaling in neurons induced by the S100A4 protein. Mol Cell Biol 2006; 26:3625-38. [PMID: 16612001 PMCID: PMC1447425 DOI: 10.1128/mcb.26.9.3625-3638.2006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/13/2005] [Accepted: 02/08/2006] [Indexed: 12/14/2022] Open
Abstract
The S100A4 protein belongs to the S100 family of vertebrate-specific proteins possessing both intra- and extracellular functions. In the nervous system, high levels of S100A4 expression are observed at sites of neurogenesis and lesions, suggesting a role of the protein in neuronal plasticity. Extracellular oligomeric S100A4 is a potent promoter of neurite outgrowth and survival from cultured primary neurons; however, the molecular mechanism of this effect has not been established. Here we demonstrate that oligomeric S100A4 increases the intracellular calcium concentration in primary neurons. We present evidence that both S100A4-induced Ca(2+) signaling and neurite extension require activation of a cascade including a heterotrimeric G protein(s), phosphoinositide-specific phospholipase C, and diacylglycerol-lipase, resulting in Ca(2+) entry via nonselective cation channels and via T- and L-type voltage-gated Ca(2+) channels. We demonstrate that S100A4-induced neurite outgrowth is not mediated by the receptor for advanced glycation end products, a known target for other extracellular S100 proteins. However, S100A4-induced signaling depends on interactions with heparan sulfate proteoglycans at the cell surface. Thus, glycosaminoglycans may act as coreceptors of S100 proteins in neurons. This may provide a mechanism by which S100 proteins could locally regulate neuronal plasticity in connection with brain lesions and neurological disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Panum Institute, Blegdamsvej 3C, Bld. 6.2, Copenhagen 2200N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Ca(2+) signals have profound and varied effects on growth cone motility and guidance. Modulation of Ca(2+) influx and release from stores by guidance cues shapes Ca(2+) signals, which determine the activation of downstream targets. Although the precise molecular mechanisms that underlie distinct Ca(2+)-mediated effects on growth cone behaviours remain unclear, recent studies have identified important players in both the regulation and targets of Ca(2+) signals in growth cones.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Anatomy, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
26
|
Kiryushko D, Korshunova I, Berezin V, Bock E. Neural cell adhesion molecule induces intracellular signaling via multiple mechanisms of Ca2+ homeostasis. Mol Biol Cell 2006; 17:2278-86. [PMID: 16510522 PMCID: PMC1446100 DOI: 10.1091/mbc.e05-10-0987] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been shown to affect and be dependent on the cytoplasmic Ca2+ concentration ([Ca2+]i). However, the molecular basis of this remains unclear. In this study, we determined [Ca2+]i regulating mechanisms involved in intracellular signaling induced by NCAM. To mimic the effect of homophilic NCAM interaction on [Ca2+]i in vitro, we used a peptide derived from a homophilic binding site of NCAM, termed P2, which triggers signaling cascades similar to those activated by NCAM-NCAM interaction. We found that P2 increased [Ca2+]i in primary hippocampal neurons. This effect depended on two signaling pathways. The first pathway was associated with activation of FGFR, phospholipase Cgamma, and production of diacylglycerol, and the second pathway involved Src-family kinases. Moreover, NCAM-mediated Ca2+ entry required activation of nonselective cation and T-type voltage-gated Ca2+ channels. These channels, together with the Src-family kinases, were also involved in neuritogenesis induced by physiological, homophilic NCAM interactions. Thus, unanticipated mechanisms of Ca2+ homeostasis are shown to be activated by NCAM and to contribute to neuronal differentiation.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute, DK-2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
27
|
Jungnickel J, Haase K, Konitzer J, Timmer M, Grothe C. Faster nerve regeneration after sciatic nerve injury in mice over-expressing basic fibroblast growth factor. ACTA ACUST UNITED AC 2006; 66:940-8. [PMID: 16758491 DOI: 10.1002/neu.20265] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Basic fibroblast growth factor (FGF-2) is expressed in the peripheral nervous system and is up-regulated after nerve lesion. It has been demonstrated that administration of FGF-2 protects neurons from injury-induced cell death and promotes axonal regrowth. Using transgenic mice over-expressing FGF-2 (TgFGF-2), we addressed the importance of endogenously generated FGF-2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild-type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF-2. Morphometric evaluation of intact nerves from TgFGF-2 mice revealed no difference in number and size of myelinated fibers compared to wild-type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF-2 over-expression on Schwann cell proliferation during the early regeneration process, we used BrdU-labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild-types. We propose that endogenously synthesized FGF-2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination.
Collapse
Affiliation(s)
- Julia Jungnickel
- Department of Neuroanatomy OE 4140, Center of Anatomy, Hannover Medical School, D-30623 Hannover, Germany.
| | | | | | | | | |
Collapse
|
28
|
Bolsover SR. Calcium signalling in growth cone migration. Cell Calcium 2005; 37:395-402. [PMID: 15820386 DOI: 10.1016/j.ceca.2005.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 11/23/2022]
Abstract
Growth cones, the motile structures at the tips of advancing axons and dendrites, respond to a wide range of cues by either turning towards or away from the cue. Cytosolic calcium signals appear to mediate a large fraction of both types of response. Calcium signals can be generated by influx through plasma membrane channels or by release from intracellular stores. While neurotransmitters can elicit calcium influx through ionotropic receptors, other chemical cues open plasma membrane voltage gated calcium channels by a mechanism other than a change of membrane voltage. In general attractive cues generate spatially and temporally restricted calcium increases that are difficult to detect using conventional indicators. One target for these calcium signals is calmodulin dependent protein kinase II. Repulsive cues generate spatially and temporally more diffuse calcium increases that can be more readily detected using fluorescent indicators. One target for these is the phosphatase calcineurin, which may act by dephosphorylating GAP43 and allowing the latter to cap actin filaments.
Collapse
Affiliation(s)
- Stephen R Bolsover
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M. Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci 2005; 24:9372-82. [PMID: 15496673 PMCID: PMC6730092 DOI: 10.1523/jneurosci.1702-04.2004] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Expression of the neural cell adhesion molecule (NCAM) has been shown to promote long-term potentiation (LTP) and stabilization of synapses during early synaptogenesis. Here, we searched for the mechanisms of synaptogenic activity of NCAM, focusing on the role of polysialic acid (PSA), an unusual carbohydrate preferentially associated with NCAM. We show that enzymatic removal of PSA with endoneuraminidase-N (endo-N) abolished preferential formation of synapses on NCAM-expressing cells in heterogenotypic cocultures of wild-type and NCAM-deficient hippocampal neurons. Transfection of NCAM-deficient neurons with either of three major NCAM isoforms (different in intracellular domains but identical in extracellular domains and carrying PSA) stimulated preferential synapse formation on NCAM isoform-expressing neurons. Enzymatic removal of heparan sulfates from cultured neurons and a mutation in the heparin-binding domain of NCAM diminished synaptogenic activity of neuronally expressed PSA-NCAM, suggesting that interaction of NCAM with heparan sulfate proteoglycans mediates this activity. PSA-NCAM-driven synaptogenesis was also blocked by antagonists to fibroblast growth factor receptor and NMDA subtype of glutamate receptors but not by blockers of non-NMDA glutamate receptors and voltage-dependent Na+ channels. Enzymatic removal of PSA and heparan sulfates also blocked the increase in the number of perforated spine synapses associated with NMDA receptor-dependent LTP in the CA1 region of organotypic hippocampal cultures. Thus, neuronal PSA-NCAM in complex with heparan sulfate proteoglycans promotes synaptogenesis and activity-dependent remodeling of synapses.
Collapse
Affiliation(s)
- Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Arioka M, Cheon SH, Ikeno Y, Nakashima S, Kitamoto K. A novel neurotrophic role of secretory phospholipases A2for cerebellar granule neurons. FEBS Lett 2005; 579:2693-701. [PMID: 15862311 DOI: 10.1016/j.febslet.2005.03.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/24/2005] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Cultured cerebellar granule neurons (CGNs) require membrane depolarization or neurotrophic factors for their survival in vitro and undergo apoptosis when deprived of these survival-promoting stimuli. Here, we show that secretory phospholipases A(2)s (sPLA(2)s) rescue CGNs from apoptosis after potassium deprivation. The neurotrophic effect required the enzymatic activity of sPLA(2)s, since catalytically inactive mutants of sPLA(2)s failed to protect CGNs from apoptosis. Consistently, the ability of sPLA(2)s to protect CGNs from apoptosis correlated with the extent of sPLA(2)-induced arachidonic acid release from live CGNs. The survival-promoting effect of sPLA(2) was inhibited by depletion of extracellular Ca(2+) or by the presence of L-type Ca(2+) channel blocker nicardipine, suggesting that Ca(2+) influx occurs upon sPLA(2) treatment. Among the mammalian sPLA(2)s tested, only group X sPLA(2), but not group IB nor IIA sPLA(2)s, displayed neurotrophic activity. These results suggest a novel, unexpected neurotrophin-like role of sPLA(2) in the nervous system.
Collapse
Affiliation(s)
- Manabu Arioka
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Japan.
| | | | | | | | | |
Collapse
|
31
|
Wilms H, Rosenstiel P, Unger T, Deuschl G, Lucius R. Neuroprotection with angiotensin receptor antagonists: a review of the evidence and potential mechanisms. Am J Cardiovasc Drugs 2005; 5:245-53. [PMID: 15984907 DOI: 10.2165/00129784-200505040-00004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The peptide hormone angiotensin (A)-II, the major effector peptide of the renin-angiotensin system (RAS), is well established to play a pivotal role in the systemic regulation of blood pressure, fluid, and electrolyte homeostasis. Recent biochemical and neurophysiologic studies have documented local intrinsic angiotensin-generating systems in organs and tissues such as the brain, retina, bone marrow, liver, and pancreas. The locally generated angiotensin peptides have multiple and novel actions including stimulating cell growth and anti-proliferative and/or antiapoptotic actions. In the mammalian brain, all components of the RAS are present including angiotensin receptor subtypes 1 (AT(1)) and 2 (AT(2)). A-II exerts most of its well defined physiologic and pathophysiologic actions, including those on the central and peripheral nervous system, through its AT(1) receptor subtype. While the AT(1) receptor is responsible for the classical effects of A-II, it has been found that the AT(2) receptor is linked to totally different signalling mechanisms and this has revealed hitherto unknown functions of A-II. AT(2) receptors are expressed at low density in many healthy adult tissues, but are upregulated in a variety of human diseases. This receptor not only contributes to stroke-related pathologic mechanisms (e.g. hypertension, atherothrombosis, and cardiac hypertrophy) but may also be involved in post-ischemic damage to the brain. It has been reported that the AT(2) receptor regulates several functions of nerve cells, e.g. ionic fluxes, cell differentiation, and neuronal tissue regeneration, and also modulates programmed cell death. In this article, we review the experimental evidence supporting the notion that blockade of brain AT(1) receptors can be beneficial with respect to stroke incidence and outcome. We further delineate how AT(2) receptors could be involved in neuronal regeneration following brain injury such as stroke or CNS trauma. The current review is focussed on some of the new functions arising from the locally formed A-II with particular attention to its emerging neuroprotective role in the brain.
Collapse
Affiliation(s)
- Henrik Wilms
- Clinic of Neurology, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | |
Collapse
|
32
|
Kiryushko D, Berezin V, Bock E. Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 2004; 1014:140-54. [PMID: 15153429 DOI: 10.1196/annals.1294.015] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuronal differentiation is a fundamental event in the development of the nervous system as well as in the regeneration of damaged nervous tissue. The initiation and guidance of a neurite are accomplished by positive (permissive or attractive), negative (inhibitory or repulsive), or guiding (affecting the advance of the growth cone) signals from the extracellular space. The signals may arise from either the extracellular matrix (ECM) or the surface of other cells, or be diffusible secreted factors. Based on this classification, we briefly describe selected positive, negative, and guiding signaling cues focusing on the role of cell adhesion molecules (CAMs). CAMs not only regulate cell-cell and cell-ECM adhesion "mechanically," they also trigger intracellular signaling cascades launching neurite outgrowth. Here, we describe the structure, function, and signaling of three key CAMs found in the nervous system: N-cadherin and two Ig-CAMs, L1 and the neural cell adhesion molecule NCAM.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark
| | | | | |
Collapse
|
33
|
Jungnickel J, Gransalke K, Timmer M, Grothe C. Fibroblast growth factor receptor 3 signaling regulates injury-related effects in the peripheral nervous system. Mol Cell Neurosci 2004; 25:21-9. [PMID: 14962737 DOI: 10.1016/j.mcn.2003.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 09/16/2003] [Accepted: 09/29/2003] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) signaling is crucial for neural development and regeneration. Here we investigated the L5 spinal ganglion and the sciatic nerve of intact Fgfr3-deficient mice after nerve injury. Quantification of sensory neurons in the L5 spinal ganglion revealed no significant differences between wild-type and Fgfr3-deficient mice. Seven days after nerve lesion, the normally occurring neuron loss in wild-type mice was not found in Fgfr3-deficient animals, suggesting that FGFR3 signaling is involved in the cell death process. Morphometric analysis of the sciatic nerve showed similar numbers of myelinated axons, but the axonal and myelin diameter was significantly smaller in Fgfr3-deficient mice compared to the wild types. Evaluation of regenerating myelinated axons of the sciatic nerve revealed no differences between both mouse strains 7 days after crush injury. Our results suggest that FGFR3 signaling seems to be involved in processes of damage-induced neuron death and axonal development.
Collapse
MESH Headings
- Animals
- Cell Death/physiology
- Denervation
- Disease Models, Animal
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Ganglia, Spinal/physiopathology
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- Lumbar Vertebrae/metabolism
- Mice
- Mice, Knockout
- Microscopy, Electron
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Regeneration/physiology
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neurons, Afferent/ultrastructure
- Peripheral Nerve Injuries
- Peripheral Nerves/metabolism
- Peripheral Nerves/physiopathology
- Protein-Tyrosine Kinases
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/deficiency
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Sciatic Nerve/metabolism
- Sciatic Nerve/pathology
- Sciatic Nerve/physiopathology
- Sciatic Neuropathy/metabolism
- Sciatic Neuropathy/pathology
- Sciatic Neuropathy/physiopathology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Julia Jungnickel
- Department of Neuroanatomy OE 4140, Center of Anatomy, Hannover Medical School, D-30623 Hannover, Germany.
| | | | | | | |
Collapse
|
34
|
Munck S, Bedner P, Bottaro T, Harz H. Spatiotemporal properties of cytoplasmic cyclic AMP gradients can alter the turning behaviour of neuronal growth cones. Eur J Neurosci 2004; 19:791-7. [PMID: 15009126 DOI: 10.1111/j.0953-816x.2004.03118.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Growth cones, the terminal structures of elongating neurites, use extracellular guidance information in order to navigate to appropriate target cells. The directional information of guidance cues is transduced to a cytoplasmic gradient of messenger molecules across the growth cone leading to rearrangements of the cytoskeleton. One messenger molecule regulating growth cone turning is cAMP, which is also known to be sufficient to direct growth cone attraction. Cytoplasmic cAMP gradients have been generated in the present study by photolysing caged cAMP with UV light focused on one side of growth cones of chick sensory neurons. Using this method we show that only specific time patterns of pulsed cAMP release are capable of inducing growth cone turning whereas others, which release the same amount of cAMP, are ineffective. Theoretical calculations show that diverse time patterns produce different intracellular gradients, which were visualized directly in HeLa cells expressing cAMP-sensitive ion channels as a reporter system. Together these data indicate that the spatiotemporal properties of the intracellular gradient are crucial for growth cone turning.
Collapse
Affiliation(s)
- Sebastian Munck
- BioImaging Zentrum der Ludwig-Maximilians-Universität München, Am Klopferspitz 19, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
35
|
Oliva AA, James CD, Kingman CE, Craighead HG, Banker GA. Patterning axonal guidance molecules using a novel strategy for microcontact printing. Neurochem Res 2004; 28:1639-48. [PMID: 14584818 DOI: 10.1023/a:1026052820129] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present here a two-step strategy for micropatterning proteins on a substrate to control neurite growth in culture. First, conventional microcontact printing is used to prepare a micropattern of protein A, which binds the Fc fragment of immunoglobulins. Then, a chimeric protein, consisting of the extracellular domain of a guidance protein recombinantly linked to the Fc fragment of IgG (prepared using conventional molecular techniques), is applied from solution. The chimeric protein binds to the patterned protein A, taking on its geometric pattern. Using this method, we have micropatterned the extracellular domain of the cell adhesion molecule, L1 (as an L1-Fc chimera) and demonstrated that it retains its ability to selectively guide axonal growth. L1-Fc micropatterned on a background of poly-L-lysine resulted in selective growth of the axons on the micropattern, whereas the somata and dendrites were unresponsive. Substrates bearing simultaneous micropatterns of L1-Fc and poly-L-lysine on a background of untreated glass were also created. Using this approach, cell body position was controlled by manipulating the dimensions of the poly-L-lysine pattern, and the dendrites were constrained to the poly-L-lysine pattern, while the axons grew preferentially on L1-Fc. The two-step microcontact printing method allows preparation of substrates that contain guidance proteins in geometric patterns with resolution of approximately 1 microm. This method should be broadly applicable to many classes of proteins.
Collapse
Affiliation(s)
- Anthony A Oliva
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
36
|
Roonprapunt C, Huang W, Grill R, Friedlander D, Grumet M, Chen S, Schachner M, Young W. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury. J Neurotrauma 2003; 20:871-82. [PMID: 14577865 DOI: 10.1089/089771503322385809] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous studies suggest that the cell adhesion molecule L1 promotes neurite growth by neutralizing white matter associated inhibitors of axonal growth. We made a soluble chimeric dimer by linking mouse L1 to human Fc. This L1-Fc construct (40 microg/mL) markedly facilitated neurite outgrowth, as well as neuronal adhesion to white matter on frozen sections of spinal cord. We applied L1-Fc intrathecally (200 microg/mL at 0.5 microL/h) to rat spinal cords for 2 weeks after a 25-mm weight drop contusion of the T13 spinal cord. Initial experiments indicated that L1-Fc is present in the spinal cord after 2 weeks of intrathecal infusion and significantly improved locomotor recovery by 6-12 weeks after injury. We then randomized 45 rats to intrathecal infusion of L1-Fc (L1), phosphate-buffered saline controls (PBS), and a mouse monoclonal IgM antibody (M1). By 12 weeks after injury, L1-treated rats recovered significantly (p < 0.005) better locomotor function (BBB score 10.57 +/- 0.25, n = 14) than PBS-treated rats (BBB score 9.00 +/- 0.33, n = 14) or M1-treated (BBB score 8.71 +/- 0.16, n = 14). Only two rats of 22 treated with saline recovered weight-supported ambulation. Of 20 L1-Fc-treated rats, however, 18 recovered weight-supported walking by 12 weeks. The L1-Fc-treated rats also showed more consistent hindlimb contact placing than saline controls. We injected biotinylated dextran amine (BDA) into the motor cortices of 14 rats treated with L1-Fc to label corticospinal axons, comparing these with 13 rats treated with saline. In saline-treated rats, BDA-labeled corticospinal axons often grew up to the impact edge and occasionally into the impact site. L1-treated rats showed longer corticospinal tract growth at the injury site. Three rats had BDA-labeled axons that extended beyond the impact center. One L1-Fc-treated rat showed axonal extension and synapse formation in cord distal to the injury. These results indicate that soluble L1-Fc promotes axonal growth and functional recovery after spinal cord injury. However, the limited corticospinal tract growth across the injury site cannot account for the observed locomotor recovery. Thus, L1 may be stimulating growth of other motor tracts or protecting axons and neurons. More studies are required to elucidate the mechanisms of L1-Fc-induced locomotor recovery.
Collapse
Affiliation(s)
- Chanland Roonprapunt
- Department of Neurosurgery, Albert Einstein School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Amer RK, Pace-Asciak CR, Mills LR. A lipoxygenase product, hepoxilin A(3), enhances nerve growth factor-dependent neurite regeneration post-axotomy in rat superior cervical ganglion neurons in vitro. Neuroscience 2003; 116:935-46. [PMID: 12617935 DOI: 10.1016/s0306-4522(02)00764-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hepoxilins are 12-lipoxygenase metabolites of arachidonic acid found in the CNS. They can modulate neuronal signaling but their functions are not known. We examined the effects of hepoxilin A(3) on neurite outgrowth post-axotomy in an in vitro model of spinal cord transection using superior cervical ganglion neurons. In the absence of nerve growth factor, hepoxilin A(3) did not support neuronal survival, or regeneration post-axotomy but did significantly enhance neurite regeneration in the presence of nerve growth factor. As early as 1 h post-injury hepoxilin A(3)-treated cultures (+nerve growth factor) had significantly more neurites than controls (nerve growth factor alone). Average hourly rates of outgrowth in hepoxilin A(3)-treated cultures were significantly higher than in controls for at least 12 h post-injury, suggesting that the effect of hepoxilin A(3) is maintained in vitro for several hours post-injury. In uninjured neurons hepoxilin A(3) caused a rapid but transient increase in intracellular calcium in the somata; by 2 min post-addition, calcium levels decreased to a new stable plateau significantly higher than pre treatment levels. In injured neurons, hepoxilin A(3) addition immediately post-transection caused a rapid transient increase in intracellular calcium in cell bodies; however, peak calcium levels were significantly lower than in uninjured neurons and the new baseline lower than in uninjured cells. In uninjured cells hepoxilin A(3) addition in zero calcium produced the same pattern, a transient elevation and subsequent decline to a new stable baseline significantly above rest but in injured cells levels fell rapidly to pretreatment values. Taken overall, these findings demonstrate a novel role for hepoxilins as a potentiator of neurite regeneration. They also provide the first evidence that this lipoxygenase metabolite can alter intracellular calcium in neurons by causing release of calcium from intracellular stores and modulating calcium influx mechanisms.
Collapse
Affiliation(s)
- R K Amer
- The Hospital for Sick Children, and Division of Cellular and Molecular Biology, Toronto Western Hospital Research Institute, Toronto, ON, Canada
| | | | | |
Collapse
|
38
|
Williams EJ, Walsh FS, Doherty P. The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol 2003; 160:481-6. [PMID: 12578907 PMCID: PMC2173733 DOI: 10.1083/jcb.200210164] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Revised: 12/31/2002] [Accepted: 01/02/2003] [Indexed: 11/22/2022] Open
Abstract
A key role for DAG lipase activity in the control of axonal growth and guidance in vitro and in vivo has been established. For example, DAG lipase activity is required for FGF-stimulated calcium influx into neuronal growth cones, and this response is both necessary and sufficient for an axonal growth response. The mechanism that couples the hydrolysis of DAG to the calcium response is not known. The initial hydrolysis of DAG at the sn-1 position (by DAG lipase) will generate 2-arachidonylglycerol, and this molecule is well established as an endogenous cannabinoid receptor agonist in the brain. In the present paper, we show that in rat cerebellar granule neurons, CB1 cannabinoid receptor antagonists inhibit axonal growth responses stimulated by N-cadherin and FGF2. Furthermore, three CB1 receptor agonists mimic the N-cadherin/FGF2 response at a step downstream from FGF receptor activation, but upstream from calcium influx into cells. In contrast, we could find no evidence for the CB1 receptor coupling the TrkB neurotrophin receptor to an axonal growth response in the same neurons. The observation that the CB1 receptor can couple the activated FGF receptor to an axonal growth response raises novel therapeutic opportunities.
Collapse
Affiliation(s)
- Emma-Jane Williams
- Molecular Neurobiology Group, Medical Research Council Centre for Developmental Biology, King's College London, London SE1 1UL, UK
| | | | | |
Collapse
|
39
|
Povlsen GK, Ditlevsen DK, Berezin V, Bock E. Intracellular signaling by the neural cell adhesion molecule. Neurochem Res 2003; 28:127-41. [PMID: 12587671 DOI: 10.1023/a:1021660531484] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell adhesion molecules are known to play far more complex roles than mechanically attaching one cell to an adjacent cell or to components of the extracellular matrix. Thus, important roles for cell adhesion molecules in the regulation of intracellular signaling pathways have been revealed. In this review, we discuss the present knowledge about signaling pathways activated upon homophilic binding of the neural cell adhesion molecule (NCAM). Homophilic NCAM binding leads to activation of a signal transduction pathway involving Ca2+ through activation of the fibroblast growth factor receptor, and to activation of the mitogen-activated protein kinase pathway. In addition, cyclic adenosine monophosphate and protein kinase A are involved in NCAM-mediated signaling. Among these pathways the possibility exists of cross talk or convergence, of which different possible mediators have been suggested. Finally, several downstream effector molecules leading to NCAM-mediated cellular endpoints have been demonstrated, including transcription factors and regulators of the cytoskeleton.
Collapse
Affiliation(s)
- Gro Klitgaard Povlsen
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | | | | | | |
Collapse
|
40
|
Rønn LCB, Olsen M, Soroka V, ØStergaard S, Dissing S, Poulsen FM, Holm A, Berezin V, Bock E. Characterization of a novel NCAM ligand with a stimulatory effect on neurite outgrowth identified by screening a combinatorial peptide library. Eur J Neurosci 2002; 16:1720-30. [PMID: 12431225 DOI: 10.1046/j.1460-9568.2002.02242.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural cell adhesion molecule, NCAM, plays a key role in neural development and plasticity mediating cell adhesion and signal transduction. By screening a combinatorial library of synthetic peptides with NCAM purified from postnatal day 10 rat brains, we identified a nonapeptide, termed NCAM binding peptide 10 (NBP10) and showed by nuclear magnetic resonance analysis that it bound the NCAM IgI module of NCAM. NBP10 modulated cell aggregation as well as neurite outgrowth induced specifically by homophilic NCAM binding. Moreover, both monomeric and multimeric forms of NBP10 stimulated neurite outgrowth from primary hippocampal neurons. The neurite outgrowth response to NBP10 was inhibited by a number of compounds previously shown to inhibit neurite outgrowth induced by homophilic NCAM binding, including voltage-dependent calcium channel antagonists, suggesting that NBP10 induced neurite outgrowth by activating a signal transduction pathway similar to that activated by NCAM itself. Moreover, an inhibitor of intracellular calcium mobilization, TMB-8, prevented NBP10-induced neurite outgrowth suggesting that NCAM-dependent neurite outgrowth also requires mobilization of calcium from intracellular calcium stores in addition to calcium influx from extracellular sources. By single-cell calcium imaging we further demonstrated that NBP10 was capable of inducing an increase in intracellular calcium in PC12E2 cells. Thus, the NBP10 peptide is a new tool for the study of molecular mechanisms underlying NCAM-dependent signal transduction and neurite outgrowth, and could prove to be a useful modulator of regenerative processes in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Lars C B Rønn
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute 6.2., Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Calabrese B, Tabarean IV, Juranka P, Morris CE. Mechanosensitivity of N-type calcium channel currents. Biophys J 2002; 83:2560-74. [PMID: 12414690 PMCID: PMC1302342 DOI: 10.1016/s0006-3495(02)75267-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanosensitivity in voltage-gated calcium channels could be an asset to calcium signaling in healthy cells or a liability during trauma. Recombinant N-type channels expressed in HEK cells revealed a spectrum of mechano-responses. When hydrostatic pressure inflated cells under whole-cell clamp, capacitance was unchanged, but peak current reversibly increased ~1.5-fold, correlating with inflation, not applied pressure. Additionally, stretch transiently increased the open-state inactivation rate, irreversibly increased the closed-state inactivation rate, and left-shifted inactivation without affecting the activation curve or rate. Irreversible mechano-responses proved to be mechanically accelerated components of run-down; they were not evident in cell-attached recordings where, however, reversible stretch-induced increases in peak current persisted. T-type channels (alpha(1I) subunit only) were mechano-insensitive when expressed alone or when coexpressed with N-type channels (alpha(1B) and two auxiliary subunits) and costimulated with stretch that augmented N-type current. Along with the cell-attached results, this differential effect indicates that N-type mechanosensitivity did not depend on the recording situation. The insensitivity of T-type currents to stretch suggested that N-type mechano-responses might arise from primary/auxiliary subunit interactions. However, in single-channel recordings, N-type currents exhibited reversible stretch-induced increases in NP(o) whether the alpha(1B) subunit was expressed alone or with auxiliary subunits. These findings set the stage for the molecular dissection of calcium current mechanosensitivity.
Collapse
Affiliation(s)
- Barbara Calabrese
- Department of Neurosciences, Ottawa Health Research Institute, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | |
Collapse
|
42
|
Li GD, Wo Y, Zhong MF, Zhang FX, Bao L, Lu YJ, Huang YD, Xiao HS, Zhang X. Expression of fibroblast growth factors in rat dorsal root ganglion neurons and regulation after peripheral nerve injury. Neuroreport 2002; 13:1903-7. [PMID: 12395088 DOI: 10.1097/00001756-200210280-00014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using cDNA array, we observed the expression of eight members of the fibroblast growth factor (FGF) family, FGF 2, 5, 7, 9, 10, 13 and 14, in rat lumbar 4 and 5 dorsal root ganglia (DRGs). Over a period of 28 days after sciatic nerve transection, the array signals for FGF 2 and 7 were significantly increased in the DRGs, while FGF 13 decreased. Using the reverse transcription polymerase chain reaction (RT-PCR), we confirmed the axotomy-induced changes in the expression of FGF 7 and 13. hybridization showed that FGF 13 was expressed in 60% of DRG neurons under normal circumstance. Seven days after axotomy the number of FGF 13-positive neurons was decreased to 18%, but partially recovered to 40% after 28 days. FGF 13 immunoreactivity was also decreased. These data indicate that FGFs are important for DRG neurons under normal circumstance and after nerve injury.
Collapse
Affiliation(s)
- Guo-Dong Li
- Laboratory of Sensory System, Institute of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kiss JZ, Muller D. Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity. Rev Neurosci 2002; 12:297-310. [PMID: 11783716 DOI: 10.1515/revneuro.2001.12.4.297] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM contribute to many aspects of the development and plasticity of the central nervous system. This includes mechanisms of cell differentiation and migration, neurite outgrowth, establishment of specific patterns of synaptic connections, synaptic plasticity and long-term potentiation. How NCAM and PSA-NCAM contribute to regulate all these different mechanisms remains essentially unknown. Adhesive properties appear to be important, but recent studies also point to possible interactions between NCAM and PSA-NCAM with intracellular signalling cascades that are essential to biological functions. Some of these mechanisms are discussed and a hypothesis is proposed based on the existence of cross-talk between these molecules and signalling pathways mediated by growth factors.
Collapse
Affiliation(s)
- J Z Kiss
- Department of Morphology, Centre Médical Universitaire, Geneva, Switzerland
| | | |
Collapse
|
44
|
Chadborn N, Eickholt B, Doherty P, Bolsover S. Direct measurement of local raised subplasmalemmal calcium concentrations in growth cones advancing on an N-cadherin substrate. Eur J Neurosci 2002; 15:1891-8. [PMID: 12099895 DOI: 10.1046/j.1460-9568.2002.02033.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have used the membrane-localized calcium probe fura-piperazine-C12H25 (FFP-18) to examine cytosolic calcium concentrations in a volume close to the plasmalemma. Although promotion of axon outgrowth by cell adhesion molecules requires extracellular calcium and is correlated with an opening of plasmalemmal channels, conventional indicators cannot detect a change in the calcium concentration in such stimulated growth cones. We have examined calcium signalling in chick retinal ganglion cell growth cones extending along stripes of N-cadherin. Subplasmalemmal calcium concentrations, reported by FFP-18, were significantly higher in these growth cones than in neighbouring growth cones on either fibronectin or polylysine. In contrast, the bulk cytosolic calcium concentration throughout the growth cone, as measured by Fura-2, was identical in growth cones on and off the N-cadherin stripes. Our results suggest that guidance cues can use extremely local calcium signals to control pathfinding decisions.
Collapse
Affiliation(s)
- Neil Chadborn
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
45
|
Rønn LCB, Dissing S, Holm A, Berezin V, Bock E. Increased intracellular calcium is required for neurite outgrowth induced by a synthetic peptide ligand of NCAM. FEBS Lett 2002; 518:60-6. [PMID: 11997018 DOI: 10.1016/s0014-5793(02)02644-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently identified a synthetic peptide, termed C3, capable of binding the first immunoglobulin-like module of neural cell adhesion molecule (NCAM) by means of combinatorial chemistry and shown that this NCAM ligand promotes neurite outgrowth. By means of single cell calcium imaging using the calcium-sensitive probe fura-2-acetomethyl ester, we here show that the C3-peptide induced an increase in intracellular calcium in primary hippocampal neurons and PC12-E2 cells, presumably requiring mobilization of calcium from both extracellular and intracellular stores. We further observed that C3-induced neurite outgrowth was inhibited by antagonists of voltage-dependent calcium channels as well as by an inhibitor of intracellular calcium mobilization, TMB-8. These findings demonstrate at the single cell level that a synthetic NCAM ligand directly can induce an increase in intracellular calcium and suggest that NCAM-dependent neurite outgrowth requires calcium mobilization from both extracellular and intracellular calcium stores. Thus, the C3-peptide may be regarded as a useful tool for the study of NCAM-dependent signal transduction. Furthermore, the peptide may be of considerable therapeutical interest for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lars C B Rønn
- Protein Laboratory, Institute of Molecular Pathology, School of Medicine, University of Copenhagen, Panum Institute 6.2., Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Rosenstiel P, Gallinat S, Arlt A, Unger T, Sievers J, Lucius R. Angiotensin AT2 receptor ligands: do they have potential as future treatments for neurological disease? CNS Drugs 2002; 16:145-53. [PMID: 11888335 DOI: 10.2165/00023210-200216030-00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In addition to the systemic renin-angiotensin system (RAS), a local RAS has been identified. Recent research has focused on this latter system and has investigated the effects of locally generated angiotensin II, especially in the kidney, heart and CNS. In the mammalian brain, all components of the RAS are present including angiotensin AT(1) and AT(2) receptor subtypes. While the AT(1) receptor is responsible for the classical effects of angiotensin II, it has been found that the AT(2) receptor displays totally different signalling mechanisms and this has revealed hitherto unknown functions of angiotensin II. AT(2) receptors are expressed at low density in many healthy adult tissues, but are up-regulated in pathological circumstances, e.g. stroke or nerve lesion. Evidence has now emerged that the actions of angiotensin II that are exerted via the AT(2) receptor are directly opposed to those mediated by the AT(1 )receptor. For example, the AT(2) receptor has antiproliferative properties and therefore opposes the growth-promoting effect linked to AT(1) receptor stimulation. It has been reported that the AT(2) receptor regulates several functions of nerve cells, e.g. ionic fluxes, cell differentiation and axonal regeneration, but also modulates programmed cell death. It is possible that a more extensive knowledge of the AT(2) receptor could contribute to the understanding of the clinically beneficial effects of AT(1) receptor antagonists, as this treatment may unmask AT(2) receptor activity. This review presents selected aspects of advances in AT(2) receptor pharmacology, molecular biology and signal transduction with particular reference to possible novel therapeutic options for CNS diseases.
Collapse
Affiliation(s)
- Philip Rosenstiel
- Institute of Anatomy, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Motility of the nerve growth cone is highly dependent on its dynamic interactions with the microenvironment mediated by cell adhesion molecules (CAMs). These adhesive interactions can be spatially regulated by changing the density and avidity of CAMs on the growth cone. Previous studies have shown that L1, a member of the immunoglobulin superfamily of CAMs, is endocytosed at the central domain of the growth cone followed by centrifugal vesicular transport and reinsertion into the plasma membrane of the leading edge. The present paper focuses on the functional significance of endocytic L1 trafficking in dorsal root ganglia neurons in vitro. We demonstrate that the rate of L1-based neurite growth has a positive correlation with the amount of endocytosed L1 in the growth cone, whereas stimulation of neurite growth via an N-cadherin-dependent mechanism does not increase L1 endocytosis. A growth cone that migrates on an L1 substrate exhibits a steep gradient of L1-mediated adhesion (strong adhesion at the growth cone's leading edge and weak adhesion at the central domain). This gradient of L1 adhesion is attenuated after inhibition of L1 endocytosis in the growth cone by intracellular loading of a function-blocking antibody against alpha-adaptin, a subunit of the clathrin-associated AP-2 adaptor. Inhibition of L1 endocytosis by this antibody also decreased the rate of L1-dependent growth cone migration. These results indicate that the growth cone actively translocates CAMs to create spatial asymmetry in adhesive interactions with its environment and that this spatial asymmetry is important for growth cone migration.
Collapse
|
48
|
Weller S, Gärtner J. Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): Mutations in the L1CAM gene. Hum Mutat 2002; 18:1-12. [PMID: 11438988 DOI: 10.1002/humu.1144] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
L1 disease is a group of overlapping clinical phenotypes including X-linked hydrocephalus, MASA syndrome, spastic paraparesis type 1, and X-linked agenesis of corpus callosum. The patients are characterized by hydrocephalus, agenesis or hypoplasia of corpus callosum and corticospinal tracts, mental retardation, spastic paraplegia, and adducted thumbs. The responsible gene, L1CAM, encodes the L1 protein which is a member of the immunoglobulin superfamily of neuronal cell adhesion molecules. The L1 protein is expressed in neurons and Schwann cells and seems to be essential for nervous system development and function. The patients' gene mutations are distributed over the functional protein domains. The exact mechanisms by which these mutations cause a loss of L1 protein function are unknown. There appears to be a relationship between the patients' clinical phenotype and the genotype. Missense mutations in extracellular domains or mutations in cytoplasmic regions cause milder phenotypes than those leading to truncation in extracellular domains or to non-detectable L1 protein. Diagnosis of patients and carriers, including prenatal testing, is based on the characteristic clinical picture and DNA mutation analyses. At present, there is no therapy for the prevention or cure of patients' neurological disabilities.
Collapse
Affiliation(s)
- S Weller
- Department of Pediatrics, Heinrich Heine University, Düsseldorf, Germany
| | | |
Collapse
|
49
|
Skaper SD, Moore SE, Walsh FS. Cell signalling cascades regulating neuronal growth-promoting and inhibitory cues. Prog Neurobiol 2001; 65:593-608. [PMID: 11728645 DOI: 10.1016/s0301-0082(01)00017-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During development of the nervous system, neurons extend axons over considerable distances in a highly stereospecific fashion in order to innervate their targets in an appropriate manner. This involves the recognition, by the axonal growth cone, of guidance cues that determine the pathway taken by the axons. These guidance cues can act to promote and/or repel growth cone advance, and they can act either locally or at a distance from their place of synthesis. The directed growth of axons is partly governed by cell adhesion molecules (CAMs) on the neuronal growth cone that bind to CAMs on the surface of other axons or non-neuronal cells. In vitro assays have established the importance of the CAMs (N-CAM, N-cadherin and the L1 glycoprotein) in promoting axonal growth over cells, such as Schwann cells, astrocytes and muscle cells. Strong evidence now exists implicating the fibroblast growth factor receptor tyrosine kinase as the primary signal transduction molecule in the CAM pathway. Cell adhesion molecules are important constituents of synapses, and CAMs appear to play important and diverse roles in regulating synaptic plasticity associated with learning and memory. Negative extracellular signals which physically direct neurite growth have also been described. The latter include the neuronal growth inhibitory proteins Nogo and myelin-associated glycoprotein, as well as the growth cone collapsing Semaphorins/neuropilins. Although less well characterised, evidence is now beginning to emerge describing a role for Rho kinase-mediated signalling in inhibition of neurite outgrowth. This review focuses on some of the major themes and ideas associated with this fast-moving field of neuroscience.
Collapse
Affiliation(s)
- S D Skaper
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Essex CM19 5AW, Harlow, UK
| | | | | |
Collapse
|
50
|
Keith CH, Wilson MT. Factors controlling axonal and dendritic arbors. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 205:77-147. [PMID: 11336394 DOI: 10.1016/s0074-7696(01)05003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The sculpting and maintenance of axonal and dendritic arbors is largely under the control of molecules external to the cell. These factors include both substratum-associated and soluble factors that can enhance or inhibit the outgrowth of axons and dendrites. A large number of factors that modulate axonal outgrowth have been identified, and the first stages of the intracellular signaling pathways by which they modify process outgrowth have been characterized. Relatively fewer factors and pathways that affect dendritic outgrowth have been described. The factors that affect axonal arbors form an incompletely overlapping set with those that affect dendritic arbors, allowing selective control of the development and maintenance of these critical aspects of neuronal morphology.
Collapse
Affiliation(s)
- C H Keith
- Department of Cellular Biology. University of Georgia, Athens, 30605, USA
| | | |
Collapse
|